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It was the intention of the workshop to cover a number of the statistical issues of impor-
tance for the analysis of microarray data. This goes from the basic level of extracting
information from the scanned images, defining a suitable expression level, and normaliza-
tion issues when comparing different arrays, to the high level analysis involving clustering
of genes and samples, finding differentiable expressed genes, and building classifiers for
diagnostic purposes.

The booklet contains the programme for the workshop, the abstracts of the talks and a
list of participants.
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1 Program

Thursday, February 20
08.30–09.30 Registration
09.30–09.40 Welcome
09.40–10.25 Claus Mayer (Rowett Research Institute, Aberdeen,

Scotland): Least trimmed squares methods for microar-
ray normalization

10.40–11.10 Coffee/tea
11.10–11.55 David Edwards (NOVO Nordisk, Denmark): On the

pre-analysis of one-channel cDNA microarray data
12.10–13.30 Lunch
13.30–14.15 Torben F. Ørntoft (Molecular Diagnostic Laboratory,

Aarhus, Denmark): Microarrays, basic principle and use
in medical research

14.30–15.15 Yudi Pawitan (Department of Medical Epidemiology,
Karolinska Institute, Stockholm): Survival analysis us-
ing gene expression data

15.30–16.00 Coffee/tea
16.00–16.45 Mark van der Laan (University of California, Berkeley):

Statistical inference with gene expression data

Friday, February 21
09.10–09.40 Mark Reimers (Center for Genomics and Bioinformatics,

Karolinska Institute, Stockholm): Issues in probe level
analysis of affymetrix data

09.50–10.20 Mette Langaas (Department of Mathematical Sciences,
Norwegian University of Science and Technology, Trond-
heim, Norway): Estimating the number of genes truly
differentially expressed

10.30–11.00 Coffee/tea
11.00–11.45 Jelle Goeman (Leiden University Medical Center, The

Netherlands): A global score test for differential expres-
sion of groups of genes in high-dimensional microarray
data

12.00–13.30 Lunch
13.30–14.00 Jörg Assmus (Department of Mathematics, University

of Bergen, Norway): On the problem of significant p-
values for gene expressions

14.10–14.55 Mats Rudemo (Mathematical Statistics, Chalmers Uni-
versity of Technology, Göteborg, Sweden): Empirical
Bayes analysis of variance models for microarray data

15.10–15.40 Coffee/tea
15.40–16.25 Ernst Wit (Department of Statistics, University of Glas-

gow, U.K.): Hidden Markov modelling of genomic ex-
pression interactions
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16.40–17.25 Arnoldo Frigessi (Norwegian Computing Center, Oslo,
Norway): Towards a comprehensive statistical model of
cDNA microarrays

18.30: Workshop Dinner

Saturday, February 22
09.00–09.45 Rafael Irizarry (Department of Biostatistics, Baltimore,

USA): Getting usable data from microarrays: The role
of statisticians

10.00–10.30 Coffee/tea
10.30–11.15 Steen Knudsen (Technical University of Denmark): A

new non-linear normalization method to reduce vari-
ablility in DNA microarray experiments

11.30–12.15 Volkmar Liebscher (Institute of Biomathematics and
Biometry, München, Germany): Stochasting modelling
and quality control for gene expression data

12.30–13.15 Lunch
13.15–14.00 Anja von Heydebreck (Max-Planck-Institute for Molec-

ular Genetics, Division of Computational Molecular Bi-
ology, Berlin, Germany): Error modelling, data trans-
formation and robust calibration for microarray data

14.15–14.45 Coffee/tea
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Jörg Assmus, Hans Karlsen, and Dag Tjøstheim

University of Bergen, Norway

On the problem of significant p-values for gene expressions

It is well-known that the Bonferroni procedure is much too conservative to be of much
help in identifiing significant genes. We will briefly review alternative procedures that
have been proposed in the recent literature, and mainly introduce a new algorithm based
upon non paramerically estimated p-value distributions. The algorithm is performed and
tested on both simulated and real data.
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David Edwards

Biostatistics Dept, Novo Nordisk, Denmark

On the pre-analysis of one-channel cDNA microarray data

Data from one-channel cDNA microarray studies may exhibit poor reproducibility due to
spatial heterogeneity, non-linear array-to-array variation and problems in correcting for
background. Uncorrected, these phenomena can give rise to misleading conclusions.

Spatial heterogeneity may be corrected by domain-specific global normalisation or by
use of two-dimensional loess smoothing (Colantuoni et al., 2002). A method to correct
non-linear between-array variation using an iterative application of one-dimensional loess
smoothing is proposed. This method, called mean cyclic loess, is related to the cyclic loess
method of Bolstad et al. (2002) but is more efficient. A simple method for background
correction using a smoothing function rather than subtraction is described. These tech-
niques promote within-array spatial uniformity and between-array reproducibility. Their
application is illustrated using data from a study of the effects of an insulin sensitizer,
rosiglitazone, on gene expression in white adipose tissue in diabetic db/db mice. The
techniques may also be useful with data from two-channel cDNA microarrays and from
oligonucleotide arrays.

References:

Bolstad, B.M., Irizzary, R.A., Astrand, M. and Speed, T.P. (2002). A Comparison of
Normalization Methods for High Density Oligonucleotide Array Data Based on Variance
and Bias. Submitted to Bioinformatics.
Colantuoni, C., Henry G., Zeger, S. and Pevsner, J. (2002). Local mean normalization of
microarray element signal intensities across an array surface: quality control and correc-
tion of spatially systematic artifacts. Biotechniques, 32(6): 1316-20.
Edwards, D. (2003). Non-linear Normalization and Background Correction in One-Channel
cDNA Microarray Data. Bioinformatics, to appear.
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Arnoldo Frigessi and Ingrid K. Glad

Dept. of Mathematics, University of Oslo

Towards a comprehensive statistical model of cDNA microarrays

This is joint work with Heidi Lyng (Norwegian Cancer Hospital), Mark van de Wiel
(Eindhoven University of Technology) and Marit Holden (Norwegian Computing Center).
A microarray experiment is a complex sequence of several laboratory and computer related
tasks, leading to an I * J matrix of (log ratio) gene expressions for I genes and J individuals
or replications. Each such task is studied or modelled separately, and the ’result’ of one
step is plugged into the next step for further processing. This facilitates a good overview
and optimal handling in each step, but creates also major drawbacks: uncertainty is not
propagated through the sequence of various tasks, each step is based on a statistical model
which might be contradictory from task to task, and it is not possible to perform joint
inference from the experiment as a whole.

We present a coherent and structured statistical model which describes the experiment
from bottom to top, takes care of uncertainties and dependencies, and answers specific
questions of interest. We follow a hierarchical Bayesian modelling framework and resort
to MCMC for making inference. Starting out with the (unknown) number of mRNA
molecules of a gene i in the target solution of a specific tissue, we follow these molecules
through the process of reverse transcription and dying, mixing and centrifugation, bathing,
hybridization, and washing. Conditioned on the initial amount of mRNA in the target
solution, we build a hierarchical model for the hybridized target material on each spot. The
image analysis step is then modelled, producing colour intensities for spots and background
in two channels via (scanner and imaging specificsoftware). Finally we combine different
arrays in order to answer interesting clinical questions. We show a dye-swap example to
illustrate our approach and the obtainable results.

This research is supported by the Norwegian Research Council, the Cancer Society of
Norway, the Norwegian Microarray Consortium and a European Union TMR programme.
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Jelle Goeman, Hans van Houwelingen, Sara van de Geer

Leiden University

A global score test for differential expression of groups of genes in
high-dimensional microarray data

This paper presents a global test to be used for the analysis of high-dimensional microarray
data. Using this test it can be determined whether the global expression pattern of a group
of genes is significantly related to some clinical outcome of interest. Such groups of genes
may be any size from one single gene to all genes on the chip (e.g. known pathways,
specific areas of the genome or clusters from a cluster analysis). Test results for groups
of genes of different size are fully comparable, because the test gives one p-value for the
group, not a p-value for each gene. Furthermore, because a group of genes is tested with
a single test, multiple testing problems do not occur. The main application of the test
is to investigate hypotheses about active pathways, formulated on the basis of theory or
on past research. The test can also be used on all genes on the chip, e.g. for purposes of
quality control.

The test is based on a goodness-of-fit score test for generalized linear models [1,2] and can
handle both discreet and continuous clinical outcomes. Because of the properties of the
score test, the test has optimal power against alternatives where many genes in the group
have some influence on the clinical outcome. The empirical Bayesian model underlying
the test is closely related to the model of penalized (linear or logistic) regression, which has
been applied to microarray data with promising results [3,4]. The test result can therefore
also be used as a quality label for the outcome of such an analysis on a microarray data
set.

A few applications are presented in which special attention is given to visualizations of the
test result that might be valuable to the biologist. These graphs are based on intuitively
appealing mathematical properties of the test statistic. They can be used to visualize
outlying arrays and to assess the influence of individual genes on the outcome of the test
for the whole group.

References: 1: Le Cessie, S. & Van Houwelingen, H. C. (1995) Testing the fit of regression
models via score tests in random effects models. Biometrics, 51, 600-614 2: Houwing-
Duistermaat, J. J., Derkx, B. H. F., Rosendaal, F. R. & Van Houwelingen, H. C. (1995)
Testing familial aggregation. Biometrics, 51, 1292-1301 3: Le Cessie, S. & Van Houwelin-
gen, H. C. Ridge estimators in logistic regression. (1992) Applied Statistics, 41, 191-201
4: Eilers, P. H. C., Boer, J. M., Van Ommen, G. J. B. & Van Houwelingen, H. C. Classi-
fication of microarray data with penalized logistic regression. (2001) Proceedings of SPIE
volume 4266: progress in biomedical optics and imaging, 2, 187-198
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Anja von Heydebreck1 and Wolfgang Huber2

1) Max-Planck-Institute for Molecular Genetics, Dept. of Computational Molecular
Biology, Berlin, Germany, E-mail: heydebre@molgen.mpg.de

2) German Cancer Research Center, Department of Molecular Genome Analysis,
Heidelberg, Germany. E-mail: w.huber@dkfz.de

Error modeling, data transformation and robust calibration for microarray
data

Abstract: Two important topics in the analysis of microarray data are the calibration
(normalization) of data from different experiments and the problem of variance inho-
mogeneity, in the sense that the variance of the measured intensities depends on their
expectation value. A family of transformations for microarray intensity data has been
proposed that makes the variance of transformed intensities roughly independent of their
expectation value [1, 2]. In our approach, we incorporate our assumptions about the data
into a statistical model and use a robust variant of maximum-likelihood estimation to
estimate the parameters for the calibration and the variance stabilizing transformation
simultaneously. In the following, we investigate the validity of the variance stabilizing
transformation and the performance of the parameter estimation using simulated data.

Model, data transformation and parameter estimation

In this section, we give a brief summary of a family of transformations for microarray
intensity data, aiming at calibration and variance stabilization, which is described in
more detail in [2, 3].

We model the dependence of intensity measurements obtained from a microarray experi-
ment on the true expression levels with an additive and a multiplicative error term:

Yk = mke
η + ν, (2.1)

Here, mk denotes the true transcript abundance of gene k (in arbitrary units); Yk denotes
the measured intensity, and η and ν are error terms following distributions Lη and Lν

with mean zero, respectively. This error model was introduced by Rocke and Durbin [4],
assuming normally distributed errors. Furthermore we assume that data from different
arrays or from the different color channels of a single array can be brought onto a com-
mon scale via an affine–linear transformation that corrects for systematic differences in
experiment conditions. Thus we obtain the following model for the measured intensities
Yki, where k denotes the genes/probes and i denotes the samples:

Yki − ai

βi
= mkie

ηki + νki, ηki
iid∼ Lη, νki

iid∼ Lν . (2.2)
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Here, ai and βi denote the parameters defining the affine–linear calibration transformation
for sample i. For this model, the dependence of the variance of the measured intensities
on their expectation values is given as follows:

Var(Yki) = c2 (E(Yki)− ai)
2 + β2

i σ
2
ν , (2.3)

where c2 = Var(eη)/E2(eη) is a parameter of the distribution of η ∼ Lη. In the log-normal

case, c2 = eσ2
η − 1.

For a family of random variables Yu with expectation values E(Yu) = u and variances
Var(Yu) = v(u), an approximate variance-stabilizing transformation is obtained as follows
[6]:

h(y) =
∫ y

1/
√
v(u) du. (2.4)

For a variance-mean dependence as in Eqn. (2.3), this leads to

hi(yki) = arsinh
yki − ai

bi
, (2.5)

with bi = βiσν/c.

In order to estimate the parameters ai and bi from given data (yki), we postulate the
following model on the transformed scale:

arsinh
Yki − ai

bi
= µki + εki, εki

iid∼ Lε, (2.6)

where Lε has mean zero and variance c2. Here we assume that the majority of genes have
unchanged expression levels across the samples, that is, µki = µk for all samples i. Fur-
thermore, we make the assumption that Lε is unimodal and roughly symmetric (we have
often observed heavier tails than those of a normal distribution in microarray data, also
in the absence of differentially expressed genes). The parameters ai and bi are estimated
with a robust variant of maximum likelihood estimation similar to least trimmed sum of
squares regression. Loosely spoken, we alternate between maximum likelihood estimation
of the parameters using only a subset of probes with little evidence for differential expres-
sion, and an updated computation of this subset as a certain proportion qlts (trimming
quantile) of probes with the smallest residuals for the current parameter values. Typically,
0.5 ≤ qlts < 1. A detailed description of the parameter estimation can be found in [3].

Properties of the variance stabilizing transformation

The derivation of the variance stabilizing transformation (2.5) involves a first–order ap-
proximation (“delta method”) [3, 6]. Fig. 1 investigates how well this approximation holds
for a family Ym of random variables distributed according to the model

Ym = meη + ν, η ∼ N(0, σ2
η), ν ∼ N(0, σ2

ν). (2.1)
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Without loss of generality, σν = 1. The variance stabilizing transformation (2.5) has the
form h(y) = arsinh(cy) with c2 = eσ2

η − 1. For large m, Ym ≈ meη and h(Ym) ≈ log(Ym).
The asymptotic standard deviation of h(Ym) for m→∞ is thus ση. In Fig. 1, the behavior
of Sd(h(Ym)) for finite values of m is compared against the asymptotic value for different
choices of the parameter ση. For each plot, the function was numerically evaluated at
60 values of m through Monte Carlo integration with 106 samples. Even in the case of
ση = 0.4, which corresponds to a probability of 5% of observing a relative error larger
than e2·0.4 ≈ 2.2, the standard deviation Sd(h(Ym)) does not depart from the asymptotic
value by more than a factor of 1.035.
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Figure 1: Validation of the approximation used in the derivation of variance stabilizing
transformations. For a family of random variables distributed according to the microarray
error model (2.1), the plots show the standard deviation of the transformed values h(Ym) =
arsinh(cYm/σν), divided by the asymptotic value ση, which is obtained for m→∞.
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Simulation of data

To investigate the behavior of our robust variant of maximum likelihood parameter es-
timation [3], we ran simulation studies. Simulated data yki were generated according to
model (2.6) with Lε = N(0, c2).

Values for the parameters µki were generated as follows. First, following [5], for each gene
k a value µk was drawn according to

µk = arsinh (mk) , 1/mk ∼ Γ(1, 1). (2.1)

To model the mixture of non-differentially and differentially expressed genes, indicators
pk ∈ {0, 1} were generated with P [pk = 1] = pdiff. For each gene with pk = 1 and for each
sample i ≥ 2 a factor ski ∈ {−1, 1} was drawn with P [ski = 1] = pup and an amplitude
zki was drawn from the uniform distribution U(0, zmax). These were combined to obtain

µk1 = µk

µki = µk + pkskizki, i ≥ 2. (2.2)

Values for the calibration parameters ai and bi were generated through

a1 = 0, a2, . . . , ad
iid∼ U(−∆a,∆a)

b1 = 1, b2, . . . , bd
iid∼ LN(0, 1),

where ∆a = 0.95 roughly corresponds to the mode of the distribution of themk, U(−∆a,∆a)
is the uniform distribution on the interval [−∆a,∆a], and LN(0, 1) is the log-normal dis-
tribution corresponding to the standard normal distribution. This yields simulated data
yki = ai + bi sinh(µki + εki).

The matrix (yki) was presented to the software implementation in the Bioconductor pack-
age vsn version 1.0 (http://www.bioconductor.org). The function returns the esti-
mated transformations ĥ1, . . . , ĥd, parameterized by â1, . . . , âd and b̂1, . . . , b̂d (see Eqn. (2.5)),
as well as the matrix of transformed data ĥki = arsinh(yki−âi

b̂i
). Generalized log-ratios were

calculated as
∆ĥki = ĥki − ĥk1 (2.3)

and compared to the true values

∆hki = hki − hk1, (2.4)

with hki = µki + εki, by means of the root mean squared deviation

δ =

√√√√ 1

N

d∑
i=2

∑
k∈κ

(∆ĥki −∆hki)2, (2.5)

where κ is the set of k for which pk = 0, and N = |κ|(d− 1) is the number of summands.
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simulation A B C D

number of probes n 384, . . . , 69120 9216 9216 9216
number of arrays d 2 2, . . . , 64 2 2
proportion of differentially
expressed genes

pdiff 0 0 0, . . . , 0.6 0.2

proportion of up-regulated
genes

pup - - 0.5, 1 0, . . . , 1

amplitude of differential
expression

zmax - - 2 2

trimming quantile qlts 0.5, 0.75, 1

Table 1: Simulation parameters.

For a given set of simulation parameters, this procedure was repeated multiple times,
resulting in a simulation distribution of the root mean squared error δ. This was used to
obtain the error bars shown in Figs. 2, 3, and 4. The error bars are centered at the mean
and extend by twice the standard error of the mean in each direction.

Simulation results

Four series of simulations were performed to investigate the influence of the number of
probes, number of arrays, the choice of the trimming quantile qlts, the proportion of
differentially expressed genes, and the degree of asymmetry regarding the numbers of up–
and downregulated genes. The parameter settings are summarized in Table 1.

The dependence of the estimation error δ on the number of probes n and the number of
arrays d was investigated in simulation series A and B. The results are shown in Fig. 2.
In the left plot, the number of probes n varies from 384 to 69120, with three different
choices for the trimming quantile qlts. ¿From the plot, a scaling of the root mean squared
error approximately as

δ ∝ 1√
n

(2.1)

can be observed. In the right plot, the number of arrays d varies from 2 to 64, again
with three different values of qlts. While δ does slightly decrease with d, the decrease
is much slower than that with n, and does not show an obvious scaling such as (2.1).
The difference between the two plots may be explained by the fact that the number of
parameters that need to be estimated in order to determine the transformations (2.5) is
2d. Thus, the number of data points per parameter remains constant when d is increased,
but increases proportionally when n is increased.

The effect of the presence of differentially expressed genes on the estimation error δ was
investigated in simulation series C and is shown in Fig. 3. With qlts = 1, that is, without
use of a robust estimation method, δ becomes large even in the presence of only few
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Figure 2: The root mean squared deviation δ depending on the number n of probes (left)
and the number d of samples (right), for three different choices of the trimming quantile
qlts. The dashed line in the left plot indicates the graph of the function f(n) = 1√
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Figure 3: The root mean squared deviation δ for different proportions pdiff of differentialy
expressed genes and three different choices of the trimming quantile qlts. For the left plot,
the differentially expressed genes have equal probability of being up- or downregulated;
in the right plot, there are only upregulated genes.

16



0.0 0.2 0.4 0.6 0.8 1.0

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

pup

δ
qlts

0.5

0.75

1

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

2
−

0.
1

0.
0

0.
1

pup

θ

qlts

0.5

0.75

1

Figure 4: Estimation error δ (left) and bias θ (right) for different values of the asymmetry
parameter pup. Among the set of differentially expressed genes, pup is the fraction of genes
that are up–regulated in sample 2.

differentially expressed genes. As pdiff increases (starting at a value between 0.2 and 0.3),
the estimation error remains smaller with trimming at the median (qlts = 0.5) than at the
75% quantile (qlts = 0.75). Asymmetric situations (pup = 1, right panel) are worse than
symmetric ones (pup = 0.5, left panel), but still can be handled reasonably as long as the
proportion of differentially expressed genes is not too large.

Another look at the influence of asymmetry between up- and down-regulated genes is
shown in Fig. 4, which was obtained from simulation series D. Here, pdiff was fixed at 0.2.
The right panel shows the average bias

θ =
1

|κ|
∑
k∈κ

(
∆ĥk2 −∆hk2

)
. (2.2)

The robust procedures (qlts = 0.5 and 0.75) perform much better than the unrobust one
(qlts = 1). Bias θ and error δ are smallest when the fractions of up- and down-regulated
genes are about the same.
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Rafael A. Irizarry

Johns Hopkins University, Baltimore

Getting usable data from microarrays: The role of statisticians

In this talk I will give some examples of why I think it is important that statisticians be involved
in preprocessing of microarray data. I will then describe a specific example related to preprocessing
Affymetrix GeneChip high density oligonucleotide array raw data. High density oligonucleotide expression
array technology is widely used in many areas of biomedical research for quantitative and highly parallel
measurements of gene expression. Affymetrix GeneChip arrays are the most popular. In this technology
each gene is typically represented by a set of 11-20 pairs of oligonucleotides separately referred to as
probes. Typically 12,000 to 20,000 probe sets are arrayed on a silicon chip. RNA samples are prepared,
labeled and hybridized to the arrays. Arrays are then scanned, and images produced and analyzed
to obtain an intensity value for each probe. These intensities quantify the extent of the hybridization
between the labeled target sample and the oligonucleotide probe. A final step to obtain expression
measures is to summarize the probe intensities for a given gene in order to quantify the amount of the
corresponding mRNA species in the sample. Using two extensive spike-in studies and a dilution study, we
performed a careful assessment of the method of summarizing probe level data provided by the current
version of the Affymetrix Microarray Suite (MAS 5.0). We found that the performance of the Affymetrix
technology can be greatly improved by the use of expression measures derived from empirically motivated
statistical models. The advantages of a new expression measure are assessed through bias, variance,
sensitivity, and specificity. In particular, the improvements achieved by a 10-fold decrease in variability
for low expression levels are demonstrated. A paper describing this example can be found on the web:
http://www.biostat.jhsph.edu/~ririzarr/papers
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A new non-linear normalization method for reducing variability in DNA
microarray experiments

Background: Microarray data are subject to multiple sources of variation, of which biological sources are
of interest whereas most others are only confounding. Recent work has identified systematic sources of
variation that are intensity-dependent and non-linear in nature. Systematic sources of variation are not
limited to the differing properties of the cyanine dyes Cy5 and Cy3 as observed in cDNA arrays, but are
the general case for both oligonucleotide microarray (Affymetrix GeneChips) and cDNA microarray data.
Current normalization techniques are most often linear and therefore not capable of fully correcting for
these effects.

Results: We present here a simple and robust non-linear method for normalization using array signal
distribution analysis and cubic splines. These methods compared favorably to normalization using robust
local-linear regression (lowess). The application of these methods to oligonucleotide arrays reduced the
relative error between replicates by 5-10standard global normalization method. Application to cDNA
arrays showed improvements over the standard method and over Cy3-Cy5 normalization based on dye-
swap replication. In addition, a set of known differentially regulated genes was ranked higher by the
t-test. In either cDNA or Affymetrix technology, signal-dependent bias was more than ten times greater
than the observed print-tip or spatial effects.

Conclusions: Intensity-dependent normalization is important for both high-density oligonucleotide array
and cDNA array data. Both the regression and spline-based methods described here performed better
than existing linear methods when assessed on the variability of replicate arrays. Dye-swap normalization
was less effective at Cy3-Cy5 normalization than either regression or spline-based methods alone.
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Estimating the number of genes truly differentiable expressed

Aim

This talk addresses two important questions in the field of DNA microarray data modelling and analysis;
finding differentially expressed genes and effects, and estimating the number of true null hypotheses.
Focus of the talk will be on applied aspects, and graphical illustrations will play an important role.

Finding differentially expressed genes and effects

The main objective of many DNA microarray studies is the determination of a list of differentially
expressed genes. Differential expression is often sought e.g. between normal and treated cells, between
different treatments, or at different timepoints during treatment. Focus may also be on effects, e.g. is
there an overall difference between treatments?

Differentially expressed genes and effects can be identified using linear mixed effects models. Linear
mixed effects models are models were both fixed and random effects are present. Variability both across
and within genes can be taken into account. Linear mixed effects models can be used for a variety of
experimental designs. Hypothesis testing can be performed by a direct generalization of simple t-tests.
Linear fixed effects models were introduced in gene expression analysis by Kerr & Churchill (2000) and
Kerr et al. (2002), and linear mixed effects model have been used in the analysis of gene expression by
e.g. Wei et al. (2001) and Wolfinger et al. (2001).

In this presentation we look at linear mixed effects models based on transformed intensities and on
transformed ratios. The models can be applied to each gene separately, to a group of genes studied
together, or to all genes on the DNA microarray simultaneously. When the number of observations and
effects in the linear mixed effects model is moderate, the model can be fitted using likelihood-based
methods, e.g. as implemented in the NLME-library of Pinheiro and Bates (2000). With larger data sets
and many random effects, Gibbs-sampling can be used.

An experiment assessing the effects of mRNA amplification on gene expression ratios in cDNA experi-
ments, Nygaard et al. (2002), is presented in depth. The goal of this study was to evaluate if ratios were
preseved by the amplification protocol under study. The question was assessed by examining data of
observed intensities between two cell lines in cDNA microarray experiments using non-amplified and am-
plified material. Two different cell lines were considered since it is impossible to hybridize non-amplified
and amplified material on the same array. We found many sources of variation present in the cDNA
experiments, which were modelled as random effects in the linear mixed effects model. The parameters
in the linear mixed effects model were estimated using Gibbs-sampling. From estimates of the variabil-
ity in the random effects in the linear mixed effects models, a signal-to-noise evaluation criterion was
constructed to arrive at a conclusion on preservation of ratios.
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Estimating the number of true null hypotheses

When assessing gene significance both expression changes and precision of the expression changes are
evaluated. Often several genes (e.g. all genes printed on a DNA microarray slide) are investigated at the
same time, and gene significance is assessed by looking at one p-value for each gene. Genes with small
p-values are declared to be differentially expressed. It is important to be able to give an overall evaluation
of errors made, e.g. by giving an estimate of the number of false positive findings (genes declared to be
differentially expressed which in reality are not) and the number of false negative findings (genes truly
differentially expressed but not declared as such). This can be done with the aid of multiple hypothesis
testing methods, and should be performed routinely when assessing differentially expressed genes in the
analysis of DNA microarray data.

Popular methods focus on controlling the family-wise error rate (FWER, the probability of at least one
false positive finding, i.e. the probability of at least one null hypothesis erroneously rejected) or the false
discovery rate (FDR, the expected proportion of false positive findings, i.e. the expeced proportion of
the rejected null hypotheses erroneously rejected) of Benjamini and Hochberg (1995). A related quantity
is the false non-discovery rate (FNR) of Genovese and Wassermann (2001), which look at the expected
proportion of false negatives, i.e. the expected proportion of non-rejected null hypotheses erroneously
not rejected.

When estimating the FDR, an estimate of the number of true null hypotheses must be given. But, the
number of true null hypotheses is also an interesting quantity in itself. In the current presentation we
look at two different methods for estimating the number, m0, of true null hypotheses when m related
hypotheses are tested simultaneously. The methods are based on observed p-values, which are assumed
to be independent.

The first estimator was suggested by Schweder and Spjøtvoll (1982). This estimator has been used in
the estimation of the FDR by Storey (2002). The estimator is intuitively simple, but includes a meta-
parameter that is difficult to estimate.

We also consider a method based on estimating the distribution of the p-values. More specifically, we
find a decreasing nonparametric maximum likelihood density estimate of the distribution of p-values.

The methods are compared and depictured graphically in a simulation study. Estimation is also done for
the Nygaard et al. (2002) data.

This work is joint with Egil Ferkingstad and Bo Lindqvist.
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Stochastic Modelling and Quality Control for Gene Expression Data

Introduction

cDNA microarray experiments are a major tool in functional genomics. They are de-
signed to analyse gene expression profiles of a given organism in order to understand its
gene regulatory network. Despite the enormous potential of this kind of experiment, the
possibility to extract useful information from the data is limited by an abundance of noise
generated in the course of this complex experiment. Any improvement of the experimen-
tal design and the analysis of the data must be based on a deeper understanding of the
relation of data and the abundance of gene transcripts.

Microarray Experiments

From two different types of cells, cell fluid containing mRNA is extracted. The mRNA
sequences are labelled by two different markers (green/red) and the samples are mixed.
Small amounts of this mixture are exposed to the respective spots, where probes are
situated. Ideally, only specific sample sequences complementary to the probes bind to it.
A subsequent washing procedure removes all unbound mRNA from the spot, the markers
of the remaining ones produce a signal which can be measured to quantify the amount
of specific mRNA on the respective spot and hence to screen the relative abundance of
mRNA in the two samples.

In this highly involved procedure there are different sources of noise. Possibly, the images
look like Fig. 5, although this example is aN extreme one. Examples of noise include bio-
logical variation (e.g. the cells used to extract mRNA are not in the same state), chemical
variation (e.g. binding energies may depend on fluourescence markers) and measurement
variation (e.g. machine parameters are not stable over time). The latter could be analysed
in the course of repeated experiments, see e.g. [8].

Cross Hybridization

One particular source of error are so called cross hybridizations, i.e. the binding of un-
specific mRNA to the probe. Here, unspecific means that the mRNA sequence is not
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Figure 5: Red/green image from a microarray experiment (raw data).

really close to the complement of the respective probe sequence. The occurence of a
relevant number of unspecific bindings can cause that the signal finally measured is not
proportional to the number of specific mRNA in the sample since all hybridized mRNA
sequences contribute to the signal.

Therefore there is need to validate specificity of hybridized mRNA. Clearly, this requires
specially designed experiments, one possibility is described in the next section. We want
to decide from the additional experimental data thus provided whether the signal corre-
sponding to a given spot is produced exclusively by hybridization of specific mRNA and
— in case it is not — which conclusions can still be drawn from the data.

Validation of Goodness of Spots — An Experiment

In this work, we are concerned with a special experimental technology suggested in [1] to
assess cross hybridization.

Initially, a usual cDNA microarray experiment is performed. The intensities of the spots
are measured and stored. Then, the chip is exposed to a washing procedure (using for-
mamide) removing some of the hybridized mRNA from the chip. Again, the intensities
are measured. This is repeated several times increasing the concentration of formamide
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from step to step. The idea is twofold:

- The higher the binding energy of mRNA and probe the higher is the concentration
of formamide necessary to remove it from the chip.

- The specific mRNA is the one with highest binding energy, i.e. it fits best to the
probe.

Now we plot formamide concentration against signal intensity. For spots with no relevant
expression signal we expect just noise (Fig. 6, left). If there is no cross hybridizations
we expect one single decrease of intensity located at the binding energy of the specific
mRNA (Fig. 6, middle). For spots with cross hybridizations we expect several decreases
in intensity corresponding to different binding energies the last of which corresponds to
the specific sequence (Fig. 6, right).

Figure 6: Experimental Data: Noise, Good Spot, Bad Spot

Modelling of the Washing Process

To get a better theoretical understanding of the washing curves we model the washing
process by a yet simple urn model.

To compute the probability that a bound cDNA molecule remains bounded after washing
we assume

1. There is a number of existing bonds, say M .

2. Only one bound is broken by a detergent molecule.

3. The detergent is randomly distributed, its interaction with the bonds is random.

4. There is the possibility that furthers bonds break by thermal effects.

5. The cDNA remains bounded to the array unless the number of broken bounds
exceeds another number K (usually, K ∼ 1 is very small).
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This implies that the number of non-broken bonds is binomially distributed as B(M, p).
There p = e− ln ε−cf (1−µ) where µ and ε are the probabilities that a certain detergent
molecule breaks a bond and a bond breaks thermally respectively, and cf is the concen-
tration of detergent in the washing solution.

Now we implement the washing schedule into the same model. Assuming linear increase
in concentration of formamide and the possibility that formamide molecules remain on
the array (already breaking bonds) from one step to the other implies that the probabil-
ity that a mRNA molecule remains attached to the array after the kth washing step is
B(M, pk)({0, . . . , K}) where

pk = eC1+C2k+C3k2

for suitable constants C1, C2, C3 .

Adaptation to Data

The analysed data concerned differential expression of 20 000 genes in testes from 105 day
old mice vs. whole embryos at day 10.5 (1 replicate). There were recorded the data from
29 washing steps. More details of the experiment are contained in [1].

First we analyse whether the data show the behaviour suggested by our model above. To
cope with the possibility of bad spots (with significant occurence of cross hybridization)
and outliers in the data, we normalized the washing curves robustly requiring the order

statistics to fulfil x22:29
!
=1 and x6:29

!
=0. Thereafter, we computed the pointwise median of

the normalised washing curves over all 16 606 significantly expressed spots. This should
reveal the basic form of a washing curve since the shape is stable under the median
transformation and it is estimated that around 80% of the spots are good, with similar
transition points. Further, exploring this median curve, it is possible to discover other
systematic effects in the data, see Fig.7.

The best least squares fit of the above model to these median data is shown in Fig.7.
Surely, the model has problems to adapt to the plateau on the right. Clearly, further
parameters need to be introduced to consider mixtures of more than one such signals
(due to cross hybridization) too. This makes it unreasonable to fit such (though validated)
model to the data to detect spots with cross hybridization.

Detecting Jumps

On the other hand, both the data and our model show relatively sharp transitions in the
intensities. Thus, jumps carry the essential information in these data.

Therefore, we use instead of a fully parametric the much simpler approach to fit piecewise
constant functions to the data [7]. Doing this, we do not aim at perfect fits but on
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Figure 7: left: Median of normalized washing curves, red and green channel; right: Best
fit of red channel to binomial model with M = 50, K = 12.

extracting essential features following Davies [2]. Basically, we choose that fit x to data
y which minimizes

H(x, y) = γ J(x) +
∑

i

ϕ(xi − yi)

where J(x) := #{i : xi 6= xi+1} is the number of “jumps”, γ is a constant controlling
“smoothness” of the fit and ϕ is a function controlling fidelity to the data. For the
original proposal in [7], ϕ(u) = u2, we obtain a kind of least squares fit. On the other
side, robustness with respect to noise suggests to use more slowly increasing functions
like ϕ(u) = |u|, ϕ(u) = min(u2, 1), ϕ(u) = min(|u|, 1) or Huber’s proposal ϕ(u) ={

u2 |u| ≤ 1
2|u| − 1 |u| > 1

, see [4, 5]. For all of these choices, the minimizers of H(·, y) are

easily computable for all γ simultaneously, see [6].

The critical point is the choice of γ where different strategies can be adopted [6]. It is
basic to this kind of model that the best fit as a function of γfor fixed data y is piecewise
constant. It is reasonable to choose that reconstruction which belongs to the largest γ
interval of constancy [6], see Fig. 8.

The various ways to interprete data in a piecewise constant fashion were implemented in
Oberon under the software platform AntsInFields [3].

Figure 8: Potts reconstructions for the signals from Fig.6
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Results and Perspectives

Although this is work in progress, we want to emphasise the following points.

• There are outliers and there is no hypothesis available about the exact distribution
of noise. Thus, noise must be treated robustly.

• Usually, only a few replicates (sometimes a single one) are available, therefore we
need contextual information (i.e. monotonicity, sharp transitions) to enhance infer-
ence.

• Contextual information is provided by both, a probabilistic model and empirical
analysis.

• Due to the contextual information thus extracted, Potts models and/or Taut String
methods are promising tools to investigate these data.

• Our goal is to quantify cross hybridizations and to use this knowledge to investigate
cDNA microarray data with higher degree of reliability.
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Least trimmed squares methods for microarray normalization

Following the initial image analysis normalisation and standardisation is the second crucial
preprocessing step in the analysis of results from a microarray experiment. Normalisation
is necessary because the intensities measured on microarrays are not equal to the original
mRNA abundance but are disturbed by a series of systematic experimental effects. These
include effects depending on the array, dye, spot location, print-tip, intensity level, scanner
settings and more. A good overview over different normalisation strategies is given in
Yang et. al. [9]. The aim of these methods is to eliminate the different effects and to
transform (differential) expression intensities from different arrays to quantities that are
comparable. In a first step all intensities are re-scaled by a common transformation. The
standard scale used in most analyses is the log-scale, one of the reasons for this being
its variance stabilising behaviour, i.e. a linear trend in the signal intensity vs. standard
deviation relationship is removed. Recent articles have suggested that in some experiments
other transformations yield better variance stabilisation (cf. Huber et al. [5] or Durbin et
al. [2]).

This present lecture assumes that an appropriate scale for the intensities has been chosen
(in most applications this will be the log-scale) and studies the subsequent calibration
that is needed to compare intensities measured on different channels and arrays. Methods
that have been proposed for this step can be roughly divided into 3 categories:

1. Use of control spots: One strategy to deal with the normalisation problem is to
include spots on the array which control for the different experimental effects. A
typical example for this are so-called housekeeping genes. These are positive controls,
i.e. genes which are known to be highly expressed on a constant level under different
experimental conditions. Negative controls, i.e. genes which are not expected to be
expressed at all, are also commonly used. Spiking is another control technique. Here
spots with synthetic cDNA are included on the array and the samples are spiked
with a known amount of the corresponding DNA, which should give a constant
spot-intensity. These and other control strategies obviously depend very much on
the specific experiment and will not be discussed in detail here. A general problem
is, that the controls often do not behave as expected and show great variability.
Although control spots can be a very helpful tool to monitor the experiment and its
analysis, a calibration based only on these spots is highly questionable.

2. Global mean normalisation (and related methods): This method assumes
that the total mRNA abundance in all samples should be the same and for this
reason divides the spot intensities by the mean (or sum) of all intensities measured on
the same channel. The resulting normalised intensities should then be proportional
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to the percentage of the total abundance expressed by the corresponding genes and
thus be comparable across channel and arrays.

This procedure assumes a multiplicative effect on the original scale which turns into
an additive effect, when the we consider the log-intensities which are usually studied.
An obvious variation is to subtract the mean on the log-scale, which corresponds
to a division by the geometric mean on the original scale. Often the mean is also
replaced by a more robust measure of location as for example the median (or some
other empirical quantile).

ANOVA-type methods as discussed by Kerr et al. [6] can be viewed as a generali-
sation of global mean normalisation methods. Here the additive array and channel
effects are estimated simultaneously with the gene effects of interest.

3. Regression based methods: One obvious disadvantage of global mean normal-
isation is that it heavily relies on the assumption of additive effects. In many ex-
periments there is a strong indication that this assumption is violated. For example
dye effects often seem to be intensity dependent. For this reason methods have been
studied that fit a regression curve to the scatterplot of the two channel intensities
for cDNA-arrays. One problem here is that standard regression has to make an arbi-
trary choice which of the two channels should be treated as the explanatory variable
and which one is the response variable. Another problem is that ideally the curve
should be only fitted to the non-differentially expressed genes, but one doesn’t know
which ones these are. For this reason methods should be robust against presence of
a certain amount of differential genes.

Sapir and Churchill [10] tackled both of these issues simultaneously by using robust
orthogonal linear regression. A different approach was chosen by Terry Speeds group,
cf. [9], who prefer to rotate the channel 1 vs. channel 2 scatterplot by 45 degrees and
to study a plot of the mean of the log-intensities vs. the log-ratio (”MA plot”). Any
regression in this setting automatically treats both channels symmetrically. These
authors fit a loess curve to this plot, which is a non-parametric (and thus non-linear)
local regression method, that also has good robustness properties. This approach is
used very frequently nowadays.

For Affymetrix chips and other one-channel experiments there is no obvious coun-
terpart of this loess normalisation. Bolstad et al. [1] discuss several methods to
normalise these data, one of which is cyclic loess, where a loess regression for a
MA-Plot is iteratively applied to all pairwise combinations of arrays.

An alternative method for one-channel data has been studied by Rattray et al. [4]
who assume a linear relationship between the unknown true gene expression levels
and the ones measured on the arrays. Assuming Gaussian errors the parameters of
this models are then estimated by maximum likelihood. This approach is also known
as a total least squares (TLS) method and is directly related to a principal component
analysis and the main calibration parameter is the first eigenarray. If only two arrays
are present this method is identical to the orthogonal linear regression approach of
Sapir and Churchill apart from the robustification.
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This presentation will built up on the aforementioned methods. As already indicated
all methods mentioned in 2 and 3 either assume that only very few genes will differ in
expression between the different channels/arrays or they need robustness properties to
eliminate the effect of differential genes. We think that there are two quite different
reasons why robustness is needed in microarray statistics. The first reason is that due
to the complicated process that generates these data they are prone to contain outliers,
by which we mean unrepresentative values that might be caused by experimental failure,
dirt on the array, scanning mistakes etc. . . . .

As (hopefully) these outliers only make up a minor part of the data any statistical proce-
dure with a reasonable breakdown point (that is the amount of corrupted data, that are
necessary to cause a complete collapse of the procedure) should be able to cope with this
problem. In global mean normalisation for example replacing the mean (breakdown point
of 0, i.e. one extreme observation can cause a collapse) by the median (breakdown point
of 50 %) should ensure that the normalisation is not seriously affected by such outliers.

The other reason why robustness is needed is the before-mentioned fact that microarray
data usually consist of a mixture of genes which do not change in expression under the
experimental conditions of interest and others that do (these are typically the genes one
is interested in). These differential genes are not outliers in the sense of the previous
paragraph and their presence demands a procedure that is not only robust but also able
to estimate parameters of a subpopulation of the complete data. The method of least
trimmed squares (LTS) is specifically tailored for a situation like this. LTS is modification
of a least squares fit of a model, where now only a certain percentage of the data with
the smallest residuals is used for the fit. This approach has first been introduced by
Rousseeuw in 1984 and is discussed in detail in Rousseeuw and Leroy [7]. In microarray
analysis LTS methods can be applied whenever one can give an upper bound for the
percentage of expected differential genes.

In the case of global mean normalisation this approach yields an alternative location
estimator. We will discuss this simple situation to gain some insight in the principle
method. We would like to stress that in our view this LTS location estimator is not an
alternative method to estimate the mean of a distribution but is estimating a functional,
that in general is different from the mean. For mixture distributions this functional for
example can be the mean of the component with the smaller variance.

Least trimmed squares methods have already been used for microarray normalisation in
Huber et al. [5], who estimate the parameters of their arsinh-transformation this way or
in Faller et al. [3]), who similarly estimate parameters in their normalisation procedure.
We will discuss several other potential application of LTS. In particular we will show
how it can be used for normalisation of a series of one-channel experiments. Asymptotic
properties of these methods will be discussed as well as algorithmical aspects, see also
Rousseeuw and Van Driessen [8].
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Survival analysis using gene expression data

We consider the association between gene expression and survival in a cohort of breast
cancer patients, who were operated in Karolinska Hospital between 1994 and 1996. We
have so far obtained gene expression profiles for 134 patients using Affymetrix genechip
U133A and B. These patients were followed for an average of 5 years, during which 38
of them had relapse or died. We analyse 11,219 genes that were expressed in more than
half of the patients. To identify genes that are individually associated with survival we
compute the logrank test (the score test from the Cox partial likelihood) for each gene
separately. However, rather than using the standard P-value, the significance of the test
is evaluated using an empirical Bayes methodology adapted to survival analysis setting.
In this methodology, which takes the multiplicity of tests into account, the statistical
significance is evaluated in terms of a posterior probability of a true association given the
observed test statistic and this probability can be interpreted as conditional true discovery
rate.

Methodology

Our main objective is to study the association between gene expression and survival, which
will be done on gene-by-gene basis. Multiplicity issue creates a problem in assessing the
significance of observed differences in gene expression. In particular the standard P-value
is not meaningul, and its simple minded adjustment such as using Bonferroni method
is too conservative. We will follow Efron et al.’s (2001) by supposing that there is an
unknown proportion p0 of genes that are not associated with survival, and a proportion
p1 = 1− p0 that are. Denote by A the indicator whether or not a gene is associated with
survival. Let Z be the logrank statistic and assume that the conditional distribution of Z
given A = 0 is f0(z), and of Z given A = 1 is f1(z), with unknown f0(z) and f1(z). The
observed collection of Z’s is a sample from

f(z) = p0f0(z) + p1f1(z).

What we want is P (A = 1|z), which can be interpreted the true discovery rate. Using
Bayes formula

P (A = 1|z) = 1− P (A = 0|z)
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= 1− P (A = 0)f(z|A = 0)

f(z)

= 1− p0
f0(z)

f(z)
.

The density f(z) can be estimated from the data, while the ‘null’ density f0(z) can be
generated by a permutation argument. The permutation step is a key step that will vary
from application to application. Assuming we can estimate f0, the unknown p0 can be
replaced by an upperbound:

P (A = 0|z) = p0
f0(z)

f(z)
≤ 1

p0 ≤ f(z)

f0(z)
, for all z

≤ min
z

f(z)

f0(z)

In our application we have censored survival data (yi, xi, δi), where yi is the time to event or
last followup of the ith subject, xi is the gene expression value and δi the event indicator.
As usual δi = 1 if yi is an event time and zero otherwise. For general independent
censoring mechanism a simple minded permutation of xi does not work, since censoring
might depend on xi. Intead we generate f0(z) by the following scheme:

• at kth event time we setup

Risk set = {i1, . . . , ink
}

Event set = {δi1 , . . . , δink
}

Covariate set = {xi1 , . . . , xink
}

• randomly permute the event set and match it to the covariate set.

• repeat the procedure at all event times, and combine all the sampled event set to
make up new (permuted) dataset

• compute the logrank test for all genes.

Each round of this procedure generates a full list of permuted logrank tests {Z∗
1 , . . . , Z

∗
g},

where g is the total number of genes. The whole procedure is repeated a number of times
and f0(z) is then estimated from the whole collection.

Results

We apply the methodology to a dataset obtained from a cohort of breast cancer patients
who were operated in Karolinska Hospital between 1994 and 1996. We obtained gene
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Figure 9: (a) Estimated densities of f0(z), f1(z) and f(z). (b) Estimated posterior prob-
ability P (A = 1|z).

expression profiles for 134 patients using Affymetrix genechip U133A. These patients
were followed for an average of 5 years, during which 38 of them had relapse or died. We
analyse 11,219 genes that were expressed in more than half of the patients. Figure 1 shows
the nonparametric estimate of f0(z), f1(z) and f(z) and the posterior probability P (A|z).
The probability immediately provides a statistical assessment of observed differences. For
example, P (A = 1|z = 3.6) = 1 meaning that if a gene has an observed Z = 3.6 we are
certain it is associated with survival. The probability is greater than 95% if z < −3.6 or
z > 2.7.
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Issues in probe level analysis of affymetrix data

We will discuss issues in normalization and model building from the multiple-probe
Affymetrix chips. We investigate whether additional information such as AT content
influences normalization.At present the best multi-chip models, dChip and RMA ignore
MM values. We find that MM and PM values are highly correlated for many probes, and
investigate whether MM information can be profitably used in a robust multi-chip model.
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Empirical Bayes analysis of variance models for microarray data

Variance estimation for estimated gene effects is crucial for identifying differentially
expressed genes in microarray experiments. Current methods, cf. [1]–[3], are briefly re-
viewed and a new variance component model is suggested in [4] for cDNA microarray
trials. One major component in this model corresponds closely to a binomial model for
the competition between the two types of cDNA targets labelled with different fluorescent
dyes. For optimal weighting of global variance estimates and individual gene-based vari-
ance estimates an empirical Bayes procedure based on cross-validation is suggested. The
suggested model is applied to a dye-swap experiment and it is compared with a number
of other methods in a simulation study with varying numbers of slides and varying gene-
specific variances. One conclusion is that the suggested method is roughly equivalent to
a straightforward t-test with twice as many slides.

Models for microarray data with two treatments

Suppose that we have microarray data from S slides, denoted s = 1, . . . , S. For each slide
there are two treatments t = 1, 2. Let

Zgts, g = 1, . . . , G, t = 1, 2, s = 1, . . . , S, (2.1)

denote the observed intensity value for the spot corresponding to gene g and treatment t
in slide s, where G is the number of genes. We assume here that each spot corresponds to
one gene. Let Ygs denote the observed relative effect of treatment 1 compared to treatment
2 on a log-scale

Ygs = log
Zg1s

Zg2s

, (2.2)

where log denotes natural logarithms, and let
xgs = − log(

1

2
(

1

Zg1s

+
1

Zg2s

)) (2.3)

be the log-harmonic mean intensity. The variance structure can be modeled in several
ways. Let σ2

gs denote the variance of Ygs after normalization. As variance model we
suggest

σ2
gs = σ2 exp(−α1xgs) + α2. (2.4)

A binomial model

The model (2.4) for the variance contains as a special cases a simple binomial model.
Disregard here normalization and suppose that there in a spot are N fluorescently tagged
cDNA targets that will give a signal contribution and that N1 of them give a contribution
to the treatment signal Z1 ≈ cN1 and N2 = N − N1 of them give a contribution to
Z2 ≈ cN2. Due to competition among the two types of cDNA targets labelled with
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different fluorescent dyes it is natural to condition upon N = n and assume that N1 is
Binomial(n, p) given N = n with a proportion p corresponding to the gene tested at the
regarded spot. Then

Var(Ygs) ≈ Var(log
N1

n−N1

) ≈ Var(N1)


 ∂

∂x
log

x

n− x

∣∣∣∣∣
x=np




2

=
1

np
+

1

n(1− p)
≈ 1

N1

+
1

N2

≈ c

(
1

Zg1s

+
1

Zg2s

)

= 2c exp(−xgs), (2.5)

which corresponds to (2.4) with α1 = 1 and σ2 = 2c. In examples with real data it turns
out that a weighted average of (2.4) and a gene-specific variance component gives a good
description of the observed variance estimates. The optimal weighting is estimated by an
empirical Bayes procedure.
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Statistical Inference with Gene Expression Data

We will provide a formal statistical framework for the analysis of gene expression. In
particular, we consider estimation of clustering and subsetting parameters (genes and
binding sites), estimation of the number of clusters, estimation of the reproducibility
and reliability of subsets and clusters. We also consider the problem of prediction of an
outcome such as survival based on gene expression data.
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Hidden Markov Modelling of Genomic Expression Interactions

Introduction

Microarray technology has made the simultaneous measurement of gene transcription a
routine activity. Whereas gene transcription is only one stage in the complex genomic
process of living organisms, it gives a fascinating insight in one aspect of this activity
across the whole genome. It is our aim in this paper to model local interaction behaviour
in transcription for a tuberculosis bacterium in a stressed growth stage.

Gene regulation is a complex biological process which involves gene-gene and gene-
protein interactions. The gene sequence is preceded by an operator region to which
the enzyme polymerase is to bind to start transcription of the gene. However, many
genes are normally blocked by the action of a repressor protein. This prevents the RNA
polymerase enzyme from binding to the gene and transcribing the structural gene. Such
genes are induced by the arrival of an inducer molecule which binds to the repressor
protein and rendering it inactive. This allows transcription from the structural gene and
the production of a protein.

Figure 10: Transcription measured by microarrays is the end result of a complex series of
biological regulatory operations.
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Other genes are normally active and able to be constantly transcribed, because the
repressor protein is produced in an inactive form. On the arrival and binding of the co-
repressor molecule the complex can act as a functional repressor and block the structural
gene by binding at the operator site.

In simple organisms genes are packed very close together. In fact, they frequently share
a control region. Moreover, products from the transcription, i.e. proteins, can block the
action of neighbouring genes. For this reason, it might not be unreasonable to test the
hypothesis if there are some genome wide patterns of local spatial gene interactions.

Design of Experiment

In this section we describe an experiment conducted by Prof Phil Butcher and his Bacterial
Microarray Group (Bµgs) at St. George’s Hospital in London. The Bµgs group was
interested in studying the effects of stressed growth on the expression levels of all 3924
genes in Mycobacterium tuberculosis.

From an initial time zero point 5 cultures of M. tuberculosis were grown. The cultures
in the first two flasks were grown until day 6 and then harvested, whereas the others
were grown and harvested at day 14, 20 and 30 respectively. For each time points four
batches of RNA were extracted and three of them were labelled with Cy3-dCTP and one
with Cy5-dCTP. 16 batches of genomic DNA were prepared and 12 of them were labelled
with Cy5-dCTP and 4 with Cy3-dCTP. 16 mixtures of genomic DNA together with time
course RNA were created and hybridized to the microarrays.

At the initial time point the bacterium has a lot of oxygen and is in a friendly growth
environment. As the bacterium starts to multiply, it start to use up its resources. A lack
of oxygen results and a stress reaction is induced in the bacterium. Effectively, growth
slows down and eventually comes to a halt. Although the bacterium is grown in flasks, an
analogous situation occurs in the human body, where the bacterium first multiplies quite
quickly but then slows down. In the body, the bacterium is then eaten by microphages. In
this state, they remain dormant in the body. Eventually they break out of the microphages
for a final assault to the body, which is fatal.

The microarrays were spotted on whole genome arrays, produced by the Bµgs group.
They were constructed by robotic spotting onto poly-lysine coated glass slides of PCR
amplicons that ranged in length from 60 to 999 basepairs. The amplicons were derived
from portions of each of the 3924 predicted open reading frames (ORF) of the sequenced
strain of M. tuberculosis H37RV. Primer pairs were selected so to minimize cross-homology
with all other ORF’s.

Bayesian inference with hierarchical models

The time-series data from the tuberculosis growth experiment provide the opportunity
to study the dynamic aspects of the gene expression patterns and possible relationships
between genes. We focus on the question whether the dynamic structure of a gene’s
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Figure 11: Down — Same — Up pattern for one gene.

expression pattern is related to the pattern of nearby genes on the genome. We model
this by using a Hidden Markov Model interpreted as a Bayesian hierarchical model.

Current statistical work in microarray inference has rarely taken into account other
aspects of the rich structure of genomic data. The sheer complexity of a microarray seems
to have stunned the statistician into a pious acknowledgement of the exploratory nature
of his or her contribution. This is a shame. It seems that the complete nature of the
microarray datasets combined with knowledge of the structure of the genome allows for
careful testing of interesting hypotheses. The main focus of this section is to test the
spatial component of the M. tuberculosis gene expression measured during their growth
stage.

Look at the data

A cursory look at the data shows something quite intriguing. The quantity,

x̄it. = an average expression level for gene i at time t (2.1)

is defined and calculated. From the four values {x̄i1., x̄i2., x̄i3., x̄i4.} an expression pattern
is formed for gene i consisting of three signs (+\−) describing the increasing and/or
decreasing pattern over time. When comparing the expression pattern of one gene with
the next gene on the genome (where “next” is arbitrarily interpreted in one particular
direction), it seems that a particular expression pattern is more likely to be followed by
the inverse pattern.
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From \ To −−− +−− −+− + +− −−+ +−+ −+ + + + +
−−− 4 23 30 85 19 56 60 91
+−− 8 41 60 58 63 74 152 86
−+− 27 64 50 90 59 97 84 65
+ +− 64 48 79 52 113 77 62 24
−−+ 28 70 60 110 53 81 57 68
+−+ 56 97 103 60 65 40 64 27
−+ + 87 145 95 51 66 55 35 9
+ + + 94 54 59 13 89 32 29 7

For instance, a strictly decreasing pattern is 91 times (25%) followed by a strictly
increasing pattern, whereas a down-up-up pattern is followed 145 times (27%) by an up-
down-down pattern, etc. This is quite a deviation from the expected 12.5% if there had
been no spatial interaction. Nevertheless, this table is only a rough approximation of the
true situation. The main problem with this table is that we expect most or at least a
part of the genes to be unaffected by the growth phase. Any up-and-down pattern that is
observed in such gene expressions is merely noise. Any serious modelling exercise should
therefore allow for a “no-change” (0) as well as an “up” (+1) and “down” (−1) state.

Bayesian Hierarchical Model

The way we choose to model this problem is by a hierarchical model. Of interests are two
things, i.e., the unobserved dynamic expression patterns made up out of “up”, “down”
and “no-change” and neighbour interactions patterns between these unobserved states.

We define the hidden states s = (s1, . . . , s3924) on the genes in the tuberculosis genome.
Each hidden state variable is a collection of 4 subvariables, s1 = (si1, si2, si3, Ri), where
sij ∈ {−1, 0,+1} expresses whether gene i from time instance j to j + 1, went down,
stayed the same or went up. The parameter Ri expresses to which interaction regime
gene i belongs. For the course of this paper we assume that the interaction regime is
homogeneous over the whole genome. It is known that the M. tuberculosis genome has a
circular structure, as shown in Figure 12. The 3924 known genes in this genome have the
peculiar one-dimensional structure, whereby gene nr. 3924 is located right next to gene
nr. 1.

To simplify the modelling, we shall concentrate only on the observed average differences
with respect to the previous time point,

di1 = x̄i2. − x̄i1., di2 = x̄i3. − x̄i2., di3 = x̄i4. − x̄i3.,

Given the unobserved states, we shall model the differences with distributions depending
on a parameter θo.

The structure of the hierarchical model reflects the circularity of the genome. In Fig-
ure 13 the observed differences di = (di1, di2, di3) for i = 1, 2, . . . 3924 are shown in their
dependence to the observation parameters θo as well as on the circular structure of the
genome. The hidden state parameters s depend on some parameters θm.
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Figure 12: The 3924 genes on the M. Tuberculosis genome are arranged in a circular
fashion.

Figure 13: A graphical representation of the tuberculosis spatial interaction model. Notice
that this is not a DAG. The cyclic structure of the genome introduces a cyclic structure
among the variables.

Hidden Potts Model

One of the questions of interest is to compare the independence model where the gene
expression pattern of gene i, si, does not depend on that of neighbouring genes si−1 and
si+1 with more complicated spatial models. Implementing the hierarchical Bayesian model
as a hidden Potts model gives us precisely this possibility.

In general, if one interprets the circular genome as a conditional independence graph,
the Hammersley-Clifford theorem (Besag 1974) suggests that the full prior distribution
on the genome s = (s1, s2, . . . , s3924) is given as

P (s) ∝ exp

(∑
i

ψi(si, si+1)

)
.
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This first order model only takes neighbouring effects into consideration. We choose a
particular interpretation of this model, by means of a Potts model.

The Potts model defines the joint distribution through the conditional distributions.
It is a generalization of an Ising model, where each of the positions can take on more
than two levels, in this case three, i.e., {−1, 0,+1}. The Markov Random Field in our
problem is two-dimensional, where the first dimension comes from the spatial structure
of the genome and the other dimension from time.

Figure 14: The hidden parameter s defines a Markov Random Field on a lattice that
wraps around. The hidden Markov Random Field is modelled through a Potts Model.

The Potts model is defined through the conditional probabilities, p(sij |s−ijθm). Using
the Markov structure by which these conditional probabilities only depend on the states
within the neighbourhood structure, a model can be defined with a richness of one’s own
liking. We define the following Potts model with six parameters θm = (θ000, θ001, θ010, θ011, θ100, θ101),

p(si0j0|s−i0j0θm) ∝ (2.2)

exp
(
θ0001{si0j0

=0} + θ0011{si0j0
=1}

+θ100
∑

i∈{i0−1,i0+1}
1{si0j0

=sij0
=0} + θ101

∑
i∈{i0−1,i0+1}

1{si0j0
=sij0

}

+ θ010
∑

j∈{j0−1,j0+1}
1{si0j0

=si0j=0} + θ011
∑

j∈{j0−1,j0+1}
1{si0j0

=si0j}




The first two parameters guarantee that if θ010 = θ011 = θ100 = θ101 = 0, the model on the
hidden states reduces to full independence in both the time and spatial dimensions. If the
parameter θ101 > 0, then then genes tend to keep their state from one time to the next.
If the parameter θ101 < 0 then genes tend to flip to another state from one time to the
next. The parameter θ100 focusses particularly on the behaviour of non-expressed genes
over time. If the parameter θ011 > 0, then then neighbouring genes tend to have the same
state. If the parameter θ011 < 0 then neighboring genes tend to repulse each other. The
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parameter θ010 focusses particularly how the non-active behavious of one gene propogates
to genes neighbouring it.

The full conditionals in (2.2) determines the joint distribution of the hidden states
p(s|θm). It can be shown with the use of the factorization theorem in probabilistic graph-
ical models that the joint distribution of the hidden states given the model parameters
θm is proportional to the following expression,

p(s|θm) ∝ (2.3)

exp


θ000 ∑

i0j0

1{si0j0
=0} + θ001

∑
i0j0

1{sij=1}

+θ100
∑
i0j0

1{si0j0
=si0+1,j0

=0} + θ101
∑
i0j0

1{si0j0
=si0+1,j0

}

+ θ010
∑
i0j0

1{si0j0
=si0,j0+1=0} + θ011

∑
i0j0

1{si0j0
=si0j0+1}


 ,

where the sums are over the whole lattice and where for all i the quantity si4 is simply
defined as missing.

We assume that the unobserved states s determine the distribution of the average dif-
ference between the time points. In particular, we assume that given a particular gene i
in state si = (si1, si2, si3) the observed differences are distributed as correlated normals,

di|si ∼ N




 µsi1

µsi2

µsi3


 ,


 σ2

si1
−σsi1

σsi2
/2 0

−σsi1
σsi2

/2 σ2
si2

−σsi3
σsi2

/2
0 −σsi3

σsi2
/2 σ2

si3






under the restriction that

µ−1 < 0, µ0 ≡ 0 and µ1 > 0.

Given the states s the observed differences are assumed to be independent.

Computational Details of Implementation

The set-up of the model falls completely within the hidden Markov description by [?]
with the additional computational advantages of [?]. The purpose of inference is to get
an estimate of the posterior p(s, θo, θm | d). This estimation of the parameters is done via
a hybrid sampler.

We let (d, s) = {(di, si), i = 1, . . . , n}, where n = 3924 and for each gene i is the
set of observed differences corresponding to an unobserved missing dynamic state si.
Conditional on the si’s, the di’s are independent,

p(d|s, θ0, θm) =
n∏

i=1

p(di|si, θo, θm).
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The conditional independence graph in Figure 13, in particular the independence of θo

and θm, allows the following factorization

p(d, s, θo, θm) =

{
n∏

i=1

p(di|si, θo)

}
p(s|θm)π1(θm)π2(θo), (2.4)

where π1 and π2 are priors for θm and θo, respectively.

First, let s−i denote {sj, j 6= i}. Then we may write

p(s|θm) = p(si|s−iθm)p(s−i|θm).

Furthermore, let sδi denote the subset of s−i that contribute to p(si|s−iθm). In other
words, sδi contains the neighbours of si. In the case of our circular Markov random field,
sδi = {si−1, si+1}, where s0 ≡ s3924 and s3925 ≡ s1.

Using this notation, a Gibbs sampler can be defined to generate draws from p(s, θo, θm | d).
After a suitable burn-in period, draws for s, θo and θm can be obtained iteratively by sim-
ulating according to the following cycle:

1. For each i, simulate si from

p(si|s−i, θo, θm) = p(si|sδi, θo, θm) (2.5)

∝ p(di|si, θo)p(si|sδi, θm) (2.6)

Remember that si is a categorical variable, and therefore sampling from p(si|s−i, θo, θm)
is effectively sampling from several multinomials over time.

2. Sample θo from

p(θo|θm, s, d) ∝
{

n∏
i=1

p(di|si, θo)

}
π2(θo) (2.7)

By selecting a conjugate prior, evaluating (2.7) is straightforward.

3. Draw θm from

p(θm|θo, s, d) = p(θm|s) (2.8)

∝ p(s|θm)π1(θm) (2.9)

The expression p(s|θm) is proportional to the expression in (2.3). It is known there-
fore up to a normalizing constant Z(θm) that depends on θm.

Whereas the parameters s and θo are easy to update via a Gibbs or other Hasting scheme,
there is a problem when it comes to updating θm. The fact that the expression (2.9)
depends on the normalizing constant of the joint density of the hidden states, has posed
obstacles to sample θm effectively. [?] use the pseudolikelihood,

pPL(s|θm) =
∏
i

p(si|sδiθm),
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as an approximation of p(s|θm) and replace this in (2.9).

A recent work by [?] found an important result for efficient and precise calculation of
the normalizing constant z(θm). Let A = {a1, . . . , aN} be the set of values si can take
with cardinality |S| = N . It states that on a cylindrical lattice s the normalizing constant
can be found for a non-normalized joint density q that can be factorized as

q(s|θ) =
n∏

j=1

h(sj , sj−1),

for a given positive real function h : A × A → R. The normalizing constant is given by
tr(Qn), where Q is a N ×N matrix, defined by

Qkl = h(xj = al, xj−1 = ak).

In our case, the set A of values that si can take consists of 33 = 27 elements,

A = ((000), (00+), (00−), . . . , (+ + +)) . (2.10)

From the joint distribution in (2.3) it is easy to see that the function h can be written as

h(si, si+1) = exp


 3∑

j=1

(
θ0001{sij=0} + θ0011{sij=1} + θ1001{sij=si+1,j=0}

+θ1011{sij=si+1,j} + θ0101{sij=si,j+1=0} + θ0111{sij=si,j+1}
))
,

where for each i the value si4 in this expression is assumed to be missing. From this we
can derive the 27 × 27 matrix Q. Using the order as partially defined by (2.10) we can
write for QL, the elementwise log-transformation of Q:

QL =




3θ000 + 3θ100 + 3θ101 + 2θ010 + 2θ011 . . . 3θ000 + 2θ010 + 2θ011

2θ000 + θ001 + 2θ100 + 2θ101 + θ010 + θ011 . . . 2θ000 + θ001 + θ101 + θ010 + θ011

2θ000 + 2θ100 + 2θ101 + θ010 + θ011 . . . 2θ000 + θ010 + θ011

...
. . .

...
3θ001 + 2θ011 . . . 3θ001 + 3θ101 + 2θ011




The matrix Q consists of strictly positive entries and is therefore irreducible. The
Perron-Frobenius matrix theorem applies so that Q can be diagonalised, Q = H−1DH .
Then tr(Qn) = tr(Dn), which gives substantial savings in terms of calculation.

Discussion and Results

Currently the a Hybrid Gibbs and Metropolis-Hasting sampler, outlined in Section 3, is
implemented. Initial results suggest:

1. Using the exact computation method described in Section 3.4. is computationally
as expensive as the traditional pseudo-likelihood approach, whereas the efficiency of
the results is much greater.

50



2. The peculiar patterns observed in the up-down patterns in the raw data are con-
firmed with our formal model.

Although our model is very naive and should be supplemented by more detailed mod-
elling, it is one of the first attempts to look at expression data from a modelling point of
view. Moreover, although the biological story is no doubt much more complicated, the
current results suggest that some form of localized negative feedback might be part of the
regulatory activity of the M. tuberculosis bacterium’s genome.
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Microarrays, basic principle and use in medical research

Basic principle
The immobilization of probes for nucleic acid hybridization on a solid support has been
known for many years, but the technique was taken to a new level when thousands of
molecules were placed next to each other on a glass surface in a small microscopic area
with less than 100 micrometers between the probes. This enabled the use of small volumes
of samples to be hybridized as well as parallel analysis of thousands of genes - today reach-
ing the level of examining the whole transcribed genome in one step on approximately 1
square centimeter of glass.

The perspective for this approach was and still is staggering. Placing 400.000 probes on
a small glass surface makes it possible to design probes for sequencing, for polymorphism
detection, for expression, splice variant examination etc.

The most widely used commercial array platform is from Affymetrix Inc. and involves
25-mer oligonucleotides synthesized in-situ on a solid glass wafer surface by a photolitho-
graphic process. Approximately 20 probes are selected for each gene placed towards the
3’ end of the ORF and with matching control probes for control of unspecific cross hy-
bridization. These arrays are for single sample measurements that are normalized and
scaled for comparison to other samples. Non-commercial platforms usually utilize robotic
gridders or inkjet printing technology that deposit the DNA probes on the arrays surface.
Reading is made in a laser scanning confocal microscope with a resolution around 2-5
microns or with CCD camera technology.

Application in Gene expression monitoring
The most widespread application of arrays has, by far, been the quantification of mRNA
molecules, so-called gene expression monitoring or transcriptome analysis. In this appli-
cation information about which genes are expressed and at what level is provided. The
performance is linear and reproducible and an antibody sandwich similar to an ELISA is
used to amplify the signal from weakly expressed sequences Another approach has been
sequencing in which probes that ideally cover all 4 possible nucleotide positions along
the whole open reading frame are used to predict the presence or absence of mutations
(Wikman et al., 2000). A fast-growing application is the SNP array-technology with the
purpose of detecting variation in the genome to find polymorphisms associated to increased
disease susceptibility or to e.g. reduced or increased metabolism of drugs (Halushka et
al., 1999, Sekine et al, 2001). About 4-6 millions of polymorphisms exist in the genome,
the vast amount outside of open reading frames.

The sample that is loaded on the expression arrays is labeled following one of several
protocols. Nano- to micrograms of total RNA is needed and labeled by an enzymatic

52



reaction or using fluorescent labeled or modified nucleic acids. In the two most used pro-
tocols 5-20 µg total RNA is used to synthesize cDNA by reverse transcription or cRNA
by in vitro transcription from a double-stranded DNA modified with a 3’- T7 RNA poly-
merase recognition site. Non-commercial systems normally incorporate fluorescent Cy5-
or Cy3-conjugated nucleotides in test- and reference samples, respectively, or amino-allyl
nucleotides that are subsequently conjugated with cy-dyes. Following the Affymetrix pro-
tocol, biotin-modified ribonucleotides are incorporated during in vitro transcription and
reacted with a streptavidin-phycoerythrin conjugate after hybridization. Subsequently,
an antibody sandwich similar to an ELISA is used to amplify the signal in order to detect
weakly expressed sequences.

Modified protocols exist in which several rounds of in vitro transcription are leading to
detectable amounts of labeled cRNA from a few nanograms of RNA. One approach is not
to use PCR but only approximately linear enzymatic amplification, whereas others with
success have used a PCR step (Theilgaard-Monch et al., 2001).

Handling of data
Following an array experiment on the Affymetrix system the initial scan has to be scaled
to a predefined standard level. This is necessary to compensate for e.g. varying efficiency
during labelling of the samples. For this reason it is always wise to label samples for
comparison in parallel on the same day. The standardization can be based on a global
scaling in which the intensity from all probes on the array is scaled to a standard level
or can be based on the level of selected house-keeping genes that are supposedly at the
same level in different samples under different conditions. A list of such genes is available
at (Warrington et al., 2000). If the scaling factors between the samples to be compared
differs more than approximately three fold, the validity of the comparison becomes un-
certain.

The next step is bioinformatic datamining with the purpose of characterizing the sam-
ples or identifying genes whose expression is following a certain sample phenotype. There
are various approaches to this.

First step is to eliminate genes whose expression is generally absent or noise-filled. Meth-
ods for this depend on the array system used. The second step is to identify those genes
whose expression is informative in terms of following a certain sample phenotype or in
terms of having a differential behavior across the samples. This step will eliminate a large
number of genes that do not vary much as e.g. housekeeping genes. Different methods
exist for this purpose, some of which are,

1. Statistical evaluation based on parametric statistics like t-test. In this case the ex-
pression of a gene across many samples is normalized and statistically significant variation
is registered.

2. Using a weighting scheme in which genes whose expression covary with a certain
sample phenotype are sorted for further study.

3. Significance analysis of microarrays. This method assigns a score to each gene based
on changes in gene expression relative to the standard deviation of repeated measurements
(Tusher et al., 2001).

When the differentially expressed genes have been identified, the third step is to extract
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as much information from the informative pool of genes as possible. A commonly used
method for this purpose is cluster analysis based on hierarchical agglomerative clustering
in which similar gene expression levels across samples lead to a tight relation between
genes and a dissimilar behavior leads to clustering of such genes far from each other. The
same method can be applied to samples (two-way clustering) such that samples with sim-
ilar expression of a number of genes are clustered together and those that have different
levels of certain groups of gene are clustered far from each other. In this way a new gene
expression based classification of samples occur, unbiased from other assumptions of the
samples. This has been very promising in identifying new subgroups of diseases based on
gene expression. Such subgroups do in cases correspond to patients with good or poor
survival (Alizadeh et al., 2000, van ’t Veer et al., 2002), patients who will benefit from
certain treatments etc. As many of these projects start out with thousands of genes it
is perhaps not surprising that interesting groups of for example 70 genes that work as
classifiers will be found. The crucial point is whether such classifying genes will repro-
ducibly identify the same class of patients or samples in a new independent experiment.
Mathematical approaches as cross-validation ”within” the experiment are made to sup-
port the robustness of the classifier, but cannot substitute prospective clinical studies that
are quite time consuming.

A promising application of expression arrays has been the identification and dissection
of regulatory pathways. If a certain receptor is triggered by a ligand or if an inducible
signal transduction molecule is activated following transfection (Pedersen et al., 2001) or
physical stimulation (Zhao et al., 2000), a very clear impression of the effect on gene tran-
scription can be monitored. New software allows the direct linkage of expression data to
pathways for easy visualization. This fast and comprehensive overview of large datasets
of gene expression profiles may lead to a faster discovery of new pathways and interaction
between pathways. In a similar manner knockout or knock-in mice can be used to study
the biological role of specific genes.

Application in SNP monitoring
SNP arrays are mainly used for two purposes, I) linkage analysis of certain chromosomal
loci identified by SNPs to diseases for positional cloning or to find the genetic background
of patients’ response to drugs (Sekine et al., 2001; Halushka et al., 1999); II) detection of
allelic imbalance in tumor tissue (Primdahl et al., 2002). In the first case large clinically
well-defined family cohorts are needed, and regions segregating with disease are subjected
to fine mapping with microsatellites, database search for gene identification and sequenc-
ing of candidate genes. In the latter case DNA purified from micro-dissected tumor tissue
is compared to the normal leukocyte DNA, and heterogeneous SNP’s will convert to ho-
mozygous if the allelic balance is changing. The method can at least in theory detect
both losses and gains of alleles, but mostly lost alleles are picked up, probably due to
saturation problems in the PCR reaction that has to be carried out as heavy multiplexing
(more than 50 primer pairs per tube) to reduce the workload. The PCR step in which a
small oligonucleotide holding the SNP’s has to be amplified seems for the time being to
be the rate limiting step in the process towards SNP arrays with more than 10.000 SNPs.

The use of arrays for sequencing has been hampered by the fact that the sensitivity is
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not as high as with conventional acrylic polymer based sequencers and identification of
deletions and insertions is at present very difficult. Data indicate that each probe has
to be characterized with respect to signal to noise ratio etc. This makes it necessary to
run a very large amount of controls before utilizing these arrays (Wikman et al 2000).
The many databases created worldwide using array systems, are potentially rich sources
of information. With regard to the Affymetrix system, that should be straight forward,
however, other arrays systems are very difficult to compare as the linearity and dynamics
may vary considerably not to mention the references (pools of RNA) that are used for
comparisons (Brazma et al., 2001). We will probably need standardized commercial or
publicly distributed references to utilize the potential of the many data worldwide that
describe different species, tissues and biological conditions.
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