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Vı́ctor Pérez-Abreu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
Smoothness of harmonic functions for Markov processes with jumps

Jean Picard and Catherine Savona . . . . . . . . . . . . . . . . . . . . . . . 211
Tempered Stable Processes
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Preface

The first MaphySto Conference on ‘Lévy Processes: Theory and Applications’, held 18-22 January
1999 at the Department of Mathematical Sciences, University of Aarhus, made it clear that the
field of infinite divisibility, Lévy processes, etc. was in a very active state of wide ranging research
developments, in regard to applications as well as theory. It was therefore natural, soon after
the event, to think of organising a second conference with the same title, in the framework of
MaPhySto. The present volume, which consists of extended abstracts of the papers presented at
this second conference, testifies to the fact that interest in the field and the diversity of aspects
studied have further increased in the intervening three years.

A Mini-proceedings volume, like the present, was also produced after the first conference and
is available in the MaPhySto Miscellanea Series as No. 11 (1999). Furthermore, a volume of state-
of-the-art articles, consisting to a large extent of fully developed accounts of papers presented at
that conference, was published in 2001 in collaboration with Birkhauser Verlag under the title
“Lévy Processes. Theory and Applications” (Eds.: Ole E. Barndorff-Nielsen, Thomas Mikosch and
Sidney I. Resnick).

As for the first Miniproceedings, it is a pleasure to thank the participants for their willingness
to contribute to the present volume, which hopefully will be found of interest to a large group of
readers.

A special warm thanks to Ken-iti Sato and Thomas Mikosch for their generous help in organising
both conferences.

Ole E. Barndorff-Nielsen
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Stochastic integrals and Lévy-Ito decomposition

on separable Banach spaces

S. Albeverio and B. Rüdiger

Institut für Angewandte Mathematik, Abteilung Stochastik,
Universität Bonn, Wegelerstr. 6, D -53115 Bonn, Germany

Abstract

The results obtained in [1] and reported at the Aarhus conference are reported here. A direct
definition of stochastic integrals for deterministic Banach valued functions on separable Banach
spaces is given with respect to compensated Poisson random measures and applied to provide
a direct proof of the Lévy -Ito decomposition of a càdlàg process with stationary, independent
increments into a jump and Brownian component on Banach spaces of type 2.

1 Introduction

In this paper we present the results obtained in [1] and reported at the Aarhus conference by
the second named author. In the first part of this article we give a direct definition of stochastic
integrals for deterministic functions with respect to compensated Poisson random measures of Lévy
processes (Xt)t≥0 on separable Banach spaces. (In [2] the results of this article are extended for
the case of compensated Poisson random measure of additive processes (Xt)t≥0. In [32] the whole
approach is extended to the case of random functions.) In the second part of the present paper this
approach is used to provide a direct proof of the corresponding Lévy-Ito decomposition theorem
on separable Banach spaces of type 2. To the best of our knowledge the only existing proofs of
this decomposition of càdlàg processes with stationary, independent increments (Lévy processes)
into a jump and a Brownian part on infinite dimensional state spaces are given in [13], [35], where
the decomposition is proven for the case where the state space is a (co -) nuclear space, and in
[8] for the case of Banach spaces ([8] was pointed out to us during the conference by J. Rosinski
and W. A. Woyczynski). In the preceding works however no direct expression of the Lévy part as
connected with stochastic integrals is given. (As the proof in [8] is rather sketchy we describe it in
Remark 5.3, trying to complete it as much as possible with precise references.) For our proof of the
decomposition theorem for the Lévy-processes (Xt)t≥0 on separable Banach spaces (E,B(E)) of
type 2, where the above mentioned stochastic integral is defined, we need that the corresponding
Lévy measure ν (see Definition 2.10) satisfies the condition∫

E\{0}
min(1, ‖x‖2)ν(dx) <∞ (1.1)

It is well known that on (IR \ 0,B(IR \ 0)) the condition (1.1) is satisfied by any Lévy measure.
Viceversa, any σ-finite measure on (IR \ {0},B(IR \ {0})), satisfying (1.1), is a Lévy measure.
The same correspondence between Lévy measures and the above condition holds on any separable
Hilbert space ([25]), while on general separable Banach spaces (E,B(E)) (1.1) is neither necessary
nor sufficient for a σ-finite measure on (E \ 0,B(E \ 0)) to be a Lévy measure. However separable
Banach spaces of cotype 2 are characterized by the condition that any Lévy measure satisfies
condition (1.1), while separable Banach spaces of type 2 are characterized by the condition that
any σ-finite measure on (E \ {0},B(E \ {0})), which satisfies (1.1), is a Lévy measure (see, e.g.,
[3], [4],[10], [22]). We recall the definition of type -p, resp. cotype-p Banach spaces (see e.g. [3]).
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Definition 1.1. A separable Banach space B is of type p, 1 ≤ p ≤ 2, if there is a constant Kp,
such that if {Xi}ni=1 is any finite set of centered independent B-valued random variables, such that
E[‖Xi‖p] <∞, then

E[‖
n∑
i=1

Xi‖p] ≤ Kp

n∑
i=1

E[‖Xi‖p] (1.2)

Definition 1.2. A separable Banach space B is of cotype p, p ≥ 2, if there is a constant Cp,
such that if {Xi}ni=1 is any finite set of centered independent B-valued random variables, such that
E[‖Xi‖p] <∞, then

E[‖
n∑
i=1

Xi‖p] ≥ Cp

n∑
i=1

E[‖Xi‖p] (1.3)

A Banach space is type 2 and cotype 2 if and only if it is isomorphic to a Hilbert space [17]. Typical
examples of separable Banach spaces of cotype 2 (resp. type 2) are the spaces Lp(Ω, P ),p ∈ [1, 2]
(resp. p ∈ [2,∞)), where (Ω, P ) is any measure space.

The structure of the paper is as follows. In Sect.2 we define Lévy measures and processes on
separable Banach spaces, as well as the associated Poisson random measures. Section 3 recalls the
Lévy Ito decomposition theorem on (IR,B(IR)). Section 4 gives our construction of determinis-
tic stochastic integrals on separable Banach spaces. Section 5 gives our Lévy-Ito decomposition
theorem (Theorem 5.1).

2 Poisson and Lévy measures of Lévy processes on separable

Banach spaces

We assume that a filtered probability space (Ω,F , (Ft)0≤t≤+∞, P ), satisfying the “usual hypothe-
sis”, is given:

i) F0 contains all null sets of F .

ii) Ft = F+
t , where F+

t = ∩u>tFt for all t such that 0 ≤ t < +∞, i.e. the filtration is right
continuous.

We shall study Lévy processes on (Ω,F , (Ft)0≤t≤+∞, P ) with values in (E,B(E)), where in
the whole paper we assume that E is a separable Banach space with norm ‖ · ‖ and B(E) is the
corresponding σ-algebra. We start by recalling the well known definition of Lévy process.

Definition 2.1 (Lévy process). A process (Xt)t≥0 with state space (E,B(E)), is an Ft-Lévy
process on (Ω,F , P ) if

i) (Xt)t≥0 is adapted (to (Ft)t≥0)
ii) X0 = 0 a.s.
iii) (Xt)t≥0 has increments independent of the past, i.e. Xt−Xs is independent of Fs if 0 ≤ s < t.
iv) (Xt)t≥0 has stationary increments, that is Xt − Xs has the same distribution as Xt−s, 0 ≤

s < t.
v) (Xt)t≥0 is stochastically continuous.
vi) (Xt)t≥0 is càdlàg.

Remark 2.2. The class satisfying i)–v) is given canonically once an infinitely divisible probability
measure E is fixed (as easily seen e.g. from [21] and [7]). That any such process has a càdlàg
version follows from its being, after compensation, a martingale (see e.g. [9], [15],[26]).

10
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Let (Xt)t≥0 be a Lévy process on (E,B(E)) (in the sense of Definition 2.1). Set Xs− := lims↑tXs

and ∆Xs := Xs−X−s . Following the same lines as for the case where the state space is (IR,B(IR))
(see e.g. [28], [33]) we prove in [1] the following results (Theorems 2.3, 2.4, 2.7, 2.9 and Corollaries
2.5, 2.8 below).

Theorem 2.3. Let Λ ∈ B(E), 0 ∈ (Λ)c (where as usual Λ denotes the closure of the set Λ and N c

denotes the complement of a set N),

NΛ
t :=

∑
0<s≤t

1Λ(∆Xs) =
∑
n≥1

1t≥TΛ
n

(2.1)

where
TΛ

1 := inf{s > 0 : ∆Xs ∈ Λ} (2.2)

TΛ
n+1 := inf{s > T nΛ : ∆Xs ∈ Λ}, n ∈ IN. (2.3)

NΛ
t is an adapted counting process without explosion. Moreover it is a Poisson process.

Theorem 2.4. Let B(E \ {0}) be the trace σ-algebra on E \ {0} of the Borel σ-algebra B(E) on
E , and F((E \ {0}) := {Λ ∈ B(E \ {0}) : 0 ∈ (Λ)c} , then F((E \ {0}) is a ring and for all ω ∈ Ω
the set function

N ·t := Nt(ω, ·) : F(E \ {0}) → IR+ (2.4)

Λ → NΛ
t (ω) (2.5)

is a σ-finite pre-measure.

Corollary 2.5. For any ω ∈ Ω there is a unique σ-finite measure on B(E \ {0})

Nt(ω, ·) : B(E \ {0}) → IR+ (2.6)
A→ NA

t (ω) (2.7)

which is the continuation of the σ-finite pre-measure on F(E \ {0}) given by Theorem 2.4.

From Theorem 2.4, Corollary 2.5 it follows that Nt : Λ → NΛ
t is a random measure on (E,B(E).

Definition 2.6. Nt : Λ → NΛ
t is called the Poisson random measure of the Lévy process (Xt)t≥0.

Theorem 2.7. The set function ν(Λ) := E[NΛ
1 (ω)] ∈ IR, Λ ∈ F(E \ {0}), ω ∈ Ω satisfies:

ν : F(E \ {0}) → IR+ (2.8)
Λ → E[NΛ

1 (ω)] (2.9)

and is a σ-finite pre-measure on
(
(E \ {0}),F(E \ {0})

)
.

Corollary 2.8. There is a unique σ-finite measure on the σ-algebra B(E \ {0})

ν : B(E \ {0}) → IR+ (2.10)
A→ E[NA

1 (ω)] (2.11)

which is the continuation to B(E \ {0}) of the σ-finite pre-measure ν on the ring ((E \ {0}),F(E \
{0})), given by Theorem 2.7.

Theorem 2.9. The σ-finite measure ν of Corollary 2.8 is a Lévy measure.

We recall the definition of Lévy measures on separable Banach spaces.

Definition 2.10. A σ-finite positive measure ν on (E \ {0},B(E \ {0})) is a “Lévy measure”,
if there is a probability measure µ on (E,B(E)) such that the Fourier transform µ̂(F ), F ∈ E′

satisfies

µ̂(F ) = exp
∫
E\{0}

exp(iF (x)− 1− iF (x)1‖x‖≤1)ν(dx) (2.12)

We call µ the “Poisson type measure” associated with the “Lévy measure” ν.

11
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Definition 2.11. We call the measure ν of Theorem 2.9 “the Lévy measure of the Lévy process
(Xt)t≥0”.

Definition 2.12. We call the random measure qt(ω, ·) := Nt(ω, ·)−tν(·) “the compensated Poisson
random measure of the Lévy process (Xt)t≥0”.

Integrals of Banach valued bounded functions w.r.t. the random measure Nt(ω, dx) are naturally
defined on F(E \ {0}) (i.e. “when excluding small jumps”) as follows.

Definition 2.13. Let Λ ∈ F(E \ {0}), f : E → F be F(E \ {0})/B(F ) - measurable and bounded
on E \ {0} ∩ Λ, where (F,B(F ) is a separable Banach space. Then:∫

Λ

f(x)Nt(ω, dx) =
∑

0<s≤t
f((∆Xs)(ω))1Λ(∆Xs) (2.13)

Definition 2.14. Let Λ ∈ F(E \ {0}), f : E → F be F(E \ {0})/B(F ) - measurable and bounded
on E \ {0}∩Λ, then the natural integral w.r.t. the compensated Poisson random measure Nt(dx)−
tν(dx) is∫

Λ

f(x) (Nt(ω, dx)− tν(dx)) =
∑

0<s≤t
f((∆Xs)(ω))1Λ(∆Xs)− t

∫
Λ

f(x)ν(dx) (2.14)

where the last term is a Bochner integral.

3 The Lévy-Ito decomposition theorem on (IR,B(IR)) and
related stochastic integration

In [12], Ito proved the following well known decomposition for Lévy processes on the real line (and
the corresponding decomposition for more general real valued additive processes):

Theorem 3.1. Let (Xt)t≥0 be a Lévy-process on (IR,B(IR)), and ν the corresponding Lévy measure
(according to Definition 2.11).
Then for all K > 0, there is a constant αK such that ∀t ≥ 0

Xt = Bt +
∫
‖x‖<K

x(Nt(dx)− tν(dx)) + αKt+
∫
‖x‖≥K

xNt(dx) P − a.s. (3.1)

where Nt(ω, dx) is the Poisson random measure of the Lévy process (Xt)t≥0. (Bt)t≥0 is a Brownian
motion with 0-mean. For all Λ ∈ F(IR\{0}), (Bt)t≥0 is independent of (NΛ

t )t≥0, (with the notation
NΛ
t (ω) := Nt(ω,Λ)).

(as usual we omit for simplicity to write the dependence on ω in (3.1).)

K.I. Sato gives in his book [33] a short description of the history of the above theorem, in the case
of additive processes known under ”Lévy-Ito decomposition theorem”, starting with the following
sentence: “the decomposition was conceived by Lévy [19], [20], and formulated and proved by Ito
[12] using many pages”.
In fact, Theorem 3.1 can be proven by showing first the results of Section 1, i.e. Theorems 2.3,
2.4, 2.7, 2.9 and Corollaries 2.5, 2.8, and then proving that the centered Lévy process Xt − Jt
−E[Xt − Jt], with Jt :=

∑
0<s≤t ∆Xs1‖∆Xs‖≥K , E[X1 − J1] = αK decomposes into the sum

Bt +
∫
‖x‖<K x(Nt(dx) − tν(dx)), one of the main difficulties being the definition of the inte-

gral
∫
‖x‖<K x(Nt(dx) − tν(dx)), which is shown to be well defined as the limit in L2(Ω, P ) of∫

1
n‖x‖<K

x(Nt(dx) − tν(dx)).

If we are however interested in studying the stochastic differential equations with non Gaussian
white noise, given by the random measure qt(dx) := Nt(ω, dx)− tν(dx), the above integral should
also be expressed as a special case of a (deterministic) stochastic integral like it is done e.g. in [34]
(for the case of stable laws).
In the present paper we only treat the extension of this theorem for Lévy processes to the case
of Banach spaces of type 2, an extension to the case of Banach space valued additive processes is
presented in [2].

12
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4 Stochastic (deterministic) integrals w.r.t. the compensa-

ted Poisson random measure on separable Banach spaces

In this Section we present our results concerning the stochastic integration with respect to the
compensated Poisson random measure qt(ω, ·) := Nt(ω, ·) − tν(·), ∀t ≥ 0, where Nt (resp. ν) is
the Poisson random measure (resp. Lévy measure) of the Lévy process (Xt)t≥0 on the separable
Banach space (E,B(E)). For the proof of these results we refer to [1]. ( In [32] the whole approach
is extended to the case of random functions.) We shall consider here integration of deterministic
functions f : E → F , f being B(E \ {0})/B(F ) -measurable, where (F,B(F )) is a separable
Banach space with norm ‖ · ‖F . We will define different kinds of integrability conditions , strong
p-integrability and simple p-integrability, p ≥ 1.
The simple p-integrability condition is satisfied when the “natural” integral of f on a set Λn :=
{δn < ‖x‖ ≤ 1} (definition 2.14) converges, when δn goes to zero, in Lp(Ω,F , P ).
The strong p-integral is defined by approximation in Lp(Ω,F , P ) of the “natural”integrals of simple
functions (Definition 4.3). This concept generalizes the known definition of stochastic integration
of real valued functions with respect to martingales measures [14], [36]), to Banach space valued
functions, for the case where the martingale measures are given by compensated Poisson random
measures.

We prove that functions which are Bochner integrable w.r.t. the Lévy measure ν of (Xt)t≥0 are
strong 1-integrable, and functions with values on separable Banach spaces F of type 2 (Definition
1.1 below), which satisfy the condition

∫
‖f(x)‖2ν(dx) <∞, are strong 2-integrable, the strong p-

integrability being equivalent to the simple p-integrability, under the above conditions. Moreover we
introduce the notion of simple integral (Definition 4.16) and prove that under the above conditions
a function which is simply integrable is (simply or strong) p-integrable, p = 1, 2.

To this purpose we give the following definition:

Definition 4.1. Let p ≥ 1. LFp (Ω,F , P ) is the space of F -valued random variables, such that
E‖Y ‖p =

∫
‖Y ‖pdP < ∞. We denote by ‖ · ‖Fp (or simply ‖ · ‖p when E = F ) the norm

given by ‖Y ‖Fp = (E‖Y ‖pF )1/p. Given (Yn)n∈IN , Y ∈ LFp (Ω,F , P ), we write limp
n→∞ Yn = Y

if limn→∞ ‖Yn − Y ‖Fp = 0

We are interested in the following set of functions. Let p ≥ 1,

Mp
ν (E/F ) := {f : E → F B(E \ {0})/B(F ) −measurable,

∫
‖f(x)‖p ν(dx) <∞} (4.1)

Remark 4.2. A function f : E → F B(E \ {0})/B(F ) −measurable is Bochner integrable
w.r.t. ν on E \ {0} if and only if f ∈M1

ν (E/F )

Let us define the set S(E/F ) of “simple functions”.

Definition 4.3. A function f belongs to the sets S(E/F ) of simple functions , if f : E \ {0} → F
is such that

f(x) =
N∑
k=1

ak1Ak
, Ak ∈ F(E \ {0}), (4.2)

with N ∈ IN , ak ∈ F , k ∈ (1, ...N). If E = F , we write S instead of := S(E/E)

Similar to the proof of the “if -part” of a Theorem (S.Bochner) in [39], Chapt. V, §5 the following
can be proved

Proposition 4.4. For any σ-finite measure ν on (E \ {0},B(E \ {0}) and for any f ∈Mp
ν (E/F ),

there is a sequence {fn}n∈IN of simple functions converging ν -a.s. to f , such that

lim
n→∞

∫
‖fn − f‖pF dν = 0. (4.3)
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Definition 4.5. Let p ≥ 1 We say that f : E → F , which is B(E \ {0})/B(F )-measurable, is
strong p-integrable on Λ ∈ B(E \ {0}) w.r.t. the random measure qt if the limit∫

Λ

f(x)qt(dx) :=
p

lim
n→∞

∫
Λ

fn(x)qt(dx) (4.4)

exists for any sequence {fn}n∈IN ∈ S which satisfies the condition in Proposition 4.4, and does not
depend on the choice of the sequence {fn}n∈IN .

Remark 4.6. Let f be strong p-integrable. Then ∀Λ ∈ B(E \ {0})
E[
∫

Λ

f(x)qt(dx)] = 0 (4.5)

In fact, by definition of Bochner integral of random variables from (Ω,F∞, P ) to (F,B(F )), one
has

E[
∫

Λ

f(x)qt(dx)] = lim
n→∞

E[
∫

Λ

fn(x)qt(dx)] = 0 (4.6)

as
lim
n→∞

‖
∫

Λ

f(x)qt(dx) −
∫

Λ

fn(x)qt(dx)‖ = 0 P − a.s. (4.7)

and
∫
Λ
fn(x)qt(dx) ∈ S(E/F ).

Remark 4.7. Let f, g be strong p-integrable. For any α, β ∈ IR, αf + βg is strong p-integrable
and we have that ∀Λ ∈ B(E \ {0})

α

∫
Λ

f(x)qt(dx) + β

∫
Λ

g(x)qt(dx) =
∫

Λ

(αf(x) + βg(x))qt(dx) (4.8)

Theorem 4.8. Let f ∈M1
ν (E/F ), then f is strong 1-integrable w.r.t. qt. Moreover

E[‖
∫

Λ

f(x)qt(dx)‖] ≤ 2t
∫

Λ

‖f(x)‖ν(dx) ∀Λ ∈ B(E \ {0}) (4.9)

Theorem 4.9. Suppose (F,B(F )) is a separable Banach space of type 2. Let f ∈M2
ν (E/F ), then

f is strong 2-integrable w.r.t. qt. Moreover

E[‖
∫

Λ

f(x)qt(dx)‖2] ≤ 4K2t

∫
Λ

‖f(x)‖2ν(dx) ∀Λ ∈ B(E \ {0}) (4.10)

where K2 is the constant Kp, p = 2 in the Definition 1.1 (of type p Banach spaces).

Theorem 4.10. Suppose (F,B(F )):= (H,B(H)) is a separable Hilbert space. Let f ∈M2
ν (E/H),

then f is strong 2-integrable w.r.t. qt. Moreover

E[‖
∫

Λ

f(x)qt(dx)‖2] = t

∫
Λ

‖f(x)‖2ν(dx) ∀Λ ∈ B(E \ {0}) (4.11)

Proposition 4.11. Let p ≥ 1, f be p-strong integrable and f ∈ Mp
ν . For all Λ ∈ F(E \ {0}) the

strong p-integral of f coincides with the natural integral of f , i.e.∫
Λ

f(x)qt(dx) =
∑

0<s<t

f(∆Xs)1∆Xs∈Λ − t

∫
Λ

f(x)ν(dx) P − a.s. (4.12)

Definition 4.12. Let p ≥ 1. We say that f : E → F , which is B(E \ {0})/B(F ) - measurable, is
simply p-integrable w.r.t. the random measure qt if for any sequence δn > 0, which converges to
zero when n→∞, the limit∫

0<‖x‖≤1

f(x)(Nt(x) − tν(dx)) :=
p

lim
n→∞

∑
0<s≤t

f((∆Xs)(ω))1Λδn
(∆Xs)− t

∫
Λδn

f(x)ν(dx) (4.13)

with
Λδn := {x ∈ E \ {0} : δn < ‖x‖ ≤ 1} (4.14)

exists.
The simple p-integral on a set Λ ∈ F(E \ {0} coincides with the natural integral in Definition 2.14.
While on a set Λ ∈ B(E \ {0} it is defined as∫

Λ

f(x)(Nt(x)− tν(dx)) :=
p

lim
n→∞

∑
0<s≤t

f((∆Xs)(ω))1Λδn∩Λ(∆Xs)− t

∫
Λδn∩Λ

f(x)ν(dx) (4.15)

(and does henceforth not depend on the choice of the sequence δn satisfying the above hypothesis).
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Proposition 4.13. Let f ∈ M1
ν (E/F ), then f is simply 1-integrable and the simple 1-integral

coincides with the strong 1-integral.

Proposition 4.14. Let f ∈ M2
ν (E/F ), F a separable Banach space of type 2, then f is simply

2-integrable. The simple 2-integral coincides with the strong 2-integral.

Corollary 4.15. Let f ∈M2
ν (E/H), and H a separable Hilbert space, then f is simply 2-integrable.

The simple 2-integral coincides with the strong 2-integral.

Definition 4.16. We say that f : E → F , which is B(E \ {0})/B(F ) - measurable, is simply
integrable w.r.t. the random measure qt if for any sequence δn > 0, which converges to zero when
n→∞, the limit∫

0<‖x‖≤1

f(x)(Nt(x) − tν(dx)) := lim
n→∞

∑
0<s≤t

f((∆Xs)(ω))1Λδn
(∆Xs)− t

∫
Λδn

f(x)ν(dx) (4.16)

exists a.s., (Λδn is defined in (4.14)).
The simple integral on a set Λ ∈ F(E \ {0} coincides with the natural integral in Definition 2.14.
While on a set Λ ∈ B(E \ {0} it is defined as∫

Λ

f(x)(Nt(x) − tν(dx)) := lim
n→∞

∑
0<s≤t

f((∆Xs)(ω))1Λδn∩Λ(∆Xs)− t

∫
Λδn∩Λ

f(x)ν(dx) (4.17)

where the sequence converges a.s...

Remark 4.17. We remark that the convergence in this definition is a.s., whereas in Definition
4.12 it is in the LFp -sense.

Remark 4.18. Let f be simply integrable. Then for all Λ ∈ B(E \ {0})
E[
∫

Λ

f(x)qt(dx)] = 0 (4.18)

Let f, g be simply integrable. For any α, β ∈ IR, αf + βg is simply integrable and we have that
∀Λ ∈ B(E \ {0})

α

∫
Λ

f(x)qt(dx) + β

∫
Λ

g(x)qt(dx) =
∫

Λ

(αf(x) + βg(x))qt(dx) (4.19)

Proposition 4.19. If f is simply p-integrable for some p ≥ 1, then it is simply integrable, and the
simple p-integral coincides with the simple integral.

Proof of Proposition 4.19:
As f is simply p-integrable for some p ≥ 1, it follows that for any sequence {δn}, such that δn → 0
when n→∞∫

0<‖x‖≤1

f(x)(Nt(x)− tν(dx)) := lim
n→∞

∑
0<s≤t

f((∆Xs)(ω))1Λδn
(∆Xs)− t

∫
Λδn

f(x)ν(dx) , (4.20)

the convergence being in probability. From a theorem of Ito-Nisio (Theorem 3.1, [?])(see also [?])
it follows that the limit exists a.s. and coincides with the p-simple integral of f w.r.t. qt.

Corollary 4.20. Let f : E → F be B(E \ {0})/B(F ) -measurable, f ∈ M1
ν (E/F ). f is simply

integrable. The simple integral coincides with the simple 1-integral and strong 1-integral.

Corollary 4.21. Let f : E → F be B(E \ {0})/B(F ) -measurable, f ∈ M2
ν (E/F ), F a separable

Banach space of type 2. f is simply integrable. The simple integral coincides with the simple
2-integral and the strong 2-integral.

Corollary 4.22. Let f : E → F be B(E \ {0})/B(F ) -measurable, f ∈ M2
ν (E/F ), F a separable

Hilbert space. The simple integral coincides with the simple 2-integral and the strong 2-integral.

Proof of the Corollaries 4.20, 4.21, 4.22:
The proof follows from Proposition 4.19 and Proposition 4.13, resp. Proposition 4.14, Corollary
4.15.
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Proposition 4.23. If f is simply integrable and for some p ≥ 1 fixed

supn≥NE[‖
∑

0<s≤t
f((∆Xs))1Λn(∆Xs)− t

∫
Λn

f(x)ν(dx)‖p] <∞ (4.21)

then f is simply p-integrable.

Proof of Proposition 4.23:
The statement of Proposition 4.23 follows from a theorem of Hoffmann-Joergensen ([11] Theorem
5.5 Chap. II).

Remark 4.24. The simple integrability of a function f does not imply in general that the function
f is Bochner integrable on E \ {0} w.r.t. ν (hence simply integrability does not imply strong 1-
integrability). In fact, the function f(x) = x is simply integrable w.r.t. any compensated Poisson
Random measure Nt − tν as results from the proof of the Lévy - Khinchine formula on separable
Banach spaces (see e.g.[3], [21])) but it is not true that f is Bochner integrable on E \ {0} for all
Lévy measures ν (i.e. there exist Lévy measures ν such that f(x) = x /∈M1

ν ), see e.g. [3].

Remark 4.25. For previous definitions of stochastic integrals with respect to general “abstract”
martingales on Banach spaces, see e.g. [5],[8], [18], [23],[24], [26],[29],[30], [31], [37], [38] and, for
the case of Hilbert spaces, e.g. [16], [27]. For previous definitions of stochastic integrals of real
valued functions with respect to general “abstract”martingale measures on Banach spaces, see e.g.
[14], [36]. The main point of the present paper, in this context, is to define stochastic integrals of
Banach valued functions with respect to a “concretely constructed” Banach valued Lévy noise.

5 The Lévy-Ito decomposition theorem on separable Ba-
nach spaces of type 2

In [1] we prove the following

Theorem 5.1 (Lévy-Ito decomposition theorem on separable Banach spaces). Let (Xt)t≥0

be a Lévy-process on a separable Banach space (E,B(E)), and ν the corresponding Lévy measure
(according to Definition 2.11). Suppose Nt(ω, dx) is the Poisson random measure and respectively
qt(ω, dx) := Nt(ω, dx) − tν(dx) the compensated Poisson random measure associated to the Lévy
process (Xt)t≥0. Suppose the following condition holds

c) E is a separable Banach space of type 2, and∫
{E\0}

min(1, ‖x‖2) ν(dx) <∞ . (5.1)

Then for all K > 0, there is αK ∈ E such that ∀t ≥ 0

Xt = Bt +
∫
‖x‖<K

x(Nt(dx)− tν(dx)) + αKt+
∫
‖x‖≥K

xNt(dx) P − a.s. (5.2)

(we omit here for simplicity to write the dependence on ω ∈ Ω), where (Bt)t≥0 is an E-valued
Brownian motion with 0-mean. For all Λ ∈ F(E \ {0}), (Bt)t≥0 is independent of (NΛ

t )t≥0, (with
the notation NΛ

t (ω) := Nt(ω,Λ)).
The integral

∫
‖x‖≥K x(Nt(dx) − tν(dx)) is the strong 2 (or equivalently simple 2) -integral of the

function f(x) = x w.r.t. qt.

Remark 5.2. Let µ be such that µ(A) = P (X1 ∈ A), ∀A ∈ B(E). Let us take K = 1 in
the decomposition (5.2). From Theorem 2.9 and the Lévy-Khinchine representation theorem for
infinitely divisible laws on separable Banach spaces (see e.g. [21] Theorem 5.7.3 or [3]) it follows
that µ = G ? δα1 ?L, where G is the distribution of the Brownian motion (Bt)t≥0, L is the Poisson
type probability measure associated with the Lévy measure ν, and α1 ∈ E .
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Remark 5.3. As the main work in this paper was already finished, we learned that the Lévy-Ito de-
composition theorem, without however a direct expression of the“Lévy part”

∫
0<‖x‖≤1

∫
x [Nt(dx)−

tν(dx)] as a special case of a (deterministic) stochastic integral, in the sense of Definition 4.5, is
also stated in [8], however with a rather sketchy proof. (

∫
0<‖x‖≤1

∫
x [Nt(dx) − tν(dx)] is in [8]

the limit in LEp (Ω,F , P ), p ≥ 1 of
∫

1
n<‖x‖≤1

∫
x [Nt(dx) − tν(dx)], when n → ∞). Let us de-

scribe a proof of the Lévy-Ito decomposition theorem along the lines of [8], however completing
it as much as possible with precise references. Let ν be a Lévy measure on the separable Banach
space (E,B(E)). By [21] (Prop. 5.4.5, iii, p. 76), given any sequence δn ↓ 0, the sequence of
probability measures ρn(·) := e−ν(E)

∑∞
k=0

νk(·∩‖x‖>δn)
k! is such that there exist points xn ∈ E,

such that (ρn ? δxn)(·) contains a subsequence which converges weakly as δn ↓ 0. From Corollary
5.4.6 [21] it follows that xn :=

∫
δn<‖z‖≤1 ztν(dz). Moreover the Fourier transform ̂(ρn ? δxn)(k) of

(ρn ? δxn)(·) converges itself for n→∞ point wise to exp(
∫
E\0 e

i<k,x>− 1− i < x, k >)ν(dx) ([21],
Theorem 5.4.8, ii), p. 78). This identifies the weak limit of ρn ? δxn(·), as n → ∞. Moreover by
[21] (Theorem 5.3.6., p. 70) ν(· ∩ ‖x‖ > δn) has a weakly convergent subsequence, the weak limit
being ν(·). Suppose now that ν is the Lévy measure of the Lévy process Xt (according to definition
2.11). From the proof of the Theorem 2.9 it follows that ν̃(·):= ν(· ∩ ‖x‖ ≤ 1) is the Lévy measure
of the Lévy process Xt − Jt − E[Xt − Jt], with Jt =

∑
0<s≤t∆Xs1‖∆Xs‖≥1. The distribution of

Snt :=
∫
1/n<‖x‖≤1

x(Nt(dx)− tν(dx)) is given by ρn(· ∩ ‖x‖ ≤ 1) ? δ∫ 1
n

<‖z‖≤1 ztν(dz)
(dx) and by the

above arguments converges weakly , as n → ∞, to a random variable Yt with Fourier transform
exp(

∫
0<‖x‖≤1

(ei<k,x> − 1 − i < x, k >)ν(dx). From the Ito -Nisio theorem it follows that Snt
converges a.s., for n→∞. It follows (see e.g. [6], pag. 72)

sup
n∈IN

E[‖Snt ‖p ≤ E[‖Xt − Jt − E[Xt − Jt]‖p] ∀p ≥ 1 (5.3)

From this one can deduce by a theorem of [11] (theorem II.5.5) that Snt converges in LEp (Ω, P ) to
Yt, and

P [sup0≤r≤t‖Snr − Yr‖ > a] ≤ a−pE[‖Snt − Yt‖p] ∀p > 1 (5.4)

so that there is a subsequence nk for which Xt−Jt−E[Xt− Jt]−Snk
r converges a.s. uniformly in

r ∈ [0, t], when k →∞. From this one can deduce the Lévy -Ito decomposition, with Xt − Jt − Yt
the Gaussian part and Yt+

∫
‖x‖>1

xNt(dx) the Lévy part, like it was done in our Proof of Theorem
5.1.
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Probabilités de Saint -Flour V- 1975, Ed. P.L. Hennequin, LNM 539, Berlin -Heidelberg -New
York: Springer (1976)

[7] H. Bauer, Wahrscheinlichkeitstheorie und Grundzüge der Masstheorie. 2◦ edition de Gruyter
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Vol. 4, Gauthie -Villars, Paris, 1980.)
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Abstract

We define a class of Markovian cocycle perturbations for a quantum Levy process j. Every
Markovian cocycle perturbation in the sense of our definition defines a new quantum Levy
process j̃ which is isomorphic to the initial. It gives that for the E0-semigroup associated with
the group of automorphisms translating orbits of j̃ in time we can choose the restriction being
a semiflow of Powers shifts which determines a nondeterministic part of the perturbed process.
It can be considered as some analogue of the Wold decomposition for a classical stationary
stochastic process which allows to obtain a nondeterministic part of the process.

The quantum stochastic process with stationary increments is an one-parameter family j =
(jt)t∈R, j0 = 0, consisting of *-homomorphisms jt embedding the involutive algebra A into the
algebra of linear (non bounded in general) operators L in a Hilbert space such that there exists a
one-parameter w-continuous group α = (αt)t∈R of *-automorphisms L translating the increments
of j in time, αt(js(x) − jr(x)) = js+t(x) − jr+t(x), x ∈ A. We also suppose that there exists
a state ω on L determining the expectation E on quantum random variables associated with
the process such that E(x) = ω(x). Under the quantum Levy process we mean the quantum
stochastic process with stationary increments satisfying the additional property that the increments
yi = jti(xi)− jsi(xi), xi ∈ A, are independent for (si, ti) ∩ (sj , tj) = ∅, i 6= j, 1 ≤ i ≤ n,

(i) in the classical sense which is ω(η1(yi1)η2(yi2) . . . ηk(yik)) = ω(η1(yi1)) . . . ω(ηk(yik)) for an
arbtrary choise of functions ηs ∈ L∞,

(ii) the increments are commutative, [yi, yj ] = yiyj − yjyi = 0, i 6= j.

Let Mt] and M[t be the von Neumann algebras generated by the past before the time t and the
future after the time t of the process j correspondingly, i.e. Mt] = {jt(x)− js(x), s ≤ t, x ∈ A}′′
and M[t = {js(x) − jt(x), s ≥ t, x ∈ A}′′. Then Mt] = αt(M0]), t ∈ R. In the following we
also need the von Neumann algebra M = ∨tMt] = ∨tM[t associated with the whole process. The
group of automorphisms α is called a Kolmogorov flow if ∩t∈RMt] = {C1}. In the case when j
is the quantum Levy process, the group α is the Kolmogorov flow. Notice that one doesn’t need
to claim j to be a quantum Levy process to obtain the Kolmogorov flow α. An one-paramenter
family of *-automorphisms w = (wt)t∈R is called a multiplicative α-cocycle if

wt+s = wt ◦ αt ◦ ws ◦ α−t, s, t ∈ R.

We call the multiplicative α-cocycle w Markovian (see [1, 2, 3]) if

wt(x) = x, x ∈ M[t, t ≥ 0.

Every orbit yt = jt(x), x ∈ A, of the quantum stochastic process with the stationary increments
satisfyies the property of additive 1 − α-cocycle which is yt+s = yt + αt(ys), s, t ∈ R. Let H∗ =

∗The work was supported by INTAS-00-738
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⊕+∞
i=1H

i be the group of all cohomologies for the group α with the coefficients in M associated
with the bar resolvent. The group H∗ is a ring with respect to the cohomological multiplication
∪ : H i ×Hj → Hi+j defined by the formula (y ∪ z)t1,...,ti+j = yt1,...,tiαt1+···+ti(zti+1,...,ti+j ), y ∈
H i, z ∈ Hj .

Proposition. Given a Markovian multiplicative cocycle w, there exists a limit lim
t→+∞

w−t(y) =

w−∞(y) in the sense that η(w−t(y)− w−∞(y)) → 0, t→ +∞, for all y ∈ M, η ∈ M∗. The map
w−∞ is a *-endomorphism on M. The image of w−∞ is certain von Neuman subalgebra M̃ ⊂M.

Corrolary 1. Let h be a subring of H∗ generated by additive 1− α-cocycles jt(x), x ∈ A. Then
the Markovian multiplicative cocycle w correctly determines a homomorphism of h to its image.

Corrolary 2. Given a Markovian cocycle w, the formula j̃t(x) = w−∞ ◦ jt(x), x ∈ A, t ∈ R,
defines a quantum Levy process j̃ which is isomorphic to j.

The restriction βt = α−t|M0] , t ≥ 0, for the Kolmogorov flow α is a semiflow of Powers shifts.
It means that every βt is a shift in the sense of Powers (see [4]), i.e. ∩+∞

n=1βtn(M0]) = {R1}, t > 0.
Put α̃t = wt ◦αt, t ∈ R. Then α̃ = (α̃t)t∈R is a group of *-automorphisms on M, which is a cocycle
perturbation of α. The Markov property for w allows to define the restriction β̃t = α̃−t|M0] , t ≥ 0.
The semigroup β̃ = (β̃t)t≥0 is a E0-semigroup in the sense of [4]. One can ask is it possible
to find a restriction β̃|N which is a semiflow of Powers shifts isomorphic to β. In this way we
can extract a nondeterministic part of the quantum stochastic process and, therefore, define an
analogue of the Wold decomposition for the quantum stochastic process which is obtained by a
cocycle perturbation of the quantum Levy process.

Theorem. The restriction β̃|N , where N = w−∞(M0]), is isomorphic to the semiflow of Powers
shifts β such that the endomorphism w−∞ defines a nondeterministic part of the perturabation of
the quantum Levy process by the Markovian cocycle w.
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Dynamic models of long-memory processes driven

by Lévy noise∗

V. V. Anh, C. C. Heyde and N. N. Leonenko

Abstract

A class of long-memory models with continuous time is developed for the purpose of mod-
elling heavy-tailed data. These models are based on the Green function solutions of fractional
differential equations driven by Lévy noise. Exact results on the second-order and higher-order
characteristics of the equations are obtained. Some applications in finance and macroeconomics
are discussed.

1 Introduction

It is well documented that many macroeconomic and financial time series such as real output
growth, consumption prices, asset returns and interest rates may exhibit long-range dependence
(LRD) Moreover, the distributions of these time series typically have heavier tails than the normal
distribution. These distributions may be well fitted by hyperbolic distributions (see Barndorff-
Nielsen (1998, 2001), Barndorff-Nielsen and Shephard (2001)). Alternatively, Heyde (1999) pro-
posed to use a t-distribution with degree of freedom ν typically in the range 3-5. This, of course,
implies an infinite k-th moment for k ≥ ν. Another issue in modelling economic and financial time
series is that their sample autocorrelation functions (acf) may decay quickly, but their absolute
increments or squares may have acfs with non-negligible values for large lags (see Heyde (1999),
Barndorff-Nielsen (1998, 2001), and the references therein). These ubiquitous phenomena call
for an effort to develop more reasonable models which can be integrated into the economic and
financial theories.

An approach is to develop a theory of stochastic differential equations driven by fractional
Brownian motion (FBM), which is a classical example of a non-stationary Gaussian process with
LRD. In this approach, the effect of LRD can be obtained from the noise term. However, such
models have inherent difficulties because FBM is not a semimartingale and the resulting Black-
Scholes market contain arbitrage opportunities. A generalization of FBM is fractional Riesz-Bessel
motion (FRBM)(see Anh, Leonenko and McVinish (2001)and the references therein).

Recently, Heyde (1999) proposed a risky asset model with LRD through fractal activity time.
The idea is to replace Brownian time in geometrical Brownian motion by some process with sta-
tionary LRD increments and heavy tails.

Barndorff-Nielsen (2001) proposed to use discrete or continuous-type superposition of Ornstein-
Uhlenbeck processes with Lévy motion input to obtain a class of random processes with LRD and
infinitely divisible marginal distributions as their marginal law. These processes have been used to
represent stochastic volatility in models of log prices (see Barndorff-Nielsen and Shephard (2001)).

In a continuous-parameter framework, it is known that LRD can be obtained by replacing or-
dinary derivative or ordinary differential operators by fractional derivative or fractional differential
operators in differential or partial differential equations driven by white noise or via random initial
conditions( see Woyczynski (1998), Leonenko and Woyczynski (1998), Leonenko (1999), Anh and
Leonenko (1999) and their references). Following this approach, we introduce in this paper a class
of fractional differential equations driven by Lévy noise, whose solutions are obtained as convo-
lutions of the Green functions of the corresponding deterministic fractional differential equations
with Lévy noise or stochastic path integrals with respect to Lévy processes. The main advantage
of this approach is that LRD can be effected via the Green function of the fractional operator
involved, hence freeing up the noise term to represent the effects of non-Gaussianity or multifrac-
tality. We will obtain exact results on the Green functions, correlation functions, spectra and

∗Partially supported by the Australian Research Council grant A69804041 and NATO grant PST.CLG.976361
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higher-order spectra of particular forms of these fractional differential equations. These dynamic
models for LRD processes with possible heavy-tail distributions provide useful tools for prediction
and simulation purposes. These processes can be used to model the stochastic volatility of log price
processes and macroeconomic processes with long memory (see Barndorff-Nielsen and Shephard
(2001)).

2 Lévy processes

As standard notation, we will write C {ζ; y} for the cumulant function of a random vector y =
(y1, . . . , yp) ∈ Rp, i.e.,

C {ζ; y} = logE exp
{
i

p∑
j=1

ζjyj

}
, ζ ∈ Rp.

Let L = {L (t) , t ≥ 0} be a Lévy process and the Lévy triple of L(1) is (a, b,Q) where a ∈ R,
b ≥ 0 and Q is the Lévy measure(see Barndorff-Nielsen (1998, 2001))

It is known that the law of L is infinitely divisible with

C {ζ;L (t)} = tC {ζ;L (1)} .

where
Ψ (ζ) = C{ζ;L (1)}

We will assume that
(A) The Lévy measure of L (1) satisfies for some ε > 0 and λ > 0∫

(−ε,ε)c

exp {λ |u|}Q (du) <∞.

This implies that ∫
R

|u|kQ (du) <∞, k ≥ 2,

and that the characteristic function E exp {iζL (t)} , ζ ∈ R, is analytic in a neighborhood of 0. As
a consequence, L (t) has moments of all orders.

3 Finite-memory processes and long-memory processes

We consider the finite-memory process

X (t) =
∫ t

0

G (t− s) dL (s) , EL2 (1) <∞, (3.1)

where L is a Lévy process and G is the memory function such that∫ t

0

G2 (s) ds <∞. (3.2)

Under the condition ∫ ∞
0

G2 (s) ds <∞, (3.3)

the process (3.1) is asymptotically equivalent to the stationary process

X̃ (t) = m+
∫ t

−∞
G (t− s) dL (s) (3.4)

in the sense that
lim
t→∞

E
(
X (t)−m− X̃ (t)

)2

= 0,

where m is a constant.
The stochastic integral (3.1) or (3.4) can be interpreted in the L2 (Ω)-sense if (3.2) or (3.3)

holds. On the other hand the stochastic integral (3.1) exists a.s. as path-by-path integral on [0, t]
in the following cases (see Carmona et.al. (1998), Mikosch and Narvaǐsa (2000)):
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a) the function G has bounded p-variation and L a.s. has paths of finite q-variation with
p−1 + q−1 > 1

b) the function G is Hölder continuous of index α and L a.s. has paths being Hölder continuous
of index β with α+ β > 1.

Moreover, in the case a), the integral (3.1) exists

1. in the Riemann-Stieltjes sense whenever G and paths of L have no discontinuities at the same
points;

2. in the Moore-Pollard-Stieltjes sense whenever G and paths of L have no one-sided disconti-
nuities at the same points;

3. always in the sense defined by Young.

Remark 3.1. Suppose that there exists the Laplace transform of a memory function G in (3.1) or
(3.4):

g (p) =
∫ ∞

0

e−ptG (t) dt.

Then the process (3.4) is stationary, at least in the second order, with spectral density

f2 (ω) =
1
2π

|g (iω)|2 , ω ∈ R (3.5)

if f (ω) ∈ L1 (R) . Note that if

G0 (t) = e−λt1(0,∞) (t) , λ > 0, (3.6)

then the process (3.4) is called Ornstein-Uhlenbeck process (see Barndorff-Nielsen (1998, 2001)).
Chambers (1996) investigated stationary processes with LRD of type (3.4) with

G1 (t) =
[
tα−1/Γ (α)

]
1(0,∞) (t) , α ∈

(
1
2
,
3
2

)
(3.7)

in the case when L (t) is the Wiener process L (t) = W (t) . In fact LRD occurs in the range
α ∈

(
1, 3

2

)
, while for α ∈

(
1
2 , 1
)

the spectral density of the increments has a zero in the spectrum.

Remark 3.2. The process (3.1) is the finite-memory part of FBM if L (t) is the Wiener process
. Marinucci and Robinson (1999, 2001) investigated the process (3.1) in the case L (t) = W (t) .
They called the process (3.1) “Type II fractional Brownian motion” in this special case. In particu-
lar, Marinucci and Robinson (1999, 2001) pointed out that the process (3.1) with memory function
(3.7), α ∈

(
0, 1

2

)
and L (t) = W (t) asymptotically behaves as FBM. That is why the finite-memory

process (3.1) can be considered as a model of processes with LRD in an asymptotic sense. Al-
ternatively we may define LRD of (3.1) via its asymptotic equivalence to the stationary process
(3.4).

The following key result presents the exact form for the finite-dimensional distributions of a
process (3.1) which is defined constructively for a large class of functions G and Lévy processes L
in terms of their characteristic functions.

Theorem 3.1. Suppose that condition (A) holds and the process (3.1) is well-defined for a function

G ∈ L1 ([0, t]) ∩ L2 ([0, t]) . (3.8)

Then for all tj ∈ [0, t] , j = 1, . . . , p

C
{
ζ1, . . . , ζp;X (t1) , . . . , X (tp)

}
=
∫ ∞

0

Ψ
( p∑
j=1

ζj1[0,∞) (tj − s)G (tj − s)
)
ds, (3.9)

where Ψ (ζ) = C {ζ;L (1)} and

cum (X (t1) , . . . , X (tp)) = i−pΨ(p) (0)
∫ min(t1,...,tp)

0

[ p∏
j=1

G (tj − τ)
]
dτ (3.10)

if the last integral is finite.
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The proof of (3.9) follows that of Proposition 2.1 of Barndorff-Nielsen (2001) .

Remark 3.3. Provided that corresponding integrals exist for a function G, we may obtain the
formulae which are analogous to (3.9) and (3.10) for the stationary version (3.4) of a process
(3.1), that is, for every tj ∈ [0, t] , j = 1, . . . , p

C
{
ζ1, . . . , ζp; X̃ (t1) , . . . , X̃ (tp)

}
=
∫

R

Ψ
( p∑
j=1

ζj1[0,∞) (tj − s)G (tj − s)
)
ds (3.11)

and

cum
(
X̃ (t1) , . . . , X̃ (tp)

)
= i−pΨ(p) (0)

∫ min(t1,...,tp)

0

[ p∏
j=1

G (tj − τ)
]
dτ. (3.12)

The higher-order spectral densities of a stationary process (3.4) with E
∣∣X̃ (t)

∣∣q < ∞, 2 ≤ q ≤ p
can be obtained as inverse Fourier transforms of (3.12) if they exist. In the stationary case the
spectral density of q-th order (2 ≤ q ≤ p) depends on q − 1 variables and can be defined as

fq (ω1, . . . , ωq−1) = (2π)−q+1 Ψ(q) (0)
iq

g (iω1) . . . g (iωq−1) g (−i (ω1 + · · ·+ ωq−1)) ,

ωj ∈ R, 1 ≤ j ≤ q − 1,
(3.13)

at least if this complex-valued function belongs to L1

(
Rq−1

)
, q ≥ 2. For q = 2 (3.13) reduces to

(3.6). In fact both formulae (3.6) and (3.13) can be used without integrability conditions if the
processes are interpreted in the generalized sense. For example, the spectral density of “Type II
fractional Brownian motion” is of the form

const |ω|−2α
, ω ∈ R, α ∈

(
1
2
,
3
2

)
,

which does not belong to L1 (R) , but its singular properties are clearly seen from the expression.
Such a situation is typical for non-stationary processes.

4 Fractional differential equations with Lévy noise

We consider the processes of type (3.1) or (3.4) in which the memory functions G are the Green
functions of some fractional differential equations. Let us recall some definitions of fractional
derivatives and integrals (see Podlubny(1999), for example).

Assuming reasonable behavior for f (t) , the Riemann-Liouville fractional derivative is defined
as

Dαt f (t) =
1

Γ (n− α)
dn

dtn

∫ t

0

(t− τ)n−α−1
f (τ) dτ, (4.1)

α ∈ [n− 1, n) , n = 1, 2, . . . , and the Riemann-Liouville fractional integral is defined as

J α
t f (t) =

1
Γ (α)

∫ t

0

(t− τ)α−1
f (τ) dτ, α > 0 (4.2)

We will widely use the notion of fractional Green function of a deterministic fractional differ-
ential equation

Ly (t) = f (t) , (4.3)

where the linear differential operator L with constant coefficients is given by

Ly (t) = AnDβn

t y (t) + · · ·+A1Dβ1
1 y (t) +A0Dβ0

t y (t) (4.4)

and Dβj

t , 1 ≤ j ≤ n, are defined in (4.1),

βn > β1 > · · · > β1 > β0, n ≥ 1. (4.5)
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In this paper, we consider fractional differential equations of the following form:

LX (t) = AnDβn

t X (t) + · · ·+A1Dβ1
t X (t) +A0Dβ0

t X (t) = L̇ (t) , (4.6)

where condition (4.5) is satisfied and L̇ is Lévy noise. Note that Lévy noise L̇ has the following
properties: (1) it is infinitely divisible; (2) its probability distribution is translation invariant and
(3) L̇ (t) and L̇ (s) are independent if t 6= s.

Suppose that a Green function G and its Laplace transform are known for the deterministic
fractional differential equation (4.4) and the stochastic integral

X (t) =
∫ t

0

G (t− s) dL (s) (4.7)

exists a.s. as path-by-path integral in [0, t) or in L2 (Ω)-sense (see Section 3 for details). Eq. (4.7)
gives the Green function solution of the fractional differential equation (4.6) with Lévy noise L̇,
where formally L (t) =

∫ t
0 L̇ (s) ds. As an alternative to Lévy noise, we may consider a random

measure with infinitely divisible distribution (Barndorff-Nielsen (2001)).

5 One-term equations

Consider now the following one-term fractional differential equation

ADαt X (t) = L̇ (t) , α > 0, A > 0, (5.1)

where Dαt is defined in (4.1) and L̇ is Lévy noise. Then the Green function solution of (5.1) is of
the form (if exists)

X1 (t) =
∫ t

0

1
A

[
(t− s)α−1

/Γ (α)
]
dL (s) , (5.2)

where the Green function
G1 (t) =

1
A

[
tα−1/Γ (α)

]
1(0,∞) (t) (5.3)

of one-term equation (4.3) (with An = A, βn = α, Aj = 0, 0 ≤ j ≤ n−1) has the Laplace transform

g1 (p) =
1

Apα
, Re (p) > 0.

If the Lévy process L (t) = W (t) , where W (t) , t ≥ 0 is Brownian motion, the process (5.2) has
been studied by Comte (1996) and Marinucci and Robinson (1999, 2000). In particular, Marinucci
and Robinson (1999) called the process (5.2) with L (t) = W (t) and α ∈

(
1, 3

2

)
“Type II fractional

Brownian motion”, because its asymptotic properties are similar to the (non-asymptotic) properties
of FBM.

The process (5.2) exists in the L2 (Ω)-sense if α > 1/2 and EL2 (1) <∞. It follows from Section
3 that (5.2) exists a.s. path by path if the condition (3.4) is satisfied. This condition holds for
same hyperbolic Lévy processes if α > 1/2 ( see Barndorff-Nielsen and Shephard (2001)).

From (3.9), (3.10) and (5.2) we obtain

EX1 (t) = EL (1) tα/ [αΓ (α)A] , α ∈
(

1
2
,
3
2

)
(5.4)

if EL (1) <∞, and

cov (X1 (t) , X1 (s)) =
−Ψ′′ (0)
A2Γ2 (α)

∫ min(t,s)

0

(t− τ)α−1 (s− τ)α−1 dτ, α ∈
(

1
2
,
3
2

)
(5.5)

if EL2 (1) <∞. In particular

varX1 (t) = t2α−1
[
−Ψ′′ (0) /

(
Γ2 (α) (2α− 1)A2

)]
(5.6)
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and for 0 < t < s

E (X1 (s)−X1 (t))2 ∼ K1 (s− t)2α−1
,

t

s− t
→∞, (5.7)

E (X1 (s)−X1 (t))2 ∼ K2 (s− t)2α−1
,

t

s− t
→ 0, (5.8)

where K1 and K2 are positive constants.
Moreover, if ELp (1) < ∞ we obtain from (3.10) the following expression for the higher-order

cumulant function:

cum (X (t1) , . . . , X (tk)) = i−kΨ(k) (0)A−kΓ−k (α)

×
∫ min(t1,...,tk)

0

[ k∏
j=1

(tj − τ)α−1

]
dτ, 2 ≤ k ≤ p, α > 1− 1

k
. (5.9)

For α ∈
(
1, 3

2

)
the above results (5.5)-(5.9) indicate LRD in the solution process.

Alternatively we may obtain LRD in the solution by using the process (3.4) with memory
function (5.4), which is asymptotically equivalent to the process (5.2) (see Section 3). The process

X̃1 (t) =
1

AΓ (α)

∫ t

−∞
(t− s)α−1

dL (s) (5.10)

can be interpreted also as Weyl’s fractional integral of Lévy noise L̇. In fact, (5.10) is the formal
solution of the fractional differential equation

DαW X̃ (t) = L̇ (t) , α > 0,

where

DαW f (t) =
1

Γ (1− α)
d

dt

∫ t

−∞
(t− τ)−α f (τ) dτ

is the Weyl fractional derivative of a function f. The process (5.10) is not stationary because the
function (5.3) does not satisfy condition (3.3). The integral 5.10 cannot generally be defined. This
is the reason why the fractional Brownin motion is generally defined by its increments. Formal
calculations from (3.5), (3.13) and (5.3) give us the spectral density of the second order as

f2 (ω) =
−Ψ′′ (0)
2πA2

|ω|−2α , ω ∈ R (5.11)

and the spectral densities of higher-order as

fp (ω1, . . . , ωp−1) =
Ψ(p) (0)

ip (2π)p−1 Ap
(iω1)

−α (iω2)
−α . . . (iωp−1)

−α (−i (ω1 + · · ·+ ωp−1))
−α , (5.12)

ωj ∈ R, 1 ≤ j ≤ p− 1, p ≥ 2,

which are typical spectral densities of nonstationary processes.
We will, however, be concerned with the stationary process obtained as the first integer differ-

ences of the process (5.10), namely,

Xs (t) = X̃1 (t)− X̃1 (t− 1) =
1

AΓ (α)

{∫ t

−∞
(t− s)α−1

dL (s)−
∫ t

−∞
(t− 1− s)α−1

dL (s)
}
.

(5.13)
From (5.13) we obtain by direct calculations that

Rs (τ) = cov (Xs (t) , Xs (t− τ)) = c1 (α)
[
|τ + 1|2α−1 − 2 |τ |2α−1 + |τ − 1|2α−1

]
, τ ∈ R,

where
c1 (α) = [Ψ′′ (0) / (2Γ (2α) cos (απ))] > 0
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and the corresponding second-order spectral density is

f2 (ω) = [−2Ψ′′ (0) /π] (1− cosω) |ω|−2α
, ω ∈ R. (5.14)

From (5.14) we obtain that

lim
τ→∞

τ3−2αRs (τ) /Rs (0) = (α− 1) (2α− 1) , α ∈
(

1
2
,
3
2

)
, τ > 0. (5.15)

The property (5.15) shows second-order LRD for α ∈
(
1, 3

2

)
, while for α ∈

(
1
2 , 1
)

the correlation
function Rs (τ) is negative (or spectral density has zeroes).

We can now summarize our results in the following

Theorem 5.1. Suppose that condition (A) is satisfied and the process (5.2) exists a.s. as path-by-
path stochastic integral or in the L2 (Ω)-sense. Then the process (5.2) has second-order properties
(5.5)-(5.8) and higher-order property (5.9). The (generalized) process (5.13) has covariance func-
tion Rs (τ) and spectral density (5.14). This process displays LRD if α ∈

(
1, 3

2

)
.

6 Two-term equations

The two-term equations will take the form

ADαt X (t) +BX (t) = L̇ (t) , α > 0, (6.1)

where Dαt is defined in (4.1) and L̇ is the Lévy noise. For their analysis, we will widely use the
two-parameter Mittag-Leffler function which can be defined by the series expansion

Eα,β (x) =
∞∑
k=0

zk

Γ (αk + β)
, z ∈ C, α > 0, β > 0. (6.2)

The Green function solution (see Section 4) of the fractional differential equation (6.1) is of the
form

X2 (t) =
∫ t

0

G2 (t− s) dL (s) =
1
A

∫ t

0

(t− s)α−1Eα,α

(
−B
A

(t− s)α
)
dL (s) , (6.3)

α > 0, B/A ≥ 0,

if the stochastic integral (6.3) exists a.s. as path-by-path integral on [0, t] or in the L2 (Ω)-sense
(see Section 3), where Eα,β is Mittag-Leffler function (6.2) of negative real argument.

The Green function of the two-term equation (4.3) is of the form

G2 (t) =
1
A
tα−1Eα,α

(
−B
A
tα
)

1(0,∞) (t) , α > 0 (6.4)

and its Laplace transform has the form

g2 (p) =
1

Apα +B
, Re (p) > |A|1/α . (6.5)

The process (6.3) exists in the L2 (Ω) sense if α > 1/2 and EL2 (1) < ∞. It follows from the
results of Section 3 that (6.3) exists a.s. path by path if condition (3.4) is satisfied. This condition
holds for many Lévy processes given hyperbolic if α > 1/2.

We obtain from (6.3) the following expression

EX2 (t) =
EL (1)
A

tαEα,α+1

(
−B
A
tα
)
, A > 0

if EL (1) <∞.
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Note that

EX2 (t) ∼ EL (1)
AΓ (α+ 1)

tα
(

1− B

AΓ (2α+ 1)
tα
)

(6.6)

as t→ 0, and we obtain
lim
t→∞

EX2 (t) = EL (1) /B. (6.7)

The formulae (6.6) and (6.7) are in contrast to (5.4).
If α ∈

(
1
2 ,

3
2

)
and EL2 (1) <∞ we obtain from (3.10) and (6.4) the following expression for the

covariance function:

cov (X2 (t) , X2 (s)) =
−Ψ′′ (0)
A2

∫ min(t,s)

0

(t− τ)α−1 (s− τ)α−1 (6.8)

×Eα,α
(
−B
A

(t− τ)α
)
Eα,α

(
−B
A

(s− τ)α
)
dτ.

In particular,

varX2 (t) =
−Ψ′′ (0)
A2

∫ t

0

(t− τ)2α−2
E2
α,α

(
−B
A

(t− s)α
)
dτ. (6.9)

From (6.9) we obtain

varX2 (t) ∼ −Ψ′′ (0)
A2Γ2 (α) (2α− 1)

t2α−1

as t→ 0, which is asymptotically similar to (5.6).
Consider now a stationary version of the process (6.3), that is, a process of the form (3.4) with

memory function (6.4):

X̃2 (t) =
1
A

∫ t

−∞
(t− s)α−1Eα,α

(
−B
A

(t− s)α
)
dL (s) , α > 1/2. (6.10)

In contrast to (5.10) the process (6.10) is second-order stationary if α > 1/2 and EL2 (1) <∞.
From (3.5) and (6.5) we obtain the second-order spectral density of the stationary process

(6.10), which is given by

f2 (ω) =
−Ψ′′ (0)

2π
1

|A (iω)α +B|2
, ω ∈ R, (6.11)

and from (3.13) and (6.5) we have the spectral density of k-th order (if exists) as

fk (ω1, . . . , ωk−1) =

Ψ(k) (0)

(2π)k−1
ik

1
((iω1)

αA+B) . . . ((iωk−1)
aA+B) ((−i (ω1 + · · ·+ ωk−1))

αA+B)
, (6.12)

ωj ∈ R, 1 ≤ j ≤ k.

The spectral density (6.12) exists if ELk (1) <∞ and α > 1/2. Note that

A (iω)α +B = A |ω|α e iπα
2 +B (6.13)

and by direct calculation we obtain from (6.11) and (6.13) that

f2 (ω) =
−Ψ′′ (0)

2π
1(

B2 + 2AB |ω|α cos απ2 +A2 |ω|2α
) , ω ∈ R. (6.14)

If α > 1/2 and ω →∞

f2 (ω) = O

(
1

|ω|2α

)
. (6.15)

We can conclude that for α > 1/2 the spectral density (6.14) belongs to L1 (R) and has no
singularity at zero, but this spectral density displays intermittency (6.15) as ω →∞.
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We therefore arrive at

Theorem 6.1. Suppose that condition (A) is satisfied and the process (6.3) has second-order char-
acteristics (6.8)-(6.9), while the stationary process (6.10) with α > 1/2 has second-order spectral
density (6.14) and higher-order spectral densities (6.12). The second-order spectral density (6.14)
does not display LRD if B 6= 0, but indicates second-order intermittency (6.15).

From (6.12) we can, in principle, obtain higher-order intermittency by direct calculations with
the help of (6.13).

7 Three-term equations

The three-term equations take the form

ADβt X (t) +BDαt X (t) + CX (t) = L̇ (t) , β > α > 0, A, C > 0, B ≥ 0, (7.1)

where Dαt is as defined in (4.1) and L̇ is Lévy noise. We will need the k-th derivative of Mittag-
Leffler function (6.2) of the form

E
(k)
α,β (z) =

dk

dzk
Eα,β (z) =

∞∑
k=0

(j + k)!zj

j!Γ (αj + αk + β)
. (7.2)

Suppose now that the following stochastic integral

X3 (t) =
∫ t

0

G3 (t− s) dL (s) (7.3)

exists a.s. as path-by-path integral on [0, t] or in the L2 (Ω)-sense, where the Green function of
the three-term equation is

G3 (t) =
1
A

∞∑
k=0

(−1)k

k!

(
C

A

)k
tβ(k+1)−1E

(k)
β−α,β+αk

(
−B
A
tβ−α

)
1(0,∞) (t) . (7.4)

Its Laplace transform is given by

g3 (p) =
1

Apβ +Bpa + C
, β > α > 0. (7.5)

The formula (7.5) follows from (7.2) and (7.4).
In our definition (see Section 4), the process (7.3) represents the Green function solution of the

three-term equation (7.1) with Lévy noise.
Note that formula (7.4) is rather elegant. In fact, if C = 0 we obtain

G3 (t) =
1
A
tβ−1Eβ−α,β

(
−B
A
tβ−α

)
1(0,∞) (t) , β > α > 0. (7.6)

The last formula reduces to (6.4) if α = 0 (formally, the role of α in (6.4) is played by β in (7.6)).
Moreover, if B = 0 and β = 1 the Green function (7.4) reduces to

G3 (t) =
1
A

∞∑
k=0

(−1)k

k!

(
C

A

)k
tk1(0,∞) (t)

=
1
A
e−

C
A t1(0,∞) (t) ,

C

A
> 0, (7.7)

which is, of course, the Green function (3.6) (up to constants) which corresponds to Ornstein-
Uhlenbeck- type processes. It means that the stationary process (3.4) with memory function (7.7)
is an Ornstein-Uhlenbeck- type process driven by Lévy process (see Barndorff-Nielsen (2001). In
this case, we can interpret the Langevin type equation (7.1) with B = 0, β = 1 in the Itô sense
and the Itô solution coincides with the Green function solution.
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Let us now study in frequency domain the stationary process

X̃3 (t) =
∫ t

−∞
G3 (t− s) dL (s) , (7.8)

where G3 is as defined in (7.4) or (7.6).
From (3.5) and (7.5) we obtain the second-order spectral density of the process (7.8) (if exists)

as

f2 (ω) =
−Ψ′′ (0)

2π
1∣∣∣A (iω)β +B (iω)α + C

∣∣∣2 , ω ∈ R, (7.9)

which can be written with the help of (6.13) in the following form:

f2 (ω) =
−Ψ′′ (0)

2π
1

P (ω)
, ω ∈ R, (7.10)

where

P (ω) = C2 +B2 |ω|2α + A2 |ω|2β + 2AB |ω|α+β cos
β − α

2
π (7.11)

+2AC |ω|β cos
βπ

2
+ 2BC |ω|α cos

απ

2
.

It follows from (7.10) and (7.11) that the spectral density (7.10) belongs to L1 (R) if β > α > 0, and
β > 1/2 or α+ β > 1. Thus, under these conditions, the process (7.8) is second-order stationary if
EL2 (1) <∞.

Another interesting observation is that the spectral density (7.10) with C = 0 reduces to

f2 (ω) =
−Ψ′′ (0)

2π
1

|ω|2α
(
B2 +A2 |ω|2(β−α) + 2AB |ω|β−α cos β−α2 π

) , ω ∈ R. (7.12)

If EL2 (1) < ∞, β > α > 0 and β > 1/2 or α + β > 1, the spectral density (7.12) represents
a stationary process (7.8) in which the memory function G3 is as defined in (7.6). The spectral
density (7.12) displays LRD with fractional parameter α ∈

(
0, 1

2

)
, because it behaves asO

(
|ω|−2α

)
as ω → 0. Moreover, the spectral density (7.12) displays second-order intermittency, because
it behaves as O

(
|ω|−2β

)
as ω → ∞. Thus the second fractional parameter β > 1/2 indicates

intermittency. Such effects can also be expressed in terms of higher-order spectral densities which
can be obtained from (3.13) with the function g3 given by (7.5). In particular LRD effects can be
described by the singulararities of higher-order spectral densities at zero and also on the diagonal.
We can now summarize the results in

Theorem 7.1. Suppose that condition (A) is satisfied and the process (7.3) exists as path-by-path
integral or in the L2 (Ω)-sense. If β > α > 0 and β > 1/2 or α + β > 1, the process (7.8)
is second-order stationary with spectral density (7.10) which displays intermittency of the form
O
(
|ω|−2β

)
as ω →∞. Moreover, if C = 0, the spectral density (7.12) displays intermittency and

LRD simultaneously and the LRD effect can be described by the behavior O
(
|ω|−2α

)
as ω → 0 of

the spectral density (7.12) with α ∈
(
0, 1

2

)
.

In the same spirit we consider the four-term and n-term equations. Exact results on the second-
order and higher-order characteristics of the equations are obtained. Some applications in finance
and macroeconomics are discussed.
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Abstract

We want to find out what we can learn about stochastic processes in groups through
studying their representations. In the case of Lévy processes in the Heisenberg group, the
Schrödinger representation of the generator contains interesting probabilistic information. Un-
der certain conditions, we are able to construct a Dirichlet form and so associate a Hunt process
in Euclidean space to the group-valued process,

1 Motivation

Let ρ = (ρ(t), t ≥ 0) be a stochastic process defined on a probability space (Ω,F , P ) and taking
values in a group G. Let π be a unitary representation of G in a complex Hilbert space H. Form
the unitary operator-valued process U = (U(t), t ≥ 0) where, for each ω ∈ Ω,

U(t)(ω) = π(ρ(t)(ω)).

Question 1: What does U tell us about ρ ?

Now suppose H = L2(S,m) for some nice space S equipped with a σ-finite measure m.

Question 2: When do we have

U(t)f = f ◦ φ(t),

for some random mappings φ(t) : S → S? What does φ = (φ(t), t ≥ 0) tell us about ρ ?

We’ll study the case where ρ is a Lévy process in G.

2 Lévy Processes in Lie Groups

Let G be a Lie group with Lie algebra g. A Lévy process in G is a G-valued stochastic process
ρ = (ρ(t), t ≥ 0) which satisfies the following,

1. ρ has stationary and independent left increments, where the increment between s and t with
s ≤ t is ρ(s)−1ρ(t).

2. ρ(0) = e (a.s.).

3. ρ is stochastically continuous i.e.

lim
s→t

P (ρ(s)−1ρ(t) ∈ A) = 0,

for all A ∈ B(G) with e /∈ Ā.
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Let pt denote the law of ρ(t), so pt(A) = P (X(t) ∈ A) for each t ≥ 0, A ∈ B(G), then (pt, t ≥ 0)
is a weakly continuous, convolution semigroup of probability measures, where the convolution is
defined by

(ps ∗ pt)(A) =
∫
G

ps(τ−1A)pt(dτ),

for each s, t ≥ 0.
Let C0(G) be the Banach space (with respect to the supremum norm) of functions on G which

vanish at infinity. We obtain a Feller semigroup (T (t), t ≥ 0) on C0(G) by the prescription,

T (t)f(τ) = E(f(τρ(t)))

=
∫
G

f(τσ)pt(dσ),

for each t ≥ 0, τ ∈ G, f ∈ C0(G). The infinitesimal generator will be denoted as L. The starting
point of probabilistic investigations of Lévy processes in Lie groups is the “Lévy-Khinchine”-type
structure of L, which we now describe.

We fix a basis {Z1, . . . , Zn} for g and define a dense subspace C2(G) of C0(G) as follows:-

C2(G) = {f ∈ C0(G);ZLi (f) ∈ C0(G) and ZLi Z
L
j (f) ∈ C0(G) for all 1 ≤ i, j ≤ n}

where ZL denotes the left invariant vector field associated to Z ∈ g by differential left translation.
In [9], Hunt proved that there exist functions yi ∈ C2(G), 1 ≤ i ≤ n so that each

yi(e) = 0 and ZLi yj(e) = δij

and a map h ∈ Dom(L) which is such that

1. h > 0 on G− {e},

2. There exists a compact neighborhood of the identity V such that for all τ ∈ V ,

h(τ) =
n∑
i=1

yi(τ)2.

Any such function is called a Hunt function in G.
A positive measure ν defined on B(G− {e}) is called a Lévy measure whenever∫

G−{e}
h(σ)ν(dσ) <∞

for some Hunt function h.
We are now ready to state the main result of [9].

Theorem 1 (Hunt’s theorem). Let ρ be a Lévy process in G with infinitesimal generator L then

1. C2(G) ⊆ Dom(L)

2. For each τ ∈ G, f ∈ C2(G)

(Lf)(τ) = biZLi f(τ) + cijZLi Z
L
j f(τ) +

∫
G−{e}

(f(τσ) − f(τ)− yi(σ)ZLi f(τ))ν(dσ) (2.1)

where b = (b1, . . . bn) ∈ Rn, c = (cij) is a non-negative-definite, symmetric n× n real-valued
matrix and ν is a Lévy measure on G− {e}.

Furthermore, any linear operator with a representation as in (2.1) is the restriction to C2(G) of
the infinitesimal generator of a unique (up to modification) Lévy process.

Several obscure features of Hunt’s paper were later clarified by Ramaswami in [11] and then
incorporated into Heyer’s seminal treatise [8]. For a survey of these and related ideas see [2].
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3 Group Representations

Let H be a complex separable Hilbert space and U(H) be the group of all unitary operators in H.
A representation of G in H is a strongly continuous homomorphism π from G into U(H), so that

• For each g ∈ G, π(g) is a unitary operator in H.

• For each g, h ∈ H,
π(gh) = π(g)π(h).

• For each g ∈ G,
π(e) = I, π(g−1) = π(g)∗.

• For each ψ ∈ H, the mapping from G to H given by g → π(g)ψ is continuous.

A closed subspace H1 of H is invariant for π if π(H1) ⊆ H1. A representation is irreducible
if the only invariant subspaces are {0} and H. We denote as Irr(G) the set of all irreducible
representations of G.

Now let π be an arbitrary representation of G in some H.
We will have need of C∞(π) = {ψ ∈ h; g → π(g)ψ is C∞} which is the dense linear space of

smooth vectors for π in H.
Let X ∈ g, then dπ(X) is an essentially skew-adjoint operator in H where

dπ(X)ψ =
d

da
π(exp(aX))ψ

∣∣∣∣
a=0

,

for all ψ ∈ C∞(π).
Now define a unitary operator valued process U = (U(t), t ≥ 0) in H by

U(t) = π(ρ(t)),

for each t ≥ 0.
The main object of our investigations are the linear operators (T πt , t ≥ 0) in H defined by

T πt = E(π(ρ(t))),

for each t ≥ 0, so that for each ψ ∈ H,

T πt ψ =
∫
G

(π(σ)ψ)pt(dσ).

We have the following important result.

Theorem 2. (T πt , t ≥ 0) is a strongly continuous, contraction semigroup on H.

We denote the infinitesimal generator of (T πt , t ≥ 0) as Lπ.
It follows from the arguments of [3], that C∞(π) ⊆ Dom(Lπ) and for all ψ ∈ C∞(π) we have

Lπψ = bidπ(Zi)ψ + cijdπ(Zi)dπ(Zj)ψ+

+
∫
G−{e}

(π(σ) − I − yi(σ)dπ(Zi))ψν(dσ). (3.1)

The following is a useful tool for computations as it gives a relation with the Markov semigroup
induced by the process. Fix ψ1, ψ2 ∈ H and define f ∈ Cb(G) by f(σ) =< ψ1, π(σ)ψ2 > where
σ ∈ G, then we have

(T (t)f)(e) =< ψ1, T πt ψ2 > .

If ψ2 ∈ C∞(π), we have f ∈ Dom(L) and

(Lf)(e) =< ψ1,Lπψ2 > .
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In [3], it is shown that U satisfies an operator-valued stochastic differential equation.

U(t) = I +
∫ t

0

U(s−)dπ(Xi)dBi(s) +
∫ t

0

U(s−)Lπds∫ t+

0

∫
G−{e}

U(s−)(π(σ) − I)N̂(ds, dσ),

where B = (B(t), t ≥ 0) is a Brownian motion on Rn with Cov(Bi(t)Bj(t)) = 2cijt for
1 ≤ i, j ≤ n, t ≥ 0 and N̂ is a (compensated) Poisson random measure on R+ × (G− {e}), which
is independent of B, and whose intensity measure is the Lévy measure ν.

A key result which to some extent answers Question 1 is due to E.Siebert, [12].

Theorem 3 (Siebert). The collection of linear operators {Lπ, π ∈ Irr(G)} determines (pt, t ≥ 0).

Note. In general, if µ is a bounded measure on G and π : G→ H is a representation, we can
define the generalised Fourier transform to be the bounded linear operator µ̂(π) on H, defined by

< ψ1, µ̂(π)ψ2 >=
∫
G

< ψ1, π(σ)ψ2 > µ(dσ),

for each ψ1, ψ2 ∈ H (see [7]). From this point of view we have

T πt = p̂t(π),

for each t ≥ 0.

4 The Heisenberg Group

This section is based on Chapter 2 of [13] (see also the monograph [5]). The Heisenberg group Hn

is a Lie group with underlying manifold R2n+1 equipped with the composition law

(a1, q1, p1)(a2, q2, p2) = (a1 + a2 +
1
2
(p1 · q2 − q1 · p2), q1 + q2, p1 + p2)

where each ai ∈ R, qi, pi ∈ Rn(i = 1, 2) and · is the usual scalar product in Rn.
A basis for the Lie algebra of left-invariant vector fields is {T, L1, . . . , Ln,M1, . . . ,Mn} where

for 1 ≤ j ≤ n,

T =
∂

∂t
, Lj =

∂

∂qj
+

1
2
pj
∂

∂t
,Mj =

∂

∂pj
− 1

2
qj
∂

∂t

and we have the commutation relations

[Lj, Lk] = [Mj ,Mk] = [Mj, T ] = [Lj , T ] = 0, [Mj, Lk] = δjkT

for 1 ≤ j, k ≤ n so that Hn is step-2 nilpotent.
By the Stone-von Neumann uniqueness theorem, Irr(Hn) = (R− {0}) ∪R2n, where

• (x, y) ∈ R2n,H = C,
πx,y(a, q, p) = ei(x.q+y.p),

for each (a, q, p) ∈ Hn.

• (The Schrödinger Representation) λ ∈ R− {0},H = L2(Rn).

We have C∞(πλ) = S(Rn) where S(Rn) is the Schwartz space of rapidly decreasing functions.

For λ > 0,

π±λ(a, q, p) = ei(±λaI±λ
1
2 q.X+λ

1
2 p.D)

where X = (X1, . . . , Xn) and each Xiu(x) = xiu(x) for u ∈ S (Rn) and D = (D1, . . . , Dn)
where each Dj = 1

i
∂
∂xj

. Hence for all f ∈ S(Rn), x ∈ Rn,

(π±λ(a, q, p)f)(x) = e±i(λa+λ
1
2 q.x+ λ

2 q.p)f(x+ λ
1
2 p).
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In fact the linear operator p.D + q.X is essentially self-adjoint on S (Rn). A basis for the
representation of the Lie algebra is

dπ±λ(T ) = ±iλI, dπ±λ(Lj) = ±iλ 1
2Xj, dπ±λ(Mj) = iλ

1
2Dj

for 1 ≤ j ≤ n, where I is the identity operator.

The remainder of this article is based on joint work with Serge Cohen (Toulouse University) [1].

5 Lévy Processes in the Heisenberg Group

Let ρ = (ρ1, ρ2, ρ3) be a Lévy process in Hn, where ρ1 is a real-valued process and ρ2 and ρ3 are
both Rn-valued. In the light of Siebert’s theorem, we should examine the unitary operator valued
processes π(ρ) where π is an irreducible representation of Hn. Clearly, for each x, y ∈ Rn, t ≥ 0,

πx,y(ρ(t)) = ei(x.ρ2(t)+y.ρ3(t)).

It then follows from the structure of Lπx,y that (ρ2, ρ3) is a Lévy process in R2n.
It is more interesting to examine the Schrödinger representation, and from now on we write

π = π1, for convenience.
We compute the form of the generator (3.1) on the domain C∞(π) = S (Rn). We will find it

simplifies matters if we write the vector b = (b0, b1, b2), where b0 ∈ R and bi ∈ Rn, i = 1, 2. We also

write the non-negative definite matrix c =

 c00 c01 c02
c01 C1 E
c02 ET C2

 where for i = 1, 2, c00 ≥ 0, c0i ∈ Rn

and Ci, E are n× n matrices with each Ci symmetric ((·)T denotes the transpose matrix).

Proposition 1.

Lπ = i

b0 +
n∑
j=1

Ejj

 I + (ib1j − 2c01j )Xj + (ib2j − 2c02j )Dj (5.1)

− c00I − c1jkX
jXk − c2jkD

jDk − 2EjkXjDk

+
∫
R2n+1−{0}

(
ei(aI+q.X+p.D) − I − i(aI + q.X + p.D)

1 + |a|2 + |q|2 + |p|2

)
ν(da, dq, dp)

It is interesting that Lπ can be exhibited as a pseudo-differential operator using the Weyl
calculus. Details of this, which lead to a probabilistic derivation of Mehler’s formula for the
symbol of each T πt , can be found in [1].

C∞c (Rn) is a core for Lπ, and we will use Lπ0 to denote the restriction of Lπ to C∞c (Rn).
Our aim here is to try to answer Question 2, by constructing Dirichlet forms. To do this, we

need to place some constraints on Lπ .

• c0i = b0 = bij = 0(i = 1, 2, j = 1, . . . n), E = 0

• ν is a symmetric measure i.e. ν(A) = ν(−A) for all A ∈ B(R2n+1).

We then have that −Lπ0 is a positive symmetric operator and

−Lπ0 = c00I + c1jkX
jXk + c2jkD

jDk (5.2)

+
∫
R2n+1−{0}

(I − cos(aI + q.X + p.D))ν(da, dq, dp).

Now since −Lπ0 is positive symmetric, we can define a positive quadratic form Eπ with domain
C∞c (Rn) by the prescription

Eπ(f) = − < f,Lπ0f >
for each f ∈ C∞c (Rn), then Eπ is closable with closure Eπ. Moreover−Lπ is the Fredholm extension
of −Lπ0 , so that (T πt , t ≥ 0) is a self-adjoint semigroup in L2(Rn) and Eπ(f) = − < f,Lπf > for
all f ∈ Dom(Lπ).

In order to construct Dirichlet forms, we need to know when the operator Lπ preserves real-
valued functions.
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Proposition 2. −Lπ0 maps real-valued functions to real-valued functions if and only if∫
R2n+1−{0}

sin(a+ q.x+
1
2
p.q)f(x+ p)ν(da, dq, dp) = 0. (5.3)

for all f ∈ C∞c (Rn), x ∈ Rn.
Under these conditions, we then find that for all f ∈ C∞c (Rn),

Eπ(f) =
n∑

j,k=1

c2jk

∫
Rn

∂jf(x)∂kf(x)dx +
(∫

Rn

(
c00 + c1jkx

jxk

+
∫
R2n+1−{0}

sin2(
1
2
(a+ q.x+

1
2
q.p)) + sin2(

1
2
(a+ q.x− 1

2
q.p))ν(da, dq, dp)

)
f(x)2dx

+
1
2

∫
Rn

∫
R2n+1−{0}

cos(a+ q.x+
1
2
p.q)(f(x)− f(x+ p))2ν(da, dq, dp)dx

)
.

This formula is very closely related to the famous Beuring-Deny formula for regular symmetric
Dirichlet forms (see e.g. [6], p.108-11), and we would like to make the following interpretation:-

E(f) = Ec(f) +
∫
Rn

f(x)2k(dx) (5.4)

+
∫

(R2n+1−{0})×Rn

(f(x) − f(x+ p))2J(da, dq, dp, dx)

where the local part of the form is given by Ec(f) =
∑n

j,k=1 c
2
jk

∫
Rn ∂jf(x)∂kf(x)dx, the killing mea-

sure is k(dx) = (c00+c1jkx
jxk+

∫
R2n+1−{0} sin2(1

2 (a+q.x+ 1
2q.p))+sin2(1

2 (a+q.x− 1
2q.p))ν(da, dq, dp))dx

and the jump measure is J(da, dq, dp, dx) = 1
2 cos(a+ q.x+ 1

2p.q)ν(da, dq, dp)dx.
In general, however J will not be a positive measure. It will be in some cases though, e.g. when

supp(ν) = {(0, 0, p), p ∈ Rn}.
When E is a bona fide Dirichlet form, we can assert the existence of a Hunt process (Y (t), t ≥ 0)

on Rn ∪ {∆} (where ∆ is the cemetery point) which is unique up to exceptional sets and whose
transition semigroup is a quasi-continuous version of (T πt , t ≥ 0). This gives a partial answer to
Question 2. However this raises more questions than answers -

• What further information about ρ can we obtain from the Dirichlet form E and/or the Hunt
process Y ?

• Does E have a probabilistic interpretation when the jump measure J fails to be positive ?

• Can this procedure work with other groups, e.g. the Lorentz group seems to be an obvious
candidate.

Notes. The Heisenberg group is a nice setting for both harmonic analysis and probability
theory. [5] is a good reference for the former. For the latter, with a particular emphasis on limit
theorems, see the monograph by Neuenschwander [10].

The volume by Diaconis [4] contains a fascinating general account of applications of group
representations in probability theory.

Acknowledgements I would like to thank Serge Cohen for the joy of collaboration and Gyula
Pap for correcting some errors in an earlier version of this note.
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Martingale calculations for Lévy–driven Russian

options and many–server queues

Søren Asmussen, Lund University, Sweden

Let X be a Lévy process with Lévy exponent κ(α) and W (t) = eαX(t)−tκ(α) the Wald mar-
tingale. Kella & Whitt (1992) considered martingales of the form

∫ t
0 e

αY (t)+tκ(α)W (dt) where Y
is an adapted process of locally bounded variation (depending on properties of Y , the integral
takes different forms after integration by parts). The present talk deals with applications of these
martingales to the calculation of Ee−aτ where τ = inf{t : Z(t) ≥ k} and Z(t) = X(t) + L(t) for a
suitable adapted process L.

The first example is Russian options. In the setup of Shepp & Shiryaev 1993, 1994), the
main problem in evaluation of the price is precisely to determine Ee−aτ for the case where X is
a Brownian motion and L the local time at 0 (Z is then the reflected version). Later work on
Lévy models (Kou, 2000, Mordecki & Moreira, 2001, Avram et al, 2001) makes specific model
restrictions. We work here in the dense class of Lévy processes which may have jumps in both
directions but where the jumps are in the dense class of phase-type distributions (Neuts, 1981).
The Markovian interpretation of such distributions allows to deal with the problem of controlling
the overshoot, which is one of the main obstacles in generalizing beyond Brownian motion. The
approach uses an imbedding in a continuous Markov additive process and the extension of the
Kella–Whitt martingale derived in Asmussen & Kella (2000); Ee−aτ then comes out by solving a
certain set of linear equations.

Characteristics of τ are also of interest in queueing theory where one often identifies τ with
the time of first buffer overflow say in a data buffer. The martingale technique has earlied been
exploited by Asmussen et al. (2002/03) for Markov–modulated M/M/1 queues which are just a
special case of reflected Markov additive processes (L = the local time). For many–server queues, L
is a more complicated boundary modification, which appears to give more unknowns than equations
in the martingale approach, and we show how to overcome this problem using specific properties
of the many–server queueing model.
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Exit problems for (reflected) spectrally negative

Lévy processes and applications to exotic option

pricing.

F.Avram & A.E.Kyprianou∗& M.R.Pistorius.
University of Pau & Utrecht University & Utrecht University

1 Spectrally negative Lévy processes

Let X = {Xt : t ≥ 0} be a spectrally negative Lévy process defined on (Ω,F ,F = {Ft}t≥0,P), a
filtered probability space which satisfies the usual conditions. In the sequel we do not allow for
the case of subordinators and further, if X is a process of bounded variation, then we assume that
its Lévy measure is absolutely continuous with respect to Lebesgue measure. Denote ψ (θ) the
cumulant of X , which is convex and finite at least for θ ≥ 0. Further define the change of measure

dPc

dP

∣∣∣∣
Ft

= exp{cXt − ψ(c)t}

for all c such that ψ(c) < ∞. Note that it is not difficult to prove that under such a change of
measure, the process (X,Pc) remains within the class of spectrally negative Lévy processes.

In order to discuss exit problems for this class of Lévy processes we need to introduce two
functions Z(q) and W (q) which are called scale functions. To this end, denote for q ≥ 0 the largest
root of ψ (θ) = q by Φ (q). For this same range of q, define W (q) : R → [0,∞) as the unique
function which is identically zero for all x ≤ 0 and for x > 0 is continuous and determined by the
inverse transform ∫ ∞

0

e−θxW (q) (x) dx = (ψ (θ)− q)−1 when θ ≥ Φ (q) .

Further, define

Z(q) (x) = 1 + q

∫ x

0

W (q) (y) dy.

From Bertoin (1997) and Lambert (2000) we have that for the afore mentioned class of spectrally
negative Lévy processes the function W (q) restricted to (0,∞) is C1 with the consequence that Z(q),
when restricted to (0,∞) is C2. Further, both W (q) and Z(q) as functions of q can be analytically
extended to entire functions in C.

2 Exit problems

It turns out that the two functions W (q) and Z(q) are all one needs to describe an ensemble of exit
problems for the process X and the reflected process

Y = {Yt = Xt −Xt : t ≥ 0}

where Xt = supu∈[0,t]Xt. Denote the passage times

Ta = inf{t ≥ 0 : Xt ≥ a} and T0 = inf{t ≥ 0 : Xt ≤ 0}

and let Px be the translation of P under which X0 = x. The following result has a long history
in the literature, starting with Takács (1966), running through Suprun (1976), Bingham (1975)
Rogers (1990) and ending with the formulation that we have adopted here given in Bertoin (1997).

∗Speaker at Aarhus 25.01.02
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Proposition 2.1 (two sided exit of X). For q ≥ 0

Ex
[
e−qTa1(Ta<T0)

]
= W (q) (x) /W (q) (a) (2.1)

and
Ex
[
e−qT01(Ta>T0)

]
= Z(q) (x) − Z(q) (a)W (q) (x) /W (q) (a) .

Note that with the given definitions of W (q) and Z(q) on (−∞, 0] these equalities hold for all
x ∈ (−∞, a].

Denote Φc,W
(q)
c and Z(q)

c the versions of Φ,W (q) and Z(q) associated with the process (X,Pc).
It can be checked that by taking Laplace transforms and using analytical extention that for all real
u and v such that ψ(v) <∞

W (q)(x) = evxW (u−ψ(v))
v (x).

By exponentially tilting and taking the upper boundary a to infinity one can reach the following
conclusion (also due to Emery (1975)).

Proposition 2.2 (one sided exit of X). For u ≥ 0 and v such that ψ (v) < ∞ we have for all
x ∈ R

Ex
[
e−uT0+vXT0

]
= evx

(
Z(p)
v (x)−W (p)

v (x) p/Φv (p)
)

where p = u− ψ (v) and p/Φv (p) is understood in the limiting sense when p = 0.

In recent work, Avram et al. (2002) have shown that these scale functions also serve a purpose
for exit problems of the process Y. Let

τk = inf{t ≥ 0 : Yt ≥ k}

and we shall alter the definition of Px to Ps,x meaning that both X0 = x and X0 = s.

Theorem 2.3 (one sided exit of Y ). For u ≥ 0 and v such that ψ (v) <∞,

Es,x
[
e−uτk−vYτk

]
= h(s− x)

where

h(z) = e−vz

(
Z(p)
v (k − z)−W (p)

v (k − z)
pW

(p)
v (k) + vZ

(p)
v (k)

W
(p)′
v (k) + vW

(p)
v (k)

)
(2.2)

where p = u− ψ (v) and x ∈ R.

The functions W (q) and Z(q) can be considered positive-harmonic with respect to the process
killed at rate q which is further killed on exiting (0, a). In the case of diffusions harmonic would
mean that they are in the kernel of the operator L−q restricted to (0, a), where L is the generator of
the diffusion. Unfortunately we cannot phrase harmonicity in this way for these scale functions on
account of the fact that they are not necessarily in the domain of the generator ofX killed on exiting
(0, a). Harmonicity can be expressed however in the more general sense of a martingale. Note that
1(Ta<T0) = W (q)(XTa∧T0)/W (q)(a). By placing this expression back into (2.1) and applying the
Strong Markov property, one can deduce that for x ∈ (0, a){

e−q(t∧Ta∧T0)W (q)(Xt∧Ta∧T0)/W
(q)(a) : t ≥ 0

}
is a Px-martingale with respect to F. In fact it is quite straightforward to prove thatW (q)(x)/W (q)(a)
restricted to (−∞, a] is the unique function which is zero at x ≤ 0 and one at x = a and that is
harmonic for x ∈ (0, a) in the above sense. The exit problem thus keeps its analogy with diffusions.
Similar representations of the results in the other exit problems can be written down.
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3 Applications to exotic option pricing

A genuine motivation for studying these types of exit problems comes from the theory of pricing
of perpetual options. Consider the standard Black-Scholes market, where the bank rate is fixed at
r > 0. In place of the underlying Brownian motion, we can now work with the spectrally negative
Lévy process X. In particular then, the value of the risky asset is the process {exp (Xt) : t ≥ 0}.

Let us give one example of option pricing which uses the exit problems above, in particular
Theorem 2.3. The perpetual Russian option is an American-type option with no expiry offering
the holder the possibility to exercise at any F-stopping time in order to claim

e−αtmax
{
es, eXt

}
at time t. Given that our market is now incomplete, the issue of option ‘price’ is a big discussion
which we do not wish to indulge in. Instead we will assume that a risk-neutral measure has been
selected and this will now inherit the symbol P. That is to say, we make the extra assumption that
under P the process {exp{Xt− rt} : t ≥ 0} is a martingale. Referring back to the original paper of
Shepp and Shiryayev (1994) who give the price of a Russian option in the traditional Black-Scholes
market one finds that by changing measure using the afore mentioned martingale the analogy of
the price of this option reduces to the solution to the optimal stopping problem

sup
τ

E1
s,x

(
e−ατ+Yτ

)
where the supremum is taken over all almost surely finite F-stopping times and we modify P1

x to
P1
s,x in the obvious way as before. It turns out that the expression in Theorem 2.3 makes for an

easy solution to this optimal stopping problem.
To this end, note that for any k > 0 we can manipulate the expression (2.2) to deduce that

E1
s,x

[
e−ατk+Yτk

]
= e(s−x)

(
Z(q)(k − s+ x) −W (q)(k − s+ x)

Z(q) (k)− qW (q) (k)
W (q)′ (k)−W (q) (k)

)
where q = α+r. Now let us assume that there exists a k∗ ∈ (0,∞) such that Z(q) (k∗)−qW (q) (k∗) .
[In fact such a k∗ does exist whenX contains a Gaussian component; for a general discussion around
this issue, see Avram et al. (2002)]. It follows that the expression above simplifies somewhat to

E1
s,x

[
e−ατk∗+Yτk∗

]
= e(s−x)Z(q)(k∗ − s+ x).

Rather conveniently the function ezZ(q)(k∗ − z) is a C2 function in R\{k∗}. At this point it can
be checked that with the presence of the Gaussian component in X the function W (q) becomes
continuous at zero implying that ezZ(q)(k∗ − z) is C1 on R. This is sufficient smoothness to use
Z(q) in the context of Itô’s formula. Indeed the fact that{

e−α(t∧τk∗)+Yt∧τk∗ Z(q)(k∗ − Yt∧τk∗ ) : t ≥ 0
}

is a P1
s,x-martingale (see earlier remarks) implies that(

Γ̂1 − α
) [
ezZ(q)(k∗ − z)

]
= 0 for z ∈ [0, k∗)

where Γ̂1 is the generator of the process (−X,P1). Now recall that for z ≥ k∗ we have that
ezZ(q)(k∗ − z) = ez. Since {exp{rt −Xt} : t ≥ 0} is a P1-martingale, it follows again from Itô’s
formula that

0 =
(
Γ̂1 + r

) [
ezZ(q)(k∗ − z)

]
≥
(
Γ̂1 − α

) [
ezZ(q)(k∗ − z)

]
for z ∈ (k∗,∞).

Now by a final application of Itô’s formula together with the above variational inequatlities, it
follows that {

e−αt+YtZ(q)(k∗ − Yt) : t ≥ 0
}
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is a supermartingale.
The solution to the optimal stopping problem can now be solved quite easily. Doob’s Optimal

Stopping Theorem together with the fact that ezZ(q)(k∗ − z) ≥ ez for all z implies that for any
almost surely finite F-stopping time, τ,

E1
s,x

(
e−ατ+Yτ

)
≤ E1

s,x

(
e−ατ+YτZ(q)(k∗ − Yτ )

)
≤ e(s−x)Z(q)(k∗ − s+ x)

giving an upper bound for supτ E1
s,x

(
e−ατ+Yτ

)
. Since this sequence of inequalities becomes a

sequence equalities with the choice τ = τk∗ we have our solution to the optimal stopping problem:

sup
τ

E1
s,x

(
e−ατ+Yτ

)
= e(s−x)Z(q)(k∗ − s+ x)

with optimal strategy τ = τk∗ .
Although we have assumed a Gaussian component is present, it is not strictly necessary in

order to produce this latter conclusion. See Avram et al. (2002) for further details.
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Abstract

In this article the class of Moving Average Fractional Lévy Motions is introduced. This
class is built from the Fractional Brownian Motion and illustrates what are fractional processes
beyond FBM. The asymptotic self-similarity and the smothness of the paths of these fields
are studied, and they are compared to Real Harmonizable Fractional Lévy Motions . Some
MAFLM’s are locally self-similar with an index H̃, have H−d/2 Hölder continous sample paths
and the L2 norm of the increments is H Hölder continous. This shows that in a non-Gaussian
setting these indexes may be different. Moreover we can establish a multiscale behavior of some
of these fields. Eventually identification of all the indexes of such MAFLM’s is performed.

Key-words: Identification, Local Asymptotic Self Similarity, Second order fields, Stable fields.
AMS classification (2000): 60G12,60G17,62G05.

The concept of self-similarity is often used to give a mathematical meaning to the heuristical
concept of roughness. In this domain the Fractional Brownian Motion (in short FBM) BH(t) of
fractional index 0 < H < 1, introduced in [8, 10], is certainly the most celebrated model. Let us
recall that the FBM is the only centered Gaussian self-similar process with stationary increments
and with index H . However it is a well known fact that in some fields of applications the data
do not fit Gaussian models. See for instance [9, 13, 15] for image modeling. Moreover some
phenomena seem to have different regime depending on the scale they are considered (see [14] in
Computer Science, or [2] in Mathematical Finance). The need for so-called multiscale models that
are nearly Gaussian for some scales and very far from Gaussian at other scale is hence driven by
the applications. From a mathematical point of view dropping the Gaussian assumption leads to
wonder which properties of the FBM shall be kept for fractional non Gaussian models, and if new
features appear for these generalized models. For instance roughness is described by H for the
FBM, is it still true for other models ?

Let us be more precise and give mathematical statements. The FBM is self-similar in distribu-
tion :

(BH(εt))t∈R

(d)
= εH (BH(t))t∈R

for every ε > 0, the Hölder exponent of the sample paths is almost surely H ; the increments are
centered Gaussian variables with variance:

E (BH(t)−BH(s))2 = |t− s|2H .

∗Speaker in Aarhus.
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However the index H of the FBM is the same in every point t ∈ R which is not desirable to
model roughness. This index H can be localized and replaced by a function h(t) ([5, 11]). The
resulting processes Xh are centered and Gaussian and satisfy the following three properties.

• Local self-similarity.

lim
ε→0+

(
Xh(t+ εu)−Xh(t)

εh(t)

)
u∈R

(d)
=
(
Bh(t)(u)

)
u∈R

.

One then says that the FBM is the tangent process of X at point t.

• Hölder continuity. For every t the pointwise Hölder exponent at point t is almost surely h(t).

• Variance of the increments. The increments are centered Gaussian variables and the variances
satisfy:

lim
t→s

E (Xh(t)−Xh(s))
2

|t− s|2h(s)
= 1 .

Models that share these three properties will be called fractional fields. It is known that fractional
fields are not necessarily Gaussian since [3] and the so-called Real Harmonizable Fractional Lévy
Motion (in short RHFLM) which is a large class of fractional fields including the FBM and other
non-Gaussian fields. In these class at every point t the tangent field in the lass property is a FBM
with fractional index H. For the class of RHFLM’s, one index H governs the three properties that
define fractional fields. Then a new question arises : Is the roughness concept reducible to only
one index or is it a weakness of the previous models ?

The first aim of this paper is to prove that the local self-similarity, the Hölder continuity and
the variance of the increments can be governed by three different indexes. Let us now shortly
describe our model. The well-balanced Moving Average representation of FBM in d-dimension:

BH(t) =
∫

Rd

(
||t− s||H−d/2 − ||s||H−d/2

)
W (ds) ,

where W is the Wiener measure is the starting point of our construction. Then the measure W is
replaced by a Lévy measure M with moments of every orders and without Brownian component:

XH(t) =
∫

Rd

(
||t− s||H−d/2 − ||s||H−d/2

)
M(ds) .

The process X is called a Moving Average Fractional Lévy Motion (in short MAFLM). In this
paper, we prove the following.

• Local self-similarity. For some control measures of the Lévy measure called truncated stable

measure which are vanishing at infinity and such that ν(du) ∼ du

|u|1+α when u is close to 0.

lim
ε→0+

(
X(t+ εu)−X(t)

εH̃

)
u∈Rd

(d)
=
(
YH̃(u)

)
u∈Rd ,

where H̃ − d/α = H − d/2 as soon as 0 < H̃ < 1, and where YH̃ is a Moving Average
Fractional Stable Motion cf [12].

• Hölder continuity.

MAFLM are almost surely continuous if and only if H > d/2. Then, the sample paths belong
almost surely to Hölder spaces CH−d/2−ε for all ε > 0 and they do not belong CH−d/2+ε

with probability one.

• Variance of the increments.

By construction, MAFLM’s have exactly the same second-order structure than FBM. There-
fore:

E (X(t)−X(s))2 = ||t− s||2H .
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It is now clear that three indexes of roughness can be defined for the MAFLM: H̃, H−d/2 and
H .

Moreover an asymptotic self-similar property is proved for all MAFLM’s :

lim
R→+∞

(
XH(Rt)
RH

)
t∈Rd

(d)
= (BH(t))t∈Rd .

In particular this means that the MAFLM with a truncated stable measure denoted by XH,α

exhibits different behaviors through the scales. For low scales, there are locally self-similar with a
Moving Average Stable Motion as tangent process. At large scale, there are asymptotically self-
similar with a FBM as tangent process. This phenomenon of different asymptotic self similarities
at low and large scales has already been encountered in [4, 3] and it has been already detected in
some applications cf [7, 2], it is called a multiscale behavior. Since H̃ > H for MAFLM’s whereas
H̃ < H for RHFLM’s these two models are complementary for modeling multiscale data.

The previous indexes of MAFLM’s are then identified from the observation of a single sample
path on a bounded interval. The local self-similarity for XH,α suggests to use log-variations to
identify H̃, as it was done by [1, 6] for stable processes in a wavelet setting. β-variations are used
for the identification of H. Actually it is shown that the β-variations behave differently if β < α
or if β > α. This fact is reminiscent of the multiscale behavior of XH,α.
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[6] M. E. Dury. Estimation du paramètre de Hurst de processus stables autosimilaires à accroisse-
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Merton’s portfolio optimization problem and

non-Gaussian stochastic volatility

Fred Espen Benth∗, Kenneth Hvistendahl Karlsen and Kristin Reikvam

1 Introduction

We will in this extended abstract review some existing results and announce some forthcoming
work on portfolio optimization problems based on the stochastic models for financial assets re-
cently introduced by Barndorff-Nielsen and Shephard [3]. The control problems discussed here are
considered in detail in the papers Benth, Karlsen, and Reikvam [9, 10] and in the forthcoming
paper [11].

Consider an investor who at time t wants place money in a risky asset and a bond in such a
way that terminal expected utility at time T is optimized. If the value of the risky asset follows
a stochastic process S(s), s ≥ t and the bond has (deterministic) value R(s), the dynamics of the
investor’s total wealth becomes

dW (s) =
π(s)W (s)
S(s)

dS(s) +
(1 − π(s))W (s)

R(s)
dR(s) .

Here, π(s) is the fraction of the total wealth W (s) invested in the risky asset at time s. The goal
of the investor is, in mathematical terms, to find an investment strategy π∗(s) which optimizes the
expected terminal utility

E
[
U(W (T ))

]
,

where U is the investor’s utility function. This stochastic portfolio optimization problem is known
in finance as Merton’s problem. The value function of the problem is

V (t, w) = sup
π

Et,w
[
U(W (T ))

]
,

where w is the initial wealth at time t and the supremum is taken over all admissible controls (to
be clarified later). Et,w means the expectation conditioned on W (t) = w.

To study such stochastic control problems we need a dynamics on S(s). Of course, this dynamics
should reflect the statistical stylized facts of the underlying risky asset, but at the same time it is
desirable to use models which are tractable within the framework of stochastic control. From the
dynamic programming (or Hamilton-Jacobi-Bellman) point of view, this means models having the
Markov property.

The simplest, and traditional, choice of asset price dynamics is the geometric Brownian motion
(also known as the Samuelson-Black-Scholes model). We will briefly review Merton’s problem for
this case in the next section. In the recent years Barndorff-Nielsen and others have introduced
different classes of models which fit observed stock price dynamics extremely well (see [1, 2, 3, 4,
13, 18, 19]). These models have the desirable Markov property, being stochastic processes driven
by Lévy processes. In the subsequent sections, the Ornstein-Uhlenbeck stochastic volatility model
of Barndorff-Nielsen and Shephard will be used to model the dynamics of the risky asset. The
resulting portfolio problem will be considered from a dynamic programming point of view. We will
also discuss the problem of pricing derivatives in a market where the underlying risky asset follows
the Barndorff-Nielsen and Shephard model. We suggest to use a utility optimization technique
based on the idea of Hodges and Neuberger [14] to find prices of options in this incomplete market.

∗FEB is supported by MaPhySto, funded by a research grant from the Danish National Research Foundation.
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2 Merton’s problem in Black & Scholes markets

Let us review the classical Merton problem: The stock price follows a geometric Brownian motion
on the form

S(s) = S(t) exp
(
µ · (s− t) + σ(B(s) −B(t))

)
,

σ being the volatility, µ the expected logreturn and B(s) a standard Brownian motion. Using a
bond price dynamics (which will be the bond price in the rest of this abstract)

dR(s) = rR(s) ds, R(t) = 1

we obtain the following wealth process from the self-financing hypothesis:

dW (s) =
(
r + (µ+

1
2
σ2 − r)π(s)

)
W (s) ds+ σπ(s)W (s) dB(s) .

The initial wealth is W (t) = w. Restricting our attention to feedback controls (e.g. Markov
controls, π(s) ≡ π(s,W (s))), the associated Hamilton-Jacobi-Bellman equation (from now on the
HJB-equation for short) for the value function V (t, w) is given by

Vt + max
π

{(
r + (µ+

1
2
σ2 − r)π

)
wVw +

1
2
σ2π2w2Vww

}
= 0

v(T,w) = U(w)

Considering a utility function U of HARA-type, i.e. U(w) = wγ/γ for γ ∈ (0, 1), this control
problem has an explicit solution:

π∗(s) =
µ+ 1

2σ
2 − r

σ2(1− γ)

and with a value function equal to

V (t, w) =
wγ

γ
eγk(T−t)

where

k =
(
r +

(µ+ 1
2σ

2 − r)2

2σ2(1− γ)
)
.

Using a standard verification theorem we easily prove these results, see Merton [15, 16].

3 Merton’s problem and non-Gaussian stochastic volatility

Barndorff-Nielsen and Shepard [3] (see also [4] and [2]) have recently suggested a class of stochastic
volatility models where the risky asset follows the dynamics

d lnS(s) =
(
µ+ βσ(s)

)
ds+

√
σ(s) dB(s) (3.1)

where

σ(s) =
m∑
j=1

ωjYj(s)

and
dYj(s) = −λjYj(s) ds+ dZj(λjs) ,

ωj are positive weigths summing to one and Zj(s) are subordinators independent of B. β is a
constant modelling skewness in the logreturns, while the parameters λj model the autocorrelation.
In fact, the autocorrelation of the logreturns will in this stochastic volatility model be a sum of
functions decreasing to zero exponentially at the speed given by λj . The unusual timing of the
subordinators assures that the invariant distribution of σ(s) is independent of λj , thus separating
the modelling of logreturn and autocorrelation. For more on the features of this class of stochastic
volatility models, we refer to the extensive study in Barndorff-Nielsen and Shephard [3].
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Using (3.1), we are led to the wealth dynamics

dW (s) =
(
r +

(
µ+ (β +

1
2
)σ(s)− r

)
π(s)

)
W (s) ds+ π(s)

√
σ(s)W (s) dB(s)

Initial wealth at time t is W (t) = w. Progressivly measurable controls π(s) ∈ [0, 1] are called
admissible if a unique solution to the wealth dynamics exists. The set of admissible controls are
denoted At. Note that we assume no short selling or borrowing of money (the controls are in the
interval [0, 1]). We can relax this assumption to become π ∈ [a, b] for two arbitrary constants a < b.
The constraint [0, 1] is just for convenience. The value function of the control problem looks like

V (t, w, y) = sup
π∈At

Et,w,y
[
U(W (T ))

]
where we start the processes W (s) in w and Yj(s) in yj at time t.

From the dynamic programming principle we may associate a Hamilton-Jacobi-Bellman equa-
tion for the value function:

Vt + max
π∈[0,1]

{
π
(
µ+

(
1
2 + β

)
σ − r

)
wVw + 1

2π
2σw2Vww

}
+ rwVw

−
m∑
j=1

λjyjVyj +
m∑
j=1

λj

∫ ∞
0

(
V (t, w, y + z · ej)− V (t, w, y)

)
`j(dz) = 0,

(3.2)

with terminal condtion V (T,w, y) = U(w). Here, σ =
∑m

j=1 ωjyj , `j(dz) are the Lévy measures
of the subordinators Zj and the domain is (t, w, y) ∈ [0, T )×Rm+1

+ . It turns out that we can find
a more or less explicit solution to (3.2) in the case of HARA-utility, U(w) = wγ/γ. We now refer
the main result of [9] which holds under some explicit exponential integrability conditions of the
Lévy measures `j(dz).

Theorem 3.1.
V (t, w, y) = γ−1wγ Et,y

[
e
∫ T

t
γΠ(σ(s)) ds

]
where

Π(σ) = max
π∈[0,1]

{
π
(
µ+

(
1
2 + β

)
σ − r

)
− 1

2π
2σ(1− γ)

}
+ r.

Furthermore, the optimal investment strategy is π∗(σ) = 1 when 1
2 + β/1− γ ≥ 1,

π∗(σ) =

{
1, σ ∈ [0, σ̂1),
π̄(σ), σ ∈ [σ̂1,∞)

when 1
2 + β/1− γ ∈ (0, 1), and

π∗(σ) =


1, σ ∈ [0, σ̂1),
π̄(σ), σ ∈ [σ̂1, σ̂0],
0, σ ∈ (σ̂0,∞).

when 1
2 + β/1− γ < 0. The function π̄(σ) is defined as

π̄(σ) =
1

1− γ

(
µ− r

σ
+

1
2

+ β

)
and

σ̂1 =
µ− r

(1− γ)−
(

1
2 + β

) , σ̂0 = − µ− r
1
2 + β

.

We refer to [9] for the proof of this result. As expected, we change the fraction of wealth
invested in the risky asset inversely proportional to the level of volatility, contrary to the classical
Merton case where a fixed fraction is placed in the stock for the whole investment period. Notice
that when β = 0 and λ1 = . . . = λm = 0, π̄ is the classical Merton solution, and our optimal π∗

is the Merton investment strategy under the constraint that short-selling and borrowing of money
is prohibited. We remark that in [10] the control problem is studied for general utility functions
where we characterize the value function as the unique viscosity solution of (3.2).
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4 Pricing options using utility optimization techniques

Let us consider the problem of pricing a European claim with payoff f(S(T )) at time T in the
incomplete market defined by the dynamics (3.1). Motivated from Hodges and Neuberger’s [14]
utility optimization approach, we may use the control problem from the section above to find
prices of the claim. We consider the pricing problem from the issuer’s point of view. In passing,
we remark that the following results are preliminary and will be presented in a rigourous fashion
in the forthcoming paper [11].

The issuer has two opportunities as an investor: Either he do not issue the claim, but optimize
his wealth. The optimization problem is

V 0(t, w, y) = sup
π

Et,w,y
[
U
(
W (T )

)]
Alternativly, he can issue the claim, and then optimize the wealth, which leads to the portfolio
optimization problem

V (t, w, y, x) = sup
π

Et,w,y,x
[
U
(
W (T )− f(S(T ))

)]
Here, x is the stock price at time t, S(t) = x The price of the claim is defined as the premium Λ
for which the issuer is indifferent between the two investment alternatives.

V 0(t, w, y) = V (t, w + Λ, y, x)

If we choose U(w) = wγ/γ, Λ will be dependent on initial wealth w. The price of a claim should not
depend on the wealth of the issuer, so the HARA-utility seems to be undesirable in this context.
Let us choose the exponential utility function U(w) = 1 − exp

(
−γw

)
instead (motivated from

Hodges and Neuberger [14]). γ is the index of risk since −U ′′(w)/U ′(w) = γ. We furthermore
assume that the investment strategies π admissible to the issuer are unconstrained, that is, any
position in stocks is admissible. To ease exposition, assume for the moment that r = 0.

Following the same program as for Merton’s problem above we find from the dynamic program-
ming principle equations for V 0 and V . If we separate the solution like in the HARA-case,

V 0(t, w, y) = 1− e−γwH0(t, y), V (t, w, y, x) = 1− e−γwH(t, y, x)

we can show that H0 and H solve integro-differential equations with terminal conditions:

H0
t − g(σ)H0 + BH0 = 0, H0(T, y) = 1

where, σ2 =
∑m

j=1 ωjyj , g(σ) =
(
µ+ (1

2 + β)σ2 − r
)2
/2σ2, and

Bh =
m∑
j=1

λj

∫ ∞
0

h(y + z · ej)− h(y)`j(dz)−
m∑
j=1

λjyjhyj

Equation for H

Ht − g(σ)H − 1
2
σ2x2H

2
x

H
+

1
2
σ2x2Hxx + BH = 0, H(T, y, x) = eγf(x)

From direct calculations (introducing r again) we find the price to be

Λ ≡ Λ(t, y, x) = e−r(T−t) · γ−1 ln
(H(t, y, x)
H0(t, y)

)
(4.1)

Note that this price is not dependent on the initial wealth w. To actually calculate the price Λ,
we need to solve two integro-differential equations (numerically) It is easy, however, to prove that
when λ1 = . . . = λm = 0 (i.e. σ2 =const), then Λ ≡ Λ(t, x) solves the Black & Scholes equation

Λt − rΛ + rxΛx +
1
2
σ2x2Λxx = 0, Λ(T, x) = f(x)
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and therefore coincides with the arbitrage-free price in the complete case.
A more thorough study of the price fomula (4.1) from both an analytical and numerical point of

view will be presented in the forthcoming paper [11]. But what can we expect from such a pricing
methodology compared to arbitrage-free pricing in incomplete markets? In order to give some
idea we consider a one-period market which is incomplete, and characterize both the arbitrage-free
pricing interval, and prices obtained from utility optimization.

4.1 An example from one-period markets

Assume the stock (the risky investment) has initial value S0 = s and

S1 =

 s(1 + u), prob. p
s, prob. q
s(1− d), prob. r

where p, q, r ∈ (0, 1) and p + q + r = 1. Furthermore, we assume u, d > 0. Let the risk-free
investment opportunity be a bank account with zero interest rate. A portfolio in the market will
consist of α $ in the bank and π number of shares in the stock. If we start with initial wealth w,
we must choose α and π such that

α+ πs = w

The total value of such a portfolio in the next period will be,

W1 = α+ πS1 = w + π(S1 − s)

Assume the market also consists of a claim X with payoff

X =

 x, prob. p
y, prob. q
z, prob. r

where x, y, z all are positive. Furthermore, for reasons to be clear below, we assume

dx

u+ d
+

dz

u+ d
> y (4.2)

Our market is incomplete since the number of possible states of the stock are larger than 2.
The following lemma characterizes all equivalent martingale measures in this market. Let

Q(ω1) = p̃, Q(ω2) = q̃ and Q(ω3) = r̃. Then we have,

Lemma 4.2. A probability Q will be an equivalent martingale measure if and only if

p̃ = r̃
d

u
, 0 < r̃ <

1
1 + d

u

Proof. Q is an equivalent martingale measure if and only if p̃, r̃ ∈ (0, 1), p̃+ r̃ < 1 (which implies
q̃ = 1− p̃− r̃ ∈ (0, 1)), and EQ

[
S1

]
= s. The last condition is equivalent with

p̃s(1 + u) + (1 − p̃− r̃)s+ r̃(1− d) = s

which again is equivalent with p̃u = r̃d. Together with p̃+ r̃ < 1 we have proven the Lemma.

We can now find the interval of arbitrage-free prices of the claim X :

Lemma 4.3. For any equivalent martingale measure Q the arbitrage-free price of X is,

ΛQ = r̃
d

u
x+ (1− r̃(1 +

d

u
))y + r̃z

All the arbitrage-free prices are in the price interval

ΛQ ∈
(
y,

dx

u+ d
+

uz

u+ d

)
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Proof. Straightforward calculation, using the characterization of equivalent martingale measures
and the bound of r̃.

We now consider the superreplicating strategies in this market, that is, we look for initial wealth
w and a trading strategy in stocks π such that W1 = w+π(S1−s) ≥ X . An equivalent formulation
is

w + πsu ≥ x

w ≥ y

w − πsd ≥ z

Multiplying the first inequality with d and the third with u, and then adding the two, yields,
w(u + d) ≥ xd + zu, or w ≥ ux

u+d + dz
u+d . By the assumption (4.2), we have that with this w, the

inequality w ≥ y is satisfied. Inserting the constraint on w into the first inequality above, gives,
π ≥ x−z

s(u+d) . We conclude,

Lemma 4.4. The cheapest superreplicating strategy is

πsuper =
x− z

s(u+ d)

which costs
Λsuper =

ux

u+ d
+

dz

u+ d

Observe that Λsuper coincides with the upper bound of ΛQ, not unexpectedly.
We now move on to the utility optimization approach to price claims. Assume the investor has

a utility function 1− exp(−γw). For an initial wealth w, he will seek to optimize

V0(w) = 1− inf
π

E
[
exp(−γW1)

]
(4.3)

where W1 = w + π(S1 − s). If the investor issues the claim X , his portfolio optimization problem
takes the form

V i(w + Λiγ) = 1− inf
π

E
[
exp(−γW1 + γX)

]
(4.4)

where W1 = w + Λiγ + π(S1 − s). The price Λiγ is defined as the solution of the equation

V0(w) = V (w + Λiγ)

For convenience, define

ρ = p
( dr
up

)u/u+d(1 +
u

d
) (4.5)

We find the following results for the two portfolio optimization problems:

Lemma 4.5. The optimal strategy for the portfolio problem (4.3) is

π∗0 =
ln(up)− ln(dq)
γs(u+ d)

with the optimal expected utility

V0(w) = 1− (q + ρ) exp(−γw)

where ρ is given in (4.5).

Proof. Let
J(π) = p exp(−γw − γπsu) + q exp(−γw) + r exp(−γw + γπsd)

A straightforward differentiation shows that J ′(π) = 0 when π = ln(up)−ln(dq)
γs(u+d) . Inserting this into

the optimal expected utility function yields V0(w).
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Lemma 4.6. The optimal strategy for the portfolio problem (4.4) is

π∗ =
ln(up)− ln(dq)
γs(u+ d)

+
x− z

s(u + d)

with the optimal expected utility

V i(w + Λiγ) = 1− (qeγy + ρeγΛsuper) exp(−γ(w + Λiγ))

where ρ is given in (4.5).

Proof. Let

J(π) = p exp(−γw − γπsu+ γx) + q exp(−γw + γy) + r exp(−γw + γπsd+ γz)

A straightforward differentiation shows that J ′(π) = 0 when π = ln(up)−ln(dq)
γs(u+d) + x−z

s(u+d) . Inserting
this into the optimal expected utility function yields V i(w + Λiγ).

Observe that π∗ is the sum of π∗0 and the cheapest superreplicating strategy! We find the utility
price of the claim as

Proposition 4.7. The utility optimization price of the claim X from the issuer’s point of view is

Λiγ =
dx

u+ d
+

uz

u+ d
− 1
γ

ln
(

q + ρ

q exp(−γ(Λsuper − y)) + ρ

)
where ρ is given in (4.5).

Proof. Letting V0(w) = V (w + Λiγ) yields the equation

(q + ρ) exp(−γw) = (qeγy + ρeγ( dx
u+d + uz

u+d )) exp(−γ(w + Λiγ))

which gives,

Λiγ =
1
γ

ln
(
qeγy + ρeγ( dx

u+d + uz
u+d )

p+ ρ

)
Reorganizing gives the result.

The price of the claim is given as the difference between Λsuper, the price of the cheapest
superreplicating portfolio, and some price dependent on the the risk aversion factor γ. The last
term may be interpreted as a reduction in the price coming from the willingness of the investor
to take some risk on his own account since Λsuper puts him in the position of superreplicating the
claim, that is, cover all the risk associated with the claim.

We find a price interval by letting γ →∞ and γ ↓ 0:

Lemma 4.8.
lim
γ→∞

Λiγ = Λsuper

Proof. Observe that

lim
γ→∞

ln
(

q + ρ

q exp(−γ( dx
u+d + uz

u+d − y)) + ρ

)
= ln

(q + ρ

ρ

)
Hence, the Lemma follows.

When the investor’s risk aversion becomes infinite, he will charge the same price as is requested
for superreplicating the claim. The optimal portfolio strategy also becomes π∗ = x−z

s(u+d) , the
superreplicating strategy, when γ → ∞. What is interesting, is that when the risk aversion goes
to zero, the price Λ does not tend to the lower bound y of the arbitrage-free pricing interval, but
somewhere inbetween y and the upper bound Λsuper!
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Lemma 4.9.

lim
γ↓0

Λiγ =
ρΛsuper

q + ρ
+

qy

q + ρ
∈
(
y,Λsuper

)
where ρ is given in (4.5).

Proof. Note that ln
(

q+ρ
q exp(−γ( dx

u+d + uz
u+d−y))+ρ

)
tends to zero when γ ↓ 0. Hence, by L’Hopital’s rule

we find the limit given in the Lemma.
Since Λsuper > y by (4.2), we get

ρΛsuper

q + ρ
+

qy

q + ρ
>

ρy

q + ρ
+

qy

q + ρ
= y

Conversely, since y < Λsuper,

ρΛsuper

q + ρ
+

qy

q + ρ
<
ρΛsuper

q + ρ
+
qΛsuper

q + ρ
= Λsuper

We conclude that the pricing interval for the issuer is

Λiγ ∈
(ρΛsuper

q + ρ
+

qy

q + ρ
,Λsuper

)
⊂
(
y,Λsuper

)
Let us now consider the pricing problem from the buyer’s point of view. The buyer of the

claim will pay a premium Λbγ and receive the claim payoff X in the next period. His optimization
problem becomes

V b(w − Λbγ) = 1− inf
π

E
[
exp(−γW1 + γX)

]
(4.6)

Lemma 4.10. The optimal strategy for the portfolio problem (4.6) is

π∗ =
ln(up)− ln(dq)
γs(u+ d)

− x− z

s(u+ d)

with the optimal expected utility

V b(w − Λbγ) = 1− (qe−γy + ρe−γ( dx
u+d + uz

u+d )) exp(−γ(w − Λbγ))

where ρ is given in (4.5).

Proof. Let

J(π) = p exp(−γw − γπsu− γx) + q exp(−γw − γy) + r exp(−γw + γπsd− γz)

A straightforward differentiation shows that J ′(π) = 0 when π = ln(up)−ln(dq)
γs(u+d) − x−z

s(u+d) . Inserting
this into the optimal expected utility function yields V b(w − Λbγ).

Note that the buyer goes short in the superreplicating strategy. The price of the claim from
the buyer’s point of view will now be the solution of V0(w) = V b(w − Λbγ):

Proposition 4.11. The utility optimization price of the claim X from the buyer’s point of view is

Λbγ = Λsuper −
1
γ

ln
(q exp(γ(Λsuper − y)) + ρ

q + ρ

)
where ρ is given in (4.5).

Now taking limits when γ →∞ and γ ↓ 0 yields the following:
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Lemma 4.12.

lim
γ→∞

Λbγ = y

lim
γ↓0

Λbγ =
ρΛsuper

q + ρ
+

qy

q + ρ

where ρ is given in (4.5).

Proof. Note that ln
( q exp(γ(Λsuper−y)+ρ

q+ρ

)
tends to infinity when γ → ∞. L’Hopital’s rule therefore

gives the first limit. When γ ↓ 0 ln
( q exp(γ(Λsuper−y)+ρ

q+ρ

)
tends to 0. L’Hopital again yields the

limit.

We conclude that the pricing interval for the buyer is

Λbγ ∈
(
y,
ρΛsuper

q + ρ
+

qy

q + ρ

)
⊂
(
y,Λsuper

)
As we see, the issuer and buyer are dividing the arbitrage-free pricing interval into two parts with
a separating price

Λi,b0 =
ρΛsuper

q + ρ
+

qy

q + ρ
(4.7)

To the left of this point we find the buyer’s indifferent prices, while to the right we have the
indifferent prices of the issuer.

4.2 Discussion

Nicolato and Venardos [17] find arbitrage-free pricing intervals for European claims based on an
underlying following the dynamics (3.1). We expect that the utility approach to pricing will yield
similar intervals, at least when we consider the pricing problem from both the issuer’s and the
buyer’s point of view. We conjecture that the arbitrage-free pricing interval will be separated into
two parts, where the left part is the prices acceptable for the buyer of the claim, while the right is
the prices that the issuer will charge depending on his utility. The optimal strategy for the issuer
in the case when he sells a claim can be separated into the cheapest superreplicating strategy and
the optimal strategy when no claim is issued. These conjectures will be analyzed in more detail in
the forthcoming paper [11].
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Smoluchowski’s coagulation equation

and Lévy processes ∗

Jean Bertoin

Roughly, Smoluchowski’s coagulation equation is meant to describe the evolution in the hydro-
dynamic limit of a particle system in which particles coagulate pairwise as time passes. Typically,
we are given a symmetric function K :]0,∞[×]0,∞[→ [0,∞[, called the coagulation kernel, where
K(x, y) specifies the rate at which two particles with respective masses x and y coagulate (that is
they merge as a single particle with mass x+ y). If we represent the density of particles with mass
dx at time t by a measure µt(dx) on ]0,∞[, the dynamics of the system are thus described by the
equation

∂t〈µt, f〉 =
1
2

∫
]0,∞[×]0,∞[

(f(x+ y)− f(x)− f(y))K(x, y)µt(dx)µt(dy) , (1)

where f is a generic test function, and the notation 〈µt, f〉 stands for the integral of f with respect
to µt(dx). More precisely, we may assume for simplicity unit total mass density at some given time
t0, i.e.

∫
]0,∞[ xµt0(dx) = 1, and then by taking f(x) = x in (1), we see that∫

]0,∞[

xµt(dx) = 1 for all t. (2)

Definition 1. Let µ = (µt(dx), t ∈ R) be a one-parameter family of measures on ]0,∞[ such that
(2) holds. We call µ an eternal solution to Smoluchowski’s coagulation equation with additive
kernel if K(x, y) = x + y and (1) is fulfilled for every continuous function f :]0,∞[→ R with
sup0<x<∞ |f(x)|/x <∞. In that case, we simply write µ ∈ Seternal.

Our analysis of eternal solutions will heavily rely on the following.

Definition 2. We call (σ2,Λ) a Lévy pair and write (σ2,Λ) ∈ L if σ2 ≥ 0 and Λ(dx) is a measure
on ]0,∞[ with ∫

]0,∞[

(x ∧ x2)Λ(dx) <∞ ,

such that
σ2 > 0 or

∫
]0,∞[

xΛ(dx) = ∞ .

For every (σ2,Λ) ∈ L, we define for q ≥ 0

Ψσ2,Λ(q) =
1
2
σ2q2 +

∫
]0,∞[

(
e−qx − 1 + qx

)
Λ(dx) .

The central result of this work is the following characterization of eternal solutions.

Theorem 1.

(i) Let µ ∈ Seternal. Then there exists a unique (σ2,Λ) ∈ L, which we call the Lévy pair of µ,
such that

lim
t→−∞

µt(]etx,∞[) = Λ(]x,∞[)

for every x > 0 which is not an atom of Λ, and

lim
x→0

lim
t→−∞

∫ x

0

yµt(]ety,∞[)dy =
1
2
σ2 .

∗Based on a paper to appear in Annals of Applied Probability
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(ii) Conversely, take any (σ2,Λ) ∈ L. There exists a unique µ ∈ Seternal with Lévy pair (σ2,Λ).
More precisely, for every s > 0, let Φ(·, s) : [0,∞[→ [0,∞[ be the inverse of the bijection

q → Ψσ2,Λ(sq) + q. Then µt is specified by the identity

Φ(q, et) =
∫

]0,∞[

(1 − e−qx)µt(dx) , q ≥ 0 .

The general form of eternal solutions given in Theorem 1 invites a probabilistic interpretation.
Indeed, the formula that defines Ψσ2,Λ is of the Lévy-Khintchine type. Specifically, Ψσ2,Λ can be
viewed as the Laplace exponent of a centered Lévy processes with no positive jumps, where σ2 is
the so-called Brownian coefficient and Λ(dx) the image of the Lévy measure by the map x→ −x.

This incites us to introduce a Lévy process with no positive jumps, X = (Xr, r ≥ 0), such that

E (exp (qXr)) = exp
(
rΨσ2,Λ(q)

)
, q ≥ 0 .

The condition (σ2,Λ) ∈ L is equivalent to assuming that the sample paths of X have unbounded
variation and oscillate (i.e. supr≥0Xr = ∞ and infr≥0Xr = −∞ a.s.). Similarly, the function
Ψ(·, s) which plays a key role in the preceding section, can be viewed as another Laplace exponent;
more precisely introduce for every s > 0

X(s)
r := sXr + r , r ≥ 0

which is again Lévy process with no positive jumps, whose Laplace exponent given by

Ψ(q, s) = Ψσ2,Λ(sq) + q , q ≥ 0 .

It is then well-known that the first passage process

T (s)
x := inf

{
r ≥ 0 : X(s)

r > x
}
, x ≥ 0

is a subordinator, i.e. an increasing process with independent and stationary increments. More
precisely, the inverse Φ(·, s) of the bijection Ψ(·, s) is the Laplace exponent of T (s), in the sense
that

E
(
exp

(
−qT (s)

x

))
= exp (−xΦ(q, s)) , q, x ≥ 0 .

By the Lévy-Khintchine formula for Φ(·, s), we conclude that the eternal solution µt(dx) associated
with the Lévy pair (σ2,Λ) coincides with the so-called Lévy measure of the subordinator T (s) for
s = et.

We may use each subordinator T (s) to construct an interesting random partition of [0,∞[. To
that end, introduce the closed range

T (s) :=
{
T (s)
x , x ≥ 0

}cl

.

Because the subordinator T (s) has zero drift, T (s) is a closed random set with zero Lebesgue
measure. The complementary set [0,∞[\T (s) can be expressed as the union of disjoint open
intervals, which we may view as a random partition of [0,∞[. We now make the key observation
that

T (s) ⊆ T (s′) for 0 < s′ < s, (3)

because an instant at which X(s) reaches a new maximum is necessarily also an instant at which
X(s′) reaches a new maximum. Roughly, (3) means that the random partitions get coarser as the
parameter s increases; and therefore they induce a process in which intervals aggregate.

As a first application, we point out that eternal solutions can be obtained from a hydrodynamic
limit of this stochastic aggregation model. To give a precise statement, denote for every r, s > 0
by λ(s)

r,1 ≥ λ
(s)
r,2 ≥ · · · the ranked sequence of the lengths of the intervals components of [0, r[\T (s).

We may think of the latter as massive particles that aggregate when time s increases. Let us now
introduce the associated (re-weighted) empirical measure

µr,ln s(dx) =
1
r

∞∑
k=1

δ
λ
(s)
r,k

(dx) ,
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where δy(dx) stands for the Dirac point mass at y; note that the normalization has been chosen
such that

∫
]0,∞[

xµr,t(dx) = 1 for all r > 0 and t ∈ R.

Corollary 1. With probability one,

lim
r→∞

µr,t(dx) = µt(dx)

in the sense of vague convergence of measures on ]0,∞[, where (µt(dx), t ∈ R) = µ ∈ Seternal is the
eternal solution with Lévy pair (σ2,Λ).

As another application, we present a simple criterion that ensures the existence of a smooth
density for eternal solutions. Specifically, suppose that (σ2,Λ) is a Lévy pair such that

σ2 > 0 or lim inf
ε→0+

ε−α
∫

]0,ε[

x2Λ(dx) > 0 for some α < 2. (4)

We stress that this is a very mild assumption as it always holds that
∫
]0,ε[ xΛ(dx) = ∞. Then it

is known that the one-dimensional distributions of the Lévy process X are absolutely continuous
with a C∞ density; more precisely, there exists a C∞ function

p : ]0,∞[×R −→ [0,∞[
(r, x) −→ pr(x)

such that
P (Xr ∈ dy) = pr(y)dy for every r > 0 .

Corollary 2. Let µ ∈ Seternal be an eternal solution with Lévy pair (σ2,Λ); and assume that (4) is
fulfilled. Then for every t ∈ R, µt(dx) is absolutely continuous and there is a version of its density,
nt(x) = µt(dx)/dx such that n : (t, x) → nt(x) is a C∞ function. More precisely, in the notation
introduced above, we have

nt(x) = e−tx−1px(−xe−t) , x > 0 .

For instance, in the Brownian case (σ2 = 1 and Λ = 0), we get the eternal solution

µt(dx) =
e−t√
2πx3

exp
(
−xe

−2t

2

)
dx , t ∈ R, x > 0 .

In the α-stable case σ2 = 0 and Λ(dx) = cx−α−1dx, where 1 < α < 2, we obtain a different eternal
solution in terms of the completely asymmetric α-stable density, say

ρα(y) = P (X1 ∈ dy)/dy .

More precisely, the scaling property of stable processes yields the identity

pr(y) = r−1/αρα(yr−1/α) ,

and hence
nt(x) = e−tx−1−1/αρα

(
−x1−1/αe−t

)
.

It does not seem easy to check directly that indeed this provides a solution of Smoluchowski’s
coagulation equation.

We also observe that the formula in Corollary 2 shows that the density of the solution decays
exponentially as a function of time t, and more precisely

nt(x) ∼ x−1px(0)e−t as t→∞ .
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Abstract

In this paper we report on our results concerning linear and nonlinear evolution equations
in which standard Laplacian diffusion operator is replaced by an infinitesimal generator of a
Lévy process. In particular, we have studied the following two cases:

We consider extensions of the classical linear Fokker–Planck equation

ut + Lu = ∇ · (u∇V (x)) (1)

on Rd with L = −∆ and V (x) = 1
2
|x|2, where L is a general operator describing the diffusion

and V is a suitable potential.

Let −L be the generator of a Lévy semigroup on L1(Rn) and f : R → Rn be a nonlinearity.
Nonlinear equations with nonlocal diffusive terms like

ut + Lu +∇ · f(u) = 0 (2)

appear as models with anomalous diffusion in continuum mechanics. We study the asymptotic
behavior of solutions of these nonlocal equations as time t tends to infinity, analyzing the Lp-
decay and two terms of the asymptotics of solutions. In the critical case when the diffusion
and nonlinear terms are balanced, i.e. L ∼ (−∆)α/2, 1 < α < 2, f(s) ∼ s|s|(α−1)/n, the
solutions feature genuinely nonlinear self-similar asymptotics.

1 Generalized Fokker–Planck equations

Main results of the paper [7] include the following theorems which extend exponential convergence
of solution of (1) to the corresponding steady states, discussed recently for second order elliptic
operators L in [1] where entropy methods and logarithmic Sobolev inequalities are employed.

Define the entropy functional W

W [u(t)|u∞] ≡W (t) =
∫

Ψ
(
u(x, t)
u∞(x)

)
u∞(x) dx, (1.1)

where u(t) = u(x, t) ≥ 0 is a solution of (1), u∞ is a stationary solution of (1), the function Ψ is a
C2 convex function on R+, Ψ(s) ≥ 0 for s ≥ 0, and Ψ(1) = 0. Typical (and the most important for
our purposes) examples include the logarithmic (or physical) entropy with Ψ1(s) = s log s− s+1,
and the quadratic entropy Ψ2(s) = (s− 1)2.

Theorem 1.1. Suppose that u = u(x, t) ≥ 0 is a sufficiently regular solution of the Fokker–Planck
equation (1), Ψ generates an entropy functional as in (1.1), and u0 ∈ L1(Rd) satisfies moreover
W [u0|u∞] <∞ for the unique steady state u∞ with

∫
u∞ =

∫
u0, u∞ ∈ L1(Rd). Then the entropy

W decays monotonically to 0: limt→∞W (t) = 0 and, as a consequence,

lim
t→∞

‖u(t)− u∞‖L1 = 0. (1.2)
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The equations of the form
ut + Lu = ∇ · (ux), (1.3)

called here the Lévy–Fokker–Planck equations, are particular examples of (1). Moreover, they
appear as the rescaled versions of equations

zt + Lz = 0 (1.4)

when L has suitable scaling properties. Indeed, if L = (−∆)α/2, defined by the Fourier multiplier
a(ξ) = |ξ|α, 0 < α ≤ 2, corresponds to the α-stable law, then the space-time rescaling of (1.4)

z(x, t) = (αt+ 1)−d/αu
(
x(αt + 1)−1/α, α−1 log(αt+ 1)

)
leads exactly to (1.3).

Let pαt (x − y) = Kt(x, y) be the integral kernel of the semigroup e−t(−∆)α/2
, ‖pαt ‖Lq =

ct−d(1−1/q)/α. Thus, the results on the intermediate asymptotics of z(t):

td(1−1/q)/α

∥∥∥∥z(t)− (∫ z0

)
pαt

∥∥∥∥
Lq

→ 0 as t→∞

are equivalent to the results on the convergence of u(t) to u∞.

Remark. Our assumptions on the symbol a guarantee not only the hyper- and ultracontractivity
of the semigroup e−tL, but also the decay estimates∥∥e−tLv∥∥

Lp ≤ C min
(
t−d(1−1/p)/2, t−d(1−1/p)/α

)
‖v‖L1, (1.5)

for the semigroup e−tL are discussed, but also the boundedness of the solutions u 7→ u(t) of (1.3)
from L1(Rd) to Lp(Rd).

Theorem 1.2. The solutions of the equation (1.3) converge to the corresponding steady states at
an exponential rate

‖u(t)− u∞‖Lp ≤ Ce−εt (1.6)

for all 1 ≤ p ≤ ∞, some ε = ε(p) > 0, and C which depend on L, p, and u0, resp. If 1 ≤ p ≤ 2,
some more restrictive regularity and decay assumptions on u0 are needed.

We expect that the exponential convergence in Theorem 2 can also be established in the more
general context of Theorem 1, thus improving (1.2).

A study of relations between Dirichlet forms involving differences of functions (that define Lévy
operators without Brownian part) and the entropy production formula (which might lead to above
mentioned results) is under way.

2 Multifractal and Lévy conservation laws

Our aim is to present some results in the spirit of papers [8], [10], [11] and [9] on the asymptotics of
solutions of the Cauchy problem (2) with the Lévy operator L defined by the symbol a represented
by the Lévy–Khintchine formula, so that e−tL is a symmetric, positivity-preserving semigroup on
L1(Rn). We suppose (w.l.o.g.) that the drift term in the Lévy–Khintchine formula is b = 0. The
function q(ξ) describing the diffusion part is a positive-definite quadratic form (in the wide sense)
and the Lévy measure Π satisfies the usual integrability conditions.

The equation (2) can be viewed as a far reaching generalization of the Burgers equation ut −
uxx + (u2)x = 0. Particular cases of (2) have been studied in our papers, see the references below.
An overview of recent applications of the Burgers equation to turbulence models is in [19].

The present work is motivated by physical applications of nonlinear equations with nonlocal
integro-differential or pseudodifferential diffusive terms, which include, e.g., anomalous growth
models of molecular interfaces involving hopping and trapping phenomena, and hydrodynamic
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2nd MaPhySto Lévy Conference, January 2002

models with modified diffusivity. Various linear differential equations involving fractional deriva-
tives, and their applications to statistical physics, hydrodynamics, molecular biology etc., have
been also discussed in physical literature. We studied also connections with probability theory,
stochastic differential equations and Monte Carlo-type approximations of their solutions via fi-
nite systems of interacting particles (“propagation of chaos”). The work on interpretations of the
asymptotic behavior of solutions of those equations as Central Limit Theorems is in progress.

The list of the hypotheses imposed on the semigroup e−tL include the following conditions
satisfied for all t > 0, 1 ≤ p ≤ ∞ and some 0 < α, α̃ < 2

‖e−tL‖1,p ≤ min(c1t−n(1−1/p)/2, c2t
−n(1−1/p)/α), (2.1)

‖∇e−tL‖1,p ≤ min(c1t−n(1−1/p)/2−1/2, c2t
−n(1−1/p)/α−1/α), (2.2)

All these assumptions are verified by, e.g., multifractal diffusion operators

L = −a0∆ +
k∑
j=1

aj(−∆)αj/2, 0 < αj < 2, α = min
1≤j≤k

αj , aj > 0, (2.3)

with a0 > 0.

Our main results can be summarized as follows.

Theorem 2.3. Assume that f ∈ C1(R,Rn), L is of the Lévy–Khintchine form and e−tL satis-
fies estimates (2.1), (2.2) as above. Given u0 ∈ L1(Rn) ∩ L∞(Rn), there exists a unique solution
u ∈ C([0,∞); L1(Rn) ∩ L∞(Rn)) of the equation (2) with u(x, 0) = u0(x). This solution is regu-
lar, u ∈ C((0,∞);W 2,2(Rn)) ∩ C1((0,∞);L2(Rn)), satisfies the conservation of integral property∫
u(x, t) dx =

∫
u0(x) dx, and the contraction property

‖u(t)‖Lp ≤ ‖u0‖Lp

for each p ∈ [1,∞] and all t > 0. Moreover, the maximum and minimum principles hold:
ess inf u0 ≤ u(x, t) ≤ ess supu0, a.e. x, t, as well as the comparison principle for u0 ≤ v0 ∈
L1(Rn):

u(x, t) ≤ v(x, t) a.e. x, t, and ‖u(t)− v(t)‖L1 ≤ ‖u0 − v0‖L1 .

The estimates of solutions of the nonlinear equation (2), which turn out to be the same as for
the linear semigroup, can be proved under quite general assumptions on the decay of the semigroup,
much weaker than (2.1).

Theorem 2.4.

(i) If the semigroup e−tL verifies the estimate ‖e−tL‖1,∞ ≤ m(t) for some decreasing C1 function
m, then positive solutions of the Cauchy problem for (2) satisfy the bound

‖u(t)‖L2 ≤ m(t)1/2‖u0‖L1 .

Moreover, if m(t) = ct−ε (as it is whenever (2.1) holds), then the same estimate is valid for
solutions of arbitrary sign.

(ii) If ‖e−tL‖2,∞ ≤M(t), then ‖u(t)‖L∞ ≤M(t)‖u0‖L2 for u0 of arbitrary sign.

(iii) Under assumption (2.1) on e−tL the bound

‖u(t)‖Lp ≤ Cp min(t−n(1−1/p)/2, t−n(1−1/p)/α)‖u0‖L1

holds for all 1 ≤ p ≤ ∞. Moreover, if u0 ∈ L1(Rn) ∩ L∞(Rn), then

‖u(t)‖Lp ≤ C(1 + t)−n(1−1/p)/α

with a constant C which depends on ‖u0‖L1 and ‖u0‖Lp.

Two consecutive terms of asymptotics of solutions of (2) are described in next two theorems.
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Theorem 2.5. Assume that u is a solution of the Cauchy problem (2) with u0 ∈ L1(Rn) ∩
L∞(Rn) and e−tL satisfies (2.1)–(2.2) with some 0 < α < 2. Furthermore, suppose that f ∈ C1,
lim sups→0 |f(s)|/|s|r < ∞ for some r > max((α − 1)/n+ 1, 1). Then, for every 1 ≤ p ≤ ∞ the
relation

tn(1−1/p)/α‖u(t)− e−tLu0‖Lp → 0

as t→∞ holds.

Theorem 2.6. Let the semigroup e−tL satisfy (2.1)–(2.2), the symbol a of L satisfy some regularity
assumptions off the origin, and f ∈ C2, f ′(0) = 0. If n = 1 and α ≥ 1, suppose moreover that
f ∈ C3, f ′′(0) = 0. Then for each 1 < p ≤ ∞ the limit relation

tn(1−1/p)/α+1/α‖u(t)− e−tLu0 + F · (∇e−tLδ0)‖Lp → 0

as t→∞ holds with F =
∫∞
0

∫
Rn f(u(y, τ)) dy dτ .

The solutions of (2) with a multifractal operator L and f satisfying the condition

lim
s→0

f(s)/(s|s|(α−1)/n) ∈ R

behave asymptotically like self-similar solutions U of the fractal Burgers equation

ut + (−∆)α/2u+ c · ∇(u|u|r−1) = 0, c ∈ Rn, (2.4)

with singular initial data Mδ0, i.e., the, so-called, source solutions. Note that here u0 is not
necessarily positive, while positivity of U is a subtle consequence of (2.4) and M > 0. More
generally, we have

Theorem 2.7. Let u be a solution of the Cauchy problem (2) with the operator L = (−∆)α/2 +K
for some 1 < α < 2, and another Lévy operator K whose symbol k fulfills limξ→0 k(ξ)/|ξ|α = 0
(in particular, L can be a multifractal operator of the form (2.3) with a0 ≥ 0, 1 < αj < 2), and
u0 ∈ L1(Rn),

∫
Rn u0(x) dx = M > 0. Then, for each 1 ≤ p ≤ ∞,

tn(1−1/p)/α‖u(t)− U(t)‖Lp → 0

as t → ∞, where U = UM is the unique solution of the problem (2.4) with the initial data Mδ0.
Moreover, U is of self-similar form U(x, t) = t−n/αU(xt−1/α, 1),

∫
Rn U(x, 1) dx = M , and U ≥ 0.
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Tail probabilities of subadditive functionals acting

on Lévy processes

Michael Braverman

1 Introduction

This talk is based on the joint work with T. Mikosch and G. Samorodnitsky (see References).

Both in the theory and in applications of stochastic processes one is often interested in two types
of questions: When does the process X = {X(t), t ≥ 0} lie above a certain deterministic function
(curve) µ = {µ(t), t ≥ 0}, and given the process exceeds this curve, what are its values? For
example, what can be said about the distribution of the biggest excess of the process over the
curve and, if both the process and the function are measurable, what is the distribution of the time
the process spends above the curve?

Here we outline a general approach to the asymptotic tail behavior of the distributions of these
and other subadditive functionals acting on Lévy processes with “not too light” tails. We consider
the distributional tails of various subadditive functionals of their paths. These examples will show
in detail how successfully this method works and how general it is.

Let X be an infinitely divisible process without Gaussian component and Lévy measure ν.
Following [8], the distribution of X is characterized as follows:

Eei〈β,X〉 = exp
{∫

R[0,∞)

(
ei〈β,α〉 − 1− i〈β, τ (α)〉

)
ν(dα)

}
, β ∈ R([0,∞)) .

Here ν is the projective limit of the Lévy measures corresponding to the finite dimensional dis-
tributions of X. The symbol R([0,∞)) denotes the space of real functions β defined on [0,∞)
such that β(t) = 0 for all but finitely many t, and 〈β,α〉 = Σt∈[0,∞)β(t)α(t). Finally, τ(α)(t) =
α(t)1(|α(t)| ≤ 1).

Some examples of the measurable functionals φ : R[0,∞) → (−∞,∞] on X we consider are

φsup(α) = sup
t≥0

[α(t)]+ , φ(α) = sup{t > 0 : α(t) > 0} , φ(α) =
∫ ∞

0

[α(s)]p+ ds , (1.1)

where y+ = max(0, y) and p ∈ (0, 1]. The supremum functional φsup has gained particular impor-
tance in the context of queuing and insurance, where one is interested in quantitative measures for
the excesses of X over high level thresholds which event is interpreted as buffer overflow or ruin in
the different contexts. The above functionals have in common that they are subadditive, i.e., for
any α1, α2 ∈ R[0,∞),

φ(α1 + α2) ≤ φ(α1) + φ(α2) .

If, with probability 1, φ(X − µ) < ∞ is finite, it makes sense to measure the thickness of the
distributional tail P (φ(X − µ) > u) for large u. Suppose this tail does not decay “too fast” as
u→∞ and define

ψ(u) = ν({α : φ(α − µ) > u}) . (1.2)

The subadditivity of the functional φ, the presence of heavy tails and the logic of large deviations
saying that unlikely events happen in the most likely way, lead one to the conjecture that ψ(u)
and P (φ(X − µ) > u) are equivalent in the following sense:

lim
u→∞

P (φ(X− µ) > u)
ψ(u)

= 1 . (1.3)
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Indeed, relations of type (1.3) were proved in the theory of laws with so-called subexponential tails.
For example, [4] considered the overall supremum of Lévy processes, and [14] studied very general
subadditive functionals.

The setup in the latter paper is, in fact, close to the present one. However, there is one
crucial difference: the functionals in [14] were assumed to be bounded by an almost surely finite
pseudonorm of the process. Hence these processes are, in a certain sense, bounded “from above
and below”. This assumption is far away from the situation in the present paper. Our functionals
are akin to the supremum of a negative drift random walk over the entire infinite horizon. In this
sense, they are bounded “only from one side”.

The validity of relation (1.3) has been established for the overall supremum functional φsup and
some particular classes of processes with subexponential tails. Those include Lévy processes with a
negative linear drift (see [6]) and symmetric α-stable processes, α ∈ (1, 2), with stationary ergodic
increments and negative linear drift. In general, the precise circumstances under which (1.3) is
valid for subadditive functionals are not known, even in the particular case of Lévy processes. The
presented results provide a further step in the process of understanding the tail equivalence relation
(1.3) for heavy tailed processes.

In related work [7] considered the tail behavior of the supremum functional φsup of certain
Gaussian processes, including fractional Brownian motion, with negative (not necessarily lin-
ear) drift. The Gaussian nature of the underlying process causes exponential decay of the tails
P (φsup(X− µ) > u).

2 Assumptions and notation

We denote by C a generic positive constant. Its value will be allowed to change from appearance
to appearance, even if we do not mention it explicitly.

Let X = {X(t), t ≥ 0} be a Lévy process, i.e., a real-valued process with stationary and inde-
pendent increments, and Lévy measure ρ on R. We refer the reader to [1] and [15] for encyclopedic
treatments of Lévy processes. In particular, one can find detailed proofs of the properties we
mention and use below.

Specifically, the marginal distributions of a Lévy process are determined by the characteristic
function

EeiθX(1) = exp
{∫ ∞
−∞

(
eiθx − 1− iθx1(|x| ≤ 1)

)
ρ(dx)

}
, θ ∈ R . (2.1)

We always take a version of X with all sample paths in the Skorokhod space D[0,∞), i.e., with
paths which are right-continuous at every t ≥ 0 and have left limits at every t > 0. This version of
X is automatically measurable; this feature will become useful as we will have many opportunities
to integrate the sample paths of X.

The Lévy measure ν of the process X has the form

ν(A) =
∫ ∞

0

∫ ∞
−∞

1
(
x1[s,∞) ∈ A

)
ρ(dx) ds , (2.2)

for any measurable set A ⊂ R[0,∞). Therefore the function ψ in (1.2) turns into

ψ(u) =
∫ ∞

0

∫ ∞
−∞

1
(
φ
(
x1[s,∞) − µ

)
> u

)
ρ(dx) ds, u > 0 . (2.3)

We denote the right tail of the one dimensional Lévy measure ρ by

H(u) = ρ
(
[u,∞)

)
, u > 0 .

A few comments on the conditions below. The reader should realize that the number of con-
ditions we had to assume is due to our desire to cover the largest possible number of functionals
and processes. The conditions simplify drastically in the special cases of Section 4.
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Assumptions on the Lévy measure ρ

Dominance of the right tail of the Lévy measure
We assume that the right tail of the one dimensional Lévy measure ρ dominates its left tail in the
sense that there is a constant A1 > 0 such that

ρ((−∞ ,−t]) ≤ A1 ρ([t,∞)) for all t ≥ 1 . (2.4)

∆2 condition
There is a1 > 0 such that

H(2u) ≥ a1H(u) for all u ≥ 1 . (2.5)

Notice that the ∆2 condition on H yield a bound from below; it excludes exponential decay of
H(u).

Bound from above

There is β1 > 0 such that
H(u) = o(u−β1) , u→∞ . (2.6)

Assumptions on the drift µ

Let µ = {µ(t), t ≥ 0} be a nonnegative function satisfying the following assumptions.

Power law bound from below

There are a2 > 0 and β2 > max(β−1
1 , 0.5) such that

µ(t) ≥ a2 t
β2 , t > 0 . (2.7)

∆2 condition

There is an A2 > 0 and t0 ≥ 0 such that

µ(2t) ≤ A2 µ(t) for all t ≥ t0. (2.8)

The ∆2 condition on µ excludes too fast (in particular exponential) growth of µ.

Quasi–monotonicity of µ

There is an a3 ∈ (0, 1] and t0 ≥ 0 such that

inf
s≥t

µ(s) ≥ a3 µ(t) for all t ≥ t0. (2.9)

Assumptions on the subadditive functional φ

Let φ : R[0,∞) → [0,∞] be a measurable subadditive functional satisfying the following conditions.

The functional “lives off only positive values of its argument”

This means that

φ(0) = 0, and if α(t) ≤ 0 for all t > t0, some t0, then φ(α) = φ
(
α1[0,t0]

)
. (2.10)

Here α1[0,t0] = {α(t)1[0,t0](t), t ≥ 0}.
The functional is finite on locally bounded functions that are eventually non-positive

This means that

φ(α) = φ
(
α1[0,t0]

)
<∞ if α(t) ≤ 0 for all t > t0, some t0, and supt≤t0 α(t) <∞ . (2.11)

Monotonicity
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This means that
if α(t) ≤ β(t) for all t then φ(α) ≤ φ(β) (2.12)

and
φ (cα) ≤ φ(α) for all c ∈ [0, 1] and α ∈ R[0,∞) . (2.13)

Notice that (2.13) is implied by (2.12) if α(t) ≥ 0 for all t ≥ 0.

Assumptions involving the triple (ρ, φ, µ)

One can easily give separate sufficient conditions for the assumptions below, i.e., conditions which
involve ρ, φ and µ separately. However, when doing so one gets into more restrictive situations. The
assumptions we impose are easy to check in applications. Therefore we have chosen to formulate
them in the present form.

For s ≥ 0 and u > 0 define

T (s, u) = inf{x > 0 : φ
(
x1[s,∞) − µ

)
> u} , (2.14)

and denote
T (u) = T (0, u) .

Relation between T (s, u) and T (u)

There is A3 > 0 such that

T (s, u) ≤ A3 [µ(s) + T (u)] for all s, u > 0 . (2.15)

A scaling property

There are positive functions g(δ) and h(δ), 0 < δ ≤ 1, satisfying

h(δ) → 1 as δ ↑ 1, | log(g(δ))| ≤ O(δ−1) as δ ↓ 0 (2.16)

and such that for every u > u(δ) and 0 < δ ≤ 1∫ ∞
0

H (δT (s, δu)) ds ≤ h(δ)
∫ ∞

0

H (T (s, u)) ds , (2.17)

and for every u ≥ u0 and 0 < δ ≤ 1∫ ∞
0

H (δT (s, δu)) ds ≤ g(δ)
∫ ∞

0

H (T (s, u)) ds . (2.18)

The latter conditions are easily checked if one assumes appropriate regular variation conditions.

How to verify condition (2.15)?

Here is an easily verifiable sufficient condition for (2.15).

Proposition 2.1. Assume that the following conditions hold:

1. The subadditive functional φ satisfies (2.10)− (2.13).

2. There exists γ > 0 such that for all 0 < c < 1

φ
(
cx1[0,∞) − µ

)
≤ cγφ

(
x1[0,∞) − µ

)
, (2.19)
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3. There exists a > 0 such that for every s, x > 0

φ
(
x1[s,∞) − µs

)
≥ φ

(
ax1[0,∞) − µ

)
, (2.20)

where µs(t) = µ ((t− s)+).

4. µ is nondecreasing.

Then (2.15) holds.

In fact, condition
φ(cα) ≤ cγφ(α) for every 0 < c < 1 , (2.21)

implies, and is more restrictive, than (2.13) and (2.19). Indeed, if (2.21) holds, monotonicity of φ
implies

φ
(
cx1[0,∞) − µ

)
= φ

(
c
(
x1[0,∞) − c−1µ

))
≤ cγφ

(
x1[0,∞) − c−1µ

)
≤ cγφ

(
x1[0,∞) − µ

)
.

Moreover, many of the functionals of interest have the property

φ
(
x1[s,∞) − µs

)
= φ

(
x1[0,∞) − µ

)
. (2.22)

which implies (2.20).

3 The main theorem

Here we give our main result which was announced in Section 1. The proof is quite technical, and
therefore is omitted.

First recall the definition of the quantity ψ(u) from (2.3).

Theorem 3.2. Let X be a Lévy process, µ a deterministic function and φ a subadditive measurable
functional satisfying the Assumptions of Section 2. If ψ(u) is regularly varying (at infinity) with
exponent −α < 0, then ψ(u) and P (φ(X − µ) > u) are equivalent:

lim
u→∞

P (φ(X− µ) > u)
ψ(u)

= 1 . (3.1)

At this point, the large variety of assumptions on X, φ, µ and ψ may look quite restrictive
and difficult to verify. We will, however, see in Section 4 that these assumptions hold under very
natural conditions for various important subadditive functionals.

4 Some examples of subadditive functionals

In this section we consider several important and common subadditive functionals φ acting on
Lévy processes. We apply Theorem 3.2 to characterize the tail behavior of the distribution of these
functionals.

Throughout this section we assume that the following assumptions hold.

H is regularly varying with exponent −α for some α > 0 , (4.1)

there is a constant C > 0 such that

ρ((−∞ ,−t]) ≤ C ρ([t,∞)) for all t ≥ 1 (4.2)

and
µ is regularly varying with exponent β for some β > max(α−1, 0.5) . (4.3)

Of course, the assumption (4.2) is the same as (2.4). Since it is our goal to collect all the relevant
assumptions in this section together for easy reference, this assumption is repeated here. The
following lemma collects several well known facts on regular varying functions. The reader is
referred to [2]) for proofs and more information. Let

µ←(u) = sup{t > 0 : µ(t) ≤ u} , u > 0 (4.4)

be the generalized inverse of µ.
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4.1 The overall supremum

One of the interesting subadditive functionals is the overall supremum

φsup(α) = supt≥0 α(t) .

It has numerous applications. among them in insurance mathematics for describing eventual ruin
(see [5]) or in queuing for the buffer overflow (see [11]).

Remark 4.3. Here we deal with ”power–like”tails and, hence, the following theorem that describes
the tail behavior of the distribution of the overall supremum of a Lévy process is stated under the
assumptions of regular variation. We conjecture, however, that the first asymptotic equivalence
in (4.5) below holds in greater generality, perhaps under the assumption of subexponentiality of
the tail of H . In fact, if α > 1 and µ(t) = µt for some µ > 0, is a linear function, then the first
asymptotic equivalence in (4.5) is just the classical result for the ruin probability as proved by [6]:

P
(
supt≥0 (X(t)− µ(t)) > u

)
∼ 1
µ

∫ ∞
u

H(s) ds ,

and the latter result is known to hold when H has a subexponential right tail.
In fact, it is quite possible that the curve µ may be allowed to belong to a wider class of

functions as well.

Theorem 4.4. Assume (4.1)–(4.3). Then

P (φsup(X− µ) > u) = P
(
supt≥0 (X(t)− µ(t)) > u

)
(4.5)

∼
∫ ∞

0

H(µ(s) + u)) ds ∼ C(α, β)µ←(u)H(u)

as u→∞. Here C(α, β) = α
∫∞
0 z1/β(1 + z)−(1+α) dz.

4.2 The time the process spends above zero

In this section we consider the sojourn time

φsojourn(α) =
∫ ∞

0

1 (α(t) > 0) dt ,

which is easily seen to be a subadditive functional.

Theorem 4.5. Assume (4.1)–(4.3). Then

P (φsojourn(X− µ) > u) = P

(∫ ∞
0

1 (X(t)− µ(t) > 0)dt > u

)

∼
∫ ∞
u

H(µ(s)) ds ∼ C(α, β) u H(µ(u)) (4.6)

as u→∞. Here C(α, β) = (αβ − 1)−1.

4.3 The last hitting time of zero

In this section we consider the functional

φlast(α) = sup{t > 0 : α(t) ≥ 0} .

It is not difficult to see that this functional is subadditive.

Theorem 4.6. Assume (4.1)–(4.3). Then

P (φlast(X− µ) > u) = P (sup{t > 0 : X(t) ≥ µ(t)} > u)

∼ uH(µ(u)) +
∫ ∞
u

H(µ(s)) ds ∼ C(α, β) u H(µ(u)) (4.7)

as u→∞. Here C(α, β) = 1 + (αβ − 1)−1.
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4.4 Integral of a nonnegative subadditive function

The functional φsojourn of Theorem 4.5 is a particular case of a more general group of subadditive
functionals obtained by appropriate space–dependent weighting of the positive values of a process.
Consider a nondecreasing nonnegative function f such that f(x) = 0 for x ≤ 0 and

f(x1 + x2) ≤ f(x1) + f(x2) for x1, x2 > 0,

and let
φI(f)(α) =

∫ ∞
0

f(α(t)) dt . (4.8)

It is clear that φI(f) is a subadditive functional. We will not address here the question what
functionals φI(f) fit in the framework of the theory developed in the present paper. Instead, we
will briefly consider the class of functionals corresponding to the power functions

f(x) = [x+]p, 0 ≤ p ≤ 1 . (4.9)

We will denote the corresponding functional by φp(α). The case p = 0 corresponds to the
functional φsojourn.

The tail behavior of the distribution of the functional φp(α) is described in the following
theorem.

Theorem 4.7. Assume (4.1)–(4.3). Then for every 0 < p ≤ 1

P (φp(X− µ) > u) = P

(∫ ∞
0

[X(t)− µ(t)]p+ dt > u

)
∼ C(α, β, p) u (F←(u))−pH (F←(u)) (4.10)

as u→∞. Here
F (x) = xpµ←(x), x > 0 ,

and C(α, β, p) is a finite positive constant given by

C(α, β, p) =
∫ ∞

0

y(t)−αt−αβ dt ,

where y(t) = h−1(t−(1+pβ), t > 0, and h is a strictly increasing continuous function on [1,∞) given
by

h(y) = pyp
∫ 1

1/y

(
(yz)β − 1

)
(z − 1)p−1 dt .

4.5 The supremum of the integral of the process

Here we consider the subadditive functional

φsupint(α) = sup
v>0

∫ v

0

α(t) dt .

Unlike other functionals considered in this section, this functional is affected by the negative values
of the process. The tail behavior of this functional is described in the theorem below.

Theorem 4.8. Assume (4.1)–(4.3). Then

P (φsupint(X− µ) > u) = P

(
sup
v≥0

∫ v

0

(X(t)− µ(t)) dt > u

)

∼ C(α, β) µ←1 (u) H
(

u

µ←1 (u)

)
(4.11)

as u→∞. Here
µ1(x) =

∫ x

0

µ(y) dy, x > 0 ,
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and C(α, β) is a finite positive constant given by

C(α, β) =
∫ ∞

0

y(t)−αt−α dt ,

where y(t) = h−1(4β(1+β)t1+β), t > 0, and h is a strictly increasing continuous function on [0,∞)
given by

h(y) =
y1+β

(1 + y)β
.
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LÉVY-DRIVEN CONTINUOUS-TIME ARMA

PROCESSES WITH FINANCIAL

APPLICATIONS

PETER J. BROCKWELL

1 Gaussian CARMA Processes

Gaussian continuous-time ARMA (CARMA) processes furnish a useful class of stationary time
series models for dealing with irregularly spaced data (see Jones (1981), Jones and Ackerson (1990)
and Doob (1944), where some of their properties can be found). Nonlinear versions have been
found to give good models for returns on stock market indices (see e.g. Brockwell (2000)). A
zero-mean Gaussian CARMA(p, q) process {Y (t)} with 0 ≤ q < p and coefficients a1, . . . , ap,
b0, . . . , bq, is defined (see e.g. Brockwell and Davis (1996)) to be a stationary solution of the
(suitably interpreted) pth order linear differential equation,

a(D)Y (t) = b(D)DW (t), t ≥ 0, (1.1)

where D denotes differentiation with respect to t, {W (t)} is standard Brownian motion,

a(z) := zp + a1z
p−1 + · · ·+ ap,

b(z) := b0 + b1z + · · ·+ bp−1z
p−1,

and the coefficients bj satisfy bq 6= 0 and bj = 0 for q < j < p. Since the derivatives DjW (t) do
not exist in the usual sense, we interpret (1.1) as being equivalent to the observation and state
equations,

Y (t) = b′X(t), (1.2)

and
dX(t) −AX(t)dt = e dW (t), (1.3)

where

A =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−ap −ap−1 −ap−2 · · · −a1

 , e =


0
0
...
0
1

 , b =


b0
b1
...

bp−2

bp−1


and we assume that X(0) is a Gaussian random vector such that

X(0) is independent of {W (t), t ≥ 0}. (1.4)

The state equation (1.3) is an Ito differential equation for X(t). If p = 1, A is defined to be −a1.
Because of the linearity of (1.3), its solution has the simple form,

X(t) = eAtX(0) +
∫ t

0

eA(t−u)e dW (u), (1.5)

where the integral is defined as the L2 limit of approximating Riemann-Stieltjes sums. The process
{X(u), u ≥ 0} also satisfies the relations,

X(t) = eA(t−s)X(s) +
∫ t

s

eA(t−u)e dW (u), for all t > s ≥ 0, (1.6)
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which clearly show (by the independence of increments of {W (t)}) that {X(u)} is Markov.
It is well-known (see e.g. Brockwell (2001a)) that the equations (1.4) and (1.6) have a weakly

stationary solution if and only if the eigenvalues λ1, . . . , λp of A (which are the same as the zeroes
of the autoregressive polynomial zp+ a1z

p−1 + · · ·+ ap) all have negative real parts, i.e if and only
if

<(λi) < 0, i = 1, . . . , p. (1.7)

If {X(t)} is such a solution then it is easy to show that

E(X(0)) = 0 (1.8)

and
E(X(0)X′(0)) = Σ :=

∫ ∞
0

eAye e′eA
′ydy. (1.9)

Conversely if (1.4), (1.7), (1.8) and (1.9) are satisfied, then the process {X(t)} defined by (1.5) is
weakly stationary and satisfies the relations,

E[X(t)] = 0, t ≥ 0,

and
E[X(t+ h)X(t)′] = eAhΣ, h ≥ 0.

From (1.2) the mean and autocovariance function of the CARMA(p, q) process {Y (t)} are then
given by

E[Y (t)] = 0, t ≥ 0

and
γY (h) = E[Y (t+ h)Y (t)] = b′ eA|h|Σ b. (1.10)

If in addition the zeroes of the autoregressive polynomial are all distinct then the autocovariance
function of {Y (t)} has the simple form (see Brockwell (2001a)),

γY (h) =
∑

λ:a(λ)=0

eλ|h|b(λ)b(−λ)
a′(λ)a(−λ) . (1.11)

If X(0) satisfies (1.4), (1.8) and (1.9) and is also Gaussian, then {X(t)} and {Y (t)} are strictly
stationary and Gaussian.

For the process to be minimum phase the roots of 1 + b1z + · · ·+ bqz
q = 0 must have negative

real parts. (This corresponds to invertibility for discrete time ARMA processes.)
In order to define a Gaussian CARMA process indexed by (−∞,∞), we introduce two in-

dependent standard Brownian motions {W+(t), 0 ≤ t < ∞} and {W−(t), 0 ≤ t < ∞} (with
W+(0) = W−(0) = 0), letting

W (t) = W+(t)I[0,∞)(t)−W−(−t)I(−∞,0](t), −∞ < t <∞, (1.12)

and defining, for functions f on (−∞,∞) which are square integrable with respect to Lebesgue
measure,

∫ t

−∞
f(u)dW (u) =


∫∞
0
f(−u)dW−(u)−

∫ −t
0

f(−u)dW−(u), if t < 0,∫∞
0
f(−u)dW−(u) +

∫ t
0
f(u)dW+(u), if t ≥ 0.

Provided the eigenvalues of A all have negative real parts, the process {X(t)} defined by

X(t) =
∫ t

−∞
eA(t−u)e dW (u),

is then a strictly stationary solution of (1.3) for t ∈ (−∞,∞) with corresponding CARMA process,

Y (t) =
∫ t

−∞
b′eA(t−u)e dW (u), −∞ < t <∞. (1.13)
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If the eigenvalues, λ1, . . . , λp, of A are distinct, the corresponding eigenvectors can be written
down, and the spectral representation of the matrix A then gives the explicit expression,

b′eAue =
p∑
r=1

b(λr)
a′(λr)

eλru. (1.14)

If we now define

g(u) =
1
2π

∫ ∞
−∞

eiuλ
b(iλ)
a(iλ)

dλ, (1.15)

the change of variable z = iλ and a simple contour integration with respect to z shows that

g(u) =
p∑
r=1

b(λr)
a′(λr)

eλruI(−∞,0)(<(λru)),

so that the representation (1.12) of the CARMA process can be rewritten as

Y (t) =
∫ ∞
−∞

g(t− u)dW (u). (1.16)

The case of repeated eigenvalues can be obtained from that of distinct eigenvalues by letting a
group of distinct eigenvalues approach a common limit. The continuity of a(·) as a function of its
zeroes means that the representation defined by (1.15) and (1.16) remains valid when there are
repeated eigenvalues (although (1.14) does not).

Note. The above calculations were all performed under the assumption that the real parts of the
eigenvalues of A are all (strictly) negative. However the process defined by (1.15) and (1.16) is a
strictly stationary solution of the CARMA equations for t ∈ (−∞,∞), even when one or more of
the eigenvalues has strictly positive real part. If all the eigenvalues of A have negative real part
the process is causal, i.e. g(u) = 0 for u < 0. If all the eigenvalues have positive real part then
g(u) = 0 for u > 0. If some have positive and some have negative real parts, then g(u) is non-zero
for all u. This classification is analogous to the classification of discrete-time ARMA processes as
causal or otherwise, depending on whether or not the zeroes of the autoregressive polynomial lie
outside the unit circle (see e.g. Brockwell and Davis (1996)).

2 Lévy-driven CARMA Processes

In order to generate processes with the heavy tailed marginal distributions frequently observed in
time series data, the Gaussian CARMA processes defined in Section 1 can be extended to the class of
Lévy-driven CARMA processes by replacing the standard Brownian motion {W (t)} in Section 1 by
a Lévy process. Lévy processes are processes continuous in probability with stationary independent
increments. Brownian motion is a special case. For more information on Lévy processes see Ito
(1969), Bertoin (1996) and Sato (1999). An excellent account of stochastic integration with respect
to Lévy processes is contained in the book of Protter (1991). If {W (t)} is a Lévy process with
W (0) = 0, then the characteristic function of W (t), φt(θ) := E(exp(iθW (t)), necessarily has the
form

φt(θ) = exp(tξ(θ)), θ ∈ R, (2.1)

where
ξ(θ) = iθm− 1

2
θ2σ2 +

∫
R0

(
eiθx − 1− ixθ

1 + x2

)
ν(dx), (2.2)

for some m ∈ R, σ ≥ 0, and measure ν on the Borel subsets of R0 = R\{0}. The measure ν is
called the Lévy measure of the process W and has the property,∫

R0

u2

1 + u2
ν(du) <∞.

If ν is the zero measure then {W (t)} is Brownian motion with E(W (t)) = mt and Var(W (t)) = σ2t.
If m = σ2 = 0 and ν(R0) < ∞, then W (t) = at + P (t), where {P (t)} is a compound Poisson
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process with jump-rate ν(R0), jump-size distribution ν/ν(R0), and a = −
∫

R0

u
1+u2 ν(du). Another

important example is the gamma process {W (t)}, for which

ξ(θ) =
∫

R0

(eiθx − 1)ν(dx), (2.3)

ν(du) = αu−1e−βudu, u > 0, and W (t) has probability density function βαtxαt−1e−βx/Γ(αt),
x > 0. This is an example of a Lévy process whose sample-paths have (a.s.) infinitely many jumps
in every interval of positive length. If {L1(t)} and {L2(t)} are two independent and identically
distributed gamma processes then L1 − L2 is a symmetrized gamma process with Lévy measure,
ν(du) = 1

2α|u|−1e−β|u|du. For the non-decreasing stable process X(t) with

E[exp(iθX(t))] = exp[−tβ(−iθ)α/Γ(1− α)], β > 0, 0 < α < 1,

ξ also has the form (2.3), but with

ν(du) = αβu−1−αdu, u > 0.

This is another example of a Lévy process which in each finite interval has infinitely many jumps
with probability 1. Moreover it has infinite moments of all orders greater than or equal to α.

Definition 2.1 If {W (t)} is a Lévy process and p and q are integers such that 0 ≤ q < p, then
{Y (t), t ≥ 0} is a Lévy-driven CARMA(p, q) process with parameters a1, . . . , ap, b0, . . . , bq, if
and only if {Y (t)} satisfies (1.2) with {X(t)} a strictly stationary solution of the equations (1.4)
and (1.6). The following existence result is established in Brockwell (2001b).

Theorem 2.1 If {W (t)} is a Lévy process with characteristic function (2.1) and E|W (1)|r < ∞
for some r > 0, then the Lévy-driven CARMA process specified by Definition 1.2 exists if condition
(1.7) is satisfied, in which case the cumulant generating function of Y (t1), Y (t2), . . . , Y (tn), (0 ≤
t1 < t2 < · · · < tn) is

ln E[exp(iθ1Y (t1) + · · ·+ iθnY (tn))] =∫ ∞

0

ξ

(
n∑

i=1

θib
′eA(ti+u)

)
edu +

∫ t1

0

ξ

(
n∑

i=1

θib
′eA(ti−u)

)
edu+

∫ t2

t1

ξ

(
n∑

i=2

θib
′eA(ti−u)

)
edu + · · ·+

∫ tn

tn−1

ξ

(
n∑

i=2

θib
′eA(ti−u)

)
edu.

(2.4)

In particular, the marginal distribution of Y (t) has cgf,

lnE[exp(iθY (t))] =
∫ ∞

0

ξ(θb′eAue)du. (2.5)

Example On the left side of Figure 1 are the histogram and sample autocorrelation function of
the absolute daily returns (100 ln(P (t)/P (t− 1)) on the Hang Seng Index for the period July 1st,
1997 - April 9th, 1999. It has been observed by Granger et al. (1999) that, as in this example,
such absolute daily returns frequently follow an approximately exponential distribution with a
slowly decaying positive autocorrelation function. The sample autocorrelation function can be well
approximated by that of a CARMA(2,1) model with coefficients a1 = 2.86, a2 = .30, b0 = 1.0 and
b1 = 2.71, estimated by maximization of the Gaussian likelihood. In an attempt to approximate the
empirical marginal distribution, the two parameters of a gamma process {W (t)} were adjusted so
that the simulated marginal distribution of the corresponding gamma-driven CARMA(2,1) process
had approximately the appropriate shape. A good match (shown on the right side of Figure 1) was
obtained by choosing the distribution of W (1) to have exponent .0.135 and scale parameter 4.08.
A more systematic approach to maximum likelihood estimation for such models is described in the
talk. The lack of evidence for long memory in the sample autocorrelation function of this data is
very likely due to its relatively short length and is consistent with the suggestion of Granger et al.
(1999) that the long memory observed in longer realizations of these series may be due to shifting
levels.
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Figure 1: The figures on the left show the histogram (top) and sample autocorrelation function of the
absolute daily returns on the Hang Seng Index, July 1, 1997 - April 9, 1999. The figures on the right are
the corresponding graphs for the model defined in the example. The top right graph is based on 10,000
simulated values generated by the model.

Although the ad hoc procedure used in this example gives a good match between the model and
empirical marginal distributions and autocorrelation functions, this does not necessarily mean that
the model gives a good representation of the dynamics of the process. A more systematic approach
to the fitting of such models is needed. A simulation-based method will be described for computing
the likelihood under a Lévy-driven CARMA model when the state vector has a transition density.

Definition 2.2 If in Definition 2.1 we impose the restriction E(W (1)2) <∞ then {Y (t), t ≥ 0} is
a second-order Lévy-driven CARMA process. For such a process the mean and variance of
the increments W (t+ s)−W (s) of the driving Lévy process have the form mt and vt respectively
and the autocorrelation function of the corresponding CARMA process is the same as if the driving
process were Brownian motion.

The representation (1.15) and (1.16) remains valid for Lévy-driven CARMA processes. Thus Y (t)
can be expressed as

Y (t) =
∫ ∞
−∞

g(t− u)dW (u), (2.6)

where {W (t),−∞ < t <∞} is defined as in (1.12), modified so as to be cadlag, and

g(u) =
1
2π

∫ ∞
−∞

eiuλ
b(iλ)
a(iλ)

dλ. (2.7)

If the polynomial a(λ) has distinct zeroes, λ1, . . . , λp, then g(u) can be expressed more simply
as,

g(u) =
p∑
r=1

b(λr)
a′(λr)

eλruI(−∞,0)(<(λru)). (2.8)

81
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For second-order Lévy-driven CARMA processes, if {W (t)} is scaled so that the increment in a time
interval of length t has variance t and if the roots of a(λ) = 0 are distinct, then the autocovariance
function of {Y (t)} is again given by (1.11), i.e.

γY (h) =
∑

λ:a(λ)=0

eλ|h|b(λ)b(−λ)
a′(λ)a(−λ) . (2.9)

3 Applications

Stochastic differential equations driven by non-decreasing Lévy processes have been used in storage
theory to represent the content of a dam whose cumulative input process is a non-decreasing Lévy
process (see e.g. the papers of Cinlar and Pinsky (1972), Harrison and Resnick (1976) and Brockwell
et al. (1982)).

More recently Barndorff-Nielsen and Shephard (2001) have introduced a very interesting and rel-
atively tractable continuous-time stochastic volatility model in which the volatility process {σ2(t)}
is an Ornstein-Uhlenbeck (or CARMA(1,0)) process driven by a non-decreasing Lévy process. Since
the kernel function g in the representation (2.6) of the Ornstein-Uhlenbeck process is non-negative
and the driving Lévy process has non-negative increments, the resulting process is non-negative as
required. For such a process the autocorrelation function at lag h has the form e−c|h| for some c > 0.
In order to extend the range of autocorrelation functions attainable by their model they considered
the class of linear combinations of independent Lévy-driven Ornstein-Uhlenbeck processes with
positive coefficients, for which the autocovariance functions have the form

∑k
i=1 αie

−cih, where
ci > 0 and αi ≥ 0 for each i. Such linear combinations are a subset of the class of CARMA
processes.

This raises the question of the extent to which more general CARMA processes driven by non-
decreasing Lévy processes (and restricted to have non-negative kernels) can increase the range of
attainable autocorrelation functions. They do indeed extend the range (see Brockwell and Davis
(2001)) and in fact it is possible to construct CARMA processes with complex autoregressive roots
which at the same time have a non-negative kernel. These processes appear to have interesting
potential for volatility modelling in conjunction with the model of Barndorff-Nielsen and Shephard.

Lévy-driven CARMA models in general constitute a class of continuous-time models closely
analogous to the discrete-time ARMA processes and those of second order exhibit a comparable
range of autocovariance functions. They are potentially useful for the modelling of irregularly
spaced non-Gaussian time series (Gaussian CARMA processes have been used for ths purpose by
Jones (1981)) and as possibly heavy-tailed models for financial time series. Some of the problems
associated with inference for these processes will be discussed.
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[5] Brockwell, P.J. (2001). Lévy-driven CARMA processes, Ann. Inst. Stat. Math,, 53, 113-124.

[6] Brockwell, P.J. and R.A. Davis (1996), Introduction to Time Series and Forecasting, (Springer-
Verlag, New York).

82



Peter J. Brockwell

[7] Brockwell, P.J. and R.A. Davis (2001), Discussion of Lévy-driven Ornstein-Ühlenbeck pro-
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1 Introduction

The standard models for returns in portfolio allocation (Merton (1971)) and option pricing (Black
and Scholes (1973)) both assume that continuously compounded returns are normally distributed.
The central limit theorem is often invoked as a primary motivation for this assumption. By this
theorem, the normal distribution arises as the limiting distribution for the sum of n independent
random variables, when the sum is divided by

√
n. Hence, if returns are realized as the sum of

a large number of independent influences, then one can anticipate that returns will in fact be
normally distributed.

Unfortunately, it is well documented that the assumed normality of the return distribution is
violated in both the time series data and in option prices. This has led many authors to consider
jump-diffusion models (Merton (1976), Bates (1991)), stochastic volatility models (Heston (1993)),
Lévy processes (Madan, Carr and Chang (1998), Barndorff-Nielsen (1998), Eberlein, Keller and
Prause (1998)), and various combinations of these alternatives Bates (1996, 2000), Duffie, Pan and
Singleton (2000), Barndorff-Nielsen and Shephard (2001), Carr, Geman, Madan and Yor (2001)).

This paper examines if there are alternatives to the Gaussian distribution as a limit law. This
objective leads to the so-called laws of class L, which were defined by Khintchine (1938) and Lévy
(1937) as limit laws for sums of n independent variables when centered and scaled by functions of
n, not necessarily

√
n. These laws were subsequently found to be identical to the so-called class

of self decomposable laws. Sato (1991) shows that the self-decomposable laws are associated with
the unit time distribution of self-similar additive processes, whose increments are independent, but
need not be stationary. Jeanblanc, Pitman, and Yor (2001) recently show how one may easily
pass between these additive self similar representations and stationary solutions to OU equations
driven by Lévy processes (Barndorff-Nielsen and Shephard (2001)). This paper presents a number
of interesting candidate models in this class of what we call Sato processes.

The outline of the extended abstract is as follows. The next section introduces the laws of
class L and the concept of self-decomposable laws, and outlines their association with self-similar
processes and with stationary solutions to OU equations. We then go on to introduce 6 particular
self decomposable laws in somewhat greater detail.

2 Self Decomposable Laws and Associated Processes

This section introduces the laws of class L and the self decomposable laws, which are known to be
identical.

∗Dilip Madan would like to thank Ajay Khurana, Yong Ren and Rick Shypiut for discussions on the subject
matter of this paper.
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2.1 Laws of class L and Self Decomposable Laws

Consider a sequence (Zk : k = 1, 2, . . .) of independent random variables and let Sn =
∑n

k=1 Zk
denote their sum. Suppose that there exist centering constants cn and scaling constants bn such
that the distribution of bnSn + cn converges to the distribution of some random variable X. Then
the random variable X is said to have the class L property.

The distribution of a random variable X is said to be self decomposable (Sato (1999), page 90,
Definition 15.1) if for any constant c, 0 < c < 1 there exists an independent random variable say,
X(c) such that

X
law= cX +X(c).

In other words, a random variable is self-decomposable if it has the same distribution as the sum
of a scaled down version of itself and an independent residual random variable. Self decomposable
laws have the property that the associated densities are unimodal (Yamazato (1978), Sato (1999),
page 404).

The self decomposable laws are an important sub-class of the class of infinitely divisible laws.
Lévy (1937) (see also Loève (1945)) showed that self decomposable laws are infinitely divisible
with a special structure of their Lévy measure. Specifically, the characteristic function of these
laws (Sato (1999), page 95, Corollary 15.11) has the form

E
[
eiuX

]
= exp

[
−1

2
Au2 + ibu+

∫ ∞
−∞

(
eiux − 1− iux1|x|<1

) h(x)
|x| dx

]
where A ≥ 0, b is a real constant, h(x) ≥ 0,

∫∞
−∞

(
|x|2 ∧ 1

)
h(x)
|x| dx < ∞, and h(x) is increasing

for negative x and decreasing for positive x. We call h(x) the self decomposability characteristic
(SDC) of the random variable X.

Sato (1999, page 91, Theorem 15.3) shows that a random variable has a distribution of class L if
and only if the law of the random variable is self decomposable. Many compound Poisson processes
employed in the finance literature do not enjoy the self decomposable property. In contrast, the
recent Lévy models employed by Barndorff-Nielsen (1998), Eberlein, Keller and Prause(1998),
Madan, Carr and Chang(1998), and Carr, Geman, Madan and Yor (2002)) all use Lévy densities
associated with self decomposable laws.

2.2 Processes associated with Self Decomposable Laws

Sato (1991) establishes a connection between a self decomposable law holding at a fixed time and
a stochastic process reigning over the time interval.

First note that a γ−self-similar process is defined as a stochastic process (Y (t), t ≥ 0) with the
property that for any λ > 0 and all t,

Y (λt) law= λγY (t). (2.1)

Sato (1991) defines additive processes as processes with inhomogeneous (in general) and inde-
pendent increments. In the particular case when the increments are time homogeneous, the process
is called a Lévy process. Sato (1991) showed that a law is self decomposable if and only if it is the
law at unit time of an additive process, that is also a self similar process.

To relate these concepts in a simple setting, suppose that a self decomposable random variable
X is the value at unit time of some pure jump Lévy process whose sample paths have bounded
variation. We consider the case when the Lévy density integrates |x| in the region |x| < 1 for which
b =

∫
|x|<1

xh(x)
|x| dx. In this case the characteristic function of X has the form

E
[
eiuX

]
= exp

[∫ ∞
−∞

(eiux − 1)
h(x)
|x| dx

]
(2.2)

Let Y (t) be the value at time t of a self-similar additive process with paths of bounded variation.
The characteristic function for Y (t) may be written as

E
[
eiuY (t)

]
= exp

[∫ t

0

∫ ∞
−∞

(
eiuy − 1

)
g(y, s)dyds

]
, (2.3)
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for some time-dependent Lévy system g(y, t). Suppose that we require that the law of the self-
similar additive process at unit time be the self-decomposable law of the random variable X :

Y (1) law= X. (2.4)

Then the following theorem relates the time dependent Lévy system to the SDC, h(x) of the
self-decomposable law.

Theorem 2.1. Given a self decomposable law for the time one distribution (2.4) with a charac-
teristic function satisfying (2.2), then there exists a self similar process Y (t) defined with respect
to the increasing scaling function tγ by (2.1) and which satisfies (2.3) when:

g(y, t) =


−h′( y

tγ )γ
t1+γ , y > 0

h′( y
tγ )γ

t1+γ , y < 0

Observe that it is precisely the property of h that it be increasing on the left and decreasing
on the right that yields g as a positive inhomogeneous Lévy density.

2.2.1 Some other processes associated with self similar processes

It is shown in Lamperti (1962) that one may associate with any γ -self similar process Y (t) a
stationary process Zt defined by

Zu = e−γuY (eu)
Y (t) = tγZ(log(t))

and so we observe that our scaled self decomposable process Y (t) is also a scaled and time changed
stationary process.

It is further shown in Jeanblanc, Pitman and Yor (2001) that the stationary process Zu, u ≥ 0
is the solution to Ornstein-Uhlenbeck equation associated with a Background Driving Lévy Process
(Barndorff-Nielsen and Shephard (2001)) U(t)

dZ = −γZdt+ dU

with initial condition Z(0) = X.

The Lévy process may itself be constructed from the γ-self similar process Y (t) in accordance
with

U(t) =
∫ et

1

1
sγ
dY (s).

3 Some Specific Self Decomposable Processes

In this section we consider six examples of self decomposable laws with which we shall associate a
γ-self similar additive process Y (t).

The first three self decomposable laws are those for the unit time Variance Gamma (V G) model,
of Madan, Carr, and Chang (1998), the normal inverse Gaussian (NIG) model of Barndorff-Nielsen
(1998), and the Meixner process (MXNR) developed by Grigelionis (1999) and Schoutens (2001).
In addition we develop three new processes based on laws related to the hyperbolic functions and
studied by Pitman and Yor (2000): the three processes involved employ the hyperbolic cosine,
sine and tangent functions in their analytical structure. The six processes are denoted V GSSD,
NIGSSD, MXNRSSD, V CSSD, V SSSD, V TSSD where the addition of the extension SSD
signifies that the density varies with maturity by a scaled self decomposable law.
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3.1 VGSSD

The variance gamma (V G) process is defined by time changing an arithmetic Brownian motion
with drift θ and volatility σ by an independent gamma process with unit mean rate and variance
rate ν. Let G(t; ν) be the gamma process, then the variance gamma process may be written as:

XV G(t;σ, ν, θ) = θG(t; ν) + σW (G(t; ν))

where W (t) is an independent standard Brownian motion. Madan, Carr, and Chang (1998) show
that the V G process can also be expressed as the difference of two independent gamma processes.
Carr, Geman, Madan and Yor (2002) show that the V G process is a Lévy process whose Lévy
density has the form

kV G(x) =

C
exp(Gx)
|x| x < 0

C exp(−Mx)
x x > 0

where the parameters C,G,M are explicitly related to the original parameters by

C =
1
ν

G =

(√
θ2ν2

4
+
σ2ν

2
− θν

2

)−1

M =

(√
θ2ν2

4
+
σ2ν

2
+
θν

2

)−1

We observe that the SDC for the V G process is

hV G(x) =

C exp (Gx) x < 0

C exp (−Mx) x > 0

The exponential and negative exponential are classic examples of functions which are increasing
and decreasing, when the domains are restricted to the negative and positive axis respectively.

3.2 NIGSSD

The NIG process also has a characteristic function defined by three parameters (see Barndorff-
Nielsen (1998)). To obtain the characteristic function we follow the presentation in Carr, Geman,
Madan and Yor (2002). From this perspective, we first define inverse Gaussian time Iνt as the time
it takes an independent Brownian motion with drift ν to reach the level t. It is well known that
the Laplace transform of this random time is:

E [exp (−λIνt )] = exp
(
−t
(√

2λ+ ν2 − ν
))

(3.1)

The process is well defined for ν > 0, while for ν < 0 it gets infinite almost surely; more precisely,
P (Iνt < ∞) = exp(2tν). Next we evaluate an independent arithmetic Brownian motion with drift
θ and volatility σ at this inverse Gaussian time:

XNIG(t;σ, ν, θ) = θIνt + σW (Iνt ) (3.2)

on the set Iνt <∞. The NIG Lévy density is given by

kNIG(x) =

√
2
π
σα2 e

θ
σ2 xK1(|x|)

|x| . (3.3)

It follows that the SDC for NIG process is given by

hNIG(x) =

√
2
π
σα2e

θ
σ2 xK1(|x|)

and hence the law is self-decomposable for θ/σ2 sufficiently small.
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3.3 MXNRSSD

The Meixner process has recently been proposed by Grigelionis (1999) and Schoutens (2001). The
characteristic function for zero drift is

E
[
eiuXMXNR(t); a, b, d

]
=

(
cos( b2 )

cosh
(
au−ib

2

))2dt

The probability density of the Meixner distribution is given by:

f(x; a, b, d) =

(
2 cos

(
b
2

))2d
2aπΓ(2d)

exp
(
b

a
x

) ∣∣∣Γ(d+ i
x

a
)
∣∣∣2

where Γ(z) is the gamma function with complex argument z.
The Lévy density is given by

kMXNR(x) = d
exp

(
b
ax
)

x sinh
(
πx
a

) .
Hence, the SDC of the Meixner process is given by

hMXNR(x) = d
exp

(
b
ax
)∣∣sinh

(
πx
a

)∣∣ .
This function also satisfies the self-decomposability condition for small enough values of b/a.

3.4 The Hyperbolic Processes VCSSD, VSSSD and VTSSD

We define two increasing additive processes denoted by Ct, St by their Laplace transforms:

E
[
e−λCt

]
=

 1

cosh
(√

2λt
)


E
[
e−λSt

]
=

 √
2λt

sinh
(√

2λt
)
 .

These processes may be described by:

Ct = inf {s ||Bs| = t}
St = inf {s |BES(3, s) = t} ,

where Bs is a standard Brownian motion and BES(3, s) is the Bessel process of dimension 3, i.e.
the norm of a 3 dimensional standard Brownian motion.

Using Lévy’s theorem for Ct and the results of Pitman (1975) on three dimensional Brownian
motion for St, we write alternative characterizations for these processes as

Ct
(d)
= inf {s |Ms −Bs = t}

St
(d)
= inf {s |2Ms −Bs = t}

where Mt = sups≤tBs.
We now allow for drift in the Brownian motion. Hence, let

B
(ν)
t = νt+Bt

and define

C
(ν)
t = inf

{
s
∣∣∣M (ν)

s −B(ν)
s = t

}
S

(ν)
t = inf

{
s
∣∣∣2M (ν)

s −B(ν)
s = t

}
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where M (ν)
t = sups≤tB

(ν)
s .

We also consider a one dimensional diffusion Z(ν)
t with infinitesimal generator

1
2
∂2

∂x2
+ ν tanh(νx)

∂

∂x

and define

T
(ν)
t = inf

{
s
∣∣∣∣∣∣Z(ν)

s

∣∣∣ = t
}
.

We note that
(∣∣∣Z(ν)

t

∣∣∣ , t ≥ 0
)

(d)
=
(∣∣∣B(ν)

t

∣∣∣ , t ≥ 0
)

when both start at zero.
The resulting Laplace transforms are

E
[
e−λC

(ν)
t

]
=

exp (−νt)
√
ν2 + 2λ√

ν2 + 2λ cosh
(
t
√
ν2 + 2λ

)
− ν sinh

(
t
√
ν2 + 2λ

)
E
[
e−λS

(ν)
t

]
=

sinh(νt)
ν

√
ν2 + 2λ

sinh
(
t
√
ν2 + 2λ

)
E
[
e−λT

(ν)
t

]
=

cosh (νt)
cosh

(
t
√
ν2 + 2λ

) .
The processes V C, V S, V T are constructed by first evaluating an independent Brownian with

volatility σ at the times C(ν)
t , S

(ν)
t , and T (ν)

t respectively, to obtain the characteristic functions:

E
[
eiuσB(C

(ν)
t )
]

=
exp (−νt)

√
ν2 + σ2u2

√
ν2 + σ2u2 cosh

(
t
√
ν2 + σ2u2

)
− ν sinh

(
t
√
ν2 + σ2u2

) (3.4)

E
[
eiuσB(S

(ν)
t )
]

=
sinh(νt)

ν

√
ν2 + σ2u2

sinh
(
t
√
ν2 + σ2u2

) (3.5)

E
[
eiuσB(T

(ν)
t )
]

=
cosh (νt)

cosh
(
t
√
ν2 + σ2u2

) . (3.6)

To add asymmetry, we use the Esscher transform for a transform parameter θ. We define for
Ht ∈

{
C

(ν)
t , S

(ν)
t , T

(ν)
t

}
E(θ)

[
eiuσB(Ht)

]
=
E[ei(u−iθ)σB(Ht)]
E
[
ei(−iθ)σB(Ht)

] (3.7)

The characteristic functions for XV C(t), XV S(t), XV T (t) may then be easily obtained.
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Boundary Crossing Problems for Lévy processes

Ron Doney, Manchester and Ross Maller, W. Australia

1 Introduction

There are now many results known about boundary crossing problems for random walks, usually
involving the asymptotics of the exit time from a one-sided or two-sided interval, or the over-
shoot over the boundary. Some recent references are [6], [7], [8], [9], [10], [11], [12], [13] and [16].
Extensions to curved boundaries of power-law type have also been carried out, see [2], [14], and
[15].

Recently, in [4] and [5] some of these questions have been studied for Lévy Processes, where
there is the interesting possibility of studying the small-time, as well as the large-time, behaviour.
In this talk, rather than describing all our results, I want to concentrate mainly on the following
problem.

When is the overshoot small in comparison to the interval?

2 Random Walks

The random walk will be denoted by S = (Sn, n ≥ 0), where Sn =
∑n

1 Yi, the Y ′s being indepen-
dent and identically distributed with distribution F. We assume throughout that the support of F
is unbounded, and write

T (x) = 1− F (x) + F (−x),
D(x) = 1− F (x)− F (−x),

A(x) =
∫ x

0

D(y)dy = E(Y ;|Y | ≤ x) + xD(x),

and U(x) =
∫ x

0

2yT (y)dy = E(Y 2;|Y | ≤ x) + x2T (x).

2.1 One-sided Overshoots

To start at the beginning, suppose first that the Y ′s are non-negative; so we are in the classical
renewal theory situation. With N+(r) = min{n : Sn > r}, O+

r = SN+(r) − r is the size of the
overshoot when S first crosses the level r, but is also referred to as the unexpired lifetime. The
answer to the question is well known, both for convergence in probability and a.s. convergence;

O+
r

r

a.s.−−−→ 0 as r →∞;⇐⇒ EY <∞.

O+
r

r

P−−→ 0 as r →∞⇐⇒ S is relatively stable ⇐⇒ A is s.v. at ∞.

(Here relative stability means the existence of a norming sequence b such that Sn/bn
Ṗ−−→ 1.)

In the general case, let Z± denote the first increasing ladder height in S and −S respectively.
Then O+

r coincides with the overshoot in the renewal process H = (Hn;n ≥ 0) of ladder heights
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and the following are equivalent

O+
r

r

a.s.−−−→ 0 as r →∞;

EZ+ <∞;

0 < µ = EY <∞ OR µ = 0 and
∫ ∞

1

x(1 − F (x)dx∫ x
0
dy
∫∞
y
F (−z)dz

<∞.

The final result here is due to Chow[1], who completed an earlier result in [3]. Note that an
analytic criterion in terms of F for H to be relatively stable is not yet known, so we don’t have a
completely satisfactory analogue for convergence in probability.

2.2 Two-sided Overshoots

With Nr = min{n : |Sn| > r},
Or = |SN(r)| − r

is the size of the overshoot when S first exits [−r, r]. Then clearly Nr = N+
r ∧N−r , so Or has to

coincide with one of O+
r , O

−
r , and these coincide with the overshoots in the corresponding ladder

processes.
Suppose S drifts to +∞; then a.s. for sufficiently large r, Nr = N+

r , and since µ = 0 is not
possible, to get Or

r

a.s.−−−→ 0 we must have 0 < µ <∞ in order that EZ+ <∞.
Suppose S oscillates; then Nr coincides with each of N+

r and N−r for arbitrarily large r, so to
get Or

r

a.s.−−−→ 0 we “must” have both of EZ+ and EZ− finite; but this can only happen if µ = 0
and EY 2 <∞.

This is NOT a proof, but nevertheless the following are equivalent

(i)
Or
r

a.s.−−−→ 0 as r →∞;

(ii)
∫ ∞

1

x2|dT (x)|
x|A(x)| + U(x)

<∞

(iii) (a) EY 2 finite and µ = 0 or (b) E|Y | <∞, µ 6= 0.

The proof of this works as follows; the basic fact, which goes back to Pruitt[17], is that

ETr ≈
1

k(r)
where k(r) =

r|A(r)| + U(r)
r2

.

By considering the position from which S exits [−r, r] we easily get

ETrP (|Y | > (2 + δ)r) ≤ P (Or > δr) ≤ ETrP (|Y | > δr).

A Borel-Cantelli argument shows the equivalence of (i) and (ii), and an analytic argument in [10]
shows that (ii) is equivalent to (iii).

A key point in this last argument is that

P (|Y | > x)
k(x)

=
x2T (x)

x|A(x)| + U(x)
→ 0

(which is immediate from (ii)) can happen in 2 distinct ways only. The first, in which U dominates,
is that

U(x)
x2T (x) + x|A(x)| → ∞ as x→∞, (2.1)

which is a known NASC for ∃ b(n) →∞ with

Sn/b(n) D−−→ N(0, 1).
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Say S ∈ D0(N) in this case.
(Note; (2.1) holds if µ = EY = 0 and σ2 = EY 2 is finite since then x2T (x) → 0 and U(x) → σ2.

It is actually equivalent to µ = 0 and U slowly varying at ∞.)
The second, in which A is the dominant term, is that

A(x)
xT (x)

→ ±∞ as x→∞, (2.2)

in which case S is relatively stable, which we denote by S ∈ RS. (Note; (2.2) holds if µ is finite
and 6= 0, since then A(x) → µ and xT (x) → 0. But it can also hold with one or both of EY + and
EY − infinite, or with µ = 0. If Y ≥ 0, it is equivalent to A being slowly varying at ∞.)

This solves the “in probability problem”, since similar arguments show that the following are
equivalent

Or
r

P−−→ 0 as r→∞;

x|A(x)| + U(x)
x2T (x)

→∞ as x→∞,

(2.1) or (2.2) holds, i.e. S ∈ RS ∪D0(N).

3 Lévy processes

The Lévy process X = {Xt, t ≥ 0} will be specified via its Lévy exponent Ψ(θ);

E{eiθXt} = exp{−tΨ(θ)}, t ≥ 0, θ ∈ R,

and this in turn is specified via the characteristics of X, which are the quantities a, σ, and Π in
the famous Lévy-Khintchine formula;

Ψ(θ) = −iaθ +
1
2
σ2θ2 +

∫
|x|≥1

(
1− eiθx

)
Π(dx) +

∫
|x|<1

(
1− eiθx − iθx

)
Π(dx). (3.1)

Associated with any Lévy process X are two subordinators, H+ and H−, which correspond to
the ladder height processes for S and −S in the random walk context. In the following, we denote
the drifts of these processes by δ+, δ−, respectively.

3.1 Behaviour of X at ∞
Since {X(nc), n ≥ 0} is a random walk for any fixed c > 0 it is easy to guess there will be results
similar to those of section 2. However, it doesn’t seem possible to deduce the Lévy process results
from the random walk ones. Rather, we have to give a separate proof, but following the same lines.
In fact, if we now set

N(x) = Π{(x,∞)}, M(x) = Π{(−∞,−x)},
T (x) = N(x) +M(x),
D(x) = N(x)−M(x),

A(x) = a+D(1) +
∫ x

1

D(y)dy,

and U(x) = σ2 +
∫ x

0

2yT (y)dy,

then, in essence, exactly the same results hold. (n.b. If limx→∞A(x) exists, it equals EX1.) In
particular, the conditions for X ∈ D0(N) and X ∈ RS at ∞ are precisely (2.1) and (2.2).
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3.2 Behaviour at 0

Now, apparently the random walk results will have no relevance,..but in fact the class D0(N) at

zero is specified by
∃ b(t) ↓ 0 with Xt/b(t)

D−−→ N(0, 1) as t→ 0 iff

U(x)
x|A(x)| + x2T (x)

→∞ as x ↓ 0, (3.2)

and then b is rv with index 1/2 and U is s.v. at 0, and the class RS at zero by

∃ b(t) ↓ 0 with Xt/b(t)
p−−→ ±1 as t→ 0 iff

σ = 0, and
A(x)
xT (x)

→ ±∞ as x→ 0, (3.3)

and then b is rv at 0 with index 1.

Remark Suppose σ = 0, limx↓0A(x) = δ 6= 0, and.limx↓0 xT (x) = 0. Then (3.3) holds and
t−1Xt

p−−→ δ = a+D(1)−
∫ 1

0 D(y)dy. So limx↓0A(x), when it exists, plays the rôle of a “mean” at
zero. But, just as in the rw case, (3.3) can also hold with this being zero, or ±∞.

3.2.1 One-sided Overshoots

Again we see that these are the same for the subordinator H+ as they are for X. But what plays
the rôle of EZ+ <∞?

The answer is δ+ > 0, where δ+ is the drift of H+. In fact if O+
r = X(T+

r ) − r, where
T+
r = inf(t : Xt > r), then the following are equivalent

O+
r

r

a.s.−−−→ 0 as r → 0;

P (O+
r = 0) −→ 1 as r → 0;

P (O+
ro

= 0) > 0 for some r0 > 0;

δ+ > 0.

Processes with the third of these properties are said to “creep upwards”. A very recent result
of V. Vigon [18] solves the problem, which had been around for some time, of finding an analytic
condition in terms of the characteristics of X equivalent to these. His result is that δ+ > 0 occurs
if and only if ∫ 1

0

xN(x)dx∫ x
0 dy

∫ 1

y M(z)dz
<∞.

Note how close this is to Chow’s condition for EZ+ <∞.

3.2.2 Two-sided Overshoots

Our results again are surprisingly similar at 0 and ∞. Specifically, with Or = X(Tr) − r, where
Tr = inf(t : |Xt| > r),

(i) the following are equivalent

Or
r

a.s.−−−→ 0 as r → 0;∫ 1

0

x2|dT (x)|
x|A(x)| + U(x)

<∞;

(a) σ2 > 0 or

(b) σ2 = 0,
∫ 1

0

T (x)dx <∞, lim
x↓0

A(x) 6= 0.
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{In case (a) the drifts δ+ and δ− are both positive, and the probability that X exits the
interval at the top → 1/2. In case (b) X is bv with drift δ = limx↓0A(x), so the probability
that X exits the interval at the top → 1 or 0.}

(ii) the following are equivalent

Or
r

P−−→ 0 as r → 0;

x|A(x)| + U(x)
x2T (x)

→ ∞ as x→ 0,

(3.2) or (3.3) holds, i.e. S ∈ RS ∪D0(N) at zero.

Again, it doesn’t seem possible to see the equivalence of the first and third condition without
establishing the analytic condition. Fortunately Pruitt’s bound turns out to be just as useful for
small r as for large r, and the Borel-Cantelli type arguments can also be adapted...

Postscript Not all such problems make sense and have such similar solutions at zero.
Another way of measuring “smallness” of the overshoot with respect to the boundary is to ask

for E{Or}p to be bounded as r → ∞. (This and analogous questions are discussed in depth for
random walks in [9], [10], and [11].) However at zero this condition is automatically satisfied.

Another question is when does

P{SNr > 0} → 1 as r→∞?

This was solved in [10], and results in [12] show that it is equivalent to both of

P (Sn > 0) → 1 as n→∞,

and
Sn

p−−→∞ as n→∞.

But no Lévy process can have
Xt

p−−→∞ as t→ 0,

and for this reason we don’t yet know a NASC for either

P{XTr > 0} → 1 as r → 0

or
P{Xt > 0} → 1 as t→ 0.
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2nd MaPhySto Lévy Conference, January 2002

[7] Griffin, P. S. and Maller, R. A. : On compactness properties of the exit position of a random
walk from an interval. Proc. London Math. Soc., 78, 459-480, (1999).

[8] Griffin, P. S. and Maller, R. A. : Dominance of the sum over the maximum and some new
classes of stochastic compactness. Perplexing problems in Probability; Festschrift in honor of
Harry Kesten (Maury Bramson and Rick Durrett, eds), Birkhauser, Boston, 219-245, (1999).

[9] Griffin, P. S. and McConnell, T. R. : On the position of a random walk at the time of first
exit from a sphere. Ann. Probab., 20, 825-854, (1992).

[10] Griffin, P. S. and McConnell, T. R. : Gambler’s ruin and the first exit position of a random
walk from large spheres. Ann. Probab., 22, 1429-1472, (1994).

[11] Griffin, P. S. and McConnell, T. R. : Lp-boundedness of the overshoot in multidimensional
renewal theory. Ann. Probab., 23, 2022-2056, (1995).

[12] Kesten, H. and Maller, R. A. : Infinite limits and infinite limit points of random walks and
trimmed sums. Ann. Probab. 22, 1473–1513, (1994).

[13] Kesten, H. and Maller, R. A. : Divergence of a random walk through deterministic and random
subsequences. J. Theoret. Probab., 10, 395-427, (1997).

[14] Kesten, H. and Maller, R. A. : Random walks crossing high level curved boundaries. J.
Theoret. Probab., 11, 1019-1074, (1998).

[15] Kesten, H. and Maller, R. A. : Random walks crossing power law boundaries. Studia Scienti-
aum Math. Hungarica, 34, 219-252, (1998).

[16] Kesten, H. and Maller, R. A. : Stability and other limit laws for exit times of random walks
from a strip or a halfplane. Ann. Inst. Henri Poincaré, 35, 685-734, (1999).
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The stable continuum random tree
Thomas Duquesne∗, Jean-François Le Gall†

Abstract

We study the stable continuum random tree, which is a generalization of the Brownian
continuum random tree introduced by Aldous. In particular, we give explicit formulas for the
finite-dimensional marginals of this tree.

1 Introduction

The Brownian continuum random tree (or CRT) was introduced and studied by Aldous [1], [2].
It has been shown to appear in certain limit theorems for models of statistical mechanics, see in
particular Derbez and Slade [3] and Hara and Slade [6]. The most concrete way to describe the
Brownian continuum random tree is via its coding by a Brownian excursion. To understanding
this coding, let us first consider the discrete Galton-Watson tree associated with an offspring
distribution µ on the nonnegative integers. We assume that µ has mean one (critical case) and
finite nonzero variance σ2. The µ-Galton-Watson tree T is then the genealogical tree corresponding
to the Galton-Watson process with offspring distribution µ, started with one ancestor. This tree,
which is finite a.s. by the criticality of µ, can be viewed as a random subset of the set of labels

∞⋃
n=0

Nn (by convention N0 = {∅})

as shown in Fig. 1. One convenient way to code the tree is to draw the associated contour
process (Ct, t ≥ 0), whose definition should be evident from Fig.1 below. By convention, Ct = 0 if
t ≥ 2(N − 1), where N = |T | denotes the total progeny of the tree.
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Figure 1

Suppose that µ is aperiodic, so that the event {N = n} has positive probability for all n
sufficiently large. Let Cn = (Cn(t), t ≥ 0) be a process which has the distribution of (Ct, t ≥ 0)
conditioned on the event {N = n}. Aldous [2] proved that( 1√

n
Cn2nt, 0 ≤ t ≤ 1

)
(d)−→
n→∞

( 2
σ
et, 0 ≤ t ≤ 1

)
,

where (et, 0 ≤ t ≤ 1) is a normalized Brownian excursion and the convergence holds in the sense
of weak convergence of the laws on C([0, 1],R+). Furthermore the Brownian continuum random
tree can be thought of as the tree coded by (et, 0 ≤ t ≤ 1), in much the same way as the contour
process codes a discrete Galton-Watson tree:

∗CMLA, ENS de Cachan, 61 av. du Président Wilson, 94235 CACHAN Cedex
†DMA, ENS, 45, rue d’Ulm, 75230 PARIS Cedex 05, legall@dma.ens.fr
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• To every s ∈ [0, 1] corresponds a vertex of the tree at generation es.

• Vertex s is an ancestor of vertex s′ if es = inf [s∧s′,s∨s′] er. In general, inf [s∧s′,s∨s′] er is the
generation of the last common ancestor to s and s′.

• The distance on the tree is d(s, s′) = es + es′ − 2 inf[s∧s′,s∨s′] er, and we identify vertices s and
s′ if d(s, s′) = 0.

If instead of assuming that µ has finite variance we consider the case where µ is in the domain
of attraction of a stable law, then an analogue of Aldous’ result, presented in Section 3 below,
leads to a stable CRT. The role of the normalized Brownian excursion is played by an auxiliary
process constructed in Section 2 as a functional of a stable Lévy process. Explicit calculations of
finite-dimensional distributions of the stable tree are given in Section 4.

2 The stable height process

Let α ∈ (1, 2), and let X = (Xt, t ≥ 0) be a stable Lévy process without negative jumps and with
index α: In particular, the Laplace transform of Xt is well defined and given by

E[exp(−λXt)] = exp(c t λα)

for some positive constant c. For definiteness, we assume that c = 1 in what follows.
For every 0 ≤ s ≤ t, we set

It = inf
r∈[0,t]

Xr , Is,t = inf
r∈[s,t]

Xr .

Proposition 2.1. ([7],[5]) For every t ≥ 0, the limit

Ht = lim
ε→0

1
ε

∫ t

0

1{Xs<Is,t+ε} ds

exists a.s. The process (Hs, s ≥ 0) has a continuous modification, which is Hölder continuous with
exponent β for every β < 1− 1/α.

The process (Hs, s ≥ 0) is called the stable height process. For our purposes, it will be important
to define an analogous functional for the normalized excursion of the stable process X above its
minimum I. This can be achieved via the following simple construction. Let

g1 = sup{t ∈ [0, 1) : Xt = It} , d1 = inf{t ∈ (1,∞) : Xt = It}

be respectively the beginning and the end of the excursion of X − I away from 0 that straddles 1.
If ζ1 = d1 − g1, the process (

ζ
−1/α
1 (Xg1+ζ1t −Xg1), 0 ≤ t ≤ 1

)
is distributed as a normalized excursion of X − I. The normalized excursion of the stable height
process can then be defined by

H0
t = ζ

1
α−1
1 Hg1+ζ1t , 0 ≤ t ≤ 1.

3 A limit theorem

As in Section 1, let µ be an aperiodic critical offspring distribution. We assume now that µ is
in the domain of attraction of a stable law with index α. More precisely, if ν is the zero-mean
probability measure on {−1, 0, 1, 2, . . .} defined by ν(k) = µ(k+1), and if Wn is a random variable
distributed as the sum of n independent variables with distribution ν, we assume that there exists
a sequence (an) of positive numbers converging to +∞ such that

1
an

Wn
(d)−→
n→∞

X1
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where X is as previously.
Following Section 1, we can for every integer n large enough consider the µ-Galton-Watson tree

conditioned to have exactly n vertices. We denote this tree by Tn and we let Cn = (Cnt , t ≥ 0) be
its contour process. The next result is due to Duquesne [4].

Theorem 3.1. Under the preceding assumptions on µ,(an
n
Cn2nt, 0 ≤ t ≤ 1

)
(d)−−−−−→
n→∞

(H0
t , 0 ≤ t ≤ 1),

where the limit process is the normalized excursion of the stable height process with index α.

In view of this result, it is natural to call the tree coded by (H0
t , 0 ≤ t ≤ 1) the stable continuum

random tree with index α.

4 Marginal distributions

Consider the discrete tree Tn of the previous section. Suppose we choose uniformly at random p
vertices on this tree. We can then consider the reduced genealogical structure consisting only of
the ancestors of the p chosen vertices. In the limit n→∞ and after a suitable scaling, the law of
this reduced tree will converge to the p-th marginal distribution of the stable tree.

More formally, for every choice of t1, . . . , tp ∈ [0, 1], we define a marked tree θ(H0; t1, . . . , tp)
that describes the genealogy of t1, . . . , tp in the tree structure coded by H0 (see [5] Section 3.2 for
a precise construction). The tree θ(H0; t1, . . . , tp) consists of a discrete skeleton T (H0; t1, . . . , tp),
which is a discrete rooted ordered tree (as in Fig.1) with p leaves, and a collection (hv, v ∈ T ) of
marks, hv representing the length of the branch v. The law of θ(H0; t1, . . . , tp) when t1, . . . , tp are
uniformly distributed over [0, 1] is the p-th marginal of the tree. In the case of the Brownian CRT,
these marginals were computed by Aldous [2]. The next result extends these calculations to the
stable case.

If T is a (rooted ordered) tree, we let NT be the set of nodes of T (vertices that are not leaves).
For every v ∈ NT , kv = kv(T ) is the number of children of v in T . We let Tp be the set of all
(rooted ordered) trees with p leaves such that kv ≥ 2 for every v ∈ NT . By construction, the tree
T (H0; t1, . . . , tp) belongs to Tp.

Theorem 4.1. [5] The p-th marginal distribution of the stable continuum random tree can be
described as follows.
(i) The probability of a given skeleton T ∈ Tp is

p!∏
v∈NT

kv!

∏
v∈NT

∣∣(α− 1)(α− 2) . . . (α− kv + 1)
∣∣

(α − 1)(2α− 1) . . . ((p− 1)α− 1)
.

(ii) If p ≥ 2, then conditionally on the skeleton T , the marks (hv)v∈T have a density with respect
to Lebesgue measure on RT+ given by

Γ(p− 1
α )

Γ(δT )
α|T |

∫ 1

0

du uδT−1 q(α
∑
v∈T

hv, 1− u)

where δT = p − (1 − 1
α )|T | − 1

α > 0, and q(s, u) is the continuous density at time s of the stable
subordinator with exponent 1− 1

α . If p = 1, then T = {∅} and the law of h∅ has density

αΓ(1− 1
α ) q(αh, 1).
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Modelling of Lévy term structures
Ernst Eberlein and Fehmi Özkan

A default-free zero-coupon bond is a financial security paying its owner one currency unit at
a prespecified date T in the future. A defaultable bond, usually a corporate bond, is a financial
security promising its owner to pay one currency unit at a prespecified maturity date T in the
future. In contrast to the case of default-free bonds the issuer of a credit risky bond will default
with a certain probability before or at time T . In case of default the holder of such a bond will
receive only a fractional amount of the promised currency unit or nothing at all.

Credit risk models which have been studied in the literature so far are models driven by a
Brownian motion, or are standard jump diffusions. See Zhou (1997), Schönbucher (1998), or
Duffie and Singleton (1999) for examples, and the surveys on credit risk models in Lando (1997),
Ammann (1999), and Schönbucher (2000).

A new approach to credit risk based on the methodology of Heath, Jarrow, and Morton (1992)
was introduced in Bielecki and Rutkowski (1999, 2000). The Bielecki-Rutkowski model takes the
information on rating migration and on credit spreads into account and yields an arbitrage-free
model of defaultable bonds. We follow this approach to construct an intensity-based credit risk
framework for term structure models driven by Lévy processes.

We start with the default free instantaneous forward rate f(t, T ) given by

df(t, T ) = ∂2A(t, T )dt− ∂2Σ(t, T )>dLt (1)

where A(t, T ) and Σ(t, T ) are processes satisfying certain smoothness conditions and (Lt) is a
d-dimensional Lévy process which in the canonical decomposition can be written as

Lt = bt+ cWt +
∫ t

0

∫
Rd

x (µL − νL)(ds, dx).

The corresponding price of a default-free bond is then given by

B(t, T ) = B(0, T ) exp
(∫ t

0

(r(s) −A(s, T )) ds+
∫ t

0

Σ(s, T )>c dWs

+
∫ t

0

∫
Rd

Σ(s, T )>x(µL − νL)(ds, dx)
)
.

(2)

Now assume that an internal rating system K = {1, . . . ,K} is given. Class 1 corresponds to the
best possible rating following default-freeness – which is denoted AAA in the Standard & Poor’s
rating – class K corresponds to default. The instantaneous forward rate for class i ∈ {1, . . . ,K−1}
is assumed to satisfy the equation

dgi(t, T ) = ∂2Ai(t, T ) dt− ∂2Σi(t, T )> dL(i)
t , (3)

where (L(i)
t ) is given by L(i)

t = bit + ciWt +
∫ t
0

∫
Rd pix(µL − νL) (ds, dx). In order to ensure that

risky corporate bonds have higher forward rates than less risky bonds, we assume

gK−1(t, T ) > gK−2(t, T ) > · · · > g1(t, T ) > f(t, T ). (4)

The dynamics of the conditional bond price based on the forward rate gi can then be derived in
the form

dDi(t, T ) = Di(t−, T )
((
ai(t, T ) + gi(t, t)

)
dt

+
∫

Rd

Σi(t, T )>pix
(
µL − νL

)
(dt, dx) + Σi(t, T )>ci dWt

+
∫

Rd

(
eΣi(t,T )>pix − 1−Σi(t, T )>pix

)
µL(dt, dx)

)
,

(5)
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where ai(t, T ) = 1
2

∣∣Σi(t, T )>ci
∣∣2 − Ai(t, T ). The credit migration process is modelled by a condi-

tional Markov process C on the space of rating classes K. We define Hi(t) = 1l{s≥0|Cs=i}(t) and
write for i 6= j, Hij(t) for the number of transitions from rating i to rating j in the time interval
[0, t]. Then the time t price DC(t, T ) of a defaultable bond maturing at time T , which is currently
rated at Ct, equals

DC(t, T ) = B(t, T )
K−1∑
i=1

(
Hi(t) exp

(
−
∫ T

t

γi(t, u)du

)
+ δiHi,K(t)

)
(6)

where γi(t, u) = gi(t, u)− f(t, u) is the i-th forward credit spread and δi ∈ [0, 1) the corresponding
recovery rate which is assumed to be constant. This defaultable bond price can also be expressed
in terms of a risk-neutral valuation formula, i.e. as an expectation with respect to a martingale
measure. Further extensions of the model to include reorganization of firms and multiple defaults
are considered.
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Abstract

We provide a survey on some distributional results concerning means of a random proba-
bility measure constructed via suitable transformations of an increasing additive process (ab-
breviated as IAP), i.e. an increasing, not necessarily homogeneous, and purely discontinuous
Lévy process. In particular, we deal with normalized random measures, having independent
increments, and with neutral to the right (NTR) random probability measures. The former
are obtained by normalizing IAPs and the exact distribution of a mean is found by resorting
to a well-known inversion formula for characteristic functions. Moreover, expressions of the
posterior distributions of those means, in the presence of exchangeable observations, are given.
Also the latter may be characterized in terms of IAPs and we show the connection between a
mean of a NTR prior and the so called exponential functional. We study finiteness and abso-
lute continuity of these functionals and provide some formulae for computing their moments,
provided they exist. All the results contained in the first section can be found in Regazzini,
Lijoi and Prünster (2000), whereas those of Section 2 are based on Epifani, Lijoi and Prünster
(2002).

1 Means of normalized RMI

1.1 Definition of normalized RMI

A first type of random probability measures we consider are those constructed by normalization
of a IAP ξ = {ξt : t ≥ 0}. For an exhaustive account about the theory of IAPs we refer to, e.g.,
Sato (1999) and Skorohod (1991). Suppose α is a non-null finite measure on R with distribution
function (abbreviated as d.f.) A and assume that ξα(R) is strictly positive and finite a.s.. In terms
of the Lévy measure νt, this condition can be restated as

να(R)((0,+∞)) = +∞.

Under this condition, x 7→ ξA(x) is an a.s. bounded d.f. on R, and

x 7→ F̃ (x) = ξA(x)/ξα(R)

is a random probability d.f. on R a.s.. By random measure with independent increments (RMI) we
mean the random measure ξ̃ on (R,B(R)) associated with ξA. Consistently, the random probability
measure ϕ̃ associated with F̃ is said to be a normalized RMI.

Before proceeding, it is worth mentioning that the results of the following paragraphs carry over,
with slight modifications, to normalized IAP driven random measures, i.e. normalized convoluted
IAPs, which include the well-known, and widely used, mixture of Dirichlet process prior introduced
by Lo (1984). See Nieto-Barajas, Prünster and Walker (2001) for details.

1.2 Distributional results for means of normalized RMI

We aim at studying the distribution of ϕ̃(f) :=
∫

R
fdϕ̃. To this end, one first needs to state

conditions for the existence of such a mean. Let us denote by ν̃α the intensity measure of the
reparameterized process ξA( · ) and observe that

P{ϕ̃(|f |) < +∞} = P{ξ̃(|f |) < +∞} = 1. (1)

It is possible to show that (1) is satisfied if and only if one of the following is fulfilled
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(i)
∫

R×(0,+∞)[1− exp(−λy|f(x)|)] ν̃α(dxdy) < +∞ holds for every λ > 0;

(ii)
∫

R×(0,+∞)
[1− cos(yt|f(x)|)]ν̃α(dxdy) < +∞ and∫

R×(0,+∞)
| sin(yt|f(x)|)| ν̃α(dxdy) < +∞ hold for every t ∈ R.

Observe that the criterion for finiteness of ϕ̃(f) depends only on the intensity measure ν̃α.
In order to obtain the distribution of a mean of normalized RMI we need three elements.

(I) A trivial trick

P
{ ∫

R

f(x)ϕ̃(dx) ≤ σ
}

= P
{∫

R

f(x)ξ̃(dx) ≤ σξ̃(R)
}

= P
{∫

R

(f(x) − σ)ξ̃(dx) ≤ 0
}

(II) The characteristic function of ξ̃(f)

γf (t) = exp
[ ∫

R×(0,+∞)

(eitvf(x) − 1) ν̃α(dxdv)
]

(III) An inversion formula provided by Gurland (1948)

1
2
[
P{ϕ̃(f) ≤ σ}+ P{ϕ̃(f) < σ}

]
=

1
2
− 1
π

lim
ε↓0,T↑+∞

∫ T

ε

1
t

ImE
[
exp(itξ̃(f − σ))

]
dt

Hence, an expression of the probability d.f., F, of a mean of a normalized RMI is given by

1
2
[
F(σ) + F(σ − 0)

]
=

1
2
− 1
π

lim
T↑+∞

∫ T

0

1
t

exp
{∫

R×(0,+∞)

[cos(tv(f(x) − σ))− 1]ν̃α(dxdv)
}

× sin
(∫

R×(0,+∞)

sin(tv(f(x)− σ))ν̃α(dxdv)
)

dt (σ ∈ R).

1.3 Posterior means of normalized RMI

Here a technique for evaluating posterior distributions of means is briefly described. A remarkable
feature is represented by the fact that the approach being undertaken does not depend on the
particular structure of the underlying random probability measure: it only requires the knowledge
of the prior distribution of the mean.

We restrict our attention to exchangeable observations, i.e. given a sequence (Xn)n≥1 of real-
valued observations, we have

P (X1 ∈ A1, . . . , Xn ∈ An|ϕ̃) = ϕ̃(A1) · · · ϕ̃(An) a.s.,

for every family of measurable sets A1, . . . , An and n ≥ 1.
First, suppose that α has finite support, e.g. supp(α) = {s1, . . . , sN} and (a, b) is an interval

containing all the f(sj)s. In such a case, let F(σ; t1, . . . , tN ) denote the distribution function of
ϕ̃(f) and x(n) = (x1, . . . , xn) be a sample including nir > 0 terms equal to sir , for r = 1, . . . , k,
with

∑
r nir = n. Moreover, define C(x(n))−1 :=

∫ ∏k
r=1 ϕ(sir )nirQ(dϕ), where Q is the prior

distribution of ϕ̃, and set

Ina+h(σ) :=
∫ σ

a

(σ − u)n−1

(n− 1)!
h(u)du

to be the Liouville-Weyl fractional integral, for n ≥ 1, whereas I0
a+ represents the identity operator.

Under suitable technical conditions, it is possible to prove that a posterior probability density
function (with respect to the Lebesgue measure on R) of ϕ̃(f), given X(n) = x(n), coincides with

(−1)nC(x(n))
∂n

∂t
ni1
i1

· · · ∂tnik

ik

In−1
a+ F(σ; t1, . . . , tN)

∣∣∣∣
(t1,...,tN )=(f(s1),...,f(sN ))

(σ ∈ R).

For arbitrary parameters α, one can benefit from a discretization procedure introduced by Regazzini
and Sazonov (2000) in order to obtain the posterior d.f. of a mean as an almost sure weak limit of
a sequence of posterior d.f.’s.

104



Ilenia Epifani and Antonio Lijoi

1.4 A generalization of the Dirichlet process

The Dirichlet process, introduced in Ferguson (1973), represents a cornerstone of Bayesian Non-
parametrics. It is well-known that such a process can be viewed as a normalized RMI, since it also
coincides with the normalization of a reparameterized Gamma process. A generalization of the
Dirichlet process based on the following family of Lévy measures

N =
{
νt(dv) = t

(1− e−γv)
(1 − e−v)

e−v

v
dv γ > 0, t ≥ 0

}
is studied in Regazzini et al. (2000). Notice that the corresponding IAP is a gamma process when
γ = 1. If ξα(B) = ξ̃(B), for any B ∈ B(R), α being any non-null and finite measure on R, and γ
is a positive integer, a necessary and sufficient condition for ϕ̃(|f |) to be finite is∫

R

log(γ + λ|f(x)|)γ α(dx) < +∞ (2)

with (a)n := a(a− 1) · · · (a − n+ 1). In the Dirichlet case (i.e. γ = 1), it reduces to a condition
obtained by Feigin and Tweedie (1989) and by Cifarelli and Regazzini (1990).

If (2) holds true, the probability d.f. of
∫

R
fdϕ̃ turns out to be

F(σ) =
1
2
− (γ!)α(R)

π

∫ +∞

0

1
t
Im

(
exp

{
−

γ∑
k=1

∫
R

log[k + it(σ − x)]α(dx)

})
dt,

which, in the case γ = 1, coincides with the representation of the probability d.f. of a mean of
the Dirichlet process provided in Cifarelli and Regazzini (1990) and in Regazzini, Guglielmi and
Di Nunno (2001).

It is also possible to derive a representation for the posterior probability density function given
X(n) = x(n). In the Dirichlet case we obtain a useful alternative representation of the posterior
probability density function of the mean.

2 Means of NTR random probability measures

2.1 The exponential functional as mean of a random probability measure

A well-known class of prior distributions in Bayesian nonparametric statistics, introduced by Dok-
sum (1974), takes on the name of neutral to the right (NTR) random probability d.f.. A random
probability d.f., F , is NTR if and only if it can be written in terms of a transient IAP as

F (t) = 1− e−ξt (t ≥ 0).

Notice that the mean of a random probability d.f. F over (0,+∞) can be written as
∫ +∞
0

(1 −
F (t)) dt. If F is NTR, the previous expression turns out to be the exponential functional of a IAP,
i.e. ∫ +∞

0

e−ξt dt =: I(ξ).

Hence, a trivial argument leads to establishing the connection between means of NTR priors and
the exponential functional, I(ξ), of IAPs. In recent years much attention has been paid to the
study of the distributional properties of I(ξ) when ξ is a Lévy process. See, e.g., the deep and
insightful works by Bertoin and Yor (2001), Carmona, Petit and Yor (1997,2001) and Urbanik
(1992,1995).

Previous remarks suggest that one can study distributional properties of means of NTR priors
by importing the theory of the exponential functional into Bayesian Nonparametrics. This leads us
to state some results about means of NTR priors, which, to the authors’ knowledge, have not been
investigated in Bayesian nonparametric literature. Moreover, we would like to stress the additional
insight provided by the interpretation of I(ξ) as a mean of a random probability measure which
should, in our opinion, lead to fruitful interactions. Here we can confine ourselves to studying prior
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distributions, since the posterior distribution of a NTR random probability measure is still NTR
and can be explicitly obtained by updating the Lévy measure in a quite straightforward way and
by adding fixed points of discontinuity for the exact observations. See, e.g., Ferguson and Phadia
(1979) and Walker and Muliere (1997).

2.2 Some results

In the present section, our treatment is mainly based on the results contained in Carmona et al.
(1997).

Following the approach suggested by the above-mentioned authors, it is possible to establish a
criterion for the existence of I(ξ), which applies to some examples of IAPs.
Let ξ be a IAP whose Lévy measure admits representation νt(dx) = γ(t)ν(dx), where γ is a non-
negative, continuous and increasing function such that γ(0) = 0 and limt→+∞ γ(t) = +∞. We will
refer to such a process as parameterized IAP. In this case it is possible to prove that:
If there exist a and c in [0,+∞) such that a <

∫ +∞
0

ν(x,+∞)dx < +∞ and limt→+∞ e−atγ−1(t) =
c, then I(ξ) < +∞ a.s..
Moreover, by imposing further conditions on ν, it is possible to prove existence of moments of any
order. Our interest in parameterized IAPs is mainly motivated by the fact that most NTR priors
known in literature belong to this class.

When studying further distributional properties of a mean of a NTR prior, we prove that if
γ is sufficiently smooth, then I(ξ) has absolutely continuous probability distribution with respect
to the Lebesgue measure on R. Moreover, a sufficient condition for the absolute continuity of the
probability distribution of I(ξ), when ξ is any IAP, is provided.

An immediate condition for the existence of the moment of order n of the exponential functional
can be given by resorting to its statistical interpretation, i.e.∫ +∞

0

tn dF0(t) < +∞

where, from a Bayesian standpoint, F0 is meant as the prior guess at the shape of the random d.f.
F , i.e. F0 = E(F ).

When the moment of order n exists, one can compute it by the following formula

n!
∫ +∞

0

· · ·
∫ +∞

tn−1

n∏
j=1

exp
{
−
∫ +∞

0

(1− e−x) ν(n−j)
tj (dx)

}
dtn . . . dt1,

where ν(n−j)
tj := e−(n−j)xνtj . Notice that the previous formula reduces to the one provided in

Carmona et al (1997) and Urbanik (1992), if ξ is a homogeneous IAP, and to the one provided by
Cifarelli and Regazzini (1979), if ξ is the IAP which gives raise to the Dirichlet process. Finally, if
I(ξ) has bounded support [a, b] and is absolutely continuous, we can implement some experiments
in order to recover the density function of I(ξ) by the knowledge of the first n moments. More
precisely, we can calculate the maximum entropy estimator, i.e. the function which maximizes the
value of the Boltzmann-Shannon entropy H(f) = −

∫
f(x) log(f(x))dx for all densities f having

the first n moments preassigned.

2.3 Examples

The considerations developed in the previous section can be applied successfully to all the NTR
priors known in literature. With reference to the NTR priors introduced in Ferguson and Phadia
(1979), they both belong to the class of parameterized IAPs and are based on the gamma process
and on the so called simple homogeneous process, respectively. We are able to state conditions for
existence of their means and moments. Moreover, these means turn out to be a.c. and the moment
formula becomes much simpler for particular choices of γ. The other NTR prior to which we apply
our results is given by the Beta Stacy process introduced by Walker and Muliere (1997). Also in
this case the mean is a.c. and the moment formula tractable.

106



Ilenia Epifani and Antonio Lijoi

References

Bertoin, J. and Yor, M. (2001). On subordinators, self-similar Markov processes and some
factorizations of the exponential variable. Prépublication du Laboratoire de Probabilités &
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Free Lévy Processes on Dual Groups
Uwe Franz

Abstract

We give a short introduction to the theory of Lévy processes on dual groups. As examples
we consider Lévy processes with additive increments and Lévy processes on the dual affine
group.

1 Introduction

Lévy processes play a fundamental rôle in probability theory and have many important applications
in other areas such as statistics, financial mathematics, functional analysis or mathematical physics,
as well.

In quantum probability they first appeared in a model for the laser in [Wal84]. This lead to the
theory of Lévy processes on involutive bialgebras, cf. [ASW88, Sch93, FS99]. The increments of
these Lévy processes are independent in the sense of tensor independence, which is a straightforward
generalisation of the notion of independence used in classical probability theory. However, in
quantum probability there exist also other notions of independence like, e.g., freeness [VDN92], see
Paragraph 2.2. In order to formulate a general theory of Lévy processes for these independences,
the ∗-bialgebras or quantum groups have to be replaced by the dual groups introduced in [Voi87],
see [Sch95b, BGS99, Fra01a, Fra01b].

In this paper we give an introduction to the theory of Lévy processes on dual groups, which
avoids most of the algebraic prerequisites. In particular, we will not define dual groups, but only
consider two examples, namely tensor and free Lévy processes with additive increments and tensor
and free Lévy processes on the dual affine group. Our approach is similar to rewriting the definition
of classical Lie group-valued Lévy processes in terms of a coordinate system, see Definitions 3.1,
3.2, 4.1, and 4.3.

Quantum Lévy processes play an important rôle in the theory of continuous measurement, cf.
[Hol01], and in the theory of dilations, where they describe the evolution of a big system or heat
bath, which is coupled to the small system whose evolution one wants to describe.

Additive free Lévy processes where first studied in [GSS92], and more recently in [Bia98, Ans01a,
Ans01b, BNT01a, BNT01b].

2 Preliminaries

In this section we introduce the basic notions and definitions that we will use. For more detailed
introductions to quantum probability see, e.g., [Par92, Bia93, Mey95, Hol01].

2.1 Quantum probability

Non-commutative probability or quantum probability is motivated by the statistical interpretation
of quantum mechanics where an operator is interpreted as an analog of a random variable. The rôle
of the classical probability space is played by a (pre-)Hilbert space H and the measure is replaced
by a unit vector Ω ∈ H called state vector.

In this paper we will mean by a (real) quantom random variable X on (H,Ω) a (symmetric)
linear operator on the pre-Hilbert space H, which has an adjoint, i.e. for which there exists a linear
operator X∗, such that

〈u,Xv〉 = 〈X∗u, v〉
for all u, v ∈ H. Its law (w.r.t. the state vector Ω) is the functional φX : C[x] → C on the algebra
C[x] of polynomials in one variable defined by

φX(xk) = 〈Ω, XkΩ〉,
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for k ∈ N. If X is symmetric, then there exists a (possibly non-unique) probability measure µ on
R such that

φX(xk) =
∫

R

xkdµ.

Let X be a classical R- or C-valued random variable with finite moments on some probability
space (M,M, P ). It becomes a quantum random variable on H = L∞(M,M, P ), if we let it act
on the bounded functions on M by multiplication, L∞(M) 3 f 7→ Xf ∈ L∞(M) with Xf(m) =
X(m)f(m) for m ∈ M . If we take the constant function Ω(m) = 1 for all m ∈ M for the state
vector, then we recover the classical distribution of X , i.e.,

〈Ω, XkΩ〉 =
∫
M

XkdP = E(Xk),

for k ∈ N. If X is R-valued, then it is also real as quantum random variable, i.e. symmetric.
A (real) quantum random vector on (H,Ω) is an n-tuple X = (X1, . . . , Xn) of (real) quantum

random variables on (H,Ω). Its law is the functional φX : C〈x1, . . . , xn〉 → C on the algebra of
non-commutative polynomials C〈x1, . . . , xn〉 in n variables defined by

φX(xk1i1 · · ·x
kr

ir
) = 〈Ω, Xk1

i1
· · ·Xkr

ir
Ω〉,

for all i1, . . . , ir ∈ {1, . . . , n}, k1, . . . , kr ∈ N.
A (real) operator process is an indexed family (Xı)ı∈I on (H,Ω) of (real) quantum random

variables or (real) quantum random vectors on (H,Ω). We will call two operator processes (Xı)ı∈I
and (Yı)ı∈I equivalent, if they have the same joint moments, i.e. if

〈Ω, Xk1
ı1 · · ·X

kr
ır Ω〉 = 〈Ω, Y k1ı1 · · ·Y kr

ır Ω〉

for all ı1, . . . , ır ∈ I and all k1, . . . , kr ∈ N.

2.2 Freeness and Independence

Let now A1, . . . ,Ak be algebras of adjointable linear operators on some pre-Hilbert space H, closed
under taking adjoints and containing the identity operator 1.

Definition 2.1. A1, . . . ,Ak are called tensor independent (w.r.t. to the state vector Ω), if

(i) for all 1 ≤ i, j ≤ k and all X ∈ Ai and Y ∈ Aj , we have

[X,Y ] := XY − Y X = 0,

(ii) and for all X1 ∈ A1, . . . , Xk ∈ Ak we have

〈Ω, X1 · · ·XkΩ〉 = 〈Ω, X1Ω〉 · · · 〈Ω, XkΩ〉.

This definition is the natural analogue of the notion of independence in classical probability to
our setting. It is also the one used in quantum physics when one speaks of independent observables.
But in quantum probability there exist other, inequivalent notions of independence.

Definition 2.2. A1, . . . ,Ak are called free, if for all 1 ≤ i1, . . . , ir ≤ k with i1 6= i2 6= · · · 6= ir (i.e.
neighboring indices are different) and all X1 ∈ Ai1 , . . . , Xr ∈ Air with

〈Ω, X1Ω〉 = · · · = 〈Ω, XrΩ〉 = 0,

we have
〈Ω, X1 · · ·XrΩ〉 = 0.

Quantum random variables or quantum random vectors X,Y, Z, . . . are called tensor indepen-
dent or free, iff the unital ∗-algebras they generate are tensor independent or free.
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Remark 2.3. These definitions allow to compute arbitrary joint moments of tensor independent or
free random variables from their marginal distributions.

For the free case this computation can be done recursively on the order of the moment be
expanding

0 = ϕ
((
X1 − ϕ(X1)1

)
· · ·
(
Xr − ϕ(Xr)1

))
,

where we wrote ϕ(·) instead of 〈Ω, ·Ω〉 for the expectation.
Let X1 and X2 be two free quantum random variables, then one obtains in this way

0 = ϕ
((
X1 − ϕ(X1)1

)(
X2 − ϕ(X2)1

))
= ϕ(X1X2)− ϕ(X1)ϕ(X2),

and therefore

ϕ(X1X2) = ϕ(X1)ϕ(X2).

as for tensor independent quantum random variables or independent classical random variables.
But for higher moments the formulas are different, one gets, e.g.,

ϕ(X1X2X1X2) = ϕ(X2
1 )ϕ(X2)2 + ϕ(X1)2ϕ(X2

2 )− ϕ(X1)2ϕ(X2)2.

This formula can also be used to show that there exist no non-trivial examples of commuting free
quantum random variables. If X1 and X2 commute, then we would get

ϕ(X1X2X1X2) = ϕ(X2
1X

2
2 ) = ϕ(X2

1 )ϕ(X2)2,

since X2
1 and X2

2 are also free. Therefore

ϕ
(
X1 − ϕ(X1)1

)
ϕ
(
X2 − ϕ(X2)1

)
= 0,

i.e. at least one of the two quantum random variables has a trivial distribution.

Remark 2.4. Besides tensor independence and freeness there exist other notions of independence
that are used in quantum probability. In a series of papers [Sch95a, Spe97, BGS99, Mur01, Mur02]
it was shown that there exist exactly five “universal” notions of independence satisfying a natural
set of axioms. Besides tensor independence and freeness these are boolean, monotone, and anti-
monotone independence. In [Fra01b] the boolean, monotone, and anti-monotone independence
where reduced to tensor independence. If this is also possible for freeness is still an open problem.

3 Additive Lévy Processes

Definition 3.1. An operator process (Xt)t≥0 on (H,Ω) is called an additive tensor Lévy process
(w.r.t. Ω), if the increments

Xst := Xt −Xs,

are

(i) tensor independent, i.e. the quantum random variables Xs1t1 , . . . , Xsrtr are tensor indepen-
dent for all 0 ≤ s1 ≤ t1 ≤ s2 ≤ · · · ≤ sr ≤ tt,

(ii) stationary, i.e. the law of an increment depends only on t− s, and

(iii) weakly continuous, i.e. limt↘s〈Ω, Xk
stΩ〉 = 0 for k = 1, 2, . . .

Replacing tensor independence by another universal notion of independence we can define the
corresponding other classes of Lévy processes. E.g., for freeness we get the following definition.
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Definition 3.2. An operator process (Xt)t≥0 on (H,Ω) is called an additive free Lévy process
(w.r.t. Ω), if the increments

Xst := Xt −Xs,

are

(i’) free, i.e. the quantum random variables Xs1t1 , . . . , Xsrtr are free for all 0 ≤ s1 ≤ t1 ≤ s2 ≤
· · · ≤ sr ≤ tt,

and satisfy conditions (ii) and (iii) of Definition 3.1.

For each of these notions of independence one can define a Fock space and creation, annihilation,
and conservation or gauge operators on this Fock space.

For example the (algebraic) free Fock space H = FF(h) over a (pre-)Hilbert space h is defined
as

FF(h) =
∞⊕
n=0

h⊗n

where h⊗0 = C. The vector Ω = 1 + 0 + · · · is called the vacuum vector. For a vector u ∈ h we
can define the creation operator a+(u) and the annihilation operator a−(u) by

a+(u)u1 ⊗ · · ·uk = u⊗ u1 ⊗ · · · ⊗ uk,

a−(u)u1 ⊗ · · ·uk = 〈u, u1〉u2 ⊗ · · · ⊗ uk.

These operators are mutually adjoint, on the vacuum vector they act as a+(u)Ω = u and a−(u)Ω =
0.

The conservation operator Λ(X) of some linear operator X on h is defined by

Λ(X)u1 ⊗ · · ·uk = (Xu1)⊗ u2 ⊗ · · · ⊗ uk

and Λ(X)Ω = 0. It satisfies Λ(X)∗ = Λ(X∗).
Glockner, Schürmann, and Speicher have shown that every additive free Lévy process can be

realized as a linear combination of these three operators and time.

Theorem 3.3. [GSS92] Let (Xt)t≥0 be an additive free Lévy process. Then there exists a pre-
Hilbert space k, a linear operator T on k, vectors u, v ∈ k, and a scalar λ ∈ C such that (Xt)t≥0

is equivalent to the operator process (X ′t)t≥0 on the free Fock space FF

(
L2(R+, k)

)
over h =

L2(R+, k) ∼= L2(R+)⊗ k defined by

X ′t = Λ(χ[0,t] ⊗ T ) + a+(χ[0,t] ⊗ u) + a−(χ[0,t] ⊗ v) + tλ1

for t ≥ 0. Furthermore, if we require that k is spanned by {T ku, T kv|k = 0, 1, . . .}, then k, T , u, v,
and λ are unique up to unitary equivalence.

(X ′t)t≥0 is symmetric, if and only if T ∗ = T , u = v and λ ∈ R in the unique minimal tuple.

Remark 3.4. Analogous results hold for the other universal independences. For tensor independence
see [Sch91b], for the boolean [BG01], and [Fra01b] for the monotone case. Note that in the boolean
and in the monotone case the time process has to be modified.

The five independences can also be used to define convolutions for compactly supported mea-
sures. Let µ1 and µ2 be two compactly supported probability measures on R and choose two
independent real quantum random variables X1 and X2 on some pre-Hilbert space H such that

〈Ω, Xk
i Ω〉 =

∫
R

xkdµi

for all k ∈ N and i = 1, 2 and some unit vector Ω ∈ H. The operator X1 +X2 is again symmetric
and bounded, therefore there exists a unique compactly supported probability measure µ such that∫

R

xkdµ = 〈Ω, (X1 +X2)kΩ〉 for all k ∈ N.
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It is always possible to construct such a pair and the law of X1 +X2 depends only on the laws
of X1 and X2 and the notion of independence that has been chosen.

If X1 and X2 are tensor independent, then the measure µ obtained in this way is the usual
additive convolution of µ1 and µ2. If X1 and X2 are free, then µ is the free additive convolution
of µ1 and µ2.

These convolutions can actually be defined for arbitrary probability measures.
It is possible to show that infinitely divisible measures can be embedded into continuous con-

volution semigroups in all five cases and that furthermore there exists a Lévy process for every
continuous convolution semigroup. This shows that in all five cases the infinitely divisible measures
on R (which are characterized by their moments) can be classified by tuples (k, T, u, λ) consisting
of a pre-Hilbert space k, a symmetric operator T on k, a vector u ∈ k, and a real number λ.

Corollary 3.5. There exist bijections (up to moment uniqueness) between the five classes of in-
finitely divisible measures with finite moments.

Remark 3.6. The bijection between the usual infinitely divisible measures and the freely infinitely
divisible measures is known under the name Pata-Bercovici bijection, cf. [BP99], it actually extends
to all infinitely divisible measures, not just those characterized by their moments, and has many
useful properties, cf. [BNT01a] and the references therein.

For example, the Bercovici-Pata bijection is a homomorphism between the usual infinitely
divisible measures and the freely infinitely divisible measures and their respective convolutions.
This is not the case for the bijection between usual infinitely divisible measures and the monotone
infinitely divisible measures, because due to the non-commutativity of the monotone convolution
this is impossible. For the Lévy-Khintchine formula for the boolean and monotone case, see [SW97,
Mur00].

Definition 3.7. Let (Xt)t≥0 be a real additive Lévy process for one of the five universal indepen-
dences.

If there exists a tuple (k, T, u, λ) for (Xt)t≥0 with T = 0, then (Xt)t≥0 is called Gaussian.
If there exists a tuple (k, T, u, λ) for (Xt)t≥0 and vector ω ∈ k such that u = Tω and λ = 〈ω, Tω〉,

then (Xt)t≥0 is called a compound Poisson process.

If (Xt)t≥0 is Gaussian, then the unique minimal tuple associated to it by Theorem 3.3 has the
form (C, 0, z, λ) and (Xt)t≥0 can be realized as a sum of creation, annihilation and time only, with
no conservation part.

Example 3.8. Let (Xt)t≥0 be a classical compound Poisson process with Lévy measure µ, i.e.
with characteric function

E
(
eiuXt

)
= exp

(
t

∫
R\{0}

(eiux − 1)dµ(x)
)
.

We assume that µ has finite moments, then (Xt)t≥0 is an additive tensor Lévy process in the sense
of Definition 3.1. We can define a tuple (k, T, u, λ) for (Xt)t≥0 by Theorem 3.3 as follows. For the
pre-Hilbert space k we take the space of polynomials

k = span {xk; k = 0, 1, 2, . . .},

considered as a subspace of the Hilbert space L2(R, µ), i.e., with the inner product

〈xk, x`〉 =
∫

R

xk+`dµ(x),

and divided by the the nullspace of this inner product, if µ is finitely supported. The operator T
is multiplication by x, i.e., Txk = xk+1, the vector u is the function f(x) = x, and the scalar λ is
the first moment of µ, i.e., λ =

∫
R
xdµ(x).

Taking for ω the constant function 1, we see that (Xt)t>0 is also a compound Poisson process
in sense of Definition 3.7.
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Theorem 3.3 can also be used to give an Itô-Lévy-type decomposition of additive quantum Lévy
processes.

Corollary 3.9. Let (Xt)t≥0 be a real additive Lévy process for one of the five universal indepen-
dences. Then (Xt)t≥0 can be realized as a sum of a Gaussian Lévy process (XG

t )t≥0 and a “jump”
part (XP

t )t≥0, which can be approximated by (compensated) compound Poisson processes.

Proof. We only briefly outline the proof.
Let (k, T, u, λ) be a tuple for (Xt)t≥0. Since T is symmetric, we can decompose the closure of

k into a direct sum of the closures of the kernel of T and the image of T . Let u = u0 + u1 with
u0 ∈ kerT and u1 ∈ imT .

If u1 is actually in the image of T , then there exists a vector ω ∈ k with Tω = u1 and (Xt)t≥0 is
equivalent to the sum of the Gaussian Lévy process (XG

t )t≥0 with the tuple (C, 0, u0, λ− 〈ω, Tω〉)
and the compound Poisson process (XP

t )t≥0 with the tuple (k, T, u1, 〈ω, Tω〉).
If u1 is not in the image of T , then we take a sequence ωn ∈ k such that lim Tωn = u1 and

define the “jump” part by

XP
t = Λ(χ[0,t] ⊗ T ) + a+(χ[0,t] ⊗ u1) + a−(χ[0,t] ⊗ u1)

= lim
n→∞

(
χ[0,t] ⊗ Λ(T ) + a+

(
χ[0,t] ⊗ (Tωn)

)
+ a−

(
χ[0,t] ⊗ (Tωn)

))
,

i.e. as the limit of compensated compound Poisson processes. The Gaussian part is then determined
by the tuple (C, 0, u0, λ).

Remark 3.10. Using the spectral representation T =
∫

R
xdPx of the closure of T , the “jump” part

can be written as an integral over the “jump” sizes.
However, note that the Itô-Lévy-type decomposition gives a decomposition into a continuous

Gaussian part and a jump part only in the tensor case. In the other cases the classical processes
that can be associated to the corresponding Gaussian processes do not have continuous paths, see,
e.g., [Bia98].

Using different methods and not assuming the existence of moments, Barndorff-Nielsen and
Thorbjørnson [BNT01b] have also obtained an Itô-Lévy decomposition for additive free Lévy pro-
cesses.

4 Lévy Processes on the (Dual) Affine Group

Recall that the affine group can be defined as the group of matrices

Aff =
{(

a b
0 1

)
: a > 0, b ∈ R

}
.

The calculation (
a1 b1
0 1

)(
a2 b2
0 1

)
=
(
a1a2 a1b2 + b1

0 1

)
shows that the group multiplication takes the form

A(g1g2) = A(g1)A(g2),
B(g1g2) = A(g1)B(g2) + B(g1),

for the coordinates A,B defined by

A

(
a b
0 1

)
= a, B

(
a b
0 1

)
= b.

We define tensor Lévy processes on the dual affine group in term of increments. Since the
increments are tensor independent for disjoint time intervals, they commute, and we can write the
products in the multiplication formula in any order we like.
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Definition 4.1. An operator process
(
(Ast, Bst)

)
0≤s≤t on (H,Ω) is called a (left) tensor Lévy

process on the dual affine group (w.r.t. Ω), if the following four conditions are satisfied.

(i) (Increment property) For all 0 ≤ s ≤ t ≤ u,

Asu = AtuAst,

Bsu = AtuBst +Btu.

(ii) (Independence) The increments (As1t1 , Bs1t1), . . . , (Asrtr , Bsrtr) are tensor independent for
all 0 ≤ s1 ≤ t1 ≤ s2 ≤ · · · ≤ sr ≤ tr.

(iii) (Stationarity) The law of (Ast, Bst) depends only on t− s.

(iv) (Weak continuity) For all k1, . . . , kr, `1, . . . , lr ∈ N, we have

lim
t↘s

〈Ω, Ak1stB`1st · · ·Akr
stB

`r
stΩ〉 =

{
1 if `1 + · · · `r = 0,
0 if `1 + · · · `r > 0.

Every Lévy process with values in the semi-group{(
a b
0 1

)
: a, b ∈ R

}
with finite moments gives an example of a tensor Lévy process on the dual affine group in the sense
of our definition, since we didn’t impose that the Ast are strictly positive or invertible.

Example 4.2. There are also examples in which Ast and Bst do not commute and which do
not correspond to classical Lévy processes. E.g., the quantum Azéma martingale [Eme89, Par90,
Sch91a] with paramater q ∈ R defined by the quantum stochastic differential equations

dAst = AstdΛt(q − 1),

dBst = BstdΛt(q − 1) + da+
t (1) + da−t (1),

on the Bose Fock space FT(L2(R+), with initial conditions

Ass = id,
Bss = 0,

defines a tensor Lévy process on the dual affine group. For q = 1, we have Ast = id for all 0 ≤ s ≤ t
and in the vacuum state (Bst) is equivalent to classical Brownian motion. For q 6= 1, Ast and Bst
do not commute and (Bst) is equivalent to the classical Azéma martingale with parameter c = q−1.

When we want to define free Lévy processes, different orders of the products in the multiplication
formula will lead to different classes of Lévy processes. The choice in the definition proposed here
is motivated by the fact that if Bst and Btu are symmetric, then Bsu is also symmetric.

Definition 4.3. An operator process
(
(ast, Bst)

)
0≤s≤t on (H,Ω) is called a (left) free Lévy process

on the dual affine group (w.r.t. Ω), if the conditions

(i’) (Increment property) For all 0 ≤ s ≤ t ≤ u,

asu = atuast,

Bsu = atuBsta
∗
tu +Bst.

(ii’) (Independence) The increments (as1t1 , Bs1t1), . . . , (asrtr , Bsrtr ) are free for all 0 ≤ s1 ≤ t1 ≤
s2 ≤ · · · ≤ sr ≤ tr.

and conditions (iii) and (iv) from the previous definition are satisfied (with Ast = asta
∗
st).

Note that with this definition Ast = asta
∗
st is automatically positive.
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Example 4.4. Let γ ∈ C. The operator process
(
(ast, Bst)

)
0≤s≤t defined by the quantum stochas-

tic equations

dast = dΛt(γ − 1)ast,

dBst = dΛt(γ − 1)Bst +BstdΛt(γ − 1) + da+
t (1) + da−t (1),

on the free Fock space FF(L2(R+), with initial conditions

ass = id,
Bss = 0,

defines a free Lévy process on the dual affine group. For γ = 1, we get ast = id and (Bst) is equal
to the free Brownian motion,

Bst = a+(χ[s,t[) + a−(χ[s,t[).

For general γ ∈ C, the process (Bst) can be considered as a free analog of the (quantum) Azéma
martingale with parameter q = |γ|2.
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[BGS99] A. Ben Ghorbal and M. Schürmann. On the algebraic foundations of a non-commutative
probability theory. Prépublication 99/17, Institut E. Cartan, Nancy, 1999.

[BP99] H. Bercovici and V. Pata. Stable laws and domains of attraction in free probability
theory. Ann. of Math. (2), 149(3):1023–1060, 1999.
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EXPLICIT SOLUTIONS OF THE

SEQUENTIAL ANALYSIS PROBLEMS FOR

COMPOUND POISSON PROCESSES WITH

EXPONENTIAL JUMPS

Pavel V. Gapeev
Moscow State University

We give the explicit solutions for the Bayesian problem of sequential testing and the
Bayesian disorder problem for an observed compound Poisson process having exponentially dis-
tributed jumps. Also, we determine the explicit stopping boundaries for the Wald’s sequential
probability ratio test, which is optimal in the variational formulation of the sequential testing
problem, and remark some facts about the solution of the variational disorder problem.

1 Introduction

Assume that at time t = 0 we begin to observe the process X = (Xt)t≥0 given by

Xt =
Nt∑
j=0

ξj

for t > 0 and X0 = 0, where N = (Nt)t≥0 is a Poisson process with intensity 1/λ, λ > 0, and
(ξj)j∈N is a sequence of independent random variables exponentially distributed with parameter λ
(N and (ξj)j∈N are supposed to be mutually independent). We call the process X = (Xt)t≥0 the
compound Poisson process with exponential jumps (with parameter λ > 0). It is easily verified
that the process X = (Xt)t≥0 is a semimartingale with the triplet (t/λ2, 0, dtI(x > 0)e−λxdx) with
respect to the function h(x) = x, x ∈ R (see, e.g., [8], Chapter II, Section 2).

We consider the following two problems of sequential analysis for a compound Poisson process
with exponential jumps: the sequential hypotheses testing problem and the problem of detecting
a ”disorder”.

In the first problem it is supposed that the parameter λ is unknown and takes on the values λ0

and λ1. The problem of sequential testing of two simple hypotheses about the parameter λ is to
decide as soon as possible and with minimal error probabilities if the true value of λ is either λ0

or λ1. This problem admits two different formulations (see [15], [13]). In the Bayesian formulation
it is assumed that at time t = 0 the parameter λ takes on the values λ0 and λ1 according to an
a priori distribution, which is given to us. The variational formulation (also called a fixed error
probability formulation) involves no probabilistic assumptions on the unknown parameter λ.

In the second problem it is assumed that the value of the parameter λ changes from λ0 to λ1 at
some unknown time θ ≥ 0 called the time of ”disorder”, which can not be observed directly. The
problem of disorder is to decide by observing the process X at which time instant one should give
an ”alarm signal” indicating the occurence of ”disorder” as close as possible to the time θ in the
sence, that both the probability of ”false alarm” and the expectation of the time interval between
the ”alarm signal” and the occurence of ”disorder” (when the ”alarm signal” is given correctly)
should be minimal. We suppose that the random time θ is exponentially distributed under θ > 0.

By use of the Bayesian approach, Wald and Wolfowitz (see [16], [17]) proved the optimality of
the Wald’s sequential probability ratio test (SPRT) in the variational formulation of the sequential
testing problem for the case of i.i.d. observations and under some special assumptions. The
problem of disorder for the discrete time case was considered in several works of A.N. Shiryaev
(see [13], p. 208, for historical notes and references). Shiryaev ([12]) gave the explicit solution to
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both problems of sequential analysis in the Bayesian and variational formulations in the case of
Wiener process (see also [13], Chapter 4). Some particular cases of the Poisson disorder problem
were considered in [4] and in [3]. Peskir and Shiryaev ([9]) obtained the explicit solution for the
Bayesian problem of testing hypotheses about the intensity of an observed Poisson process and then
applied their result to the proof of the optimality of the SPRT in the corresponding variational
problem. They also presented the complete explicit solution of the Poisson disorder problem in the
Bayesian formulation ([10]).

Our aim is to present the explicit solutions of the sequential testing problem and the disorder
problem in the Bayesian and variational formulations for a compound Poisson process with ex-
ponential jumps. Actually, we present the next example of process (followed by the Wiener and
Poisson cases) for which these problems of sequential analysis can be solved in the explicit form.
Such (multivariate point) Lévy processes are used, for example, in several models of stochastic
finance and insurance (see, e.g., [14]).

In Section 2, following the schema of arguments used in [13], Chapter 4, and in [9], we reduce
the initial Bayesian problem to the relevant Stephan problem for an integro-differential operator,
which can be solved explicitly by use of the smooth and continuous fit principles, and then we
prove that its solution is a solution of the initial (optimal stopping) problem.

In Section 3 we construct the SPRT for the variational problem and, using the argumments in
[9], obtain the explicit form of the optimal stopping boundaries. Also, we give a precise description
of the set of all admissible error probabilities and find the explicit expressions for them and for the
mean time of the observations.

In Section 4, following the schema of arguments in [10], we obtain the complete explicit solution
of the Bayesian disorder problem for a compound Poisson process with exponential jumps. For
proof we reduce the initial problem to a free-boundary integro-differential Stephan problem and
then specify the cases of the breakdown of the smooth fit principle and its replacement by the
principle of the continuous fit. These effects can be explained both by the examination of the
sample-path properties of the a posteriori probability process and by the existence of a singularity
point of the relevant integro-differential equation. Also, we remark some facts about the solutions
of the Bayesian disorder problem for pure jump natural exponential families, for example, for an
inverse Gaussian process (see, e.g., [1]) and for a Gamma process (see, e.g., [11] or [14]).

Section 5 is devoted to some notes about the solution of the variational disorder problem for a
compound Poisson process with exponential jumps.

2. Bayesian sequential testing problem.

3. Variational sequential testing problem.

4. Bayesian disorder problem.

5. Variational disorder problem.

Remark. The results announced above are presented in [5] and [6].
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Abstract

A proper transition to the so-called diffusion limit is discussed for continuous time random
walks. It turns out that the probability density function for the limit process obeys a space-
time fractional diffusion equation.
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1 Introduction and basic equations

In this paper we show how by a properly scaled passage to the limit of compressed waiting times
and jump widths the space-time fractional diffusion equation can be obtained from the master
equation for a continuous time random walk or, equivalently, from the master equation describing a
cumulative renewal process. For the basic principles of continuous time random walk (CTRW), that
was introduced in Statistical Mechanics by Montroll and Weiss [22], see e.g. [1, 15, 20, 21, 23, 30, 31],
of renewal processes, see e.g. [3, 4, 6, 16, 27, 28, 29].

The continuous random walk arises by a sequence of independently identically distributed (iid)
positive random waiting times T1, T2, . . . , each having probability density function (pdf) ψ(t) ,
t > 0 , and a sequence of iid random jumps X1, X2, X3, .... in IR , each having pdf w(x) , x ∈ IR .
Setting t0 = 0 , tn = T1 + T2 + . . . Tn for n ∈ IN , 0 < t1 < t2 < . . . , the wandering particle starts
at point x = 0 in instant t = 0 and makes a jump of length Xn in instant tn, so that its position
is x = 0 for 0 ≤ t < T1 = t1 , and

Sn = X1 +X2 + · · ·Xn , for tn ≤ t < tn+1 .

An essential assumption is that the waiting time distribution and the jump width distribution are
independent of each other. It is well known that this stochastic process is Markovian if and only
if the waiting time pdf is of the form ψ(t) = m e−mt with some positive constant m (compound
Poisson process), see e.g. [6].

Then, by natural probabilistic arguments we arrive at the master equation for the probability
density function p(x, t) of the particle being in point x at instant t , see [11, 19, 26],

p(x, t) = δ(x)Ψ(t) +
∫ t

0

ψ(t− t′)
[∫ +∞

−∞
w(x − x′) p(x′, t′) dx′

]
dt′ , (1.1)
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in which δ(x) denotes the Dirac generalized function, and, for abbreviation, Ψ(t) =
∫∞
t ψ(t′) dt′ , is

the probability that at instant t the particle is still sitting in its starting position x = 0 . Actually,
p(x, t) as containing a point measure, is a generalized pdf , but for ease of language we omit the
qualification ”generalized”. Clearly, (1.1) satisfies the initial condition p(x, 0) = δ(x) .

Throughout this paper we will denote by f̂(κ) and g̃(s) the transforms of Fourier and Laplace,
respectively, of functions f(x) and g(t) according to

F {f(x);κ} = f̂(κ) =
∫ ∞
−∞

e iκx f(x) dx , κ ∈ IR ,

L{g(t); s} = g̃(s) =
∫ ∞

0

e−st g(t) dt , s > s0
1 ,

and consistently, we will have for Dirac’s delta function δ̂(κ) ≡ δ̃(s) ≡ 1 .
Then in the Fourier-Laplace domain the master equation (1.1) appears as

̂̃p(κ, s) = Ψ̃(s) + ψ̃(s) ŵ(κ) ̂̃p(κ, s) , (1.2)

whence, ̂̃p(κ, s) =
Ψ̃(s)

1− ŵ(κ) ψ̃(s)
=

1− ψ̃(s)
s

1

1− ŵ(κ) ψ̃(s)
. (1.3)

We will henceforth assume that in our continuous time random walk the jump width pdf w(x)
is an even function (w(x) = w(−x)) and has a finite second moment (variance) or exhibits the
asymptotic behaviour w(|x|) ∼ b |x|−(α+1) with some α , 0 < α < 2 , for |x| → ∞ , and the waiting
time pdf ψ(t) has a finite first moment (mean) or exhibits the asymptotic behaviour ψ(t) ∼ c t−(β+1)

with some β , 0 < β < 1 , for t→∞ , where b and c are positive constants.
Our aim is to derive from the master equation (1.1), by properly rescaling the waiting times

and the jump widths and passing to the diffusion limit, the space-time fractional diffusion equation.
This is a partial pseudo-differential equation, which is obtained from the standard diffusion equation
by replacing the second-order space derivative with a fractional Riesz derivative of order α ∈ (0, 2]
and the first-order time derivative with a fractional Caputo derivative of order β ∈ (0, 1] . Choosing
the initial condition in analogy to that fulfilled for (1.1), we write

tD
β
∗ u(x, t) = xD

α
0 u(x, t) , 0 < α ≤ 2 , 0 < β ≤ 1 ,

u(x, 0+) = δ(x) , x ∈ IR , t > 0 .
(1.4)

In view of the particular initial condition, the solution of this Cauchy problem is referred to as the
fundamental solution or the Green function.

The fractional Riesz derivative xD
α
0 is defined as the pseudo-differential operator with symbol

−|κ|α . This means that for a sufficiently well-behaved function f(x) we have2

F { xD
α
0 f(x);κ} = −|κ|α f̂(κ) , κ ∈ IR . (1.5)

The symbol of the Riesz fractional derivative is nothing but the logarithm of the characteristic
function of the generic symmetric stable (in the Lévy sense) probability density, see [5, 6, 25].
Noting −|κ|α = −(κ2)α/2 , we recognize that

xD
α
0 = −

(
− d2

dx2

)α/2
. (1.6)

In other words: the Riesz derivative is a symmetric fractional generalization of the second deriva-
tive.

1For our purposes we agree to take s real
2Let us recall that a generic linear pseudo-differential operator A, acting with respect to the variable x ∈ IR , is

defined through its Fourier representation, namely
∫ +∞
−∞ e iκx A [f(x)] dx = Â(κ) f̂(κ) , where Â(κ) is referred to as

symbol of A , formally given as Â(κ) =
(
A e−iκx

)
e+iκx .
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The Caputo fractional derivative in time provides a fractional generalization of the first deriva-
tive through the following rule in the Laplace transform domain,

L
{
tD

β
∗ f(t); s

}
= sβ f̃(s)− sβ−1 f(0+) , 0 < β ≤ 1 , s > 0 , (1.7)

hence turns out to be defined as, see e.g. [9],

tD
β
∗ f(t) :=


1

Γ(1− β)

∫ t

0

f (1)(τ)
(t− τ)β

dτ , 0 < β < 1,

d

dt
f(t), β = 1.

(1.8)

It can alternatively be written in the form

tD
β
∗ f(t) =

1
Γ(1 − β)

d

dt

∫ t

0

f(τ)
(t− τ)β

dτ +
t−β

Γ(1− β)
f(0+)

=
1

Γ(1 − β)
d

dt

∫ t

0

f(τ) − f(0+)
(t− τ)β

dτ , 0 < β < 1 .
(1.9)

The Caputo derivative has been indexed with ∗ in order to distinguish it from the classical Riemann-
Liouville fractional derivative tD

β , the first term at the R.H.S. of the first equality in (1.9). As it
can be noted from the last equality in (1.9) the Caputo derivative provides a sort of regularization
at t = 0 of the Riemann-Liouville derivative.

The space-time fractional diffusion equation (1.4) contains as particular cases the space frac-
tional diffusion equation when 0 < α < 2 and β = 1 , the time fractional diffusion equation when
α = 2 and 0 < β < 1 , and the standard diffusion equation when α = 2 and β = 1 . We note that for
the fractional cases the word ”diffusion” is also justified because the fundamental solution (or the
Green function) in all cases can be interpreted as a space probability density evolving in time, see
e.g. Gorenflo, Iskenderov & Luchko [8], Mainardi, Luchko & Pagnini [17] and Mainardi, Pagnini &
Gorenflo [18].

In the Fourier-Laplace domain the Cauchy problem for the space-time fractional diffusion equa-
tion (1.4) appears in the form

sβ ̂̃u(κ, s)− sβ−1 = −|κ|α ̂̃u(κ, s) , 0 < α ≤ 2 , 0 < β ≤ 1 , (1.10)

and we obtain immediately

̂̃u(κ, s) =
sβ−1

sβ + |κ|α , s > 0 , κ ∈ IR . (1.11)

By our derivation of (1.4) from (1.1) we de-mystify the often asked-for meaning of the time
fractional derivative in the fractional diffusion equation. In plain words, the fractional derivatives in
time as well in space are caused by asymptotic power laws and well-scaled passage to the diffusion
limit.

The paper is divided as follows. In Section 2 we present two lemmata on asymptotics of
characteristic functions and of Laplace transforms of pdf ’s obeying asymptotic power laws. In
Section 3 we carry out the promised transition to the diffusion limit. Finally, the main conclusions
are drawn in Section 4.
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2 Two Lemmata

The first Lemma is a modified specialisation of Gnedenko’s theorem in [7], see also [2]. It was
already used by us, but not formally called a Lemma, in [10]. The second Lemma can be obtained
by aid of a corollary in Widder’s book [32].

Lemma 1. Assume w(x) ≥ 0 , w(x) = w(−x) for x ∈ IR ,
∫ +∞
−∞ w(x) dx = 1 , and either

σ2 :=
∫ +∞

−∞
x2 w(x) dx <∞ (2.1)

(relevant in the case α = 2) or, with b > 0 and some α ∈ (0, 2) ,

w(x) = (b+ ε(|x|)) |x|−(α+1) . (2.2)

In (2.2) assume ε(|x|) bounded and O (|x|−η) with some η > 0 as |x| → ∞ .
Then, with a positive scaling parameter h and a scaling constant

µ =


σ2

2
, if α = 2 ,

b π

Γ(α+ 1) sin(απ/2)
, if 0 < α < 2 ,

(2.3)

we have, for each fixed κ ∈ IR , the asymptotic relation

ŵ(κh) = 1− µ (|κ|h)α + o(hα) for h→ 0 . (2.4)

Remark. Eq. (2.4) holds trivially if κ = 0 since ŵ(0) = 1 .

Lemma 2. Assume ψ(t) ≥ 0 for t > 0 ,
∫∞
0 ψ(t) dt = 1 , and either

ρ :=
∫ ∞

0

t ψ(t) dt <∞ (2.5)

(relevant in the case β = 1), or, with c > 0 and some β ∈ (0, 1) ,

ψ(t) ∼ c t−(β+1) for t→∞ . (2.6)

Then, with a positive scaling parameter τ and a scaling constant

λ =


ρ , if β = 1 ,

cΓ(1− β)
β

, if 0 < β < 1 ,
(2.7)

we have, for each fixed s > 0 , the asymptotic relation

ψ̃(sτ) = 1− λ (sτ)β + o(τβ) for τ → 0 . (2.8)

Remark. Eq. (2.8) holds trivially if s = 0 since ψ̃(0) = 1 .

Proof of Lemma 1. For convenience we abbreviate ν = κh . We observe that ŵ , like w , is an even
function.

In the case α = 2 the well known fact σ2 = −ŵ′′(0) immediately implies

ŵ(ν) = 1− µ ν2 + o(ν2) as ν → 0 ,

hence (2.4) with µ = σ2/2 .
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In the case 0 < α < 2 we find for ν 6= 0

ŵ(ν)− 1 =
∫ ∞

0

(
eiνx + e−iνx − 2

)
w(x) dx = −4

∫ ∞
0

(sin(νx/2))2 w(x) dx ,

hence, in view of (2.2),

ŵ(ν) = 1− 2−α+2 b να
∫ ∞

0

ξ−α−1 (sin ξ)2 dξ − 4
∫ ∞

0

ε(x)x−α−1 (sin(νx/2))2 dx .

The first integral can be evaluated in terms of the gamma function. In fact, from Gradshteyn and
Ryzhik [12], see (3.823), we take∫ ∞

0

ξ−α−1 (sin ξ)2 dξ = −Γ(−α) cos(απ/2)
21−α =

π

22−α Γ(α+ 1) sin(απ/2)
.

The latter equality follows by the reflection formula for the gamma function.
We estimate the second integral via decomposition

∫∞
0
· · · =

∫ A
0
· · · +

∫∞
A
· · · , taking A =

ν−(2α+η)/(2α+2η) , using | sin ξ| ≤ min {ξ, 1} for ξ ≥ 0 and the condition on ε(|x|) . By careful
calculation we find that it behaves asymptotically as o (να) = |κ|α o (hα) . Combining these results
and observing that ŵ (like w) is an even function, we obtain

ŵ(κh) = 1− |κ|α b π

Γ(α + 1) sin(απ/2)
hα + |κ|α o (hα) , h→ 0 ,

as valid for all κ ∈ IR . This is equivalent to (2.4), and the lemma is proved.

Proof of Lemma 2. In the case β = 1 Eq. (2.8) is a consequence of λ = ρ = −ψ̃′(0) . In the case
0 < β < 1 we invoke Corollary 1a of Widder [32], see p. 182. It states (among other things) that
if α(t) ∼ Atγ/Γ(γ + 1) as t→∞ for some A 6= 0 and some non-negative γ , then∫ ∞

0

e−st dα(t) ∼ A

sγ
, for s→ 0+ . (2.9)

Now assume the conditions of Lemma 2 met. Then, for 0 < β < 1 ,

ψ̃(s) =
∫ ∞

0

ψ(t) dt−
∫ ∞

0

(
1− e−st

)
ψ(t) dt = 1−

∫ ∞
0

(
1− e−st

)
ψ(t) dt . (2.10)

With Ψ(t) =
∫∞
t
ψ(t′) dt′ as used in (1.1), then

Ψ(0) = 1 , Ψ(∞) = 0 , Ψ(t) ∼ c

β
t−β , as t→∞ ,

hence ∫ ∞
0

(
1− e−st

)
ψ(t) dt = s

∫ ∞
0

e−stΨ(t) dt = s Ψ̃(s) . (2.11)

For application of Widder’s corollary to Ψ̃(s) we set α′(t) = Ψ(t) and obtain (the constant of
integration being irrelevant)

α(t) ∼ c

β(1 − β)
t−β+1 = A

tγ

Γ(γ + 1)

with γ = 1− β > 0 , A = λ . Then (2.9) yields

Ψ̃(s) ∼ λ sβ−1 for s→ 0+ .

Inserting this into (2.11) and using (2.10) we get

ψ̃(s) ∼ 1− λ sβ + o(sβ) for s→ 0+ ,

and, replacing here s by sτ , finally (2.8).
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3 Well-scaled transition to the diffusion limit

Scaling is achieved by making smaller all waiting times by a positive factor τ , and all jumps by a
positive factor h . So we get the jump instants

tn(τ) = τT1 + τT2 + · · ·+ τTn for n ∈ IN , (3.1)

and the jump sums,

S0(h) = 0 , Sn(h) = hX1 + hX2 + · · ·+ hXn for n ∈ IN , (3.2)

The reduced waiting times τTn all have the pdf ψτ (t) = ψ(t/τ)/τ , t > 0 , and analogously the
reduced jumps hXn all have the pdf wh(x) = w(x/h)/h , x ∈ IR . Readily we see

ψ̃τ (s) = ψ̃(sτ) , ŵh(κ) = ŵ(κh) . (3.3)

Replacing in (1.1) ψ(t) by ψτ (t) , Ψ(t) by Ψτ (t) =
∫∞
t ψτ (t′) dt′ , w(x) by wh(x) , p(x, t) by ph,τ (x, t)

we obtain the rescaled master equation which in the Fourier-Laplace domain reads as

̂̃ph,τ (κ, s) =
(
1− ψ̃τ (s)

)
/s+ ψ̃τ (s) ŵh(κ) ̂̃ph,τ (κ, s) , (3.4)

whose solution is ̂̃ph,τ (κ, s) =
1− ψ̃τ (s)

s

1

1− ŵh(κ) ψ̃τ (s)
. (3.5)

To proceed further we assume the pdf ’s w(x) and ψ(t) of the jumps Xn and the waiting times
Tn to meet the conditions of Lemma 1 and Lemma 2, respectively. Eq. (3.5) then becomes
asymptotically ̂̃ph,τ (κ, s) ∼ λ τβ sβ−1

λ τβ sβ + µhα |κ|α , h, τ → 0 . (3.6)

By imposing the scaling relation
λ τβ = µhα , (3.7)

the asymptotics (3.6) yields ̂̃ph,τ (κ, s) → sβ−1

sβ + |κ|α . (3.8)

Hence, in view of (1.11), ̂̃ph,τ (κ, s) → ̂̃u(κ, s) for h, τ → 0 , (3.9)

under condition (3.7). In this kind of passage to the limit, (3.5) and (1.11), likewise (3.4) and (1.10)
are asymptotically equivalent in the Fourier-Laplace domain. Then, the asymptotic equivalence in
the space-time domain between the master equation (1.1) after rescaling and the fractional diffusion
equation (1.4) is provided by the continuity theorem for sequences of characteristic functions after
having applied the analogous theorem for sequences of Laplace transforms, see e.g. , [6]. Therefore
we have ”convergence in law”or ”weak convergence”for the corresponding probability distributions.
We can state this result as a theorem.

Theorem. Assume the jumps Xn and the waiting times Tn on which the master equation (1.1) is
based to fulfil the conditions of Lemma 1 and Lemma 2, respectively. Replace the jump widths Xn

by hXn , the waiting times Tn by τ Tn with h > 0 , τ > 0 , and assume with the scaling constants µ
as in (2.3) and λ as in (2.7) the scaling relation (3.7) to hold. Then, for h→ 0 (and consequently
τ → 0) the master equation (1.1), after rescaling, goes over into the space-time fractional diffusion
equation (1.4).
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4 Discussion and conclusions

We have shown how, by properly scaled compression of waiting times and jump widths, the (spa-
tially symmetric) space-time fractional diffusion equation (1.4) in the cases 0 < α < 2 and 0 < β < 1
can be obtained from the (spatially symmetric) master equation (1.1) of the continuous time ran-
dom walk. For this it suffices to assume there an asymptotic power law of the form c t−(β+1) as
t → ∞ for the waiting time pdf , and of the form b |x|−(α+1) as |x| → ∞ for the jump width
pdf . In the time-extremal case β = 1 the essential requirement is finite mean waiting time, in the
space-extremal case α = 2 we require finite variance of the jump width distribution.

Only in the case β = 1 the limiting equation (1.4) describes a Markov process while, however,
the master equation still describes a non-Markovian process if the waiting time is not exponentially
distributed.

By stating our two lemmata and displaying explicitly the scaling relation λ τβ = µhα for the
compression factors τ in time, h in space, and its consequence in the Fourier-Laplace domain we
hope to have clarified what in the literature is often called long-time large-space behaviour and
vaguely described by the asymptotics of the transforms of Fourier and Laplace near the origin.
And we have related this behaviour to the space-time fractional diffusion equation which can be
analyzed by techniques belonging to the theory of pseudo-differential equations and, in particular,
of the so-called fractional calculus.

Needless to say that, for consideration of the long-time large-space behaviour of the continuous
time random walk, our compression of waiting times and jump widths simply amounts to an
inflation of the measurement units in space and time, so that medium size waiting times and
jumps appear small.

For ease of presentation we have only treated the case of one space dimension and of symmetric
jump pdf , but these restrictions are not essential. Likewise, in order to avoid more cumbersome
calculations with Stieltjes integrals and measures, we have not treated the more general case of
probability distribution functions obeying corresponding power laws (with adjusted exponents)
given for the waiting times and jump widths. We leave these extensions to a future paper.

One of our intentions was to de-mystify the meaning of the time-fractional derivative in the
space-time fractional diffusion equation (1.4). Some authors, see e.g. Hilfer and Anton [13], Hilfer
[14], Saichev and Zaslavsky [24] and also we in [11, 19], have introduced already in the master
equation for CTRW a fractional time derivative by requiring the waiting time to be given via a
Mittag-Leffler type function. After doing so, already in [11] we carried out our scaled transition
to the limit. However, if one is willing to make the scaled transition to the diffusion limit in time
as well as in space directly in the master equation, one can replace, as we have shown here, the
Mittag-Leffler waiting time pdf (which exhibits a special asymptotic power law) by a more general
asymptotic power law.
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Tails of solutions of certain nonlinear stochastic

differential equations driven by heavy tailed Lévy

motions

Mircea Grigoriu and Gennady Samorodnitsky

Extended abstract

Let
(
Ω,F , P

)
be a probability space and

(
Ft, t ≥ 0) a filtration on that space. We will always

assume, without further special notice, that the filtration is complete and right continuous (the “
usual hypothesis”; see [5]).

Recall that a Lévy motion (L(t), t ≥ 0) is a continuous in probability stochastic process adapted
to the filtration

(
Ft, t ≥ 0) with L(0) = 0 and stationary increments, such that for every 0 ≤ s < t

the increment L(t) − L(s) is independent of Fs. A Lévy motion has a version with sample paths
in the space D[0,∞) of right continuous functions with left limits, and we will always assume that
we are dealing with such a version. The law of a Lévy process is completely characterized by its
one-dimensional distribution at time 1 (say) and

EeiθL(1) = exp
{∫ ∞
−∞

(
eiθx − 1− iθx1(|x| ≤ 1)

)
ν(dx) + iθa

}
, θ ∈ R , (1)

with ν a σ-finite measure that does not charge the origin, such that
∫

R
min(x2, 1) ν(dx) < ∞ and

a ∈ R. The measure ν is the Lévy measure of the process. If the Lévy measure is infinite then, on
an event of probability 1, the Lévy process has a dense set of discontinuities in every interval of
positive length. On the other hand, if the Lévy measure ν is finite, then the jumps of the process
L form a homogeneous Poisson process on the positive half line with intensity ν(R). The jump
sizes are iid random variables independent of the jump times with common distribution ν/ν(R).
Between every two jumps the process is linear with the slope a−

∫
|x|≤1 x ν(dx). No matter whether

the Lévy measure is finite or not, the Lévy process L is continuous with probability 1 at any fixed
point.

A Lévy process is symmetric (i.e. L and −L have the same finite dimensional distributions)
if and only if in (1) a = 0 and the Lévy measure is symmetric. In that case the characteristic
function (1) can be written in a simpler form

EeiθL(1) = exp
{∫ ∞
−∞

(
eiθx − 1

)
ν(dx)

}
, θ ∈ R . (2)

An important fact is that, in certain cases, the tails of the one dimensional distributions of the
Lévy process and its Lévy measure are equivalent. Specifically, the equivalence

P (L(t) > u) ∼ tν
(
(u,∞)

)
as u→∞ (3)

for any t > 0 holds under the assumption of subexponentiality on the tail of either L(1) or that of
ν; see [2]. We will, actually, assume that the tails are regularly varying:

ν
(
(u,∞)

)
= u−αl(u) (4)

for some α > 0, where l is a slowly varying at infinity function. Since regularly varying tails are
subexponential, (3) holds in this case. An important example of Lévy motions satisfying (4) is
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that of α-stable motions in which case

ν(dx) =


c+x

−(α+1) dx if x > 0

c−|x|−(α+1) dx if x < 0
(5)

for 0 < α < 2 and c+, c− ≥ 0. A source of information on α-stable processes, of which α-stable
motions is an example, is in [6].

We study a stochastic differential equation of the form

dX(t) = −f(X(t)) dt+ dL(t) , (6)

where (L(t), t ≥ 0) is a symmetric Lévy motion with Lévy measure ν satisfying the regular variation
assumption (4). In the main result of the next section, that describes the tail behaviour of the
solution to the above equation at any fixed positive time t we will also assume that the Lévy motion
is symmetric. This assumption is not needed for the arguments used in the present section. The
following assumptions are imposed on the function f .

f is Lipschitz on compact intervals (7)

f(0) = 0, and f is nondecreasing. (8)

f is regularly varying at infinity with exponent β > 1, (9)

and for some constants A ∈ (0,∞) and β1 > 1,

−f(−x) ≥ Ax−β1 for all x ≥ 1. (10)

Note that a Lévy motion is a semimartingale and, hence, the standard theory of stochastic inte-
gration applies to stochastic differential equations with respect to Lévy motions. Our reference on
stochastic integration is [5].

It follows from the standard theory of stochastic integration that for any F0-measurable X(0)
the equation (6) has a strongly unique solution (X(t), t ≥ 0), which is, then, automatically a
semimartingale. Furthermore, this solution is strongly Markov.

The Markov property of the solution to our stochastic differential equation allows us, in par-
ticular, to use the usual Markovian notation Px when we want to emphasize that we are working
with a solution to that equation with X(0) = x. We will use this notation throughout the paper
without further comments. We also note at this point that it is an immediate application of Theo-
rem Theorem 5.4 in [3] that the Markov process (X(t), t ≥ 0) is a Feller process. That is, for any
bounded and continuous function f on the real line, the function y → Eyf(X(t)) is continuous for
every t ≥ 0.

Even though the equation (6) has a “nice” solution, direct understanding of many properties of
this solution is not easy. For this reason our approach is to approximate that solution by “throwing
away” the small jumps of the Lévy process L. Specifically, given a Lévy process satisfying (1) and
a number σ > 0 we consider a Lévy motion Lσ satisfying

EeiθL(1) = exp
{∫
|x|>σ

(
eiθx − 1− iθx1(|x| ≤ 1)

)
ν(dx) + iθa

}
= exp

{∫ ∞
−∞

(
eiθx − 1− iθx1(|x| ≤ 1)

)
νσ(dx) + iθa

}
, θ ∈ R ,

(11)

where νσ(A) = ν(A ∩ {|x| > σ}) for a Borel set A. Note that νσ is a finite measure, and we will
consider the corresponding stochastic differential equation driven by Lσ

dXσ(t) = −f(Xσ(t)) dt+ dLσ(t) . (12)

It is easy to construct the increments Lσ(t) − Lσ(s) for 0 ≤ s < t as measurable functions of
L(u) − L(v), s ≤ v < u ≤ t. Hence, one may assume that (Lσ(t), t ≥ 0) is a Lévy motion
with respect to the same filtration

(
Ft, t ≥ 0) as (L(t), t ≥ 0) is. For our purposes the specific
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filtration does not matter. What is important for our purposes that the solution to the equation
(12) converges weakly to that of (6). More precisely, if (X(t), t ≥ 0) is the solution to (6) and
for σ > 0, (Xσ(t), t ≥ 0) is the solution to (12), then Xσ(0) ⇒ X(0) as σ → 0 implies that
(Xσ(t), t ≥ 0) ⇒ (X(t), t ≥ 0) weakly in D[0,∞) as σ → 0. See Theorem 5.4 in [3]. Moreover,
since the set of discontinuities of (X(t), t ≥ 0) coincides with that of (L(t), t ≥ 0), this means that
the process (X(t), t ≥ 0) is a.s. continuous at every fixed t, and so Xσ(t) ⇒ X(t) as σ → 0 for
every t ≥ 0. See Theorem 12.5 in [1].

Of course, the point of switching from the equation (6) to the equation (12) is that Lévy process
(Lσ(t), t ≥ 0) has finitely many jumps in any interval of a finite length, and is linear between two
successive jumps. Thus, between any two successive jumps the process (Xσ(t), t ≥ 0) satisfies a
deterministic differential equation, which can be explicitly solved. This allows us to get a good
“handle” on the process (Xσ(t), t ≥ 0), and the weak convergence of the latter to (X(t), t ≥ 0)
allows us to derive, thus, conclusions about the solution to the equation (6). It is clear that
implementation of this approach will require us to obtain “uniform in σ” results for the solution of
the easier equation (12), so that the results will be preserved under the weak limit.

Our next result determines the tail behaviour of the solution to the stochastic differential
equation (6) at any fixed positive time t. It turns out that, under our assumptions, this tail
behaviour is independent of both t and of the initial value X(0). Denote

h(u) =
∫ ∞
u

ν
(
(y,∞)

)
f(y)

dy, u ≥ 0 . (13)

Note that by the assumptions (4) and (7) – (9) the function h is finite for large u and, moreover,

h is regularly varying at infinity with exponent −(α+ β) + 1 . (14)

Theorem 1. Let (X(t), t ≥ 0) be the solution to the stochastic differential equation (6) with
X(0) = x. We assume that the the Lévy motion (L(t), t ≥ 0) is symmetric and that the assumptions
(4) and (7) – (10) hold. Then for every t0 > 0

lim
u→∞

Px(X(t) > u)
h(u)

= 1 uniformly in x ∈ R and t ≥ t0. (15)

Next we show that the Markov process (X(t), t ≥ 0) solving the stochastic differential equation
(6) has a unique stationary distribution.

To this end let, once again, σ > 0 and let (Xσ(t), t ≥ 0) be the solution to the approximating
equation (12). Tregenerative structure of the latter process shiws that, at least for small σ > 0,
this process has a (unique) stationary distribution.

From here we are in a position to show that the process (X(t), t ≥ 0) solving the stochastic
differential equation (6) has a stationary distribution. To this end, let µσ be the stationary dis-
tribution for (Xσ(t), t ≥ 0), 0 < σ ≤ σ0. It follows from the arguments in Theorem 1 that the
family

(
µσ, 0 < σ ≤ σ0

)
is tight, at least if we reduce σ0. Let

(
µσn , n ≥ 1

)
be a weakly convergent

sequence, for some σn ↓ 0, n→∞. Then µσn ⇒ µ as n→∞ for some probability measure µ.
In the stochastic differential equation (12) we choose the initial value distributed according

to µσn for n ≥ 1. We now apply, once again, Theorem 5.4 in [3] to conclude that the resulting
sequence

(
(Xσn(t), t ≥ 0), n ≥ 1

)
of stationary processes converges weakly in D[0,∞) to the

solution (X(t), t ≥ 0) of the equation (6) for which the initial has the distribution µ. Since the
process (X(t), t ≥ 0) is a.s. continuous at each t ≥ 0 we conclude that X(t) has the law µ for each
t ≥ 0 and, hence, µ is a stationary distribution for the Markov process (X(t), t ≥ 0).

In order to show that a stationary distribution of the Markov process (X(t), t ≥ 0) solving the
stochastic differential equation (6) is unique, we use a coupling argument. Coupling is a powerful
technique of treating stationary distributions of Markov processes as well as other limit phenomena.
One indication of its successes are the two recent books, [4] and [7]. We will use a simple version
of approximate coupling, described in the lemma below. It is similar to the ε-coupling in [4], page
74. Note, however, that [7] uses the term ε-coupling in a different sense.
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Lemma 1. Let
(
X(t), t ≥ 0

)
and

(
Y (t), t ≥ 0

)
be two stochastic processes on a probability space(

Ω,F , P
)

such that X(t) d= X(0) and Y (t) d= Y (0) for all t ≥ 0. Let ε > 0, and suppose that there
is an event Ω+ ∈ F with P

(
Ω+

)
= 1 and a random variable Tε = Tε(ω) ∈ [0,∞) such that for all

ω ∈ Ω+ and t ≥ Tε(ω) we have
∣∣X(t, ω)− Y (t, ω)

∣∣ ≤ ε. Then

P
(
X(0) > x+ ε

)
≤ P

(
Y (0) > x

)
≤ P

(
X(0) > x− ε

)
(16)

for all x ∈ R.

This lemma helps us to show the uniqueness of the stationary distribution and, moreover, we
have

Theorem 2. Assume that the the Lévy motion (L(t), t ≥ 0) is symmetric and that the assumptions
(4) and (7) – (10) hold. Then the Markov process (X(t), t ≥ 0) solving the stochastic differential
equation (6) has a unique stationary distribution µ. This stationary distribution satisfies

lim
u→∞

µ
{(
u,∞

)}
h(u)

= 1 , (17)

where the function h is defined in (13).

Proof. Existence and uniqueness of the stationary distribution has been established above, and
(17) follows from Theorem 1.
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1 Introduction

Problems arising in Lp-potential theory are typically of nonlinear nature. In this article we present
some results jointly obtained with N. Jacob [10] concerning a new approach to this problem. It
is based on the theory of monotone operators due to Browder and Minty. We will show that this
general technique gives a optimally suited frame for the nonlinear situation in Lp-potential theory.

Among different approaches to the construction of a stochastic process starting from a given
operator the L2-approach has turned out to be one of the most successful. In particular the theory
of Dirichlet forms leads to comprehensive results in very general situations (see [6], [16]). However,
a certain weakness of this apprach lies in the fact that one has to take into account exceptional
sets and a process constructed by this method is determined only for starting points outside an
exceptional set. The exceptional sets themselves are given by the sets of capacity zero, so the
potential theory of the operator under consideration comes into play.

A possible remedy to this difficulty is to refine the potential theory and to replace the L2-setting
by an Lp-theory having in mind that an Lp-approach should give better regularity results. This led
to the notion of (r, p)-capacities, see V.G Maz’ya, V.P. Havin [18] and D.R. Adams, L.I. Hedberg
[1] as a standard reference. In the context of Dirichlet forms the concept of (r, p)-capacities was
first introduced by P. Malliavin [17] and subsequently studied by M. Fukushima and H. Kaneko
[4, 5, 14] and T. Kazumi, I. Shigekawa [15].

It turns out that by choosing the parameter p (or r) sufficiently large in many cases the excep-
tional sets disappear, i.e. every nonempty set has strictly positive (r, p)-capacity. Consequently, in
this case it is possible to construct by Dirichlet form techniques an associated process starting at
every point.

2 (r, p)-capacities

The classical capacity corresponding to the Laplace operator is the Newtonian capacity or as a
slightly modified version the 1-capacity, which for an open set G ⊂ Rn is defined by the minimiza-
tion problem

cap(G) := inf
{∫

Rn

|∇u|2 dx+
∫

Rn

|u|2 dx, u ∈ H1,2(Rn), u ≥ 1 on G a.e.
}
.

It is well-known that this problem has a unique minimizer uG which is called the equilbrium
potential of G.

In order to define analogous capacities in an Lp-setting one replaces for 1 ≤ p < ∞ and r ≥ 0
the Sobolev space H1,2(Rn) by the Bessel potential spaces

Hr,p(Rn) = (Id−∆)−r/2(Lp(Rn))

=
{
f ∈ Lp(Rn) : f = Gr ∗ g, g ∈ Lp(Rn)

}
and the corresponding norm

‖f‖r,p = ‖g‖Lp.
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Here Gr is the Bessel potential kernel given by its Fourier transform Ĝr(ξ) = (1 + |ξ|2)−r/2. The
(r, p)-capacity then is defined as above by

capr,p(G) := inf{‖u‖pr,p u ∈ Hr,p(Rn), u ≥ 1 on G a.e.},

which of course reduces to the initial case for p = 2 and r = 1.

The idea can be carried over also to the investigation of Lévy processes with characteristic
exponent Ψ, i.e. Ψ is a continuous negative definite function or to Lévy-type processes generated
by pseudo differential operators

−p(x,D)u(x) =
∫

Rn

eixξp(x, ξ)û(ξ) dξ,

where the symbol p(x, ξ) is assumed to satisfy certain estimates in terms of the fixed continuous
negative definite reference function Ψ (see W. Hoh and N. Jacob [11, 7, 12, 8, 9]). In this case the
correct function spaces are modified so-called Ψ-Bessel potential spaces

HΨ,r
p (Rn) = {u ∈ Lp(Rn) : ‖u‖HΨ,r

p
,∞}

with norm ‖u‖HΨ,r
p

= ‖F−1((1 + Ψ)r/2 · Fu)‖Lp (F denotes the Fourier transform). These spaces
where studied in great detail by W. Farkas, N. Jacob, and R.L. Schilling [2, 3].

Our starting point will be as in the considerations of (r, p)-capacities for Dirichlet forms an
Lp-semigroup. Let X be separable metric space equipped with a Radon measure µ and let for
some 1 < p <∞

T
(p)
t : Lp(X) → Lp(X), t ≥ 0,

be a strongly continuous, positivity preserving contraction semigroup on Lp(X) with Lp-generator
A(p). In particular we do not assume that T (p)

t is sub-Markovian. Even more important, since
we are interested also in non-symmetric situations, we do neither assume that any symmetry is
involved nor that the adjoint semigroup T (p)∗

t on Lp
′
(X), 1

p + 1
p′ = 1, is sub-Markovian.

In order to define the appropriate function spaces we need the fractional power (Id−A(p))−r/2

which can be defined directly in terms of the semigroup by the Gamma-transform

V (p)
r u =

1
Γ( r2 )

∫ ∞
0

t
r
2−1e−tT

(p)
t u dt.

Then V (p)
r : Lp(X) → Lp(X) is injective, we denote its inverse by Tr,p. Define the function space

Fr,p = V (p)
r (Lp(X))

and the norm
‖u‖Fr,p = ‖Tr,pu‖Lp .

For an explicit investigation of the corresponding integral kernels in concrete situations we refer to
N. Jacob and R.L. Schilling [13]

3 Monotone operators

Let Y be a reflexive separable Banach space with dual space Y ∗.

Definition. Let K ⊂ Y a be closed convex set and let T : K → Y ∗ be a (nonlinear) operator.

A. We call T monotone if 〈Tu− Tv, u− v〉 ≥ 0 for all u, v ∈ K.

B. The operator is called strictly monotone if 〈Tu− Tv, u− v〉 > 0 for all u, v ∈ K and u 6= v.
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C. T is called uniformly monotone if there is a strictly increasing continuous function γ : R+ → R,
γ(0) = 0 and lim

t→∞
γ(t) = ∞, such that for all u, v ∈ K

〈Tu− Tv, u− v〉 ≥ γ(‖u− v‖Y ) · ‖u− v‖Y

holds.

D. T is coercive with respect to K if there is an element ϕ ∈ K such that

lim
‖u‖Y→∞
u∈K

〈Tu− Tϕ, u− ϕ〉
‖u− ϕ‖Y

= ∞.

Moreover we need

Definition. Let T : Y → Y ∗ be an operator.

A. T is called hemicontinuous if for all u, v ∈ Y and h ∈ Y the function

s 7→ 〈T (u+ sv), h〉

is continuous on [0, 1].

B. T is called demicontinuous if

un → u in Y ⇒ Tun ⇀ Tu in Y ∗.

Now the main theorem on monotone operators states (see E. Zeidler [19]):

Theorem (Browder–Minty). Let T : Y → Y ∗ be a monotone, coercive, and hemicontinuous
operator.

A. For every f ∈ Y ∗ the set of solutions of

Tv = f

is non-empty, closed and convex.

B. If in addition T is strictly monotone, then the solution is unique and the inverse operator
T−1 : Y ∗ → Y is strictly monotone, demicontinuous and bounded.

C. If T is even uniformly monotone, then T−1 is continuous.

4 Application to (r, p)-capacities

In order to define (r, p)-capacities in our general setting we have to consider a minimization problem
for the functional

Er,p(u) :=
1
p
‖u‖pFr,p

=
1
p

∫
X

|Tr,pu|pµ(dx).

First note that the functional Er,p : Fr,p → R is strictly convex and coercive, i.e. Er,p(u)
‖u‖Fr,p

→ ∞ as
‖u‖Fr,p →∞. Moreover, Er,p is Gâteaux differentiable and we can explicitly calculate the Gâteaux
derivative

A(p)
r : Fr,p → F∗r,p

at u ∈ Fr,p:
A(p)
r u := T ∗r,p(|Tr,pu|p−2 · Tr,pu).

Note that A(p)
r is a nonlinear operator unless p = 2. We can prove the following inequality:

〈A(p)
r u−A(p)

r v, u− v〉 ≥ 22−p‖u− v‖pFr,p
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In particular this implies that on every closed convex subset of Fr,p the operator A(p)
r is uniformly

monotone and coercive.

Since Er,p is strictly convex, coercive and by definition continuous it is clear by the general
theory of coercive functionals (see E. Zeidler [19] Theo. 25 D) that for every open subset G ⊂ X
Er,p attains a unique minimum on the closed convex subset {u ∈ Fr,p : u ≥ 1 on G a.e.}. Therefore,
the unique minimizer eG again defines an (r, p)-equilibrium potential and the (r, p)-capacity is given
by

capr,p(G) = Er,p(eG).

Analogously, for h ∈ Fr,p one can consider the closed convex set {u ∈ Fr,p : u ≥ h on G a.e.} and
obtains as the unique minimizer the balayaged function hG.

In accordance with Dirichlet forms we introduce the notion of a mutual energy on Fr,p ×Fr,p:

E(p)
r (u, v) := 〈A(p)

r u, v〉,

which is again nonlinear with respect to the first argument. We now can find a better description
of the minimizer in terms of a variational inequality which, as one would expect, involves the
derivative A(p)

r of the functional Er,p:

Proposition. Let K ⊂ Fr,p be closed and convex. The unique minimizer of Er,p on K satisfies

E(p)
r (u, ϕ− u) = 〈A(p)

r u, ϕ− u〉 ≥ 0 for all ϕ ∈ K.

This in particular implies that for an equilibrium potential eG the variational inequality

E(p)
r (uG, ψ) ≥ 0 for all ψ ∈ Fr,p, ψ|G ≥ 0

holds. In analogy to Dirichlet forms we call a function u ∈ Fr,p a potential if

E(p)
r (u, ψ) = 〈A(p)

r u, ψ〉 ≥ 0 for all ψ ∈ Fr,p, ψ ≥ 0.

Especially, equilibrium potentials are potentials in this sense.
In other words a potential is a function u ∈ Fr,p having the property that A(p)

r u is a positive
element in F∗r,p (in a distributional sense). But, since A(p)

r is an uniformly monotone operator that
satisfies all assumptions of the Browder-Minty theorem, we know that it is invertible. We denote
its inverse by

U (p)
r = (A(p)

r )−1 : F∗r,p → Fr,p
and thus have shown:

u ∈ Fr,p is a potential if and only if u = U
(p)
r f for some positive f ∈ F∗r,p.

Again an explicit calculation is possible:

U (p)
r f = V (p)

r (|V (p)∗
r f |p′−2 · V (p)∗

r f).

This operator U (p)
r is a well-known object called the nonlinear potential operator and has been

investigated before for instance by V.G. Maz’ya, V.P. Havin [18] and D.R Adams, L.I. Hedberg
[1]. Note that under reasonable assumptions the positive elements in F∗r,p can be identified with
measures on X (of finite energy), see T. Kazumi, I. Shigekawa [15]. In this sense we obtain
a representation of the potentials which is completely analogous to the Riesz representation in
classical potential theory.
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On a conjecture of Barndorff-Nielsen relating

probability densities and Lévy densities

Friedrich Hubalek

1 Introduction

Consider a compound Poisson process (Xt, t ≥ 0) with intensity parameter c and jumps from a
distribution with density a(x). In this case the Lévy density is simply u(x) = ca(x). Let f(x, t)
denote the density of the abolutely continous part of the distribution of Xt. Then we have the
well-known formula

f(x, t) =
∑
n≥1

e−ct
(ct)n

n!
a∗n(x).

For the purpose of this work it is useful to expand e−ct in t and rearrange terms to obtain

f(x, t) =
∑
n≥1

un(x)
tn

n!
,

where

un(x) =
n∑
k=1

(
n

k

)
(−1)n−kcn−ku∗k(x).

Barndorff-Nielsen studied in [BN00], how this formula can be generalized to the non-compound
Poisson case, ie when the Lévy measure is not a finite measure, and convolution is a priori not
defined.

Let P+ denote the infinitely divisible laws on R+ resp Lévy processes, such that the infimum
of the support of the Lévy measure is 0.

Theorem 1.1 (Barndorff-Nielsen). Let u(x) the Lévy density for a distribution in P+ and
uε(x) Lévy densities, such that∫ ∞

0

u(x)dx = ∞,

∫ ∞
0

uε(x)dx <∞,

and

lim
ε→0

uε(x) = u(x), lim
ε→0

∫ ∞
x

uε(y)dy =
∫ ∞
x

u(y)dy,

pointwise for x > 0. Define

c(ε) =
∫ ∞

0

uε(x)dx

and

U+
nε(x) =

∑
k=1

(
n

k

)
(−1)n−kc(ε)n−k(U+

ε )∗k(x).

Then
F+(x, t) = lim

ε→0

∑
n≥1

U+
nε(x)

tn

n!
.

Here we use the notation

F+(x, t) =
∫ ∞
x

f(y, t)dy, U+
nε(x) =

∫ ∞
x

unε(y)dy,
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with

unε(x) =
n∑
k=1

(
n

k

)
(−1)n−kc(ε)n−ku∗kε (x). (1.1)

A family of truncated Lévy densities, that satisfies the assumption of the theorem is given, for
example, by uε(x) = u(x)1(ε,∞(x). Barndorff-Nielsen conjectured

lim
ε→0

U+
nε(x) = U+

n (x), F+(x, t) =
∑
n≥1

U+
n (x)

tn

n!

and

lim
ε→0

unε(x) = un(x), f(x, t) =
∑
n≥1

un(x)
tn

n!

for some limiting functions U+
n (x) and un(x). He showed that, for differentiable u(x), the sequence

u2ε(x) does in fact converge and has the limit

u2(x) =
2
x

(∫ x

0

u(y) (ū(x− y)− ū(x)) dy − ū(x)U+(x)
)
,

where ū(x) = xu(x), though it remained open, how to generalize that for un(x) with n ≥ 3.
Note that the difficulty is not mereley to justify an interchange of limits, but the fact that each

term in the alternating sum (1.1) diverges to infinity, yet massive cancellation yields convergence
of the sum in total.

2 Main results

Theorem 2.1. Assume that a Lévy density u(x) from P+ satisfies

(i)
∫ ∞

0

u(x)dx = ∞ (2.1)

(ii) u ∈ C∞(R+) (2.2)

(iii)
∫ ∞

0

e−θnxxn+1|u(n)|dx <∞ (2.3)

for some sequence θn > 0, n ∈ N. For ε > 0 let uε(x) = u(x)e−ε/x. Then Vn = (U+)∗n is C∞(R+)
and

lim
ε↓0

unε(x) = un(x), lim
ε↓0

U+
nε(x) = U+

n (x), ∀x ∈ R+, n ∈ N \ {0}. (2.4)

with un(x) = (−1)nV (n)
n (x) and U+

n (x) = (−1)n−1V
(n−1)
n (x). As a consequence f(x; t) and

F+(x; t) are entire functions in t for fixed x > 0 and

f(x; t) =
∞∑
n=1

tn

n!
un(x), F+(x; t) =

∞∑
n=1

tn

n!
U+
n (x). (2.5)

The proof uses Laplace transforms and mimicks the continuity theorem for densities with in-
tegrable transforms. To obtain uniform estimates in ε, the classical relation of smoothness and
integrability of derivatives of an original function and the decay of its Laplace transform in a
vertical strip is employed.

An interesting class of distributions is the class T2 of generalized convolutions of mixtures
of exponential distributions [Bon81, Bon82, Rog83]. They are characterised by a completeley
monotone Lévy density. All examples in [BN00] belong to this class.

Proposition 2.2. If the Lévy density u(x) is completely monotone and satisfies (2.1) then (2.2)
and (2.3) hold with arbitrary θn > 0.
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Remarks

• We use strong smoothness and integrability assumptions (yet we cover all examples given in
[BN00]) to obtain a strong result, an entire function with rather explicit Taylor coefficients.
We would like to mention the literature on the asymptotic behavior of F (x, t) as t→ 0, that
typically uses weaker (or even no) additional assuptions, eg [Lea87, Ish94, Pic97, RW00].

• An example where (2.1)–(2.3) are satisfied, but the corresponding distribution is not in T2 is
given by

u(x) = x−3/2esin(x). (2.6)

• An example where (2.1) and (2.2) are satisfied, but (2.3) fails for n ≥ 1 is given by

u(x) = x−3/2 sin(x−3)2. (2.7)

• The assertion, that the Vn are C∞ functions in the theorem is not redundant, as the convo-
lution of C∞ functions is in general not necessarily C∞. A striking counterexample is given
in [Ulu98].

3 Examples

Let us recall some examples for the series representation

f(x, t) =
∑
n≥1

un(x)
tn

n!
(3.1)

from [BN00].

• Positive α-stable laws S(α): In general (α 6= 1/2) there is no closed form expression for
f(x, t), but we have the series expansion (3.1) with

un(x) =
(−1)n−1

π
Γ(1 + nα) sin(nπα)x−1−α.

• Gamma distribution Γ(ν = 1, α = 1) The density is

f(x, t) =
1

Γ(t)
xt−1e−x

and the coefficients in (3.1) are given by

un(x) = x−1e−x
n−1∑
k=0

(n)kck lnn−k−1 x

where (n)k = n(n− 1) . . . (n− k + 1) and the coefficients ck arise in the expansion

1
Γ(1 + z)

=
∑
n≥0

cnz
n.

They can be expressed explicitely as

cn =
1

(n− 1)!
Yn−1

(
γ,−ζ(2), 2ζ(3), . . . , (−1)n−2(n− 2)!ζ(n− 1)

)
with Yn the complete exponential Bell polynomials [Com74], γ = 0.57221 . . . the Euler-
Masceroni constant, and ζ the Riemann Zeta function.

• Inverse Gaussian distribution IG(δ = 1, γ = 1) The density is

f(x, t) =
1√
2π
tetx−3/2e−(t2x−1+x)/2. (3.2)

and we obtain

un(x) =
n√
π

2−n/2x−1−n/2e−x/2Hn−1

(√
x

2

)
. (3.3)

with Hn denoting the Hermite polynomials.
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4 Further issues

• We currently investigate (with Ole Barndorff-Nielsen) multivariate versions (Rd+) of this re-
sult. It looks promising.

• More difficult is an extension to distributions on R as our method does not extend directly
to that case. Examples suggest that similar expansion should hold, eg for the Meixner
distribution [Sch02] with parameters µ = 0, δ = 1, α = 1, and β = 0 we have the density

f(x, t) =
1
π

22t−1 Γ(t+ ix)Γ(t− ix)
Γ(2t)

.

It can be expanded in a series

f(x, t) =
∑
n≥1

un(x)
tn

n!
, |t| < |x|

with
un(x) =

n

x sinh(πx)
Yn−1 (a1(x), . . . , an−1(x))

where
a1(x) = ψ(ix) + ψ(−ix) + 2 ln 2 + 2γ

and
an(x) = ψ(n)(ix) + ψ(n)(−ix)− (−1)n2n(n− 1)!ζ(n) (n ≥ 2).

Here Y denotes again the complete exponential Bell polynomials, γ is the Euler-Masceroni
constant, ψ is the digamma function, and ζ the Riemann zeta function. Note, however, that
here f(x, t) is not an entire function in t, due to the poles of the gamma function. Thus we
have to expect qualitative differences to the case P+.

• It is completely unknown whether one can weaken the assuptions or how to contstruct any
counterexamples in the present context. Using x−3/2

√
1− x1(0,1)(x) as a building block it

seems possible to construct a counterexample with divergence on a countable dense set, but
as we are concerned with densities only divergence on a set of positive measure should be
considered as a proper counterexample.

• Applications: As discussed in [Con02] the small time asymptotics of the Lévy transition
probabilities or densities can be useful to describe and characterize volatility surfaces derived
from Lévy process based option pricing models.
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Portfolio selection in Lévy markets

via Hellinger processes

T. R. Hurd∗, McMaster University

Keywords: Information theory, optimal portfolios, Merton’s problem, Lévy processes, primal and
dual problems, jump diffusions

1 Overview

This talk was based on the joint work [2] with Tahir Choulli. In this paper we studied Merton’s
problem [5] of finding for a given utility function U(x) a wealth process X̂t which maximizes the
expected utility of wealth at time T > 0, that is it solves the “primal problem”

u(x) = sup
X∈A(x)

E(U(XT )) (1.1)

where A(x) is a class of admissible wealth portfolios with initial value x at t = 0. [4],[6] have
proved fundamental results for markets modelled by general semimartingales by applying martin-
gale techniques to derive the equivalent “first dual problem”

v(y) = inf
Y ∈A∗(y)

E(V (YT )) (1.2)

where A∗(y) is an appropriately defined “dual” to A(x). In ideal cases, the solution Ŷ defines a
measure Q equivalent to the physical measure P which is interpreted as the “pricing” martingale
measure, and which can be used for example in expectation pricing of derivative securities in
the market. Counterexamples in the general semimartingale theory given in [4] show that the
solution of the dual problem is sometimes a supermartingale, not a martingale. When this happens,
the standard financial interpretation of martingale measures becomes obscured. This raises the
important question of when (1.2) may be replaced by the easier (and financially natural) “second
dual problem”

v(y) = inf
Y ∈Ma(y)

E(V (YT )) (1.3)

where Ma(y) denotes a space of positive martingales (which therefore yields equivalent martingale
measures).

In [2] we address this question by analyzing in complete detail three canonical utility functions
−e−x, xp/p and log x in a market of the jump–diffusion type modelled by an exponentiated Lévy
process in which the log stock returns jumps may be unbounded. For each utility, we solve the
primal problem, we solve the second dual problem (1.3), and then compare the results to give
an explicit check on the dual correspondence which is the main result of [4]. Our findings show
that −e−x leads to a picture free of any pathological counterexamples. However, for xp/p and
log x, no borrowing from the bank account or shortselling of the stock will be admissible which
leads to the consequence that for certain parameters the solution of (1.2) is a supermartingale not
a martingale and thus (1.3) cannot give the correct solution. In exactly the same cases, we will
also observe that the solution of (1.3) yields a martingale measure Q which is not equivalent to
the physical measure P (in other words, Q assigns zero probability to some events with positive
P–probability). These two pathologies seem to be directly related each other and to the presence
of no borrowing/shortselling constraints in the problem. Our solution of the dual problem (1.3)
makes use of a technique introduced in [1] which shows that the pricing measure arising from (1.3)
is in each case identical to the equivalent martingale measure which minimizes a corresponding
“generalized Hellinger process”.

∗Research supported by the Natural Sciences and Engineering Research Council of Canada and MITACS, Canada

143
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2 The problem

The financial market consists of a risk-free asset (bank account) B given by Bt = ert and a stock S
(risky asset). For simplicity, we take the interest rate r = 0. The stock is given as the Doléans–Dade
exponential B−1S = S0E(L) of the following Lévy process (stationary process with independent
increments)

Lt = (b − r)t+ σWt +
∫ t

0

∫
z I{|z|≤1} Ñ(ds, dz) +

∫ t

0

∫
z I{|z|>1} N(ds, dz). (2.1)

Here E(L) is the unique solution to the (SDE) dK = K−dL, K0 = 1 and σ > 0, b are constants
Ñ is the compensated Poisson random measure given by Ñ(dt, dz) = N(dt, dz) − dt ν(dz). In
addition to standard assumptions on the Lévy measure, we assume that jump sizes are unbounded

supp(ν) = [−1,∞).

An ideal market without transaction costs and liquidity effects is assumed.
Consider an investor who wants to invest in their wealth in this market in an optimal way

over the period [0, T ]. Letting πt be the wealth invested at time t in the stock and making the
usual self–financing requirement, the wealth process Xπ,x

t which follows from an initial endowment
x = X0 is given by

Xπ,x
t = x+

∫ t

0

bπsds

+
∫ t

0

πs

[
σdWs +

∫
(zI{|z|≤1}Ñ(ds, dz) + zI{|z|>1}N(ds, dz))

] (2.2)

A dynamical version of the primal Merton problem is defined by

u(t, x) = sup
π∈A(t,x)

E (U(Xπ
T ) | Xπ

t = x) . (2.3)

where U is a strictly increasing, strictly concave, twice continuously differentiable function. This
leads to the study of the HJB equation for u(t, x):

∂u
∂t + supπ∈R

[
πbux + 1

2π
2σ2uxx +

∫ [
u(x+ πz)

−u(x)− πzI{|z|≤1}ux
]
ν(dz)

]
= 0 t ∈ [0, T )

u(T, x) = U(x) x ∈ R+

(2.4)

As is now well known, the primal problem (1.1) can also be addressed by focusing on the
Legendre transform V of U defined by

V (y) = sup
x>x

[U(x)− xy]. (2.5)

which is a strictly convex, twice differentiable function on [0,∞). Now one studies the “first dual
problem”

v(y) = inf
Y ∈A∗(0,y)

E (V (YT )) . (2.6)

where A∗(0, y) is dual to A(0, x) with y = u′(x). Under some circumstances, [4],[6] have shown
that the functions u(x) and v(y) can themselves be obtained from each other by using Legendre
transform:

v(y) = sup
x≥x

[u(x) − xy], u(x) = inf
y≥0

[v(y) + xy] x, y ≥ 0 (2.7)

and the optimizers X̂(x), Ŷ (y) with y = u′(x) are related by

X̂(x) = −V ′(Ŷ (y)), Ŷ (y) = U ′(X̂(x)) (2.8)
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If we replace A∗(0, y) by a space Ma(y) of local martingales Y such that SY is a local martin-
gale, we obtain the “second dual problem”

v(y) = inf
Y ∈Ma(y)

E (V (YT )) . (2.9)

The general Y ∈Ma(y) is given by E(M) for a (local) martingale of the form

Mt =
∫ t

0

β(ω, s)dWs +
∫ t

0

∫
(Z(ω, s−, z)− 1)Ñ(ds, dz) (2.10)

where β and Z satisfy

b+ σβt +
∫
z
[
Zt(z)− I{|z|≤1}

]
ν(dz) = 0, dt-a.e. (2.11)

In some cases, the first and second dual problems have the same solution Ŷ which can taken to be
the conditional density Ŷt = E(dQ̂/dP |Ft) of an absolutely continuous martingale measure Q̂� P
interpreted as the martingale measure (pricing measure) which captures the risk preferences coded
into the utility function U .

Three important special cases of utility functions and their Legendre transforms are treated in
[2]:

U (q)(x) = xp/p, V (q)(y) = −yq/q, (2.12)
p = q/(q − 1) ∈ (−∞, 1) \ {0}.

UL(x) = log x, V L(y) = − log y − 1. (2.13)

UE(x) = −e−x, V E(y) = y(log y − 1). (2.14)

3 Results

The method of generalized Hellinger processes developed in [1] lead to the following result

Theorem 3.1. Let M be a local martingale in the form of (2.10) such that 1+∆M > 0 P -almost
surely and let Y = E(M). In the following, h(q), hL, hE are predictable increasing processes and

1. for 0 < q < 1, the process V (q) = −Y q/q is a negative local submartingale which can be
written

V
(q)
t = −

∫ t

0

V
(q)
s− dh(q)

s + local martingale

h
(q)
t (β, Z) =

1
2
q(1− q)

∫ t

0

β2
sds

−
∫ t

0

∫
[Zs(z)q − 1− q (Zs(z)− 1)] ν(dz)ds;

(3.1)

2. for q < 0, the process V (q) = −Y q/q is a positive local submartingale which can be written

V
(q)
t =

∫ t

0

V
(q)
s− dh(q)

s + local martingale

h
(q)
t (β, Z) =

1
2
q(q − 1)

∫ t

0

β2
sds

+
∫ t

0

∫
[Zs(z)q − 1− q (Zs(z)− 1)] ν(dz)ds;

(3.2)
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3. The process V L = − log(Y )− 1 is a local submartingale which can be written

V Lt = hLt + local martingale

hLt (β, Z) =
1
2

∫ t

0

β2
sds

+
∫ t

0

∫
[− log(Zs(z)) + Zs(z)− 1] ν(dz)ds;

(3.3)

4. The process V E = Y (log(Y )− 1) is a local submartingale which can be written

V Et =
∫ t

0

Ys− dhEs + local martingale

hEt (β, Z) =
1
2

∫ t

0

β2
sds

+
∫ t

0

∫
[Zs(z) log(Zs(z))− Zs(z) + 1] ν(dz)ds.

We then defined Hellinger–like integrals for the above functions V by

Ht = E(V (Yt)) (3.4)

for each t ≥ 0. Denoting by Kt the space of Ft− random variables (β, Y ), Y ≥ 0 which satisfy
(2.11), we then proved the result

Theorem 3.2. Consider one of the four utilities identified in Theorem 3.1. Let (β∗t , Z
∗
t ) solve the

problem

inf
(β,Z)∈Kt

dht(β, Z)
dt

(3.5)

for all t ∈ [0, T ]. Then (β∗t , Z
∗
t ) can be taken as a deterministic process and Y ∗ = yE(M(β∗, Z∗))

solves the second dual problem
inf

Y ∈Ma(y)
E(V (YT )) (3.6)

This reformulation of the second dual problem leads to a complete solution of the stated prob-
lem. The exponential and power law utilities illustrate the features of the general problem.

Theorem 3.3. Let the utility function be U(x) = −e−x.

1. The solution of the primal problem is the pair (u, X̂T (x)) where

u(t, x) = −eKE(T−t)−x (3.7)

and X̂T (x) is given by (2.2) with the constant trading strategy πt = πE which is the unique
minimizer of the convex function

G(π) = −bπ +
1
2
σ2π2 +

∫
[e−πz − 1 + πzI{|z|≤1}]ν(dz) (3.8)

and KE = G(πE).

2. The solution of the second dual problem is the pair (v, ȲT (y)) where

v(t, y) = y(log y − 1 +KE(T − t)). (3.9)

and ȲT (y) = yE(M)T where

Mt := −
∫ t

0

πEσdWs +
∫ t

0

∫
[e−π

Ez − 1]Ñ(ds, dz) (3.10)
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3. The solutions to the two dual problems (2.6) and (2.9) coincide.

Remarks:

1. Since the wealth process is unconstrained, the two dual problems have the same solution.

2. The quantity E (ZT logZT ) is the entropy of P relative to Q and we see that the solution of
the resulting optimal problem gives the “minimal entropy martingale measure” put forward
by Frittelli [3].

Theorem 3.4. Let the utility function be U(x) = xp/p for p ∈ (−∞, 0)∪(0, 1) and let q = p/(p−1).

1. The solution of the primal problem is the pair (u, X̂T (x)) where

u(t, x) = eK
(p)(T−t) xp/p (3.11)

and X̂T (x) is given by (2.2) with the trading strategy πt = φ(p)X̂t(x). The constants K(p), φ(p)

are determined by the concave function

F (φ) = bφ+ (p− 1)σ2φ2/2

+ p−1

∫
[(1 + φz)p − 1− pφzI{|z|≤1}]ν(dz)

(3.12)

K(p) = pF (φ(p)) where

(a) If F ′(0) < 0, φ(p) = 0;
(b) If F ′(1) > 0, φ(p) = 1;
(c) If F ′(1) ≤ 0 ≤ F ′(0), φ(p) ∈ [0, 1] is the unique root of F ′(φ) = 0.

2. The solution of the first dual problem is the pair (v, ŶT (y)) where

v(t, y) = −e−K
(p)(T−t)(q−1) yq/q (3.13)

and ŶT (y) = yE(M)T where

Mt :=
∫ t

0

(p− 1)φ(p)σdWs +
∫ t

0

∫
[(1 +φ(p)z)p−1− 1]Ñ(ds, dz)−

∫ t

0

φ(p)F ′(φ(p))ds (3.14)

3. The solution of the second dual problem (2.9) is the pair (ṽ, ȲT (y)) where

ṽ(t, y) = −eK(q)(t−T )(q−1) yq/q (3.15)

and ȲT (y)) = yE(M̄)T with

M̄t :=
∫ t

0

(p− 1)φ̃(p)σdWs +
∫ t

0

∫
[max(1 + φ̃(p)z, 0)p−1 − 1]Ñ(dtdz). (3.16)

Here φ̃(p) is the unique root of the equation

b+ (p− 1)σ2φ+
∫

[z(max(1 + φz, 0))p−1 − zI≤]ν(dz) = 0 (3.17)

4. The solutions to the two dual problems (2.6) and (2.9) coincide if and only if F ′(1) ≤ 0 ≤
F ′(0).

Remarks:

1. If F ′(0) ≤ 0 the optimal strategy is the risk free strategy X̂t = Bt because the mean rate
of return of the stock is lower than the risk–free rate. In the presence of unbounded jumps
short–selling the stock involves the risk of a negative portfolio value, and thus the optimal
solution has zero investment in the risky asset.

2. If F ′(1) ≥ 0, then (φ(p),K(p)) = (1, F (1)), and the solution is X̂t = St, the maximally risky
strategy which can be tolerated without violating the no–borrowing constraint.

3. We see from the equations for (φ(p),K(p)) that Ŷ is a P–martingale if and only if φ(p)F ′(φ(p)) =
0 (i.e. F ′(1) ≤ 0). If F ′(1) > 0, then Ŷ is a supermartingale. One can also check that SŶ is
a P–martingale if and only if F ′(0) ≥ 0. If F ′(0) < 0 then SŶ is only a supermartingale.
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Small deviations property and its application

Yasushi ISHIKAWA

1 Introduction

Let Xt be an Rd valued, cádlàg Lévy process on the probability space (D,F , P ), with the initial
value X0 = o. Here D = D([0, T ],Rd) denotes the space of cádlàg trajectries from [0, T ] to Rd

attached with the Skorohod topology.
We say X has a small deviations property if for all T > 0 for all ε > 0

P (sup
t≤T

|Xt| < ε) > 0. (1.1)

This property seems to have first appeared in [3], Lemma 8 in 1977. Before that this term
seems to have been studied in connection with the random walk.

The process X has a representation

Xt = d.t+QBt +
∫ t

0

∫
|z|≤1

zµ̃(dsdz) +
∫ t

0

∫
|z|>1

zµ(dsdz). (1.2)

Here Bt denotes an Rm-valued Wiener process, Q a d×m-matrix, µ a Poisson random measure on
Rd such that E[µ(dsdz)] = ds.dν(z), where ν is a measure on Rm such that

∫ |z|2
|z|2+1ν(dz) < ∞,

and µ̃ = µ− E[µ].
We define the subspace

L =
{
x ∈ Rd;

∫
|z|≤1

| < x, z > |ν(dz) < +∞
}
. (1.3)

This denotes the set (cone) consisting of directions of finite variations of ν.
We write πL the orthonormal projection (in Rd) to L, and put νL ≡ π∗Lν = ν ◦ πL, and

aL ≡
∫
|z|≤1 zνL(dz).

We further put H = Q(Rd) and denote by L′ the supplementary orthogonal projection of L∩H
in L, that is, (L ∩H)⊥ ∩ L. We remark that if Q ≡ 0, then L′ = L.

For η ∈ (0, 1], let νη ≡ ν|{|z|≤η} and let Bη be the convex cone generated by {0} and supp νη.
We write

B =
⋂

η>0
Bη (1.4)

and

B′ =
⋂

η>0
B̄ηL′ , (1.5)

where BηL′ ≡ πL′Bη. Here ¯ means the closure in the euclidian topology.

Proposition 1.1 ([20]). X has small deviations property iff

d ∈ π−1
L′ (aL′ − B′). (1.6)

Intuitively, this condition means that the effect of the infinitesimal drift aL can be compensated
by the small jump part B plus the apparent drift d.
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Extension of the definition.
Let Yt be an Rd-valued strong Markov process given by the SDE : Y0(y) = y,

Yt(y) = y +
∫ t

0

a(Ys(x))ds +
∫ t

0

∫
|z|≤1

b(Ys−, z)µ̃(dsdz) +
∫ t

0

∫
|z|>1

b(Ys−, z)µ(dsdz). (1.7)

Then Yt is a strong Markov process, which has an infinitesimal generator A given by

Af(x) = < grad f(x), a(x) > +∫ t

0

∫
|z|≤1

[f(x+ b(x, z))− f(x)− < grad f(x), b(x, z) >]ν(dz)

+
∫ t

0

∫
|z|>1

[f(x+ b(x, z))− f(x)]ν(dz).

We assume the coefficient functions a(x), b(x, z) satisfy that for each z, y 7→ a(y) and y 7→ b(y, z)
are smooth,

b(y, z) = b̃(y).z + b′(y, z),

where b̃ is a d × m-matrix, and |b′(y, z)| ≤ C|z|α for some α ∈ (1, 2]. This SDE has an unique
solution Yt for each y. Then Yt can be decomposed by, given η > 0,

Yt(y) = y +
∫ t

0

ã(Ys(x))ds+

∫ t

0

∫
Rm\{0}

b′(Ys−, z)µ̃(dsdz) +
∫ t

0

∫
|z|≤η

b̃(Ys−).zµ̃(dsdz) +
∫ t

0

∫
|z|>η

b̃(Ys−).zµ(dsdz).

Here
ã(x) = a(x) −

∫
|z|≤η

b′(x, z)ν(dz).

We say the Felller process Yt has a small deiations property iff for all T > 0 for all ε > 0

P (sup
t≤T

|Yt − y| < ε) > 0. (1.8)

For a technical reason which is used in Sect. 3, we put Ỹ ηt by

Ỹ ηt =
∫ t

0

∫
|z|≤η

b̃(Ys−).zµ̃(dsdz) +
∫ t

0

∫
|z|≤η

b′(Ys−, z)µ(dsdz),

Ỹ η0 = 0.

We give here a sufficient conditions for Ỹ ηt to have the small deviations property, namely (A.1)
and (A.2) below. (cf. [8], [9], [18])

To state (A.1), we put for 0 < ρ < η,

uηρ =
∫
ρ≤|z|≤η

z ν(dz).

We say that X is quasi-symmetric if for every η > 0, there exists a sequence {ηk} decreasing to 0
such that ∣∣uηηk

∣∣ −→ 0 (1.9)

as k → +∞. This means that for every η the compensation involved in the martingale part of Ỹ η

is somehow negligible, and of course this is true when X is really symmetric.
We put the sets (Jn)n∈N by

J0 = {0}
J1 = supp ν
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. . .

Jn =
n∑
i=1

J1 in the sense of vector sum .

We put J =
∑

n≥1 Jn. Now let αηρ denote the smallest angle between the direction uηρ =
∫ η
ρ
zν(dz)

and the set J |{|z|=γρ}. We put the following condition:

(A.1) For every η > 0 such that (1.7) does not hold, there exist γ = γ(η) > 1 and a sequence {ρk}
tending to 0 such that

αηρk
= o(

1
|uηρk |

)

as k →∞.

This condition is satisfied if supp ν contains a sequence of spheres whose radius tend to 0.

(A.2) There exists β ∈ [1, 2) and positive constants C1, C2 such that for any ρ ≤ 1

C1 ρ
2−βI ≤

∫
|z|≤ρ

zz∗ν(dz) ≤ C2ρ
2−βI. (1.10)

If Ỹ ηt has the small deviations property for each η > 0 then we have the support theorem.
See [8].

2 Analytic approach

There are some attemps to measure the small ball probability P
(
supt≤T |Yt− y| < r

)
analytically.

For example, [15], [16], [4], [5], [2].
We may regard the infinitesimal generator A of Y. as a pseudodifferential operator

Af(x) = P (x,D)f(x) ≡ (1/2π)d
∫
ei<x,ξ>p(x, ξ)f̂(ξ)dξ,

where
p(x, ξ) = −ia(x)ξ +

∫
{ei<y,ξ> − 1− i < y, ξ >

1 + |y|2 }K(x, dy). (2.1)

Here the kernel K is given by∫
B

K(x, dy) =
∫

1(b(x, z) ∈ B)ν(dz), B ⊂ Rd.

By the assumptions on the smoothness of x 7→ a(x) and x 7→ b(x, z), and by the definition of ν(dz),
x 7→ p(x, ξ) is continuous for each ξ.

We put for ε > 0,
H(x, ε) ≡ sup

|x−y|≤2ε

sup
|η|≤1

|p(y, η/ε)|. (2.2)

Then it holds ([15], Lemma 4.1) for all T > 0 and all ε > 0

P
(

sup
t≤T

|Yt − y| ≥ ε
)
≤ cdTH(y, ε), (2.3)

where cd is an absolute constant. Hence

P
(

sup
t≤T

|Yt − y| < ε
)
≥ 1− cdTH(y, ε). (2.4)

This implies that if R.H.S. is positive, then we have the small deviations property. Obviously this is
not possible for large T > 0. But there are some techniques to this overcome, as will be mentioned
below.

We state here a small result for the small deviations property.
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2nd MaPhySto Lévy Conference, January 2002

Theorem 2.1. Suppose that ε 7→ H(x, ε) is bounded below for each x, that is, for each x there
exists M = Mx > 0 such that for all ε > 0

|H(x, ε)| ≤M. (2.5)

Then we have (1.6).

Proof. We put T0 = T0(x, ε) ≡ (1/2). 1
cd.H(x,ε) , so that for t < T0

P
(

sup
t≤T

|Yt − y| < ε
)
≥ 1− (1/2) = 1/2 > 0.

By the assumption (2.5), we have

T0 ≥ (1/2).(1/cd).(1/M) > 0 (2.6)

uniformly in ε.
Given ε > 0, we devide the interval [0, T ] by 0 < T0 < 2T0 < · · · < (n− 1)T0 < T ≤ nT0, where

n = n(ε) ∼ T

T0
= 2TcdH(x, ε) (≤ 2TcdM) (2.7)

as T →∞.
We will estimate the small ball probability for t < T0

P
(

sup
s≤t

|Ys − y| < ε/n(ε)
)
≥ 1− cdtH(x, ε/n(ε)). (2.8)

We remark
H(x, ε/n(ε)) = sup

|x−y|≤2ε/n(ε)

sup
|η|≤1

|p(y, ηn(ε)/ε)| ≤M.

Hence if we choose t < 1
2cdM

, then we have

P
(

sup
s≤t

|Ys − y| < ε/n(ε)
)
≥ 1−

cdH(x, ε
n(ε) )

2cdM
> 1− (1/2) = 1/2 > 0.

Hence for t < T0 we have
P
(

sup
s≤t

|Ys − y| < ε/n(ε)
)
> 1/2 > 0 (2.9)

by (2.6).
Now we construct processes Y 0

s , Y
T0
s , . . . , Y

(n−1)T0
s for s ∈ [0, T0) by

Y 0
s = Ys,

Y T0
s = Ys ◦ θT0 = YT0+s − YT0 ,

Y 2T0
s = Ys ◦ θ2T0

= Y2T0+s − Y2T0 ,

. . . . . .

Y (n−2)T0
s = Ys ◦ θn−2

T0
= Y(n−2)T0+s − Y(n−2)T0 ,

and

Y (n−1)T0
s = Ys∧T−(n−1)T0 ◦ θn−1

T0
= Y(n−1)T0+s∧T − Y(n−1)T0 .

Here θt is the translation operator associated with the strong Markov process Y.. Then by the
above estimate we have

P
(

sup
s≤T0

|Y 0
s − y| < ε/n(ε)

)
> 1/2,

P
(

sup
s≤T0

|Y T0
s | < ε/n(ε)

)
> 1/2,

. . . . . .

P
(

sup
s≤T0

|Y (n−1)T0
s | < ε/n(ε)

)
> 1/2.

(2.10)
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By the Markov property of the original Ys, the processes Y 0
s , Y

T0
s , . . . , Y

(n−1)T0
s (s ≥ 0) are

conditionally independent. Hence

P
(

sup
s≤T

|Ys − y| < ε
)

(2.11)

≥ P (x)
(

sup
s≤T0

∣∣Y 0
s − y

∣∣ < ε/n(ε);P
(
Y 0

T0

)(
sup
s≤T0

∣∣Y T0
s

∣∣ < ε/n(ε);P
(
Y

T0
T0

)
(. . .

. . . P

(
Y

(n−2)T0
T0

)(
sup
s≤T0

∣∣Y (n−1)T0
s

∣∣ < ε/n(ε)
)
. . .
)))

= P
(

sup
s≤T0

∣∣Y 0
s − y

∣∣ < ε/n(ε); sup
s≤T0

∣∣Y T0
s

∣∣ < ε/n(ε); . . . ; sup
s≤T0

∣∣Y (n−1)T0
s

∣∣ < ε/n(ε)
)

= P
(

sup
s≤T0

∣∣Y 0
s − y

∣∣ < ε/n(ε)
)
. . . P

(
sup
s≤T0

∣∣Y (n−1)T0
s

∣∣ < ε/n(ε)
)

≥ (1/2)n(ε) > 0

which is positive for all ε > 0 and all T > 0. Hence we have a small deviations property. q.e.d.
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Séminaire de Probabilités XXVIII (J. Azéma and M. Yor, eds.), Lecture Notes in Math. 1583,
Springer-Verlag, Berlin, 1994, pp. 36–48.
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Fractional derivatives, pseudo-differential

operators and Lévy(-type) processes

Niels Jacob

Let G ⊂ Rn be open, λ(n)(Gc) > 0 and ∂G smooth. Further let q : G×Rn → C be a continuous
function such that q(x, ·) : Rn → C is negative definite for all x ∈ G. A central problem is to find
conditions in order that (x, ξ) 7→ q(x, ξ) is the symbol of a Markov process with state space G, i.e.,
when does exist a Markov process ((Xt)t≥0, P

x)x∈G such that for (x, ξ) ∈ G× Rn

q(x, ξ) = − lim
t→0

Ex(ei(Xt−x)·ξ)− 1
t

holds. Clearly this leads to boundary value problem for the operator −q(x,D), but if q(x,D) does
not have a dominating diffusion part, so far almost nothing is known about such type of (Wentzel)
boundary value problems.

Certain fractional derivatives have on C∞0 (G) for some special sets G a representation as pseu-
dodifferential operators with negative definite symbols and some of their extensions allow to study
the behaviour at the boundary even in situations when the transmission condition does not hold.
Thus they may provide us with non-trivial examples for solving related Wentzel boundary problem.

In the talk we will discuss some of such examples.
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Some limit theorems for the Euler scheme

for Lévy driven stochastic differential equations

Jean JACOD ∗

We consider the following stochastic differential equation (SDE):

Xt = x0 +
∫ t

0

f(Xs−)dYs (1)

where f denotes a C3 (three times differentiable) function and Y is a Lévy process with charac-
teristics (b, c, F ) with respect to the truncation function h(x) = x1{|x|≤1}, that is

E
(
eiuYt

)
= exp t

(
iub− cu2

2
+
∫
F (dx)

(
eiux − 1− iux1{|x|≤1}

))
. (2)

We also suppose that f is such that (1) admits a (necessarily unique) non-exploding solution (this
is the case for example if f has at most linear growth).

A number of papers have been devoted to studying the rate of convergence of the Euler scheme
for this equation. That is, the approximated solution is defined at the times i/n, by induction on
the integer i, according to the formula:

Xn
0 = x0, X i

n
= X i−1

n
+ f

(
Xn

i−1
n

)(
Y i

n
− Y i−1

n

)
. (3)

This scheme allows for numerical computations, using Monte-Carlo techniques, provided one can
simulate the increments Yt − Ys of the Lévy process Y : A first problem consists in computing an
approximation of the expected value E(h(X1)) for smooth enough functions g, and we need to
evaluate the error an(h) = E(h(Xn

1 ))−E(h(X1)). A second problem is to compute an approxima-
tion of the law of some functional of the path, like e.g. supt≤1Xt, and for this we need to evaluate
the (discretized) error process, which is defined as

Unt = Xn
[nt]/n −X[nt]/n. (4)

Problem 1 has been extensively studied when Y is continuous (i.e. F = 0) and c > 0: we can
quote, with increasing order of generality as to the smoothness of f and h, the works of Talay
& Tubaro [6] and Bally & Talay [1], [2], where it is proved that an(h) is of order 1/n and where
an expansion of an(h) as increasing powers of 1/n is even exhibited. In Protter & Talay [5] the
same problem is studied for discontinuous Y , but they only prove that an(h) = O(1/n) and this
rate is probably not optimal; see also a forthcoming paper by Kohatsu-Hida & Yoshida [4] for an
equation driven by a Wiener process plus a Poisson random measure. The techniques are essentially
analytical.

For problem 2 one uses stochastic calculus techniques, and the idea is to find a rate un, that is
a sequence going to ∞ such that the sequence (unUn) is tight; the rate is called sharp if further
the sequence (unUn) admits some limiting processes that are not identically 0. Even better is the
case when the whole sequence (unUn) converges to a non-degenerate limit. In [3] we have proved
that (more precise results are recalled below):

(1) If c > 0 then a sharp rate is un =
√
n, and the sequence (

√
nUn) converges in law to a

non-degenerate limit.

(2) If c = 0 and F is a finite measure, hence Y is a compound Poisson process plus a drift, then
a sharp rate is un = n if the drift b is not 0; when b = 0 the rate is “infinite”, meaning that
for any t we have Uns = 0 for all s ≤ t for n large enough.

∗Laboratoire de Probabilités et Modèles Aléatoires (CNRS UMR 7599) Université Pierre et Marie Curie, Tour 56,
4 Place Jussieu, 75 252 - Paris Cedex, France. e-mail: jj@ccr.jussieu.fr

156



Jean Jacod

(3) If c = 0 and F is an infinite measure, then a rate is un =
√
n, but this rate is not sharp in

the sense that (
√
nUn) goes in law to 0.

Although the implicit assumption that the increments of Y can be simulated is somewhat
unrealistic except in particular situations, which however include the case where Y is a symmetric
stable process plus a drift (see the discussion in Protter & Talay [5]), finding the exact rate of
convergence is at least of much theoretical importance. Here we aim to find sharp rates for Problem
2, when c = 0 and F (R) = ∞. The crucial factor is the behaviour of the Lévy measure F near 0
(that is, how many“small jumps”we have), which will be expressed through the following functions
on R+:

θ+(β) = F ((β,∞)), θ−(β) = F ((−∞,−β)), θ(β) = θ+(β) + θ−(β). (5)

We introduce several assumptions, in which α denotes our basic index; here and below C denotes
a constant which may change from line to line, and may depend on F just here, and also on b and
f further below:

Hypothesis (H1-α): We have θ(β) ≤ C
βα for all β ∈ (0, 1]. 2

Hypothesis (H2-α): We have βαθ+(β) → θ+ and βαθ−(β) → θ− as β → 0 for some constants
θ+, θ− ≥ 0, and further θ := θ+ +θ− > 0. We also set θ′ = θ+−θ−, and we observe that θ(β) ∼ θ

βα

as β → 0. 2
Hypothesis (H3): The measure F is symmetrical about 0. 2
Hypothesis (H4): We have b = 0. 2

Note that (H2-α) ⇒ (H1-α), and that (H1-2) always holds because F integrates x 7→ |x|2
∧

1,
and (H1-0) holds iff the measure F is finite, a case which we exclude. Under (H3) we have (H2-α)
as soon as θ(β) ∼ θ

βα as β → 0, and θ+ = θ− = θ/2.
Unfortunately we cannot totally fulfill our aim. But we find rates un that are bigger than

√
n.

And we prove that these rates are sharp and even that unUn converges in some reasonably general
circumstances. Let us single out five different cases:

• Case 1: We have (H1-α) for some α > 1; then un =
(

n
logn

)1/α

.

• Case 2-a: We have (H1-α) for α = 1; then un = n
(logn)2 .

• Case 2-b: We have (H1-α) for α = 1 and (H3); then un = n
log n .

• Case 3-a: We have (H1-α) for some α < 1; then un = n.

• Case 3-b: We have (H1-α) for some α < 1 and (H3) and (H4); then un =
(

n
logn

)1/α

.

Clearly (H1-α) ⇒ (H1-α′) if α < α′, while the rate is better (i.e. bigger) when α decreases: one
should take the smallest possible α for which (H1-α) holds, although of course there might not be
such a minimal α. Observe also that the rate in Case 2-b (resp. 3-b) is strictly bigger than in
Case 2-a (resp. 3-a): the symmetry of the driving process improves the quality of the Euler scheme
under (H1-α) when α ≤ 1, while it does not affect the rate when α > 1.

Now we describe the results of this paper. The first one concerns tightness (the assumption of
f is always that it is C3 and that Equation (1) has a non-exploding solution; this is not repeated
in the next theorems):

Theorem 1. Assume that c = 0 and that (H1-α) holds for some α ∈ (0, 2). Then with the above
choice of un the sequence (unUn) is tight.

In Case 3-b, this result improves on Protter & Talay [5]: for every Lipschitz function h it gives
an(h) = O((log n/n)1/α) instead of an(h) = O(1/n).

The results about limits necessitate the stronger (H2-α) instead of (H1-α), except in Case
3-a; in all cases except 2-a the description of the limit invloves another process or additional
random variables which are independent of Y , so we might need to enlarge the probability space
to accomodate these.
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Theorem 2. Assume that c = 0 and that (H1-α) holds for some α ∈ (0, 2). Then in the following
cases and with un as above the sequence (Y

n
, nUn) converges in law (for the Skorokhod topology)

to (Y, U), where U is the unique solution U of the linear equation

Ut =
∫ t

0

f ′(Xs−)Us−dYs −Wt, (6)

and where the process W may be described as follows:

a) In Case 1, and if further (H2-α) holds, then

Wt =
∫ t

0

f(Xs−)f ′(Xs−)dVs, (7)

where V is another Lévy process, independent of Y and characterized by

E(eiuVt) = exp t

∫
α

2
(
(θ2+ + θ2−)1{x>0} + 2θ+θ−1{x<0}

) 1
|x|1+α (eiux − 1− iux) (8)

(hence V is a stable process with index α).

b) In Case 2-a, and if further (H2-α) holds for α = 1, then

Wt = − (θ+ − θ−)2

4

∫ t

0

f(Xs−)f ′(Xs−)ds, (9)

and w < e even have that unUn converges to U in probability (locally uniformly in time).

c) In Cases 2-b and 3-b, and if further (H2-α) holds, then we have (7), where V is another Lévy
process, independent of Y and characterized by

E(eiuVt) = exp t

∫
θ2α

4
1

|x|1+α (eiux − 1− iux1{|x|≤1}) (10)

(hence V is a symmetric stable process with index α).

d) In Case 3-a, then

Wt = d
∑

n:Rn≤t
([f(XRn)− f((XRn−)] ξn

+f ′(XRn−)∆XRn(1 − ξn)) +
d2

2

∫ t

0

f(Xs−)f ′(Xs−)ds. (11)

where d = b −
∫
{|x|≤1} xF (dx) and (ξn)n≥1 is a sequence of i.i.d. variables, uniform on [0, 1]

and independent of Y , and (Rn)n≥1 is an enumeration of the jump times of Y (or of X).

Remark 1: For comparison with the cases excluded here and studied in [3], let us mention that
if c = 0 and F is a finite measure (i.e. (H1-0) holds), then (d) above holds without change. When
c > 0 the sequence (Y

n
,
√
nUn) converges in law to (Y, U), where U solves (6) with

Wt =
√
c
∑

n:Rn≤t

(
[f(XRn)− f((XRn−)]

√
ξnκn

+f ′(XRn−)∆XRn

√
1− ξn κ

′
n

)
+

c√
2

∫ t

0

f(Xs−)f ′(Xs−)dBs

and where B is a standard Brownian motion, and ξn is uniform over [0, 1], and κn and κ′n are
standard normal variables, all these being independent one from the other and of Y as well. 2
Remark 2: When θ+ = θ− (for example under (H3)) then (8) and (10) agree (but of course for
different values of α). In (b) (resp. (d)), if θ′ = θ+ − θ− = 0 (resp. d = 0) the limiting process U
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is identically 0. So these results are interesting only when θ′ 6= 0 (resp. d 6= 0), implying that Y is
dissymmetric, and otherwise the rate is not sharp. 2
Remark 3: In (b) we have convergence in probability, so there ought to be an associated “central
limit theorem”: this suggests that we can improve the Euler scheme and simultaneously improve
the rate, but probably not more than going to n/ logn in view of (c): the improvement is thus
negligible on the numerical point of view. When d = 0 in (d) it is also likely that there is a rate

in between n and
(

n
logn

)1/α

for which unUn converges to a non-trivial process, but we have made
no attempt towards this case. 2
Remark 4: It would be possible, at the price of even more complicated computations, to accomo-
date other forms for (H2-α): for example if θ+(β) and θ−(β) are of order β−α

(
log 1

β

)γ
as β → 0

for some α ∈ (0, 2) and γ ∈ R. On the contrary, it seems rather difficult to express the rates un
directly in terms of the two functions θ+(β) and θ−(β). 2

The assumption that f is C3 is certainly too strong. It is used only in Case 1; for the other
cases, that f is C2 is enough. Finally let us mention that, for the sake of notational simplicity, we
have considered only the 1-dimensional case, but everything goes through in the multi-dimensional
case as well.
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Self-similar processes with independent

increments associated with Lévy and Bessel

processes.

Monique Jeanblanc, Jim Pitman and Marc Yor

Extended abstract of a paper to appear in Stoch. Proc. and its app.

A particularly interesting subclass of infinitely divisible laws (on R, or R+ to be concrete) is
the so-called class (L) of limit laws which was studied by P. Lévy (1937) and M. Loeve (1945), to
start with.

Limit laws are precisely the distributions of random variables X which satisfy : for every

u ∈ (0, 1), X
(d)
= uX + Xu where Xu is a “residual” variable, independent of X . Such random

variables, and their laws, are also called self-decomposable. Wolfe [6] and Jurek-Vervaat [2] have
shown that X is self-decomposable if and only if

X
(d)
=
∫ ∞

0

e−sdYs

for some Lévy process (Ys) called the Background Driving Lévy Process of X , abbreviated as
BGDL of X .
Later, Sato [5] showed that X is self-decomposable if and only if it is the value at time 1 of a
self-similar additive process (Xu, u ≥ 0) of scaling exponent H , that is : for any c > 0, (Xcu, u ≥
0)

(d)
= (cHXu, u ≥ 0). We show some explicit relationship between the BDLP Y and the Sato

process (Xu) associated with X , precisely :(
Y

(−)
t =

∫ 1

e−t

dXr

rH
, t ≥ 0

)
, and

(
Y

(+)
t =

∫ et

1

dXr

rH
, t ≥ 0

)
,

are two independent and identically distributed Lévy processes from which (Xr, r ≥ 0) can be
recovered by

Xr =


∫ ∞

ln(1/r)

e−tHdY
(−)
t if 0 ≤ r ≤ 1

X1 +
∫ ln r

0

etHdY
(+)
t if r ≥ 1

Two kinds of other processes may be naturally associated with a self-decomposable variable X ;
they are

(i) the stationary process (Zu, u ∈ R) defined from (Xt) via the stationary Lamperti transform:

Xr = rHZln r, or equivalently Zu = e−uHXeu (1)

As observed by Lamperti [3], the formulae (1) set up a one to one correspondence between
H-self similar processes (Xr, r ≥ 0) and stationary processes (Zu, u ∈ R).

(ii) The Ornstein-Uhlenbeck process driven by (Y (+)
t , t ≥ 0) with initial state U0 and parameter

c ∈ R, that is the solution of

Ut = U0 + Y
(+)
t − c

∫ t

0

Usds

≡ e−ct
(
U0 +

∫ t

0

ecsdY (+)
s

)
(2)
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and similarly for Y (−). Moreover, these processes Z and U associated to X via (1) and (2)
are related as follows : (Zu, u ≥ 0) is the Ornstein-Uhlenbeck process driven by (Y (+)

t , t ≥ 0)
with initial state X1 and parameter c = H .

We now give some explicit description of the preceding processes for the particular cases of
X = T1, or X = Λ1, with

Tr = inf{t : Rt = r} Λr = sup{t : Rt = r}, r ≥ 0,

where (Rt, t ≥ 0) is a Bessel process with dimension d = 2(1 + ν) > 0 starting from 0. The
scaling proprety of R, together with the strong Markov property imply that T1 and Λ1 are self
decomposable variables, and that (Tr, r ≥ 0) and (Λr, r ≥ 0) ar the Sato processes with scaling
exponent H = 2 associated respectively to T1 and Λ1. With the help of the local time at level 1
associated to R

Lt = lim
ε→0

∫ t

0

ds11{|Rs−1|≤ε}

and its inverse process τ` = inf{t : Lt > `}, we can exhibit a pathwise representation of the
BDLP’s of T1 and Λ1, which we denote respectively by (Y Ts , s ≥ 0) and (Y Λ

s , s ≥ 0); precisely, for
each ` > 0,

(Y Tλ , 0 ≤ λ ≤ `)
(d)
=

((∫ τλ

T1

11{Rt≤1}dt

)
0≤λ≤`

|τ` <∞
)

(3)

and

(Y Λ
λ , 0 ≤ λ ≤ `)

(d)
=

((∫ τλ

0

11{Rt>1}dt

)
0≤λ≤`

|τ` <∞
)

(4)

where the conditioning on (τ` <∞) is made necessary by the fact that for d > 2 (i.e., ν > 0), the
process (Rt, t ≥ 0) is transient, hence L∞ <∞ a.s.
To prove (3), one may use the following lemma, which is of interest in its own right (See [4] for
developments)

Lemma. Let (St, t ≥ 0) be a continuous semi-martingale and (At) a continuous adapted bounded
variation process such that (St exp(−At), t ≥ 0) is a local martingale. Then, for any s ∈ R,
denoting by Lst (S) the local time of s at level s, the process

(St ∧ s) exp
(

1
2s
Lst (S)−

∫ t

0

11{Su≤s}dAu

)
is a local martingale.

Finally, we stress that the Sato processes associated with self-decomposable laws seem to be
particularly well adapted to fit option prices across strikes and maturities (See Carr et al. [1]) due
to their scaling properties and inhomogeneous independent increments.
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Abstract: We present a theorem of existence for a Green function related to an integro-
differential operator of fractional order with measurable bounded coefficents. Moreover, we present
certain function space inclusions that are known to be sharp.

1 Definitions and Main Results

Ω ⊂ Rn shall be a bounded domain. Let J(dx, dy) denote a positive Radon measure on (Ω×Ω)\ diag
satisfying: ∫

(K×K)\diag

|x− y|2J(dx, dy) <∞ , J(K,Ω−O) <∞

for all compact sets K and open sets O with K ⊂ O ⊂ Ω. Let k̃(dx) be a positive Radon measure
on Ω. We consider the following bilinear form:

a(u, ϕ) =
∫
Ω

∫
Ω

(
u(x)− u(y)

)(
ϕ(x) − ϕ(y)

)
J(dx, dy) +

∫
Ω

u(x)ϕ(x)k̃(dx) . (1.1)

J(dx, dy) is called jumping measure, k̃(dx) killing measure.

Definition 1.1. A function G(·, ·) : Ω × Ω → R ∪ {∞} is called generalized Green function of
a(·, ·) if it satisfies for all y ∈ Ω:

a
(
G(·, y) , ϕ

)
= ϕ(y) ∀ϕ ∈ C∞0 (Ω) . (1.2)

Assumption 1.2. There exist positive constants λ and Λ and a measurable function k with:

k(x, y) = k(y, x), λ ≤ k(x, y) ≤ Λ ∀x, y ∈ Ω ,

such that

J(dx, dy) = |x− y|−n−αk(x, y) dx dy

k̃(dx) =
(
2
∫

Rn\Ω

|x− y|−n−αk(x, y) dy
)
dx .

Theorem 1.3 (Kassmann/Steinhauer). Under the above assumptions there exists a nonnega-
tive generalized Green function G(·, ·) : Ω×Ω → R∪{∞}, such that for given y ∈ Ω equation (1.2)
holds. Moreover one has:

G(·, y) ∈ Hα/2,2(Ω\Br(y)) ∩Hα/2,1
0 (Ω) ∀r > 0 , (1.3)

G(·, y) ∈ L
n

n−α

weak(Ω) with ‖G(·, y)‖
L

n
n−α
weak

≤ C , (1.4)

G(·, y) ∈ Hα/2,s
0 (Ω) ∀s ∈ [1,

n

n− α
2

) , (1.5)
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2 Notation

For p ∈ [1,∞) we denote by Lpweak(Ω) the Banach space of measurable functions v : Ω → R such
that the expression

[v]Lp
weak

:= sup
t>0

t|{x ∈ Ω : |v(x)| > t}| 1p

is finite. One has:

Lp(Ω) & Lpweak(Ω) with [f ]Lp
weak(Ω) ≤ ‖f‖Lp(Ω)

Lpweak(Ω) ⊂ Lp−ε(Ω) with ‖f‖Lp−ε(Ω) ≤ (pε )
1

p−ε |Ω|
ε

p(p−ε) [f ]Lp
weak(Ω)

for 0 < ε ≤ p− 1 . We also use Sobolev spaces of fractional order (or Slobodeckij spaces) defined
as:

W β,p(Ω) := {u ∈ Lp(Ω) : ‖u‖Wβ,p(Ω) <∞}

with ‖u‖p
Wβ,p(Ω)

:= ‖u‖pLp(Ω) +
∫
Ω

∫
Ω

|u(x)− u(y)|p
|x− y|n+βp

dxdy

for 0 < β < 1, 1 ≤ p <∞. These are Banach spaces respective Hilbert spaces for p = 2. We write:

Hβ(Ω) = Hβ,2(Ω) = W β,2(Ω).

3 Related Works

Theorem 3.1 (Chen/Song, Kulczycki). Let X be the symmetric α-stable process on Rn. Let
D be a bounded C1,1-domain in Rn with n ≥ 2. Let GD be the classical Green function on D×D,

i.e. GD satisfying Ex

[
τD∫
0

f(Xs) ds
]

=
∫
D

GD(x, y)f(y) dy for x ∈ D. Define δ(x, ∂D) = δ(x) =

dist(x, ∂D). Then there exists a constant c = c(D,α) > 1 such that

c−1 min
{
|x− y|α−n, δ(x)

α/2δ(y)α/2

|x− y|n

}
≤ GD(x, y) ≤ cmin

{
|x− y|α−n, δ(x)

α/2δ(y)α/2

|x− y|n

}
(3.1)

Some Literature on Green Functions of Stable Processes

• R. F. Bass and D. A. Levin. Transition probabilities for symmetric jump processes. Trans-
actions of the A.M.S.. to appear.
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Appl., 243(2):326–337, 2000.

• Z.-Q. Chen and R. Song. Estimates on Green functions and Poisson kernels for symmetric
stable processes. Math. Ann., 312(3):465–501, 1998.

• T. Kulczycki. Properties of Green function of symmetric stable processes. Probab. Math.
Statist., 17(2):339–364, 1997.

Some Literature on Green Functions for Local Diffusion Operators with measurable
bounded coefficients

• G. Dolzmann and S. Müller. Estimates for Green’s matrices of elliptic systems by Lp theory.
Manuscripta Math., 88(2):261–273, 1995.

• M. Grüter and K.-O. Widman. The Green function for uniformly elliptic equations. Manu-
scripta Math., 37(3):303–342, 1982.

164



Moritz Kassmann

• W. Littman, G. Stampacchia, and H. F. Weinberger. Regular points for elliptic equations
with discontinuous coefficients. Ann. Scuola Norm. Sup. Pisa (3), 17:43–77, 1963.

• V. A. Solonnikov. The Green’s matrices for elliptic boundary value problems. I, II. Trudy
Mat. Inst. Steklov., 110:107–145, 1970. Trudy Mat. Inst. Steklov., 116:181–216, 237, 1971.

• G. Stampacchia. Èquations elliptiques du second ordre à coefficients discontinus. Les Presses
de l’Université de Montréal, Montreal, Que., 1966.

4 Proof of Theorem 1.3

Theorem 1.3 is proven as follows. In a first step for ρ > 0 one proves existence of a regularized
Green function Gρ(·, ·) satisfying for x0 ∈ Ω

a
(
Gρ(·, x0), ϕ

)
=

1
Bρ(x0)

∫
Bρ(x0)

ϕ(x) dx ∀ϕ ∈ C∞0 (Ω) .

Next, one derives Lq-bounds on Gρ that are uniform with respect to ρ. Also uniform bounds on Gρ
in Hs

0(Ω) for some s > 0 have to be proven. Compactness arguments finally assure the existence
of a subsequence ρk such that Gρk

converges to G.

Proposition 4.1. There exists a constant C independent of ρ, such that

‖Gρ‖
L

n
n−α
weak (Ω)

≤ C , (4.1)∫
Ω

∫
Ω

|Gρ(x) −Gρ(y)|2
|x− y|n+α

dy dx ≤ Cρα−n . (4.2)

Proposition 4.2. There exists a constant C independent of ρ, such that for p ∈
[
1, n

n−α/2 ) one
has ∫

Ω

∫
Ω

|Gρ(x) −Gρ(y)|p
|x− y|n+α

2 p
dy dx ≤ C . (4.3)
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Optimal portfolios with bounded Capital-at-Risk
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The market model

We consider a Black-Scholes type of market consisting in the simplest case of one riskless bond and
one risky stock. Their price processes P0 and P evolve according to the equations

P0(t) = ert , t ≥ 0 ,
P (t) = p exp(bt+ L(t)) , t ≥ 0 ,

where r ∈ R is the riskless rate, p > 0, b ∈ R. The fluctuations of the risky asset are modelled by
the Lévy process

L(t) = at+ βW (t) +
∑

0<s≤t
∆L(s)1{|∆L(s)|>1}

+
∫ t

0

∫
{|x|≤1}

x(M(ds, dx) − dsν(dx)) , t ≥ 0 .

M defines a Poisson random measure on [0,∞)× R\{0} with intensity m(dt, dx) = dtν(dx). The
process L has Lévy-Khintchine representation

E exp(isL(t)) = exp(tΨ(s)),

where

Ψ(s) = ias− β2 s
2

2
+
∫ ∞
−∞

(
eisx − 1− isx1{|x|≤1}

)
ν(dx) .

(a, β, ν) is called the characteristic triplet. The quantity β2 ≥ 0 denotes the variance of the
Wiener component and the Lévy measure ν is defined by ν(Λ) = E

[∑
0<s≤1 1{∆L(s)∈Λ}

]
for all

Λ ⊂ R \ {0}. It indicates that a jump of size x occurs at rate ν(dx). For background on Lévy
processes see Sato [4].

Portfolio Optimization

Let π(t) = π ∈ [0, 1] for t ∈ [0, T ] (T denotes a fixed planning horizon) be the portfolio; i.e. the
fraction of wealth, which is invested in the risky asset. Denoting Xπ the wealth process, it follows
the dynamic

Xπ(t) = x exp((r + π(b− r))t)E(πL̂(t)) , t ≥ 0 ,

where E(L̂) = expL, i.e. ln E(πL̂) is again a Lévy process.
Whereas the classical mean-variance criterion of portfolio optimization consists in maximizing

the expected terminal wealth under a constraint on the variance as a risk measure, we use the mean-
Capital-at-Risk criterion, where the Capital-at-Risk is the excess risk above the riskless investment.
More precisely,

CaR(x, π, T ) = xerT − α-quantile of Xπ(T )

= xerT −VaR(x, π, T )

= xerT
(
1− zαe

π(b−r)T
)

where zα is the α-quantile of E(πL̂(T )); i.e.

zα = inf{z ∈ R : P (E(πL̂(T )) ≤ z) ≥ α} .
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The optimization problem is then

max
π∈[0,1]

E[Xπ(T )] subject to CaR(x, π, T ) ≤ C .

To solve this problem we need to calculate the mean wealth process and the CaR. The mean
wealth process can be calculated immediately from the moment generating function of L(1), pro-
vided it exists. Define f̂(s) = E exp(sL(1)) then

E [Xπ(t)] = x exp
[(
r + π

[
b− r + ln

(
f̂(1)

)])
t
]
, t ≥ 0 .

Example [Geometric Brownian Motion (Emmer, Klüppelberg and Korn (2000))].
It is not difficult to calculate for initial wealth x, portfolio π and planning horizon T

CaR(x, π, T ) = xerT
(
1− zαe

π(b−r)T
)
,

where (ẑα is the α-quantile of the standard normal distribution)

zα = exp
{
−σ

2

2
π2T + ẑασπ

√
T

}
.

The optimization problem can be solved explicitly by

πopt =
1
σ

b− r

σ
+

ẑα√
T

+

√(
b− r

σ
+

ẑα√
T

)2

− 2
κ(C)
T

 ,

where κ(C) is some deterministic function of the risk bound C.

In general the CaR or VaR cannot be calculated explictly. We invoke an idea of Asmussen and
Rosinski (2000), which has been used for the simulation of Lévy processes:

L(t) = µ(ε)t+ βW (t) +Nε(t) +
∫ t

0

∫
|x|<ε

x(M(ds, dx) − dsν(dx))

≈ µ(ε)t+ (β2 + σ2(ε))
1
2 W̃ (t) +Nε(t) , t ≥ 0 ,

where

σ2(ε) =
∫
|x|<ε

x2ν(dx) ,

µ(ε) = a−
∫
ε≤|x|≤1

xν(dx) ,

Nε(t) =
∑
s≤t

∆L(s)1{|∆L(s)|≥ε} .

The approximation is a consequence of a functional central limit theorem which holds provided
that for ε→ 0

σ(ε)−1

∫ t

0

∫
|x|<ε

x(M(ds, dx) − dsν(dx)) = σ(ε)−1(L(t)− Lε(t))
d→W ′(t) ,

where

Lε(t) = µ(ε)t+ βW (t) +Nε(t) . (1)

It means that small jumps (< ε) are approximated by Brownian motion, large ones (≥ ε) constitute
a compound Poisson process Nε.

We extend Asmussen and Rosinski (2000) to an approximation of the VaR by the following
theorem.
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Theorem (Emmer and Klüppelberg (2001)).
Let L be a Lévy process with Lévy measure ν. Define Lε as in (1) with the quantities in (1). Let
furthermore E←(eL) = L̂ be such that EL̂ = eL and define L̂ε analogously to Lε, Then the following
are equivalent for ε ↓ 0

(a) σ(hσ(ε) ∧ ε) ∼ σ(ε) for each h > 0 ,

(b) σ(ε)−1(L(t)− Lε(t))
d→W ′(t) , t ≥ 0 ,

(c) (πσ(ε))−1
(
ln E(πL̂(t)) − ln E(πL̂ε(t)})

)
d→W ′(t) , t ≥ 0 .

Here W ′ may be any stochastic process and d→ denotes weak convergence in D[0,∞) with the
supremum norm, uniformly on compacta.

Based on this result, with W ′ = W a standard Wiener process, we approximate the α-quantile
of E(πL̂(T ) by

zα ≈ zεα(π) = inf{z ∈ R : P (γεπT + π(β2 + σ2
L(ε))1/2W (T ) +M ε

π(T ) ≤ ln z) ≥ α} ,

where we have used the approximation

ln E(πL̂(t)) ≈ γεπt+ π(β2 + σ2
L(ε))1/2W (t) +M ε

π(t) ,

γεπ = π(µε +
1
2
β2(1− π)),

M ε
π(t) =

∑
s≤t

ln(1 + π(e∆L(s)1(|∆L(s)|>ε) − 1)).

M ε
π is a compound Poisson process with jump measure given for any Borel set Λ ⊂ R\{0}

νMε
π
(Λ) = νL({x ∈ R : ln(1 + π(ex − 1)) ∈ Λ}\(−ε, ε)) .

From this we conclude

VaR(x, π, T ) ≈ xzεα(π) exp((π(b − r) + r)T )

CaR(x, π, T ) ≈ xerT
(
1− zεα(π)eπ(b−r)T

)
This result applies to various examples, which have been suggested as price processes.
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1. A remarkable feature of the contemporary probability theory is the tendency to study
stochastic objects related to various structures appearing in other branches of mathematics such
as algebra, geometry, or topology. The interaction of different trends of mathematical thought
becomes even more fruitful under the influence of mathematical physics. The study of analytic,
probabilistic and physical structures related to p-adic numbers and general local fields (non-discrete
locally compact totally disconnected topological fields) is a good example of such an interaction.

The field Qp of p-adic numbers and related structures (its ring of integers, group of units, finite
and infinite extensions etc.) constitute a class of algebraic structures admitting rich harmonic
analysis, which can be employed in the construction and study of stochastic objects. Recent
activity in p-adic models of quantum mechanics and quantum field theory (see [10, 21]) has led to
new results in the study of various operators in function spaces over Qp.

Since Qp is totally disconnected, stochastic processes on Qp (with real time) are of pure jump
type. The simplest Markov process on Qp is the p-adic analog Xα(t) of the symmetric stable
process introduced independently by several authors [7, 8, 9, 11, 21]; its generator is the fractional
differentiation operator Dα , α > 0 [21, 17]. On the Schwartz-Bruhat test function space Dα

can be defined as a pseudo-differential operator with the symbol |ξ|αp . Dα admits a hyper-singular
integral representation which makes it possible to extend the operator to wider classes of functions.
Note that a probability distribution with the characteristic function exp(−a|ξ|αp ), a > 0, not only
resembles the classical symmetric stable distribution. In fact it is a representative of a family of
distributions on Qp characterized as weak limits of normalized sums of independent identically
distributed p-adic random variables [14, 17, 23]; for its geometric interpretation see [3].

In [11] a theory of parabolic equations based on the operator Dα was developed. This has
led to analytic construction of a large class of Markov processes on Qp. On the other hand, in
[12] (see also [17]) a theory of stochastic differential equations based on the process Xα(t) was
initiated. The operator Dα can be used also to construct processes on p-adic balls and spheres; it
is interesting that the corresponding process on the group of units (the “unit sphere”) is connected
to the multiplicative structure of the field though it is defined primarily in terms of its additive
structure [13, 17].

Another approach to constructing and investigating Markov processes on local fields was pro-
posed by Albeverio and Karwowski [1]. The idea was to cover Qp by a family K of disjoint balls, to
construct a suitable process on K, and then to shrink balls to their centers obtaining a process on
Qp. Later Yasuda [22] showed that any rotation-invariant process with independent increments can
be obtained by means of this construction. A number of various generalizations and applications
can be found in recent papers by Albeverio, Karwowski, Vilela Mendes, Zhao, and others (see [2]
and references there).

In conlusion of this brief review of stochastic processes on local fields, it is appropriate to
note that above we dealt only with processes with a real positive time parameter. However there
exists also a theory of processes with both time and values non-Archimedean, initiated by Evans,
and a theory of real-valued Gaussian processes with a p-adic time parameter (Evans, Bikulov and
Volovich). For an introduction and references see [4, 6, 17].

2. Let us consider, in a little greater detail, the development of a version of infinite-dimensional
non-Archimedean analysis initiated in [15, 16, 17, 18, 24].

All the results mentioned above, as well as their classical counterparts, use in a very strong
way the local compactness of the underlying field; in particular they rely on existence of the Haar
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measure. On the other hand, the calculus over infinite-dimensional vector spaces where no invariant
measure can exist is among well-established topics of real analysis. Some general principles of such
a calculus for the p-adic situation were introduced by Evans (see [6]); the first constructive results
were obtained by Ma̧drecki [19] and Satoh [20].

The well-known Minlos theorem states that every continuous positive-definite function on a real
nuclear locally convex topological vector space is the Fourier transform of some Radon measure
on the conjugate space equipped with the ∗-weak topology. It was shown by Ma̧drecki [19] that a
similar result in the p-adic case holds without any nuclearity assumptions.

Satoh’s paper [20] is devoted to a p-adic version of the theory of abstract Wiener spaces. This
leads to a construction of Wiener-type measures on some non-Archimedean Banach spaces; in
particular, a certain space of power series has been considered.

Note that while a large part of the real infinite-dimensional analysis is devoted to the study of
measures, function spaces, and operators over a Hilbert space, there is no clear counterpart of a
Hilbert space in the p-adic case. However there are other infinite-dimensional spaces over p-adics
which are of purely arithmetical nature and constitute a natural arena for developing analysis.
These are infinite extensions of local fields.

We consider an infinite extension K of a local field k, char k = 0, which is a union of an
increasing sequence

k = K1 ⊂ . . . ⊂ Kn ⊂ . . . (1)

of finite extensions. The field K is a topological vector space over k with the inductive limit
topology. Its conjugate K is a completion of K with respect to a certain topology defined in
arithmetical terms. We construct a Radon measure µ on K which is Gaussian in the sense of Evans
[6] and possesses some (partial) invariance properties. A version of the Fourier-Wiener transform is
introduced over K, and Fourier images of certain test functions are described. This allows to define
and study a pseudo-differential operator over K similar to the fractional differentiation operator
Dα over a local field. This operator is proved to be a generator of a Markov process Xα(t) on K.
If we deal with Galois extensions then all these objects are invariant with respect to the Galois
group of the extension K/k.

Just as for the process Xα(t) on a local field, this process is defined for any α > 0. Some of
its properties are similar to those of the classical stable processes or processes on local fields while
others are different. In particular, the Gaussian measure µ is invariant for the process Xα(t); the
transition probabilities of Xα(t) are not absolutely continuous with respect to µ.

Both µ and the convolution semigroup of measures π(t, dx), which defines Xα(t), are concen-
trated on a compact subgroup S ⊂ K, and µ coincides with the normalized Haar measure on
S. Thus an essential information on the process Xα(t) is contained in the properties of its part
XS,α(t) in S.

In order to study sample path properties of XS,α(t), we can use the results by Evans [5] who
investigated Lévy processes on a general Vilenkin group (a non-discrete locally compact totally
disconnected Abelian topological group). The topology in a Vilenkin group is determined by a
descending chain of compact open subgroups. This chain is not unique, and as soon as we manage
to write such a chain {Sn} explicitly for our case and compute the Lévy measure of S \ Sn, the
general theorems from [5] yield immediately the asymptotics of the first exit time π(n) of XS,α(t)
out of the subgroup Sn, and an information on the local behavior of sample paths. We also prove
that both the Hausdorff and packing dimensions of a sample path of XS,α(t) equal 0 almost surely,
which is quite different both from the classical case and the case of a local field.

The last result shows the importance of finding, for our situation, a correct Hausdorff measure.
However this problem is more complicated. In order to use the appropriate theorem from [5], we
have to know that

lim inf
n→∞

Q(n,N) > 0 (2)

where
Q(n,N) = P

{
XS,α(t) /∈ Sn ∀ t ∈ [π(n), π(N))

}
, n > N.

Evans proved this property for processes with locally spherically symmetric Lévy measures. This
condition is not fulfilled in our case, and we give a direct proof of (2), and construct the Hausdorff

170



Anatoly N. Kochubei

measure, under the assumption that all the extensions in (1) are tamely ramified. Such an assump-
tion is often made in algebraic number theory because the algebraic structure of tamely ramified
extensions is more or less transparent while general extensions may behave quite wildly.
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On Lévy processes, Malliavin calculus

and market models with jumps

Jorge A. León∗, Josep Ll. Solé †, Frederic Utzet and Josep Vives

Introduction

This paper has two objectives. The first one is to develop the initial steps of Malliavin Calculus for
Lévy Processes. The Malliavin calculus in the Brownian setup has two approaches which turn out
to be equivalent: one as a weak derivative in canonical space and the other one through Wiener
chaos (see Nualart (1995) for a complete account of this theory). In general, a Lévy process has no
chaotic decomposition property in the sense that Brownian motion, Poisson process, or so-called
normal martingales have (see Ma et al. (1998)), but recent work (Nualart and Schoutens (2000)),
where a kind of chaotic representation property for Lévy processes has been proved, has enabled
us to define a Malliavin derivative using the chaotic approach. However, for present purposes,
the Lévy processes studied by Nualart and Schoutens (2000) are too general and we will restrict
ourselves to a brief investigation of their most relevant properties. We center our research on a
very simple Lévy process –the sum of a Brownian motion and k independent Poisson processes–
for which is possible to obtain a weak derivative interpretation and useful formulas. More general
Lévy processes, such as the sum of a Brownian motion and a compound Poisson process can be
approximated by these simple Lévy processes. In preparing this paper we came across a paper by
Løkka (1999) which containes several extremely useful ideas.

The second goal of this paper is option hedging in a jump-diffusion model. Models with jumps
for a market are an old topic in Mathematical Finance; The initial paper of Black–Scholes (1973)
was rapidily followed by Merton (1976) where the first jump–diffusion model was proposed. Here
we approximate a jump–diffusion model for a simple Lévy process of the type studied in the
first part of the paper, and using a Malliavin Calculus approach (see Øksendal (1996) for this
technique in the Black-Scholes case) we hedge a european call. In this connexion we would like
to acknowledge the paper by Jensen (1999) dealing with the problem of pricing a european call
in a jump–diffusion model. A different approach for extending Clark-Haussman-Ocone formula
using white noise analysis and its applications to mathematical finance can be found in Aase et al.
(2000).

The present paper is organized as follows. The first section deals with the theory of Malliavin
derivatives for a general Lévy process and we answer some questions that naturally arise from the
paper by Nualart and Schoutens (2000). In the second section we center the results of Section 1 on
more tractable Lévy processes that we call simple Lévy processes and we obtain some interesting
formulas to compute Malliavin derivatives. In Section three, we prove some results in order to
approximate the Lévy process used as a jump–diffusion model by means of simple Lévy processes.
Finally, in section four, we obtain formulas which enables an approximate hedge of a european call
in a jump–diffusion model.

1 General theory

1.1 Notations

Let X = {Xt, t ≥ 0} be a Lévy process and henceforth we always assume that we are using
the cadlag version) on a complete probability space (Ω,F , P ), and let {Ft, t ≥ 0} be the natural
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†Departament de Matemátiques Universitat Autónoma de Barcelona, Spain, jllsole@mat.uab.es,
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filtration of X completed with the null sets of F . We also assume that the Lévy measure ν of X
satisfies that there exist ε > 0 and δ > 0 such that∫

(−ε,ε)c

eδ |x| ν(dx) <∞. (1.1)

This implies thatXt has moments of all orders and that the polynomials are dense in L2(R, P◦X−1
1 )

(see Nualart and Schoutens (2000))
Define

X
(1)
t = Xt,

X
(i)
t =

∑
0<s≤t

(
∆Xs

)i
, i ≥ 2.

We have:

• The processes X(i) = {X(i)
t , t ≥ 0}, i = 1, 2, . . . , are Lévy processes that jump at the same

points as X .

• E(X(i)
t ) = mit, where m1 = E(X1) and mi =

∫∞
−∞ x

i ν(dx), i ≥ 2.

Now define the processes
Y

(i)
t = X

(i)
t −mi t, i ≥ 1.

The processes Y (i) = {Y (i)
t , t ≥ 0} are martingales.

Besides, we introduce the processes

H
(i)
t =

i∑
j=1

aijY
(j)
t , i ≥ 1, (1.2)

where the constants aij are chosen in such a way that ai1 = 1 and the martingalesH(i), i = 1, 2, . . .
are pairwise strongly orthogonal, that means, for i 6= j, the process H(i)H(j) is a martingale.

1.2 Iterated integrals

For Lévy processes, we use iterated integrals (instead of multiple ones) because of the chaotic
representation given by Nualart and Schautens (2000), which involves the family H(i), i = 1, 2, . . .
as integrators.

Let Σn = {(t1, . . . , tn) ∈ Rn+ : 0 < t1 < t2 < · · · < tn} be the positive simplex of Rn. Given f ∈
L2(Rn+) we will denote by J (i1,...,in)

n (f) the iterated integral of f with respect to H(i1), . . . , H(in):

J (i1,...,in)
n (f) =

∫ ∞
0

( ∫ tn−

0

· · ·
( ∫ t2−

0

f(t1, . . . , tn)dH(i1)(t1)
)
· · ·

·dH(in−1)(tn−1)
)
dH(in)(tn).

We remark that all these integrals are well defined since all the processes H(i), i = 1, 2, . . . are
square integrable martingales with respect to the filtration {Ft, t ≥ 0}.

In the remain of this paper, we use the notations of Ma et al. (1998) for the indices (t1, . . . , tn)
in the simplex Σn, where t1 < · · · < tn, instead of that of Nualart and Schoutens (2000) who write
the indices in decreasing order.

The main results of the paper of Nualart and Schoutens (2000) are the chaotic and the pre-
dictable representation properties of the square integrable random variables:

Theorem 1.1 (Nualart and Schoutens). Let F ∈ L2(Ω,F , P ). Then F has a unique repre-
sentation of the form

F = E[F ] +
∞∑
n=1

∑
i1,...,in≥1

J (i1,...,in)
n (fi1,...,in),

where fii,...,ij ∈ L2(Σj).
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An immediate consequence of Theorem 1.1 is the predictable representation property of the
square integrable random variables:

Theorem 1.2 (Nualart and Schoutens). Let F ∈ L2(Ω,F , P ). Then F has a representation
of the form

F = E[F ] +
∞∑
k=1

∫ ∞
0

φk(t) dH(k)(t),

where {φk(t), t ≥ 0}, k ≥ 1, are predictable processes.

1.3 Derivative operators

This section is devoted to the study of some properties of the derivatives in the context of calculus
of variations.

In the remaining of this paper, write

Σ(k)
n (t) = {(t1, . . . ,t̂k, . . . , tn) ∈ Σn−1 :

0 < t1 < · · · < tk−1 < t ≤ tk+1 < · · · < tn}

and î means that the i-th index is omitted. Observe that if k 6= k′ then Σ(k)
n (t) ∩Σ(k′)

n (t) = ∅.

Definition 1.3. Let f ∈ L2(Rn+) and ` ≥ 1. The process

D
(`)
t J (i1,...,in)

n (f) =
n∑
k=1

1{ik=`}J
(i1,...,îk,...,in)
n−1

(
f( . . .︸︷︷︸

k−1

, t, . . . )1
Σ

(k)
n (t)

(·)
)
,

is called the derivative of J (i1,...,in)
n (f) in the `–th direction.

Also we define the spaces of the random variables that are differentiable in the `-th direction.
For this, we define the following subset of L2(Ω):

D(`) =
{
F ∈ L2(Ω), F = EF +

∞∑
n=1

∑
i1,...,in≥1

J (i1,...,in)
n (fi1,...,in) :

∞∑
n=1

∑
i1,...,in≥1

n∑
k=1

1{ik=`}qi1 · · · q̂ik · · · qin

·
∫ ∞

0

‖fi1,...,in(. . . , t, . . . )1
Σ

(k)
n (t)

‖2
L2([0,∞)n−1) dt <∞

}

Definition 1.4. Given F ∈ D(`) such that

F = EF +
∞∑
n=1

∑
i1,...,in≥1

J (i1,...,in)
n (fi1,...,in),

we define the derivative of F in the `-th direction as the element of L2(Ω× R+) given by

D
(`)
t F =

∞∑
n=1

∑
i1,...,in

n∑
k=1

1{ik=`}J
(i1,...,îk,...,in)
n−1

(
fi1,...,in(. . . , t, . . . )1

Σ
(k)
n (t)

(·)
)
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Observe that, as in the classical situation for Gaussian processes, D(`) is dense in L2(Ω), since
the elements of L2(Ω) with a finite chaotic expansion are in D(`). Then, also as in the Brownian
case, we can define the adjoint operator of D(`), δ(`) which will be called the Skorohod integral in
the `–th direction. We will not continue this development here because we will only deal with the
derivative operators.

From the chaotic representation property (Theorem 1.1) we can prove the following formula:

Theorem 1.5 (Clark-Ocone formula). Let F ∈
⋂∞
n=1 D(n). Then

F = E[F ] +
∞∑
k=1

∫ ∞
0

p(D(k)
t F ) dH(k)

t ,

where p(D(k)
t )F denotes the predictable projection E

[
D

(k)
t F/Ft−

]

1.4 Lévy processes with a finite number of jump sizes

In this section we consider a Lévy process for which the family {H(i), i ≥ 1} has only a finite
number of elements different than zero and we summarize here some results about this case.

Proposition 1.6. Suppose that, for some j ≥ 1, H(j) = 0. Then the number of different jump
sizes of X that are not zero is at most j − 1.

The following is the reciprocal of the last proposition.

Proposition 1.7. If the process X has only j different jump sizes, then

a. H(k) = 0, ∀k ≥ j + 1, if X has no continuous part.

b. H(k) = 0, ∀k ≥ j + 2, if X has continuous part.

A normal martingale X (see Ma et al (1998)) is a martingale such that 〈X,X〉t = t and
that possesses the chaotic representation property (see also Dellacherie et al. (1992) pag. 199).
As a consequence of the last two propositions we obtain the next corollary that says that only
the brownian motion and the (compensated) Poisson processes are normal martingales and Lévy
processes.

Corollary 1.8. Let X be a Lévy process that satisfies condition (1.1) and is also a normal mar-
tingale. Then X is a brownian motion or a process of the form αNt − t/α, where Nt is Poisson
process of intensity λ and α = ±1/

√
λ.

2 Simple Lévy processes

In this section we deal with the simple Lévy process given by

Xt = σWt + α1N1(t) + · · ·+ αkNk(t), t ≥ 0. (2.1)

where {Wt, t ≥ 0} is a standard Brownian motion, {Nj(t), t ≥ 0}, j = 1, . . . , k, are independent
Poisson processes (and independent of Brownian motion) of parameter λ1, . . . , λk, respectively,
σ > 0 and α1, . . . , αk are different non-null numbers. The Lévy measure of X is ν =

∑k
j=1 λjδαj

and satisfies the condition (1.1) of Nualart and Schoutens (2000) for the validity of the chaotic
representation property.
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However, in this context, in addition to the family {H(1), . . . , H(k+1)}, we also have the set of
martingales: {Wt, N1(t) − λ1t, . . . , Nk(t) − λkt}. It seems sensible to use the last family instead
of the former.

It follows that H(i) are a linear combination of Wt, N1(t)− λ1t, . . . , Nk(t)−λkt. Therefore, we
have unicity in the chaotic representation property in terms of the iterated integrals with respect
Wt, N1(t)− λ1t, . . . , Nk(t)− λkt.

A predictable representation property of the following form also holds:

Proposition 2.1. Let F ∈ L2(Ω,F , P ). Then F admits a representation of the form

F = E[F ] +
∫ ∞

0

φ0(t) dWt +
k∑
j=1

∫ ∞
0

φj(t)d(Nj(t)− λj t),

where φ0, . . . , φk are predictable processes such that
∫∞
0
E[φ2

j (t)] dt <∞.

Further, we can define derivatives in the directions Wt, N1(t) − λ1t, . . . ,
Nk(t) − λkt through the iterated integrals, mimicking the definition given in Section 1.3. We
will denote by D(0), . . . , D(k) the derivatives in the directions Wt, N1(t) − λ1t, . . . , Nk(t) − λkt
respectively. So we have

Theorem 2.2. Let F ∈
⋂k
j=0 D(j). Then

F = E[F ] +
∫ ∞

0

p(D(0)
t F ) dWt +

k∑
j=1

∫ ∞
0

p(D(j)
t F ) d(Nj(t)− λj t).

2.1 Interpretation of the derivatives for a simple Lévy process

In this section we still work with the simple model (2.1). We interpret the operatorsD(`) appearing
in Theorem 2.2 and show some formulas that have interesting applications. The main result is that
in certain cases it is possible to compute the derivatives in the directions W , N1, etc. following
the classical rules for each case. We point out that this is a nice idea due to Løkka (1999) that we
think is only true for certain types of Lévy processes, such as the ones that we are considering.

We will prove that D(0)F (respectively D(1)F ) can be interpreted as the usual brownian Malli-
avin derivative (resp., the Poisson Malliavin derivative). This useful property is summarized in the
next proposition.

Proposition 2.3. Consider a simple Lévy process

Xt = σWt + α1N1(t) + · · ·+ αkNk(t), t ≥ 0.

(a) Let F = f(Z,Z ′) ∈ L2(Ω), where Z only depends on the Brownian motion W , and Z ′ only de-
pends on the Poisson processes N1, . . . , Nk. Assume that f(x, y) is a continuosly differentiable
function with bounded partial derivatives in the variable x, and that Z ∈ D(0). Then F ∈ D(0)

and
D(0)F =

∂f

∂x
(Z,Z ′)D(0)Z.

(b) Let F ∈ D(j) for some j ∈ {1, . . . , k}. Consider a generic element ω = (ω0, . . . , ωk) ∈ Ω =
ΩW × ΩN1 × · · · × ΩNk

, ωj ∈
⋃∞
n=0[0, T ]n. Then

D
(j)
t F (ω) = F (ω0, . . . , ωj−1, ωj + δt, ωj+1, . . . , ωk)− F (ω),

where

ωj + δt =

{
(s1, . . . , sr, t), if ωj = (s1, . . . , sr),
t, if ωj = {a}.
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3 Approximation by simple Lévy processes

In this section we will consider a Lévy process of the form

Xt = σWt +
Nt∑
j=1

Zj , t ≥ 0, (3.1)

(with the convention that the sum is 0 when Nt = 0) where

1. {Wt, t ≥ 0} is a standard Brownian motion.

2. {Nt, t ≥ 0} is a Poisson process of parameter λ > 0.

3. {Zn, n ≥ 1} is a sequence of i.i.d. square integrable random variables.

4. {Wt, t ≥ 0}, {Nt, t ≥ 0} and {Zn, n ≥ 1} are independent.

We get that, in the same way that every square integrable random variable can be approximated
(in L2(Ω)) by simple random variables (taking only a finite number of different values), a Lévy
process of type (3.1) can be approximated by simple Lévy processes in L2(Ω× [0, T ]).

Theorem 3.1. Let T > 0. For each n, there exists a family of independent Poisson processes
(and independent of {Wt, t ≥ 0}), {Nn

1 (t), t ≥ 0}, . . . , {Nn
kn

(t), t ≥ 0}, and a family of constants
αn1 , . . . , α

n
kn

such that the Lévy process

Xn(t) = σWt +
kn∑
r=1

αnr N
n
r (t), t ∈ [0, T ], (3.2)

converges to {Xt, t ≥ [0, T ]} in L2
(
Ω× [0, T ]

)
.

4 Option hedging in a market with jumps

Here we consider a market with only one riskless asset, A(t), determined by

dA(t) = r A(t) dt
A(0) = 1

where r > 0 is a constant. Also consider an asset with risk, S(t), satisfying the equation

dS(t) = S(t−) dX(t)
S(0) = s0

(s0 is a constant) where X(t) is the Lévy process defined in (3.1) with the condition that Zn > −1,
n ≥ 1, which implies that the asset prices will be always non negative.

4.1 Approximative market

Our objective is to hedge an european call based on the asset S with maturity T and strike price
K > 0; the final profit is

U =
(
S(T )−K

)+
.

Since U is a square integrable random variable, by Theorem 1.2 it can be represented as a (possibly)
infinite sum of stochastic integrals with respect to the family {H(i), i ≥ 1} related to X . In order
to carry out a realistic hedging, we need to do two things: to consider a finite sum and to be able to
compute the integrands. Both things can be done approximating the Lévy process X by a simple
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process, which is possible thanks to Theorem 3.1. Therefore, we will consider the approximating
process

Xn(t) = µt+ σWt +
kn∑
s=1

αns
(
Nn
s (t)− λns t

)
,

where αns > −1, s = 1, . . . , kn. The market modeled by this process will be called approximative
market. We can write the following results,

Lemma 4.1. Let {Sn(t), t ∈ [0, T ]}, be the solution of the equation

dSn(t) = Sn(t−) dXn(t)
Sn(0) = s0

Then

lim
n
Sn = S, in L2(Ω× [0, T ]).

Proposition 4.2. Let Un =
(
Sn(T )−K)+. Then Un converges to U in L2(Ω).

To simplify the notation, we will omit the index n in the expressions of Xn(t), Sn(t), Un, αnr
and λnr . We will also denote by S∗t and U∗ the discounted price:

S∗t = e−rt St and U∗ = e−rtU.

4.2 Option pricing in the approximative market

It is well-known that the problem of pricing an option consists in finding a unique equivalent
measure Q that makes S∗t a martingale. In this context this problem has been solved by Jensen
(1999) assuming the existence of k additional assets, defined by equations

dPj(t) = Pj(t−) dXj(t), j = 1, . . . , k,

where

Xj(t) = µjt+ σjWt +
k∑
r=1

αj,r
(
Nr(t)− λrt

)
.

This is a known idea: to hedge an option when there are k+1 sources of randomness (W,N1, . . . ,
Nk), we need k+ 1 assets so that the market be complete. Using the Girsanov Theorem (see Sato
(1999)), Jensen (1999) gives a condition for the existence of one and only one equivalent probability
Q (that depens on k) such that the discounted prices S∗, P ∗1 , . . . , P

∗
k (P ∗j (t) = e−rtPj(t)) are Q–

martingales.
From our point of view we can present another explanation of these results. The Clark-Ocone

formula given in Theorem 2.2 can be applied to the approximated marked. In particular, this
implies that every square integrable random variable of the type f(ST ) can be represented as
a sum of k + 1 stochastic integrals (respect to W,N (1), . . . , N (k)). However, what we need is a
representation using the assets S, P1, . . . , Pk as integrators; in other words, that the Q-martingales
(discounted) S∗, P ∗1 , . . . , P

∗
k be a base for the representation. As we will see, the condition we get

for that is exactly Jensen’s condition.
We keep the result (see Jensen (1999)) that under Jensen’s condition there is one and only one

equivalent probability Q, a Q–Brownian motion WQ and k independent Q–Poisson processes of
parameter λ̃j = λj − Lj, N

Q
1 , . . . , N

Q
k , independent of WQ, such that we can write
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dS(t)
S(t−)

= r dt+ σdWQ(t) +
k∑
r=1

αr
(
dNQ

r (t)− λ̃rdt
)

dP1(t)
P1(t−)

= r dt+ σ1dW
Q(t) +

k∑
r=1

α1,r

(
dNQ

r (t)− λ̃rdt
)

...

dPk(t)
Pk(t−)

= r dt+ σkdW
Q(t) +

k∑
r=1

αk,r
(
dNQ

r (t)− λ̃rdt
)

(4.1)

The price of an european call U =
(
S(T )−K

)+ obtained by Jensen (1999) is

c0 = exp
{
T

k∑
j=1

λ̃j

} ∞∑
n1,...,nk=1

k∏
j=1

[
(1 + αj)λ̃jT

]nj

nj !

·
(
S0 exp

{
− T

k∑
j=1

αj λ̃j

}
N
(
d1(n1, . . . , nk; 0;S0)

)
− e−rTK∏k

j=1(1 + αj)nj

N
(
d2(n1, . . . , nk; 0;S0)

))
(4.2)

where N(z) denotes the distribution function at point z of a standard normal random variable,

d1(n1, . . . , nk; t;x) =
1

σ
√
T − t

[
ln
x

K
+
(
r +

1
2
σ2 −

k∑
j=1

αj λ̃j
)
(T − t)

]

+
1

σ
√
T − t

k∑
j=1

nj ln(1 + αj)

(4.3)

and
d2(n1, . . . , nk; t;x) = d1(n1, . . . , nk; t;x)− σ

√
T − t. (4.4)

(Remember that x > 0 and αj > −1, j = 1, . . . , k).

4.3 Option hedging in the approximative marked

By Clark-Ocone formula (Theorem 2.2) we have

U∗ = EQ[U∗] +
∫ T

0

φ0(t) dWQ(t) +
k∑
j=1

∫ T

0

φj(t) d(N
Q
j (t)(t) − λ̃jt).

where
φj(t) = EQ

[
D

(j)
t U∗/Ft−], j = 0, . . . , k,

that can be explicitelly calculated, and we obtain the formulas

φ0(t) = σE[f(ST )/Ft−] = σSt− exp
{(
r +

k∑
j=1

(αj − 1)λ̃j
)
(T − t)

}

·
∞∑

n1,...,nk=1

k∏
j=1

[
(1 + αj)(λ̃j(T − t))

]nj

nj !
N
(
d1(n1, . . . , nk; t;St−)

)
,

and for j = 1, . . . , k,
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φj(t) = E
[
D

(j)
t (S(T )−K)+/Ft−

]
=

(1 + αj)St− exp
{(
r +

k∑
j=1

(αj − 1)λ̃j
)
(T − t)

}

·
∞∑

n1,...,nk=1

k∏
j=1

[
(1 + αj)(λ̃j(T − t))

]nj

nj !
N
(
d1(n1, . . . , nk; t; (1 + αj)St−)

)

− e−
∑k

j=1 λ̃j(T−t)
∞∑

n1,...,nk=1

k∏
j=1

[
(λ̃j(T − t))

]nj

nj !

·N
(
d2(n1, . . . , nk; t; (1 + αj)St−)

)
− St− exp

{(
r +

k∑
j=1

(αj − 1)λ̃j
)
(T − t)

}

·
∞∑

n1,...,nk=1

k∏
j=1

[
(1 + αj)(λ̃j(T − t))

]nj

nj !
N
(
d1(n1, . . . , nk; t;St−)

)

+ e−
∑k

j=1 λ̃j(T−t)
∞∑

n1,...,nk=1

k∏
j=1

[
(λ̃j(T − t))

]nj

nj !
N
(
d2(n1, . . . , nk; t;St−)

)
,

where d1(n1, . . . , nk; t;x) and d2(n1, . . . , nk; t;x) are given in (4.3) and (4.4) respectively.

The last step is to write U∗ as a sum of integrals with respect the assets S∗, P ∗1 , . . . , P
∗
k . Denote

by B the matrix

B =


σ α1 · · · αk
σ1 α11 · · · α1k

...
...

. . .
...

σk αk1 · · · αkk


The system (4.1) is 

dS∗(t)
S∗(t−)
dP ∗1 (t)
P ∗1 (t−)

...
dP ∗k (t)
P ∗k (t−)


= B


dWQ

t

d(N1(t)Q − λ̃1t)
...

d(Nk(t)Q − λ̃kt)


It follows that if B is invertible (which is exactly the Jensen’s condition) we can define

(
ψ0(t), . . . , ψk(t)

)
=
(
φ0(t), . . . , φk(t)

)
B−1



1
S∗(t−) 0 · · · 0

0 1
P ∗1 (t−) · · · 0

...
...

. . .
...

0 0 · · · 1
P ∗k (t−)


and we obtain the hedging

U∗ = EQ[U∗] +
∫ T

0

ψ0(t) dS∗(t) +
k∑
j=1

∫ T

0

ψj(t) dP ∗j (t). (4.5)

Note that the Black-Scholes model is a special case assuming that all the jump sizes are zero:
α1 = · · · = αk = 0. Then φ1 = · · · = φk = 0 and formula (4.5) becomes a Black-Scholes hedging.
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The use of Lévy processes in the classification of

the exponential families

Gérard Letac∗

Abstract

This lecture explains how Bayesian theory leads to the search of new exponential families,
how Lévy processes and random walks are used in some proofs of existence and comments on
the mysteries of the Zolotarev formula.

I Natural exponential families

Given a finite dimensional real linear space E with dual E∗, denote by M(E) the set of positive
measures µ on E not concentrated on an affine hyperplane and such that the set of θ ∈ E∗ with

Lµ(θ) =
∫
E

e〈θ,x〉µ(dx) <∞

has a non empty interior Θ(µ). Denote kµ = logLµ. The natural exponential family (NEF) F =
F (µ) generated by µ ∈M(E) is the set of the probabilities P (θ, µ)(dx) = exp(〈θ, x〉− kµ(θ))µ(dx)
for θ ∈ Θ(µ). It is easily seen that

Θ(µ) → E : θ 7→ k′µ(θ) =
∫
E

xP (θ, µ)(dx)

is one-to-one. Its image MF is called the domain of the means of F. We denote by ψµ : MF → Θ(µ)
the inverse of k′µ and we write P (m,F ) = P (ψµ(m), µ). The map m 7→ P (m,F ) on MF is the
parametrization of F by the mean. The covariance of P (m,F ) is denoted by VF (m) and the
map m 7→ VF (m) on MF is the variance function of F. This is a nice exercise to check that VF
characterizes F , like a Fourier transform characterizes a measure.

We shall also need the concept of the Jorgensen set Λ(µ) of a measure µ ∈ M(E) : this is the
set of t > 0 such that there exists µt ∈M(E) with the two properties

1. Θ(µt) = Θ(µ)

2. Lµt = (Lµ)t.

In other terms, Λ(µ) is the set of acceptable t such that the convolution power µt = µ∗t does exist.
Clearly Λ(µ) = Λ(µ) ∪ {0} is a closed additive semi group containing the set N of non negative
integers. If µ is a probability and Λ(µ) = (0,∞) then µ is infinitely divisible and a Lévy process
is associated to it. This Jorgensen set can be quite complicated, even for something as simple as
distribution of the sum of two Bernoulli and negative binomial independent random variables.

II The simplest variance functions

For E = IR the simplest variance functions have been investigated by Morris (1982) who points
out that the only variance functions which are the restriction to an interval of some quadratic
polynomial belong to one of the six following types (up to an affine transformation and up to
power of convolution):

∗Laboratoire de statistiques et probabilités, Université Paul Sabatier, 31062 Toulouse, France.
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1. The normal type: MF = IR and VF (m) = 1 > 0.

2. The Poisson type: MF = (0,∞) and VF (m) = m.

3. The Bernoulli type: MF = (0, 1) and VF = m−m2

4. The geometric type: MF = (0,∞) and VF = m+m2

5. The exponential type MF = (0,∞) and VF = m2

6. The hyperbolic type MF = (0,∞) and VF = 1 +m2.

All these types are infinitely divisible, except the Bernoulli one, whose Jorgensen set is {1, 2, . . .}.
In higher dimensions the simplest variance functions are still the quadratic ones. To be specific,

let us say that a function Q on E and valued in some linear space is homogeneous quadratic if
BQ(x, y) = Q(x + y) − Q(x) − Q(y) is bilinear, and let us say that a function P is quadratic
if P = Q + L + C, where Q is homogeneous quadratic, L is linear and C is constant. We say
that F is of quadratic type if its variance function is the restriction to MF of some quadratic
function P (valued in the space of symmetric bilinear forms on E∗) It is of simple quadratic type
if furthermore the Q part of P is such that BQ(x, y)(α, β) = c〈α, x〉〈β, y〉 for some real constant c
(we write BQ(x, y) = cx⊗ y in this case). Muriel Casalis (1996) has made a classification of these
simple quadratic NEF nad has shown that there are 2d + 4 types of them for d = dimE. Up to
affinities and powers of convolution, and for E = IRd their variance functions are

1. The d+ 1 Poisson normal types: for k = 0, 1, . . . , d

MF = (0,∞)k × IRd−k, VF (m) = diag(m1, . . . ,mk, 1, . . . , 1).

2. The d+ 1 negative multinomial types: for k = 0, 1, . . . , d

MF = (0,∞)k+1 × IRd−k−1, VF (m) = m⊗m+ diag(m1, . . . ,mk, 0,mk+1, . . . ,mk+1).

3. The Bernoulli type:

MF = {m ∈ IRd;mj > 0 ∀j,
d∑
j=1

mj < 1}, VF (m) = −m⊗m+ diag(m1, . . . ,md).

4. The hyperbolic type:

MF = (0,∞)d−1 × IR, VF (m) = m⊗m+ diag(m1, . . . ,md−1, 1 +
d−1∑
j=1

mj).

The only other known types of quadratic variance functions are the Wishart distributions on
the symmetric cones Ω associated to each of the five types of Euclidean simple Jordan algebras
V . Casalis (1991) shows that they are the only homogeneous quadratic variance fonctions. If P is
the quadratic map of V and if t is in the Gyndikin set of V (which is also the Jorgensen set of the
Wishart distribution) they have the form

MF = Ω, VF (m) = P (m)/t.

III Bayesian theory needs new exponential families

General exponential families: Given a measured space (Λ,A, ν), a finite dimensional real
space E, and a map u from Λ to E such that the image µ = u∗ν is in M(E), the general
exponential family (GEF) generated by the pair (ν, u) is the set F = F (ν, u) of probabilities on Λ
defined for θ ∈ Θ(µ) by

Pθ(dλ) = P (θ, ν, u)(dλ) = e〈θ,u(λ)〉−kµ(θ)ν(dλ).
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Example: If Λ = (0, 1), ν(dλ) = dλ
λ(1−λ) , E = IR2 and u(λ) = (logλ, log(1 − λ), then Θ(µ) =

(0,∞)2 and

Pθ(dλ) =
1

B(θ1, θ2)
λθ1−1(1− λ)θ2−1dλ.

Thus F is the familiar family of beta distributions.

GEF as conjugate families: Consider now a GEF F (ν, u), or rather a part of it: F = (Pθ)θ∈D
on (Λ,A) where D ⊂ Θ(µ), and D is either closed or open. Consider a Markov kernel Kλ from
Λ to some measurable space (X,B). Thus ηθ(dλ, dx) = Pθ(dλ)Kλ(dx) is a probability on Λ × X
which can be desintegrated with respect to x rather that λ :

ηθ(dλ, dx) = γθ(dx)Jθ,x(dλ).

We shall say that F is conjugate with respect to the kernel (Kλ)λ∈Λ if for all θ in D then Jθ,x is in
F for γθ almost all x. (For fixed θ, in Bayesian theory Pθ is the prior probability on the parameter
λ and X is the sample space. Observing x provides the posterior probability Jθ,x(dλ). Statisticians
find desirable to deal with not only one prior probability, but with a whole family F of them such
that all the corresponding posterior probabilities still belong to F ).

The basic convex set H(S,G): Recall that the previous GEF F (ν, u) was associated to the
linear space E where u was taking its values. We select in E∗ a closed additive semi group G and
a closed subset S of E. We consider the set H(S,G) of measures q on G such that for all v ∈ S
one has ∫

G

e〈θ,v〉q(dθ) = 1.

This is obviously a convex set which is closed for convolution. It is not difficult to see that it is
reduced to δ0 in many circumstances, in particular when S ∩ intconv(S) is not empty.

Recall that the previous F was not the whole GEF F (ν, u) but a part of it defined by a closed
or open set D ⊂ Θ(µ). We shall consider the above H(S,G) for S equal to the support of µ and for
G = G(D) = {θ ∈ E∗; θ +D ⊂ D}. We leave as an exercise to show that G(D) is indeed a closed
additive semigroup. To simplify the notations, we make this choice for S and G in the sequel.

Which kernels make F conjugate? We have now the following statement:
Theorem 1: With the notations above, F is conjugate with respect to (Kλ)λ∈Λ if and only if
there exists a measure Q on (X,B) and a map h : X → G with h∗Q = q in H(S,G) such that

Kλ(dx) = e〈h(x),u(λ〉Q(dx).

Note that (Kλ)λ∈Λ is itself a subset of an exponential family. A surprising feature is the fact that
the acceptable kernels do not depend much on µ except by the support S of µ itself. Since the
statement of the theorem can look strange, let us give the proof of ⇐ . Without loss of generality
we may assume that Λ = S ⊂ E, that µ = ν, that X = E∗, that Q = q and that u and h are the
identity maps. Thus

Kθ(dv) = e〈θ,v〉q(dθ)

is a probability on G ⊂ E∗ for all v ∈ S. Now let us choose an arbitrary θ0 ∈ D and let us take
P (θ0, µ) as the a priori distribution on S. The product distribution on S × E∗ is

ηθ0(dv, dθ) = e〈θ,v〉+〈θ0,v〉−kµ(θ0)q(dθ)µ(dv).

Since θ ∈ G the a posteriori distribution after conditioning by θ is

e〈θ+θ0,v〉−kµ(θ+θ0)µ(dv).

But the definition of G = G(D) implies that θ+ θ0 ∈ D. Therefore F is conjugate with respect to
the kernel (Kθ)θ∈S .
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Example (continued): Let us work on the example of the beginning of the section, taking D =
Θ(µ) for simplication. Then E∗ = IR2, G = G(D) = [0,∞)2, the set S is the curve parametrized
by λ ∈ (0, 1) 7→ (logλ, log(1− λ) ∈ IR2, and H(S,G) is the set of measures q on [0,∞)2 such that
for all λ ∈ (0, 1) one has ∫ ∞

0

∫ ∞
0

λh1(1− λ)h2q(dh1, dh2) = 1.

Two examples of q ∈ H(S,G) are (N is a fixed integer, p > 0 is a fixed number):

q(dh1, dh2) =
N∑
k=0

CkNδk(dh1)δN−k(dh2), (3.1)

q(dh1, dh2) =
∞∑
k=0

p(p+ 1) . . . (p+ k − 1)
k!

δp(dh1)δk(dh2). (3.2)

This example calls for several remarks:

1. The same GEF (here the beta distributions) can serve as a conjugate family for several models
(here for (3.1) the binomial model {B(N,λ); 0 < λ < 1} and for (3.2) the negative binomial
model {NB(p, λ); 0 < λ < 1}).

2. These exponential families are specially simple.

3. The measures q appearing in (3.1) and (3.2) are concentrated on linear affine subspaces
(h1 + h2 = N for the binomial case; h1 = p for the negative binomial case).

As we shall see in the next theorem, there is a link between 2) and 3).

The affine case:

We now assume that S is an analytic manifold contained in the linear space E with dimension
d < dimE. We assume a technical condition of local non degeneracy that we do not state here,
which prevents for instance S from containing linear affine segments. The curve λ ∈ (0, 1) 7→
(logλ, log(1 − λ)) ∈ IR2, is an example of such S with d = 1. We also decompose E∗ into a direct
sum E∗0 ⊕ E∗1 such that dimE∗1 = d the dimension of S. This induces a natural decomposition
of E = E0 ⊕ E1 with dimE1 = d. Finally we denote by u0(λ) and u1(λ) the coordinates of
λ ∈ Λ 7→ u(λ) ∈ S ⊂ E0 ⊕ E1.

Theorem 2: We keep the notations and hypothesis as above. Suppose that q ∈ H(S,G) is
concentrated on the affine subpace e0 + E∗1 6= E∗1 . Then q is unique. Denote by q1 = q ∗ δ−e0 . A
corresponding kernel (Kλ)λ∈Λ for which F is conjugated is for X = E∗1

Kλ(dh) = e〈h,u1(λ)〉+〈e0,u0(λ)〉q1(dh).

Furthermore, the cumulant transform of q1 statisfies for all λ ∈ Λ the equality

kq1(u1(λ)) = −〈e0, u0(λ)〉 (3.3)

Up to the proof of uniqueness, the proof is not difficult. We do not state the converse of this
theorem (see Bar-Lev et al (1994), Th. 5.1). The present Theorem 2 is already surprising. We
are given an analytic manifold S ∈ E and an affine subspace e0 + E∗1 of the proper dimension.
This may or may not generate a measure q on the affine space, but the remarkable thing is that
q is unique and in principle computable by the equation (3.3). Therefore the problem which is
in front to us is the following: when does (3.3) define a measure q1? This problem has not been
much studied beyond the cases d = 1 and dimE ≤ 3 (thus S is a curve in IR2 or IR3) or the case
dimE − d = 1 (that is S is part of a convex surface).
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IV The case where S is a curve

In this section we specialize Theorem 2 to the case 1 = dimS = dimE∗1 . Denote by e1 a basis
of E∗1 and write θ0(λ) = 〈e0, u0(λ)〉 and θ1(λ) = 〈e1, u0(λ)〉. Since q1 is concentrated on the one
dimensional space Thus E∗1 let us denote by q0 the corresponding distribution on IR. Thus (3.3)
becomes

kq0(θ1(λ)) = −θ0(λ). (4.1)

We have now the following theorem, which enables us to write explicitely the variance function of
the NEF F (q0) :
Theorem 3: With the notations above, the map λ 7→ m(λ) = −θ′0(λ)/θ′1(λ) is analytic on
Λ̃ = {λ ∈ Λ; θ1 ∈ Θ(q0).}. Denoting M̃ = m(Λ̃), then the variance function of F (q0) is defined on
M̃ by

VF (q0)(m(λ)) = k′′θ0(θ1(λ)) =
1

θ′1(λ)3

∣∣∣∣ θ′0(λ) θ′′0 (λ)
θ′1(λ) θ′′1 (λ)

∣∣∣∣ . (4.2)

We now specialize furthermore to the case where there exists a function T on Λ such that T (λ)u′(λ)
is a polynomial with degree < dimE. : this is indeed the case in the beta example with T (λ) =
λ(1 − λ). There are many other examples which can be found in Letac (1992) and Barlev et al
(1994). We therefore write T (λ)θ′i(λ) = Pi(λ) thus m(λ) = −P0(λ)/P1(λ) and the variance
fonction becomes

T (λ)
P1(λ)3

∣∣∣∣ P0(λ) P ′0(λ)
P1(λ) P ′1(λ)

∣∣∣∣ . (4.3)

In order to compute V (m) explicitely with respect to m we have to solve the equation P0(λ) +
mP1(λ) = 0 with respect to λ and to carry it in (4.3). Let us carry this program for dimE = 2
and deg T ≤ 3. Thus P0(λ) = a0 − b0λ and P1(λ) = a1 − b1λ. Thus λ is a Moebius function of m.
Thus we obtain from (4.3) that the variance function

V (m) =
(b0 + b1m)3

(a0b1 − a1b0)2
T
(a0 + a1m

b0 + b1m

)
(4.4)

is a polynomial with degree ≤ 3 on the interval M̃, thus extending the Morris families described
in section 2. This is sometimes called the Morris-Mora class. Their classification is in Letac-Mora
(1990).

The case where dimE = 3 is even more interesting. This case does occur in concrete cases. For
instance if we take as the conjugate family F the family of generalized inverse Gaussian distributions
on Λ = (0,∞)

Cλb−1e−aλ−cλ
−1
dλ

where a, b, c are positive parameters then u′(λ) = (1, λ−1, λ−2) and we can take T (λ) = λ2. We
have now the following result:

Theorem 4: If dimE = 3 and deg T ≤ 4 then

VF (q0)(m) = P (m)∆(m) +Q(m)
√

∆(m) (4.5)

where the polynomials P,Q,∆ have degrees not greater than 1,2,2.

We have given a proof of this in Bar-Lev et al. (1994), Th. 5.3, but I do not really understand
the magic role played in this proof by the quadratic extension by

√
∆(m) of the field of rational

functions of m. For degP ≤ 0 and degQ ≤ 1, a complete classification is given in Letac (1992).

V The case where S is a convex surface.

We come back to the equation (3.3) when S has dimension dimE − 1. In this case S is essentially
the graph of the cumulant function u 7→ kq1(u) defined on a part of Θ(q1) ⊂ E1 and valued in
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IR. I say ”essentially”, since E1 × IR is linearly isomorphic to E and S is obtained from the above
graph by a linear affine transformation. We have here a very powerful way to build new measures:
we take a measure q1 on E∗1 ∼ IRd such that its Laplace transform exists, we draw the graph of
the convex function u 7→ kq1(u) in E1 × IR. We perform an affine transformation on this graph,
obtaining a convex surface S1 in E1× IR. Its projection D1 on E1 parallel to IR is a convex set. In
general, there is a natural convex function on D1 whose graph is inbedded in S1. If we are lucky,
this natural convex function is the cumulant function of a new measure q2, which depend on q1
and the affine transformation of E1 × IR. One can prove that the variance function V2 of the NEF
generated by q2 is related to the variance function V1 by a formula of the form

V2(m) =
1

〈c,m〉+ d
(h′(m))−1V1(h(m))(h′(m)∗)−1 (5.1)

where h(m) = a(m)+b
〈c,m〉+d is a Moebius transform of E1× IR easily related to the affine transformation

of E1 × IR.
Let us illustrate this phenomena for E1 = IR, q1 a normal distribution and q2 a stable distri-

bution with parameter 1/2. We draw the parabola u 7→ u2/2, which is the cumulant function of
a normal distribution. We rotate it by 90 degrees, obtaining the graphs of the two functions on
D1 = (−∞, 0) defined by u 7→

√
−2u and u 7→ −

√
−2u. We do not keep the first one, which is

concave. The second one is the cumulant transform of q2, a stable distribution with parameter
1/2. In the formula (5.1) this rotation corresponds to h(m) = 1/m and

V2(m) = m3V1

(
1
m

)
. (5.2)

If one apply this process to the members of Morris class, one gets exactly the Morris Mora class,
since the action of the affinities in IR2 is exactly mirrored on variance functions by formula (4.3).
Replacing the Morris-Mora class in IR by the simple quadratic NEF in IRd of Muriel Casalis
described in section 2 leads to the Hassäıri class of cubic variance functions in IRd which have been
completely classified in Hassäıri’s thesis (1994). See also Hassäıri (1992) for a sample of his results.

VI Lévy processes, reciprocity and the Zolotarev formula.

As we have seen in the previous section, the Bayesian theory leads us to consider a large number
of potential exponential families through their variance functions. However, proving the existence
of an NEF with a given variance function V defined on an open subset M of the linear space E
can be a difficult problem. The steps are

1. Finding ψ : M → E∗ such that (V (m))−1 = ψ(m) (assuming the necessary condition on V
that the bilinear map on E defined by (u, v) 7→ V (m)(V (m)u)(v) is symmetric in (u, v)).

2. Inverting the map m 7→ ψ(m) in order to get the differential of the cumulant function k′.

3. Computing the cumulant function k and L = exp k.

4. Checking that L is the Laplace transform of some positive measure.

The hard parts are steps 2 and 4. The Lagrange formula is often helpful for step 2. But the best
tool for step 4 is the finding of a probabilistic interpretation.

Let us formalize in a definition the link between two exponential families on IR appearing in
(5.2). Suppose that the NEF F1 on IR with domain of the means MF1 is such that M̃F1 = MF1 ∩
(0,∞) is not empty. Then the NEF F2 on IR is called the reciprocal NEF of F1 if V2(m) = m3V1( 1

m )
for all m ∈ M̃F2 .

Not all NEF have reciprocal: the NEF generated by a positive stable distribution whose pa-
rameter is in (0, 1) has no reciprocal. But suppose that we want to prove the existence of a NEF
with variance function m3 +m2. By translation this is equivalent to the existence of a NEF F2 with
variance function m(m− 1)2 which would be the reciprocal of F1 with variance function (1−m)2

with F1 concentrated on (−∞, 1). The NEF F1 exists, this is nothing but the NEF generated by
the Lebesgue measure restricted to (−∞, 1). Actually we have the following result (Letac-Mora
(1990)):
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Theorem 5: Let (X(t)t≥0 be a Lévy process with Lévy measure concentrated on the negative
line. Let T (x) be the hitting time of x > 0. Then the exponential families F1 and F2 respectively
generated by the distribution of X(1) and the distribution of T (1) (restricted to (0,∞)) are recip-
rocal. Furthermore the distributions of X(t) (restricted to the positive line) and Tx are related by
the following Zolotarev’s formula, which indicates the coincidence of two measures on (0,∞)2

xP (X(t) ∈ dx)dt = tP (T (x) ∈ dt)dx. (6.1)

This magic formula (6.1) has actually been given by Zolotarev (1964). Borovkov (1964) and
Dozzi and Vallois (1997) give other proofs. I have learned the above elegant formulation in Bertoin
(1999). Let us insist on the fact that (6.1) is not an absolutely continuous measure on (0,∞)2 : only
the margins have densities. For instance, if X(t) = at− bN(t), where a > 0 and b > 0 and N(t) is
a Poisson process with intensity λ then the measure (6.1) is concentrated on the lines x = at− bn
where n ∈ N.

As an example, we apply the theorem to X(t) = t− Y (t) where Y is the standard gamma process
(E(e−sY (t)) = (1 + s)−t). The variance for X(1) being (1−m)2, then the existence of the variance
functionm(m−1)2 follows. A result similar to Theorem 5 can be obtained with the right continuous
random walks in the integers (see Letac-Mora (1990)), providing a relatively explicit generating
measure for F2 (the Ressel Kendall distribution in our example). The same is true for the random
walk case, where Lagrange replaces Zolotarev.

However, it is false to think that any reciprocal pair has a similar probabilistic interpretation.
Actually, this conference on Lévy processes is an excellent place to attract attention of experts on
the following intriguing problem:

Why do we always have a Zolotarev formula in case of reciprocity?

To be more specific, let us say that two measures µ1 and µ2 in M(IR) are reciprocal if the sets

Θ̃(µi) = {θ ∈ Θ(µi); kµi(θ) > 0}

are not empty and such that the map θ 7→ −kµi(θ) is a one to one map from Θ̃(µi) onto Θ̃(µ3−i)
whose inverse is θ 7→ −kµ3−i(θ). Needless to say, under these circumstances, the NEF’s F (µ1) and
F (µ2) are reciprocal. A tentative of clarification is offered by the following conjecture (which is
even not quite correct, see example 3 below).

Conjecture: Let µ(dx) and ν(dt) inM(IR) be reciprocal. Denote by λ(dx) and η(dt) the measures
on [0,∞) of the form

∑∞
n=0 δan+b or 1[0,∞)(x)dx such that 1[0,∞)(x)µ(dx) and 1[0,∞)(t)µ(dt) are

absolutely continuous with respect to λ(dx) and η(dt) respectively (assuming the existence of λ(dx)
and η(dt)). Then the following equality between measures on Λ(ν) × Λ(µ) holds:

xµt(dx)η(dt) = tνx(dt)λ(dx). (6.2)

Let us give now examples of reciprocity where neither the conditions of Theorem 5 nor the
conditions of its right continuous random walks analog are fullfiled.

Example 1: We take µ(dx) = η(dx) = 1(0,∞)dx. Thus the Jorgensen set Λ(µ) is (0,∞), and
we have µt(dx) = xt−1

Γ(t) η(dx). The reciprocal measure of µ is ν(dt) = 1
Γ(t+1)λ(dt) where λ(dt) =∑∞

n=0 δn(dt). The Jorgensen set Λ(ν) is (0,∞), and we have νx(dt) = xt

Γ(t+1)λ(dt). Clearly (6.2) is
satisfied, and the reciprocity is the reciprocity of the Poisson NEF and the exponential distributions
NEF with respective variance fonctions Vν(m) = m and Vµ(m) = m2. We are not in the conditions
of application of Theorem 5.

Example 2: We take

µ(dx) =
1

2 cosh πx
2

dx.
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Thus η(dx) = 1(0,∞)dx. One can prove (see Morris (1982)) that Λ(µ) = (0,∞) and that

µt(dx) =
2t−2

Γ(t)

∣∣∣∣Γ((t+ ix)/2)
Γ(t/2

∣∣∣∣2 .
Here Vµ(m) = m2 + 1. One can prove (see Letac-Mora (1990)) that the reciprocal measure ν of
µ is concentrated on nonegative integers, its Jorgensen set is (0,∞) and the measures νx(dt) are
explicitely given by

νx(dt) =
∞∑
n=0

pn(x)
n!

δn(dt)

where the pn(x) are the following polynomials:

p2n(x) =
n−1∏
k=0

(x2 + 4k2), p2n+1(x) = x

n−1∏
k=0

(x2 + (2k + 1)2).

Here Vµ(m) = m(m2 + 1).
However, taking λ(dt) =

∑∞
n=0 δn(dt) one checks again that (6.2) is satisfied, without any

probabilistic explanation.

Example 3: We take µ(dx) =
∑∞
n=0

1
n!δn−1(dx). Thus Mµ = (−1,∞) and Vµ(m) = m+ 1 : this

is a shifted Poisson family. The Jorgensen set is (0,∞) and

µt(dx) =
∞∑
n=0

tn

n!
δn−t(dx).

The reciprocal family has therefore a variance function equal to Vν(m) = m2(1 + m) which is a
Ressel Kendall family.

One can prove (see Letac-Mora (1990)) that the reciprocal measure ν of µ has a Jorgensen set
equal to (0,∞) and that the measures νx(dt) are explicitely given by

νx(dt) =
xtx+t−1

Γ(x+ t+ 1)
η(dt)

where η(dt) = 1(0,∞)(t)dt. In this case the conjecture is not quite satisfied, since the reference
measure λ(dx) is the restriction to the positive line of∑

a∈N−t
δa(dx),

which depends a little bit of t. Up to this (6.2) is satisfied.

Example 4: We take µ as the distribution of the difference of two independent Poisson random
variables with means 1/2. Thus Mµ = (−1,∞)IR and Vµ(m) = (m2 +1)1/2, λ(dx) =

∑∞
n=0 δn(dx),

µ is infinitely divisible and since we have

et cosh θ−t =
∑
n∈Z

µt(n)enθ,

thus µt(n) = e−tI|n|(t) where

Ix(t) =
∞∑
n=0

1
n!Γ(n+ x+ 1

(
t

2

)2n+x

.

The reciprocal family does exist and has variance function Vν(m) = m2(m2 +1)1/2. It is generated
by the reciprocal measure ν(dt) = e−t 1

t I1(t)η(dt) where η(dt) = 1(0,∞(t)dt. See Feller (1966) pages
414, formula (3.8) and page 427, example (d). This is also infinitely divisible and (6.2) holds.
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Stable Processes and Metric Entropy

Werner Linde (Jena)

Let X = (X(t))t∈T be a stochastic process over an index set T 6= ∅ and defined on a probability
space (Ω,P). Suppose that for some r > 0 and all t ∈ T we have

E |X(t)|r <∞ .

Then the set of paths
s(X) := {X(t) : t ∈ T } (1)

may be regarded as subset of Lr(Ω,P). A classical problem is to relate geometric properties of
s(X) (as a subset of Lr) with probabilistic properties of the process X . Yet, since

sup
t∈T

|X(t)| = sup
{∣∣∣ n∑

j=1

λjX(tj)
∣∣∣ :

n∑
j=1

|λj | ≤ 1 , tj ∈ T
}
, (2)

in many cases the symmetric convex hull

c(X) :=
{ n∑
j=1

λjX(tj) :
n∑
j=1

|λj | ≤ 1 , tj ∈ T
}

(3)

should be more adequate than s(X) for describing probabilistic properties of X .

First results due to R. M. Dudley [6] and V. N. Sudakov [18] relate in the Gaussian case the size
of s(X) ⊆ L2(Ω,P) with the existence of bounded or continuous versions of X . For the description
of the size of s(X) we need the following definition: Given a metric space (E, d) and a subset
B ⊆ E the n–th (dyadic) entropy number of B is defined by

en(B) := inf
{
ε > 0 : ∃C ⊆ E, |C| ≤ 2n−1 s.t. sup

x∈B
d(x,C) < ε

}
.

Recall that en(B) → 0 iff B is precompact in E.

In this language the above mentioned results of R. M. Dudley and V. N. Sudakov may be
formulated as follow:

Proposition 1. Let X be a centered Gaussian process over an index set T and regard s(X) as
subset of L2(Ω,P).

(a) If
∞∑
n=1

n−1/2en(s(X)) <∞ ,

then there exists an a.s. bounded version of X.

(b) Whenever X has an a.s. bounded version, then

sup
n≥1

n1/2en(s(X)) <∞ .

Remark: In view of (2) it is a bit surprising that both conditions are valid for s(X) (and not only
for c(X)). This phenomenon is tightly related with the problem of the size of convex hulls of sets
in Hilbert spaces (cf. [4], [10]).

The assertions of Proposition 1 suggest that a faster decay of en(s(X)) (better en(c(X))) implies
more regularity for X . Indeed, in the Gaussian case this is so (cf. [7] and [9]):
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Proposition 2. Let X be a centered Gaussian process over T and let δ ∈ (0, 2), β ∈ R be given.
Then the following are equivalent:

(1) There is a c > 0 such that
en(c(X)) ≤ c · n−1/δ (logn)β . (4)

(2) For some c′ > 0 it follows that

− log P
(

sup
t∈T

|X(t)| < ε
)
≤ c′ · ε−1/(1/δ−1/2) (log(1/ε))β/(1/δ−1/2)

. (5)

Remark: The equivalence of (4) and (5) remains true for two–sided estimates, i.e. we have

en(c(X)) ≈ n−1/δ (log n)β

iff
− log P

(
sup
t∈T

|X(t)| < ε
)
≈ ε−1/(1/δ−1/2) (log(1/ε))β(1/δ−1/2)

.

Yet the following interesting problem remains open:

Problem: Does
en(c(X)) ≥ c · n−1/δ (log n)β

always imply

− log P
(

sup
t∈T

|X(t)| < ε
)
≥ c′ · ε−1/(1/δ−1/2) (log(1/ε))β(1/δ−1/2) ?

What about the converse implication ?

Let us answer a question tightly related to this problem. Suppose there is a measure µ on T
and a number p ≥ 1 such that

P
( ∫

T

|X(t)|p dµ(t) <∞
)

= 1 . (6)

Then we define the set

cp(X) :=
{∫

T

X(t)g(t) dµ(t) :
∫
T

|g(t)|p
′
dµ(t) ≤ 1

}
(7)

where p′ is as usual given by 1/p+ 1/p′ = 1.

With this notation the following is true.

Proposition 3. Let X be centered Gaussian with (6) for some p ∈ [1, 2]. Then, if 0 < δ < 2 and
β ∈ R,

en(cp(X)) ≥ c · n−1/δ (log n)β

implies

− log P
(∫

T

|X(t)|p dµ(t) < εp
)
≥ c′ · ε−1/(1/δ−1/2) (log(1/ε))β(1/δ−1/2)

.

We turn now to the symmetric α–stable (SαS) case with 0 < α < 2. If 0 < r < α and X is
SαS over T , then we have s(X) ⊆ c(X) ⊆ Lr(Ω,P). The following result similar to Proposition 1
may be found in [8] or [17] :
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Proposition 4. Let X be SαS and regard s(X) as subset of Lr for some r < α.

(a) If 1 < α < 2 and
∞∑
n=1

2n/αen(s(X)) <∞ , (8)

then X has a version with a.s. bounded paths.

(b) Conversely, if a version with a.s. bounded paths exists, then

en(s(X)) ≤ c · n−1/α′ (9)

for 1 < α < 2 while for α = 1

en(s(X)) ≤ c · (logn)−1 . (10)

Remark: We do not know of any sufficient condition for the boundedness of X in terms of
en(c(X)). It is very likely that such a condition would narrow the huge gap between (8) and (9)
or (10), respectively.

For the small ball behaviour of SαS–processes the following analogue of Proposition 3 is true.
Note that this is the first general small ball result for stable non–Gaussian processes.

Proposition 5. Let X be an SαS–process over T and suppose that there is a measure µ on T
such that cp(X) ⊂ Lr(Ω,P) for a certain p ∈ [0, 2]. Here cp(X) is defined by (7). Then, if δ > 0
with 1/δ > 1− 1/α and β ∈ R, the estimate

en(cp(X)) ≥ c · n−1/δ (log n)β

implies

− log P
(∫

T

|X(t)|p dµ(t) < εp
)
≥ c′ · ε−1/(1/δ+1/α−1) (log(1/ε))β/(1/δ+1/α−1)

. (11)

Remarks:

1. The proof of Proposition 5 follows the ideas developed in [12] by applying Proposition 3.

2. In view of Proposition 4 for 1 < α < 2 the condition 1/δ > 1 − 1/α is natural. Moreover, for
0 < α < 1 estimate (11) fits together with the general lower estimate proved in [15].

Question: It is very likely that Proposition 5 remains true for all p ≥ 1 and for the sup–norm
as well (here w.r.t. c(X)). The answer to this conjecture depends heavily on the so–called duality
problem for entropy numbers (cf. [19], [3] and [13]).

Examples:
1. Let Zα be an α–Levy Motion on [0, 1]. By estimates for the entropy numbers of Volterra integral
operators (cf. [11]) it follows that

en(cp(Zα)) ≈ n−1 .

Hence, if 1 ≤ p ≤ 2, by Proposition 5 we obtain

− log P
(∫ 1

0

|Zα(t)|p dt < εp
)
≥ c · ε−1/(1+1/α−1) = c · ε−α . (12)

By monotonicity of the Lp-norms the lower order in (12) is ε−α for all p ≥ 1 as well as for the
supremum. It is the correct one by the results of [14] and [5] .

2. Let us regard the Linear Fractional Stable Motion of the form

XH,α(t) :=
∫ ∞
−∞

[
(t− x)H−1/α

+ − ((−x)+)H−1/α
]
dM(x) , t ∈ [0, 1],
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where M denotes an SαS random measure with Lebesque control measure and 0 < H < 1,
H 6= 1/α. For 1 < α < 2 and 1/α < H < 1 it follows from [1] and [2] that

en(cp(XH,α)) ≈ n−(H−1/α+1) .

Here the underlying measure on [0, 1] is the Lebesque measure. Of course, 1/δ > 1 − 1/α with
1/δ := H − 1/α + 1. Hence, Proposition 5 applies and leads to

− log P
(∫ 1

0

|XH,α(t)|p dt < εp
)
≥ c′ · ε−1/H . (13)

Again by monotonicity the lower order in (13) is true for all p ≥ 1 as well as for supt∈[0,1] |XH,α(t)|.
In the latter case this was proved in [16] by different methods. It is open whether or not this is
optimal.
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Abstract

The fundamental solutions (Green functions) for the Cauchy problem of the space-time
fractional diffusion equation are investigated with respect to their scaling and similarity prop-
erties, starting from their composite Fourier-Laplace representation. By using the Mellin
transform, a general representation of the Green functions in terms of Mellin-Barnes integrals
in the complex plane is presented, that allows us to obtain their computational form in the
space-time domain and to analyse their probability interpretation.

Mathematics Subject Classification 2000: 26A33, 33E12, 33C60, 44A10, 45K05, 47G30, 60G18,
60G55, 60J70.

Key words: Green functions, Fox H-functions, Mellin-Barnes integrals, fractional calculus, self-
similarity.

1 Introduction

We consider the Cauchy problem for the space-time fractional partial differential equation, which is
obtained from the standard diffusion equation by replacing the second-order space derivative with
a Riesz-Feller derivative of order α ∈ (0, 2] and skewness θ (|θ| ≤ min {α, 2−α}), and the first-order
time derivative with a Caputo derivative of order β ∈ (0, 2] . The fundamental solutions (Green
functions) for the Cauchy problem are investigated with respect to their scaling and similarity
properties, starting from their combined Fourier-Laplace representation.

In the cases {0 < α ≤ 2 , β = 1} and {α = 2 , 0 < β ≤ 1} the fundamental solutions are
known to be interpreted as a spatial probability density functions evolving in time, so we talk of
space-fractional diffusion and time-fractional diffusion, respectively. Then, by using the Mellin
transform, we provide a general representation of the Green functions in terms of Mellin-Barnes
integrals in the complex plane, which allows us to extend the probability interpretation to the ranges
{0 < α ≤ 2 , 0 < β ≤ 1} and {1 < β ≤ α ≤ 2}. Furthermore, from this representation it is possible
to derive explicit formulae (convergent series and asymptotic expansions), which enable us to plot
the spatial probability densities for different values of the relevant parameters α, θ, β .
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2 The space-time fractional diffusion equation

By replacing in the standard diffusion equation

∂

∂t
u(x, t) =

∂2

∂x2
u(x, t) , −∞ < x < +∞ , t ≥ 0 , (2.1)

where u = u(x, t) is the (real) field variable, the second-order space derivative and the first-order
time derivative by suitable integro-differential operators, which can be interpreted as a space and
time derivative of fractional order, we obtain a sort of ”generalized diffusion” equation. Such
equation may be referred to as the space-time fractional diffusion equation when its fundamental
solution (see below) can be interpreted as a probability density. We write

tD
β
∗ u(x, t) = xD

α
θ u(x, t) , −∞ < x < +∞ , t ≥ 0 , (2.2)

where the α , θ , β are real parameters restricted as follows

0 < α ≤ 2 , |θ| ≤ min{α, 2− α} , 0 < β ≤ 2 . (2.3)

In (2.2) xD
α
θ is the Riesz-Feller fractional derivative (in space) of order α and skewness θ , and

tD
β
∗ is the Caputo fractional derivative (in time) of order β . The definitions of these fractional

derivatives are more easily understood if given in terms of Fourier transform and Laplace transform,
respectively.

For the Riesz-Feller fractional derivative we have

F { xDα
θ f(x);κ} = −ψθα(κ) f̂(κ) , ψθα(κ) = |κ|α ei(signκ)θπ/2 , (2.4)

where κ ∈ IR and f̂(κ) = F {f(x);κ} =
∫ +∞
−∞ e+iκx f(x) dx . In other words the symbol of the

pseudo-differential operator1 xD
α
θ is required to be the logarithm of the characteristic function of

the generic stable (in the Lévy sense) probability density, according to the Feller parameterization
[6], [7].

For α = 2 (hence θ = 0) we have x̂D2
0(κ) = −κ2 = (−iκ)2 , so we recover the standard second

derivative.
For 0 < α < 2 and θ = 0 we have x̂Dα

0 (κ) = −|κ|α = −(κ2)α/2 so

xD
α
0 = −

(
− d2

dx2

)α/2
. (2.5)

In this case we call the LHS of (2.5) simply the Riesz fractional derivative of order α . For the
explicit expressions in integral form of the general Riesz-Feller fractional derivative we refer the
interested reader e.g. to [13], [15], [25], [34].

Let us now consider the Caputo fractional derivative. Following the original idea by Caputo [2],
see also [3], [12], [32], a proper time fractional derivative of order β ∈ (m−1,m] with m ∈ IN , useful
for physical applications, may be defined in terms of the following rule for the Laplace transform:

L
{
tD

β
∗ f(t); s

}
= sβ f̃(s)−

m−1∑
k=0

sβ−1−k f (k)(0+) , m− 1 < β ≤ m, (2.6)

where s ∈ C and f̃(s) = L{f(t); s} =
∫∞
0

e−st f(t) dt . Then the Caputo fractional derivative of
f(t) turns out to be

tD
β
∗ f(t) :=


1

Γ(m− β)

∫ t

0

f (m)(τ) dτ
(t− τ)β+1−m , m− 1 < β < m ,

dm

dtm
f(t) , β = m,

t ≥ 0 . (2.7)

1Let us recall that a generic linear pseudo-differential operator A, acting with respect to the variable x ∈ IR , is
defined through its Fourier representation, namely

∫ +∞
−∞ e iκx A [f(x)] dx = Â(κ) f̂(κ) , where Â(κ) is referred to as

symbol of A , given as Â(κ) =
(
A e−iκx

)
e+iκx .
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In order to formulate and solve the Cauchy problems for (2.2) we have to select explicit initial
conditions concerning u(x, 0+) if 0 < β ≤ 1 and u(x, 0+) , ut(x, 0+) if 1 < β ≤ 2 . If φ1(x) and
φ2(x) denote two given real functions of x ∈ IR , the Cauchy problems consist in finding the solution
of (2.2) subjected to the additional conditions:

u(x, 0+) = φ1(x) , x ∈ IR , if 0 < β ≤ 1 ; (2.8a){
u(x, 0+) = φ1(x) ,
ut(x, 0+) = φ2(x) ,

x ∈ IR , if 1 < β ≤ 2 . (2.8b)

3 Representations of the Green functions

The Cauchy problems can be conveniently treated by making use of the most common integral
transforms, i.e. the Fourier transform (in space) and the Laplace transform (in time). The com-
posite Fourier-Laplace transforms of the solutions of the two Cauchy problems turn out to be, by
using (2.4) and (2.6) with m = 1, 2,

̂̃u(κ, s) =
sβ−1

sβ + ψθα(κ)
φ̂1(κ) , 0 < β ≤ 1 , (3.1a)

̂̃u(κ, s) =
sβ−1

sβ + ψθα(κ)
φ̂1(κ) +

sβ−2

sβ + ψθα(κ)
φ̂2(κ) , 1 < β ≤ 2 . (3.1b)

By fundamental solutions (or Green functions) of the above Cauchy problems we mean the (gen-
eralized) solutions corresponding to the initial conditions:

G
θ (1)
α,β (x, 0+) = δ(x) , 0 < β ≤ 1 ; (3.2a)


G
θ (1)
α,β (x, 0+) = δ(x) ,

∂

∂t
G
θ (1)
α,β (x, 0+) = 0 ,


G
θ (2)
α,β (x, 0+) = 0 ,

∂

∂t
G
θ (2)
α,β (x, 0+) = δ(x) ,

1 < β ≤ 2 . (3.2b)

We have denoted by δ(x) the delta-Dirac generalized function, whose (generalized) Fourier trans-
form is known to be 1, and we have distinguished by the apices (1) and (2) the two types of
Green functions. From Eqs (3.1a)-(3.1b) the composite Fourier-Laplace transforms of these Green
functions turn out to be

̂̃
G
θ (j)
α,β (κ, s) =

sβ−j

sβ + ψθα(κ)
, 0 < β ≤ 2 , j = 1, 2 . (3.3)

Furthermore, by recalling the Fourier convolution property, we note that the Green functions allow
us to represent the solutions of the above two Cauchy problems through the relevant integral
formulas:

u(x, t) =
∫ +∞

−∞
G
θ (1)
α,β (ξ, t)φ1(x− ξ) dξ , 0 < β ≤ 1 ; (3.4a)

u(x, t) =
∫ +∞

−∞

[
G
θ (1)
α,β (ξ, t)φ1(x− ξ) +G

θ (2)
α,β (ξ, t)φ2(x− ξ)

]
dξ, 1 < β ≤ 2. (3.4b)

We recognize from (3.3) that the function G
θ (2)
α,β (x, t) along with its Fourier-Laplace transform is

well defined also for 0 < β ≤ 1 even if it loses its meaning of being a fundamental solution of (3.2),
resulting

G
θ (2)
α,β (x, t) =

∫ t

0

G
θ (1)
α,β (x, τ) dτ , 0 < β ≤ 2 . (3.5)
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By using the known scaling rules for the Fourier and Laplace transforms, and introducing the
similarity variable x/tβ/α , we infer from (3.3) (thus without inverting the two transforms) the
scaling properties of the Green functions,

G
θ (j)
α,β (x, t) = t−β/α+j−1K

θ (j)
α,β

(
x/tβ/α

)
, j = 1, 2 , (3.6)

where the one-variable functions Kθ (j)
α,β (x) , obtained by setting t = 1 , are called the reduced Green

functions. We also note the symmetry relation:

G
θ (j)
α,β (−x, t) = G

−θ (j)
α,β (x, t) , j = 1, 2 , (3.7)

so for the determination of the Green functions we can restrict our attention to x > 0 . Extending
the method illustrated in [9], [25], where only the Green function of type (1) was determined, we
first invert the Laplace transforms in (3.3) getting

Ĝ
θ (j)
α,β (κ, t) = tj−1 Eβ,j [−ψθα(κ)tβ ], K̂θ (j)

α,β (κ) = Eβ,j [−ψθα(κ)], j = 1, 2, (3.8)

where Eβ,j denotes the two-parameter Mittag-Leffler function2. We note the normalization prop-
erty satisfied by both reduced Green functions:

∫ +∞
−∞ K

θ (j)
α,β (x) dx = Eβ,j(0) = 1/Γ(j) = 1 for

j = 1, 2 . However, the normalization property holds true for all times only for the first complete
Green function as we can note from the first equality in (3.8). Following [25] we invert the Fourier
transforms of Kθ (j)

α,β (x) by using the convolution theorem of the Mellin transforms arriving at the
Mellin-Barnes integral representation

K
θ (j)
α,β (x) =

1
αx

1
2πi

∫ γ+i∞

γ−i∞

Γ( sα ) Γ(1− s
α ) Γ(1 − s)

Γ(j − β
αs) Γ(ρ s) Γ(1− ρ s)

xs ds , (3.9)

where 0 < γ < min{α, 1} , and ρ = (α − θ)/(2α) .

For later use we recall the main formulas concerning the Mellin transform. For more details,
see e.g. [27]. If

M{f(r); s} = f∗(s) =
∫ +∞

0

f(r) rs−1 dr, γ1 < < (s) < γ2 (3.10)

denotes the Mellin transform of f(r) with r ∈ IR+ , the inversion is provided by

M−1 {f∗(s); r} = f(r) =
1

2πi

∫ γ+i∞

γ−i∞
f∗(s) r−s ds , (3.11)

where r > 0 , γ = < (s) , γ1 < γ < γ2 . The Mellin convolution formula reads

h(r) =

∞∫
0

1
ρ
f(ρ) g(r/ρ) dρ M↔ h∗(s) = f∗(s) g∗(s) . (3.12)

We note that the Mellin-Barnes integral representation (3.9)3 allows us to construct computa-
tionally the fundamental solutions of Eq. (3.2) for any triplet {α, β, θ} by matching their convergent

2The Mittag-Leffler function Eβ,µ(z) with β, µ > 0 is an entire transcendental function of order ρ = 1/β, defined
in the complex plane by the power series

Eβ,µ(z) :=
∞∑

n=0

zn

Γ(β n + µ)
, β, µ > 0 , z ∈ C .

For information on the Mittag-Leffler-type functions the reader may consult e.g. [5], [12], [32].
3The names refer to the two authors, who in the beginning of the past century developed the theory of these

integrals using them for a complete integration of the hypergeometric differential equation. However, as revisited
in [26], these integrals were first introduced in 1888 by S. Pincherle (Professor of Mathematics at the University of
Bologna from 1880 to 1928).
As a matter of fact this type of integrals turns out to be useful in inverting the Mellin transforms.
Readers acquainted with Fox H functions can recognize in (3.9) the representation of a certain function of this class,
see e.g. [28], [37]. Unfortunately, as far as we know, computing routines for this general class of special functions
are not yet available.
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and asymptotic expansions, as shown in [25] for the first Green function. The interested reader
may take vision of several plots of the reduced Green functions in [25] in a number of cases where
these functions, being non-negative and normalized, can be interpreted as probability densities. In
order to give the reader a better impression about the behaviours of the tails, the logarithmic scale
was adopted.

We also note that the space-time fractional diffusion equation has been analysed (but without
numerical computations) in several papers, see e.g. Anh and Leonenko [1] and references therein.

4 Probability interpretation of the Green functions

For the following cases that allow simplifications in the integrand of Eq. (3.9), we obtain relevant
expressions of the corresponding Green functions that can be interpreted as probability densities.
(a) For j = 1 and {0 < α < 2, β = 1} (strictly space fractional diffusion) we have Kθ (1)

α,1 (x) =
Lθα(x) , i.e. the class of the strictly stable (non-Gaussian) probability densities [7]4exhibiting fat
tails (with the algebraic decay ∝ |x|−(α+1)) and infinite variance. Their Mellin-Barnes integral
representation reads

K
θ (1)
α,1 (x) = Lθα(x) =

1
αx

1
2πi

∫ γ+i∞

γ−i∞

Γ(s/α) Γ(1− s)
Γ(ρ s) Γ(1− ρs)

xs ds , (4.1)

where 0 < γ < min{α, 1} .
(b) For j = 1, 2 and {α = 2, 0 < β < 2} (time fractional diffusion including standard diffusion),
we have K0 (j)

2,β (x) = M
(j)
β/2(x)/2 , i.e. the class of the Wright type5 probability densities exhibiting

stretched exponential tails. Their Mellin-Barnes integral representation reads

K
0 (j)
2,β (x) =

1
2
M

(j)
β/2(x) =

1
2x

1
2πi

∫ γ+i∞

γ−i∞

Γ(1− s)
Γ(j − βs/2)

xs ds , (4.2)

where 0 < γ < 1 .

(c) For j = 1 and {0 < α = β < 2} (neutral fractional diffusion), we have Kθ (1)
α,α (x) = Nθ

α(x) ,
i.e. the class of the Cauchy type probability densities [25]. Indeed, in this special case, the Mellin-
Barnes integral representation provides an explicit expression which generalizes the Cauchy density,

Kθ (1)
α,α (x) = Nθ

α(x) =
1
αx

1
2πi

∫ γ+i∞

γ−i∞

Γ( sα ) Γ(1− s
α )

Γ(ρ s) Γ(1− ρ s)
xs ds

=
1
αx

1
2πi

∫ γ+i∞

γ−i∞

sin(π ρ s)
sin(π s/α)

xs ds =
1
π

xα−1 sin[π2 (α− θ)]
1 + 2xα cos[π2 (α− θ)] + x2α

.

(4.3)

4For recent treatises on Lévy stable distributions see e.g. [20], [35], [36], [38].
5The function M

(j)
ν (z) is defined for any order ν ∈ (0, 1) and ∀z ∈ C by

M
(j)
ν (z) :=

∞∑
n=0

(−z)n

n! Γ[−νn + (j − ν)]
, 0 < ν < 1 , z ∈ C .

It turns out that M
(j)
ν (z) is an entire function of order ρ = 1/(1 − ν) . For ν = 1/2 we obtain

M
(1)
1/2

(z) =
1√
π

exp
(− z2/4

)
, M

(2)
1/2

(z) =
1√
π

exp
(− z2/4

) − z

2
erfc

( z

2

)
.

The M functions are special cases of the Wright function defined by the series representation, valid in the whole
complex plane,

Φλ,µ(z) :=
∞∑

n=0

zn

n! Γ(λn + µ)
, λ > −1 , µ ∈ C , z ∈ C .

Indeed, we recognize M
(j)
ν (z) = Φ−ν,j−ν(−z) , 0 < ν < 1 . Originally, Wright introduced and investigated this

function with the restriction λ ≥ 0 in a series of notes starting from 1933 in the framework of the asymptotic
theory of partitions. Only later, in 1940, he considered the case −1 < λ < 0 . For detailed information on the
Wright-type functions the interested reader may consult, e.g. [5] (where, presumably for a misprint, λ is restricted
to be non-negative), [10], [11], [21].
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where 0 < γ < α .

Based on the arguments outlined in [25], we extend the meaning of probability density to the
cases {0 < α < 2 , 0 < β < 1} and {1 < β ≤ α < 2} by proving the following composition rules of
the Mellin convolution type:

K
θ (j)
α,β (x) =


α

∫ ∞
0

[
ξα−1M

(j)
β (ξα)

]
Lθα (x/ξ)

dξ

ξ
, 0 < β < 1 ,∫ ∞

0

M
(j)
β/α(ξ)Nθ

α(x/ξ)
dξ

ξ
, 0 < β/α < 1 .

(4.4)

The absolute moments of Kθ (j)
α,β (x) can be obtained by considering the Mellin transform of

xK
θ (j)
α,β (x) which reads, by using (3.9) and (3.10)-(3.11),

∫ +∞

0

K
θ (j)
α,β (x)xs dx = ρ

Γ(1− s/α) Γ(1 + s/α) Γ(1 + s)
Γ(1− ρ s) Γ(1 + ρ s) Γ(j + β s/α)

, (4.5)

where −min{α, 1} < <(s) < α . In particular we find
∫ +∞
0 K

θ (j)
α,β (x) dx = ρ (with ρ = 1/2 if

θ = 0). We note that Eq. (4.5) is strictly valid as soon as cancellations in the ”gamma fraction”
at the RHS are not possible. Then this equation allows us to evaluate (in IR+

0 ) the (absolute)
moments of order δ for the Green function if −min{α, 1} < δ < α . In other words, it states that
K
θ (j)
α,β (x) = O

(
x−(α+1)

)
as x → +∞ . However, cancellations occur in the following cases where

the restriction δ < α is expected to disappear:

a) {α = 2, θ = 0, 0 < β < 2} (time fractional diffusion including standard diffusion), for which
ρ = 1/2 ;

b) {1 < α < 2 , θ = α− 2, 0 < β < α} (extremal diffusion), for which ρ = 1/α . We note that this
may happen only for one tail of the extremal density.

We recognize that case a) is included in case b) in the limit α = 2 . In the above cases Eq. (4.5)
reduces to ∫ +∞

0

K
2−α (j)
α,β (x)xs dx =

1
2

Γ(1 + s)
Γ[j + β s/α]

, <(s) > −1 , (4.6)

and consequently any absolute moment of order δ > −1 is finite. We can show that the corre-
sponding Green functions result of the Wright type6 and exhibit a stretched exponential decay
according to the asymptotic representation

K
2−α (j)
α,β (x) ∼ α−1 [2π(1 − β/α)]−1/2(xβ/α)(1/2−j+β/α)/(1−β/α)

· exp
[
−(α/β − 1) (xβ/α)1/(1−β/α)

]
, x→ +∞ . (4.7)

Then, due to the previous discussion, in the cases {0 < α < 2 , 0 < β < 1} and {1 < β ≤ α < 2}
(i.e. strictly space-time-fractional diffusion) we obtain a class of probability densities (symmetric
or non-symmetric according to θ = 0 or θ 6= 0) which exhibit fat tails (only one fat tail in the
extremal cases) with an algebraic decay ∝ |x|−(α+1) . Thus, they belong to the domain of attraction
of the Lévy stable densities of index α and can be referred to as fractional stable densities.

When the time variable is considered, in all above cases the first Green function evolves in time
as a probability density because it keeps the normalization. The integral over all of IR of the first
Green function is independent of time whereas that of the second Green function increases linearly
with time.

6We have

K
2−α (j)
α,β (x) =

1

α
Φ−β/α,j−β/α(−x) =

1

α

∞∑
n=0

(−x)n

n!Γ[−n β/α + (j − β/α)]
.
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5 Conclusions and outlook

In this paper we have summarized our approach to obtain the fundamental solutions of fractional
diffusion equations and have shown how they can be interpreted as probability densities evolving
in time.

In recent years evolution equations containing fractional derivatives have gained revived interest
in that they are expected to provide suitable mathematical models for describing phenomena of
anomalous diffusion and transport dynamics in complex systems, see e.g. [4], [19], [23], [24], [29],
[31], [33], [38]. and references therein. We point out the fact that all these fractional evolution
equations can be considered as master equations for random walk models that turn out to be
beyond the classical Brownian motion, see e.g. Klafter et al. [22]. For a recent review we refer
the reader to Metzler and Klafter [30]. Gorenflo and collaborators, see e.g. [8], [13], [14], [15], [17],
[18], have recently proposed a variety of models of random walk, discrete or continuous in space
and time, suitable for simulating fractional diffusion processes.

In [16] Gorenflo and Mainardi have shown how to obtain the space-time fractional diffusion
equation (2.1), in the case 0 < β ≤ 1 , θ = 0 , by a properly scaled transition to the limit from a
general master equation.

Acknowledgements. We are grateful to the Italian Group of Mathematical Physics (INDAM),
to the Erasmus-Socrates project, to the INTAS Project 00-0847, and to the Research Commissions
of the Free University of Berlin and of the University of Bologna for supporting our work.

References

[1] V.V. Anh and N.N. Leonenko, Spectral analysis of fractional kinetic equations with random
data, J. Statistical Physics 104 (2001) 1349-1387.

[2] M. Caputo, Linear models of dissipation whose Q is almost frequency independent: Part II,
Geophys. J. R. Astr. Soc. 13 (1967) 529–539.

[3] M. Caputo and F. Mainardi, Linear models of dissipation in anelastic solids, Riv. Nuovo
Cimento (Ser. II) 1 (1971) 161–198.

[4] A. V. Chechkin and V. Yu. Gonchar, A model for persistent Lévy motion. Physica A 277
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for Analysis and its Applications (ZAA) 18 (1999) 231-146.

[15] R. Gorenflo and F. Mainardi, Random walk models approximating symmetric space-fractional
diffusion processes, in: J. Elschner, I. Gohberg and B. Silbermann (Editors), Problems in
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Abstract

We review recent results on multivariate extensions of type G laws and present new results
on type G random matrices.

1 Introduction

Marcus (1987) introduced the concept of type G random variables and processes (see also Rosinski
(1991) and Maejima and Samorodnitsky (1999)). We here review several of the recent attempts
to extend this concept to multivariate situations, including examples and corresponding character-
izations. In Section 2 we recall some of the properties and examples of one dimensional type G
laws. In Section 3 we review three possible multivariate extensions studied by Maejima and Rosin-
ski (2001, 2002) and Barndorff-Nielsen and Pérez-Abreu (2000, 2002). Finally, Section 4 presents
several extensions to matrix laws obtained recently by the authors.

We denote by Mm the space of symmetric m×m matrices and by M+
m the cone of nonnegative

definite matrices in Mm.

2 One dimensional type G laws

Marcus (1987) introduced the concept of type G random variables as those infinitely divisible
random variables whose Lévy measure is given by

U(A) = E
[
U0(Z−1A)

]
, (2.1)

for Z a standard Gaussian random variable, U0 a Borel measure on B(R), and for all A ∈
B(R\{0}).

It can be shown (see for example Rosinski, 1991) that a random variable x is of type G if in law
x is of the form z

√
s where z and s > 0 are independent random variables with s being infinitely

divisible and z having the standard normal distribution (we refer to z
√
s as a G-representation of

x). Those, type G random variables are variance mixtures of Gaussian random variables, where
the random variance is infinitely divisible.

2.1 Examples

Many important examples of one dimensional distributions are of type G:

a) Symmetric stable distributions (called subgaussian by Samorodnitsky and Taqqu, 1994), where
s has the law of a positive α/2−stable random variable.

b) The Student−t (see Steutel, 1979), where s has the law of the reciprocal chi-square distribution
(which is infinitely divisible).

c) The normal inverse Gaussian (Barndorff-Nielsen, 1996), where s has the inverse Gaussian law.
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Vı́ctor Pérez-Abreu

2.2 Characterization

An important characterization of a type G distribution is that its Lévy measure is the Gaussian
mixture with respect to the Lévy measure v of the random variance s (see Rosinski, 1991).

Proposition 2.1. Let x be one-dimensional type G with G-representation zs1/2, and suppose
that the infinitely divisible nonnegative random variable s has Lévy measure v. Then x is infinitely
divisible with Lévy density u given by

u(x) =
∫ ∞

0

ϕ(x;σ)v(dσ), (2.2)

where ϕ(x;σ) denotes the density function of the one-dimensional normal distribution with mean
0 and variance σ.

Proposition 2.2. A one-dimensional infinitely divisible random variable x is of type G if and only
if its Lévy measure U is of form

U(A) =
∫
A

g(r2)v(dr), A ∈ B(R\{0}), (2.3)

where g(r) is a completely monotone function on (0,∞) and v is a finite measure on B(R\{0})
such that ∫ ∞

0

min(1, r2)g(r2)v(dr) <∞.

2.3 Relation to subordination

There is an interesting relation between one dimensional type G and the notion of subordination.
Namely, if s(t) is a one-dimensional subordinator, independent of the Brownian motion B(t), then
x(t) = B(s(t)) has the G-representation B(1)

√
s(t).

3 Multivariate type G laws

As one can expect, there is no single extension of type G to higher dimensions. In this section
we review three possible extensions given recently by Maejima and Rosinski (2001, 2002) and
Barndorff-Nielsen and Pérez-Abreu (2002). We emphasize the multivariate versions of the exam-
ples, characterizations and relation to subordination presented in Section 2 for the one-dimensional
laws.

3.1 Extension via Marcus’ definition

Following the above idea of M. Marcus, Maejima and Rosinski (2001, 2002) propose the concept
of type G random vectors as those infinitely divisible random vectors whose Lévy measure is given
by (2.1), for z a standard Gaussian random variable, U0 a Borel measure on B(Rm\{0}) and for
all A ∈ B0(Rm}, the class of all Borel sets such that A ⊂ {|x| > ε} for some ε > 0. The latter
authors give, in particular, the following multivariate extension of Proposition 2 in terms, of radial
components.

Proposition 3.1. A symmetric probability measure P on B(Rm) is of type G if and only if it is
infinitely divisible and its Lévy measure U is either zero or represented as

U(EB) =
∫
B

λ(dx)
∫
E

gx(r2)v(dr), for E ∈ B(R+), B ∈ B(S), (3.1)

where λ is a probability measure on the unit sphere S of Rm and gx(r) is a jointly measurable
function which, for any fixed x, is a completely monotone function on (0,∞) and satisfies

0 <
∫ ∞

0

min(1, r2)gx(r2)v(dr) = c <∞

with c independent of x.
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3.2 The multG class

Barndorff-Nielsen and Pérez-Abreu (2000, 2002) present two possible multivariate extensions of
the one dimensional concept of type G, called multG and extG. The first extension is to random
vectors x with the representation

x
d= zS1/2 (3.2)

where z is a standard m-dimensional normal vector independent of the infinitely divisible nonneg-
ative definite random m×m matrix S. The following result extends Proposition 1 above.

Proposition 3.2. Let x be a multG random vector with G-representation (3.2) and suppose that
the infinitely divisible nonnegative definite random matrix S has Lévy measure V . Then x is an
infinitely divisible random vector with Lévy density u given by

u(x) =
∫
Mm

+

ϕm(x; Σ)V (dΣ), (3.3)

where ϕm(x; Σ) denotes the density function of the m-dimensional normal distribution with zero
mean and covariance Σ.

As examples of multG distributions, Barndorff-Nielsen and Pérez-Abreu (2002) show that, as in
the one dimensional case, any multivariate symmetric α−stable law is a random covariance mixture
of a Gaussian vector. They also introduce a matrix extension of the inverse Gaussian distribution
and construct the corresponding multivariate normal inverse Gaussian law.

The relation of multG to subordination is not straightforward as in the one dimensional case
and leads to the study of cone parameter Lévy processes and multivariate subordination (see
Barndorff-Nielsen, Pedersen and Sato, 2001). Recently, Pedersen and Sato (2001) have shown the
relation of multG to subordination of cone-parameter convolution semigroups.

3.3 The extG class

A third, more general, extension, called extG, consists of those random vectors whose one di-
mensional marginals are type G. In this direction we introduce the concept of marginal infinite
divisibility.

Definition 3.3. Let E be a Euclidean space and let Ψ be a collection of linear maps, each element
ψ of Ψ mapping E into some Euclidean space. A random variate x in E is said to be marginal
infinitely divisible relative to Ψ if the law of ψ(x) is infinitely divisible for all ψ ∈ Ψ.

Trivially, infinite divisibility implies marginal infinite divisibility whatever the class Ψ.
In particular, the above concept is applied to marginal infinite divisibility of random m ×m

symmetric matrices M with Ψ being the class of mappings of the form

ψ : M → tr(CMT )

for C an m × m symmetric matrix. Depending on the rank d of the class of matrices C under
consideration, we obtain the corresponding concepts of marginal infinite divisibility of order d,
0 < d ≤ m. Thus we say that a random symmetric matrix is marginal infinitely divisible of order d
if for all m×m matrix C of rank d, tr(SC) is a one-dimensional infinitely divisible random variable.
The case d = 1 was considered in Barndorff-Nielsen and Pérez-Abreu (2002), the Wishart and the
inverse Wishart providing examples of such random matrices, which are not themselves infinitely
divisible.

The above concept allows us to introduce an important class of multivariate extG laws. Let S
be a nonnegative definite m ×m random matrix marginal infinitely divisible of order one. Then
the vector x = zS1/2 has an extG law. Several distributions commonly used in the multivariate
statistics literature are of this type, including a multivariate extension of the Student−t distribution
(see Barndorff-Nielsen and Pérez-Abreu (2002)), where S has the inverse Wishart law.

A stochastic processes x(t) is said to be of type extG, if all finite dimensional laws of x(t) are
of type extG. A wide class of strictly stationary stochastic processes of type extG is constructed
in Barndorff-Nielsen and Pérez-Abreu (1999).
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4 Matrix type G laws

The multG concept can be easily extended to matrix distributions. A random matrix x is said to
be matG, if its law is of the form ZS1/2, where Z is a standard normal matrix independent of the
infinitely divisible nonnegative definite random m×m matrix S. In this case we are able to prove
the corresponding versions of Propositions 1 and 2.

4.1 Characterization

By Mm we denote the set of m×m symmetric matrices and M+
m stands for the subset consisting

of the nonnegative definite elements of Mm.

Proposition 4.1. Let x be a matG random matrix with G-representation ZS1/2 and suppose that
the infinitely divisible nonnegative random matrix S has Lévy measure V . Then x is an infinitely
divisible random matrix with Lévy density u given by

u(x) =
∫
M+

m

ϕmm
(
x; Im

⊗
Σ
)
V (dΣ), (4.1)

where ϕmm(x; Im
⊗

Σ) denotes the density function of the m×m matrix normal distribution with
zero matrix mean and covariance Im

⊗
Σ with Im the identity matrix in Rm and where

⊗
denotes

tensor product of matrices.

Proposition 4.2. An m×m symmetric random matrix x is matG if and only if its Lévy measure
U is of the form

U(A) =
∫
A

g(x2)dx, A ∈ B(Rm×m), (4.2)

where g : M+
m → R+ is a completely monotone function.

4.2 Examples

Similarly to the construction of multG examples in Barndorff-Nielsen and Pérez-Abreu (2002), we
can construct important examples of matG random matrices.

a) Matrix symmetric α−stable distributions. The matrix symmetric α−stable law is matG with
log characteristic function

C{ζ ‡ x} = − 1
2α/2

∫
SM+

m

[
tr(ζ2Θ)

]α/2Γ(dΘ), ζ ∈ Mm, (4.3)

where Γ is a measure on SM+
m = S ∩M+

m and S is the unit sphere of Mm.�

b) Matrix extension of the symmetric normal inverse Gaussian law. Let be Γ as in the last example
and Σ ∈ M+

m. The infinitely divisible random matrix x with log characteristic function

C{ζ ‡ x} =
∫
SM+

m

[
tr(ΣΘ)

]α/2Γ(dΘ)−
∫
SM+

m

[tr((Σ +
1
2
ζ2)Θ)]α/2Γ(dΘ), ζ ∈ Mm (4.4)

and Lévy density

u(x; Σ,Γ) =
∫
SM+

m

∫ ∞
0

ϕmm
(
x; Im

⊗
rΘ
)e−rtr(ΣΘ)

r1+α/2
drΓ(dΘ), x ∈ Mm. (4.5)

is matG and it is a matrix generalization of the symmetric normal inverse Gaussian distribution.

The proofs of the above results as well as a discussion of the relation of matG to subordination
will be given elsewhere.
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[11] Samorodnitsky, G. and M. Taqqu (1994): Stable Non-Gaussian random Processes. New York:
Chapman and Hall.

[12] Steutel, F. W. (1979): Infinite divisibility in theory and practice. Scand. J. Statist. 6, 57-64.

210



Smoothness of harmonic functions for Markov

processes with jumps

Jean Picard and Catherine Savona
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1 The case of continuous diffusions

Consider a second-order differential operator L on Rd with C∞b coefficients, and its associated
semigroup Pt. There exists a continuous diffusion Xt defined on a probability space (Ω,F ,Px),
such that Px[X0 = x] = 1 and

Ptf(x) = Ex
[
f(Xt) exp

∫ t

0

g(Xs)ds
]

with g = L1. One wants to study the hypoellipticity of L with probabilistic methods. Under
Hörmander’s condition, one can prove with the help of Malliavin’s calculus that

Ptf(x) =
∫
f(y)p(t, x, y)dy

for a C∞ density y 7→ p(t, x, y). This density is solution of the Fokker-Planck equation

∂p

∂t
= L?p, (1.1)

so Malliavin’s calculus says that solutions of this equation are smooth. Now consider a bounded
function h which is harmonic on a domain D ⊂ Rd, so that Lh = 0 on D; this means that

Mt = h(Xt) exp
∫ t

0

g(Xs)ds (1.2)

is a Px local martingale up to the first exit of D. One wants to prove that h is C∞ on D. Firstly
the equation Lh = 0 involves the operator L, whereas the Fokker-Planck equation (1.1) involves
the adjoint L?; thus it would be better to consider the diffusion associated to L?. Secondly, the
Fokker-Planck is written on the whole space Rd, whereas our equation is only satisfied on D; thus
we have to apply a localisation method. These techniques were worked out in [8, 4]. Let us explain
how this can be done, in a way which can be generalised to processes with jumps.

Let D0 be a relatively compact open subset of D and φ be a C∞ function with compact support
in D, such that φ = 1 on D0. Consider the distribution

u = L(hφ) = hLφ− hgφ+ Γ(h, φ) (1.3)

where Γ is the “carré du champ” associated to L − g. By noticing that Γ(h, h) is related to the
quadratic variation of the martingale Mt of (1.2), one can check that Γ(h, h) is in L1

loc(D), so u
is a function in L2(D) and its support is included in D \ D0. Moreover the equation u = L(hφ)
implies

h(x)φ(x) =
∫
h(y)φ(y)p(1, x, y)dy −

∫ 1

0

∫
u(y)p(t, x, y)dt dy

=
∫
h(y)φ(y)p?(1, y, x)dy −

∫ 1

0

∫
u(y)p?(t, y, x)dt dy (1.4)
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for the density p? of the adjoint semigroup P ?t . We know from Malliavin’s calculus that x 7→
p?(t, y, x) is smooth for t > 0, so the first integral of (1.4) is C∞. We also have good small time
estimates for p? and its derivatives outside the diagonal {y = x}. In the second integral, we take
x in D0 and y is in the support of u, so is outside D0; thus we can integrate the estimates and
deduce that h is C∞ on D0.

2 A class of Markov processes with jumps

We now describe the class of non local operators L to which the previous procedure can be extended.
Details can be found in [14]. Let µ be a measure on Rm \ {0} such that∫ (

|λ|2 ∧ 1
)
µ(dλ) <∞.

Then µ is the Lévy measure of a Lévy process Λt with characteristic function

Eei w.Λ1 = exp
∫ (

eiw.λ − 1− i w.λ1{|λ|≤1}

)
µ(dλ).

Let γ : Rd × Rm → Rd be a function such that

γ(x, λ) = γ0(x)λ +O(|λ|2)

as λ → 0 for a matrix-valued function γ0; we suppose that for µ almost any λ, the map x 7→
x + γ(x, λ) is invertible (and its Jacobian determinant is bounded below in absolute value). We
also consider a real-valued function

ψ(x, λ) = 1 + ψ0(x)λ +O(|λ2|),

a real-valued function g(x), and a Rd-valued function b(x). We suppose that γ, ψ, γ0, ψ0, g, b are
C∞b with respect to x, uniformly in λ. Then our operator will be

Lf(x) =f ′(x)b(x) + g(x)f(x)

+
∫ (

f(x+ γ(x, λ)) − f(x)− f ′(x)γ(x, λ)
)
ψ(x, λ)µ(dλ).

This expression is well defined if f is C2
b .

The advantage of this class of operators is twofold. Firstly, the adjoint L? is in the same class;
the associated function γ? is such that x 7→ x+γ?(x, λ) is the inverse of x 7→ x+γ(x, λ). Secondly,
it has a probabilistic representation to which it will be possible to apply an extension of Malliavin’s
calculus. More precisely, there exist functions b0, g1, ψ1, a Markov process Xt solution of

dXt = b0(Xt)dt+ γ(Xt−, dΛt)

and a multiplicative functional Γt solution of

dΓt = Γt−
(
g1(Xt)dt+ ψ1(Xt−, dΛt)

)
, Γ0 = 1,

so that the semigroup Pt of L can be written as

Ptf(x) = Ex
[
Γtf(Xt)

]
. (2.1)

Then the equation Lh = 0 in D means that Mt = Γth(Xt) is a Px local martingale up to the first
exit of D.
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3 Existence of smooth densities

The absolute continuity of the law of Lévy processes has been studied for a long time, see [15] and
the references therein. On the other hand, the study of Markov processes which are solutions of
Lévy driven equations (like our process Xt) was initiated in the early 80’s, see [2, 9, 11, 1]. The
idea was to construct a differential calculus based on infinitesimal perturbations on the sizes of the
jumps ∆Λt, and, by means of an integration by parts formula, to deduce the smoothness of the
law as in Malliavin’s calculus. Another method consists in perturbing the times of the jumps, but
this can be applied only to a particular class of equations, see [3, 5].

One can also perturb the process by adding jumps. This is not an infinitesimal perturbation, so
this does not lead to a differential calculus. However, one can construct a finite difference calculus,
obtain a duality formula similar to the integration by parts formula, and again deduce the existence
of a smooth density ([12]). The advantage with respect to the jump size perturbation method is
that it does not require any smoothness on the Lévy measure µ; for instance, µ can be supported
by a countable set.

In this technique, the basic assumption concerns the “number” of small jumps. We suppose
that there exists a 0 < β < 2 such that

c ρ2−β|v|2 ≤
∫
{|λ|≤ρ}

(λ.v)2µ(dλ) ≤ C ρ2−β|v|2

for 0 < ρ ≤ 1. This assumption is satisfied in the case of a β-stable non degenerate Lévy process, so
it says that our process has approximately the same number of small jumps than a stable process;
in particular, it has finite variation if and only if β < 1. Then under the ellipticity condition
γ0γ

?
0 ≥ c I, one proves in [12] that Xt has a C∞ density for t > 0. The same result can be deduced

for the density of the semigroup Pt of (2.1).

As in the continuous case, we also need small time estimates. This problem was studied in
[6, 10], and in [13, 7] in our finite difference framework. In the continuous case, the density
p(t, x, y) and its derivatives decrease exponentially as 1/t→∞ for y 6= x. Here, the estimates are
not so good because the diffusion can go faster when it jumps. The density and its derivatives
generally behave like a (positive or negative) power of t as t → 0; this power depends on the
number of jumps needed by Xt in order to go from x to y (it also depends on the “concentration”
of these jumps). The larger the number of needed jumps is, the smaller the density will be. These
types of estimates have been proved in the above framework when β > 1; if β = 1, we need an
additional assumption and if β < 1, we want Xt to be a pure jump process (it should be the sum
of its jumps without drift).

4 Smoothness of harmonic functions

We now consider a bounded solution of Lh = 0 on D, and apply the method which was described
for continuous processes. We again consider the function u of (1.3) and the first integral of (1.4)
is again C∞; however, since L is not local, the function u is no more supported by D \D0. The
support is compact because φ has compact support and the jumps are assumed to be bounded;
moreover, since φ = 1 on D0, one has u = 0 on the subset D1 of D0 consisting of points from which
the process cannot jump out of D0,

D1 =
{
x ∈ D0; µ

{
λ;x+ γ(x, λ) /∈ D0

}
= 0
}
.

Thus, in the second integral of (1.4), we have y /∈ D1, so we take x ∈ D1. However, this is not
sufficient. As it has been said, the density p?(t, y, x) and its derivatives behave like some power
of t as t → 0, so if we want to deduce an estimate for the derivatives of h, this power has to be
larger than −1. The small time study shows that this is the case when the adjoint process X?

t

corresponding to p? needs a large enough number of jumps to go from y to x, or equivalently, if
the original process Xt needs a large enough number of jumps to go from x to y. Thus we have to
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assume that Xt needs a large enough number of jumps to go from x to Dc
1; moreover, this number

depends on the order of differentiability that we study.

With this technique, we prove under the above assumptions that for any j, there exists a n
such that if the process Xt cannot quit D from x with n jumps, then h is Cj in a neighbourhood
of x. A complete proof is given in [14].

Under additional smoothness assumptions (if µ has a smooth density and γ is smooth with
respect to λ), then the condition on the number of jumps can be dropped; roughly speaking, this
is because the jumps can be separated into small jumps (a large number of them is needed to quit
D) and large jumps which are regularising from our additional assumption.
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1 Introduction

A probability distribution on the real line is said to be tilted stable if is infinitely divisible with
Lévy measure of the form Q(dx) = σ1|x|−α−1 exp(−λ1|x|)I(x < 0) dx+ σ2x

−α−1 exp(−λ2x)I(x >
0) dx with σ1, σ2 ≥ 0, λ1, λ2 > 0, and without Gaussian component. Tilted stable distributions
were proposed in statistical physics by Mantegna and Stanley [8], Koponen [7], and Novikov [9]
to study models exhibiting local spatiotemporal fractality and global aggregational Gaussianity.
Such distributions were also used in financial mathematics by Carr, Geman, Madan, and Yor [5],
Barndorff-Nielsen and Shephard [2], [3], and others.

In this work we define and study a more general and robust class of tempered stable distributions
and processes. An interesting feature of tempered stable Lévy processes is that they behave like
stable processes in a short period of time while in a long time frame they are approximately
Gaussian. Unlike stable processes, the tempered ones may have all moments finite, including
moments of exponential order. Still, their distributions are absolutely continuous with respect to
the distributions of stable processes and we evaluate the corresponding Radon-Nikodym derivatives.
Then we provide series representations of tempered stable processes which give further insight into
their structure and can be used for simulation. Finally, since tempered stable distributions are
selfdecomposable, we give series representations of their background driving Lévy processes.

2 Tempered stable distributions

Definition 2.1. A probability measure µ on Rd is called tempered stable if is infinitely divisible
without Gaussian part and with Lévy measure Q of the form

Q(A) =
∫

Rd
0

∫ ∞
0

IA(sx)s−α−1e−s ds ν(dx), A ⊂ Rd0 (2.1)

where α ∈ (0, 2) and ν is a σ–finite Borel measure on Rd0
def
= Rd \ {0} such that∫

Rd
0

‖x‖α ν(dx) <∞. (2.2)

Notice that (2.1) can be viewed as a mixture of gamma densities with shape parameter −α and
scale 1. Tilted stable distributions, which were defined in the Introduction, are the special case of
(2.1) corresponding to ν = σ1λ

α
1 δ−λ−1

1
+ σ2λ

α
2 δλ−1

2
and d = 1. The following proposition gives an

alternative characterization of Lévy measures of tempered stable distributions.

Proposition 2.2. Q is the Lévy measure of a tempered stable distribution on Rd if and only if in
polar coordinates it has the form

Q(dr, du) = r−α−1q(r, u) drσ(du), r > 0, u ∈ Sd−1 (2.3)

where q : (0,∞)×Sd−1 7→ (0,∞) is a Borel function such that q(·, u) is completely monotone with
q(∞, u) = 0 for every u ∈ Sd−1, and σ is a probability measure on Sd−1 such that∫

Sd−1
q(0+, u)σ(du) <∞. (2.4)
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From Proposition 2.2 it also follows that tempered stable distributions are selfdecomposable.
Moreover, they constitute a proper subclass of Bondesson’s class of extended generalized gamma
convolutions when d = 1, see [4].

Proposition 2.3. The characteristic function µ̂ of a tempered stable distribution µ with Lévy
measure (2.1) is given by

µ̂(y) = exp
{
kα

∫
Rd

0

ψα(〈y, x〉) ν(dx) + i〈y, b〉
}

(2.5)

where

ψα(s) =


1− (1 − is)α, 0 < α < 1
(1 − is) log(1− is)− 1 + i, α = 1
(1 − is)α − 1 + iαs, 1 < α < 2.

(2.6)

and kα = |Γ(−α)| if α 6= 1, k1 = 1.

Theorem 2.4. Suppose that∫
Rd

0

ψα(〈y, x〉) ν1(dx) =
∫

Rd
0

ψα(〈y, x〉) ν2(dx), y ∈ Rd,

where νi are Borel measures on Rd0 with
∫

Rd
0
‖x‖α νi(dx) <∞, i = 1, 2. Then ν1 = ν2.

We will write
µ ∼ TS(α, ν; b) (2.7)

when (2.5) holds. Theorem 2.4 implies that parametrization (2.7) is indistinguishable. The next
result addresses the question of moments of tempered stable distributions.

Proposition 2.5. Let µ be a tempered stable distribution µ with Lévy measure (2.1). Then

(i)
∫
‖x‖p µ(dx) <∞ for every p ∈ (0, α);

(ii)
∫
‖x‖α µ(dx) <∞ if and only if∫

‖x‖>1

‖x‖α log ‖x‖ ν(dx) <∞;

(iii) if ν({x : ‖x‖ > ε}) = 0 for some ε > 0, then for every θ ∈ (0, ε−1)∫
exp(θ‖x‖)µ(dx) <∞.
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3 Short and long time behavior of tempered stable Lévy
processes

Theorem 3.1. Let X(t), t ≥ 0 be a tempered stable Lévy process in Rd with L(X(1)) ∼ TS(α, ν; 0).
Define

Xh(t) = X(ht), t ≥ 0.

(i) Short time behavior. If α 6= 1, then

h−1/αXh
d→ Y as h→ 0,

where Y (t), t ≥ 0 is a strictly α–stable Lévy process with characteristic function

Eei〈y,Y (t)〉 = exp
{
− tcα

∫
Rd

0

|〈y, x〉|α
(
1− i tan

πα

2
sgn〈y, x〉

)
ν(dx)

}
(3.1)

If α = 1, then

h−1Xh − kh
d→ Y as h→ 0,

where

kh(t) = t log(eh)
∫

Rd
0

x ν(dx),

and Y (t), t ≥ 0 is a 1–stable Lévy process with characteristic function

Eei〈y,Y (t)〉 = exp
{
− tc1

∫
Rd

0

(
|〈y, x〉|+ i

2
π
〈y, x〉 log |〈y, x〉|

)
ν(dx)

}
. (3.2)

Here cα is a positive constant depending only on α.

(ii) Long time behavior. Assume that ∫
Rd

0

‖x‖2 ν(dx) <∞.

If 1 ≤ α < 2, then

h−1/2Xh
d→ B as h→∞,

where B(t), t ≥ 0 is a Brownian motion with the characteristic function

Eei〈y,B(t)〉 = exp
{
− t

2
Γ(2 − α)

∫
Rd

0

〈y, x〉2 ν(dx)
}
.

If 0 < α < 1 and
∫

Rd
0
‖x‖ ν(dx) <∞, then

h−1/2(Xh − bh)
d→ B as h→∞,

where B is as above and

bh(t) = Γ(1− α)th
∫

Rd
0

x ν(dx).

4 Absolute continuity with respect to stable processes

Theorem 3.1 says that a tempered stable Lévy process looks locally as a stable process. There is
actually a deeper connection between these two processes.
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Theorem 4.1. Let X(t), t ∈ [0, τ ] be a tempered stable Lévy process in Rd with L(X(τ)) ∼
TS(α, τν; 0). Then its distribution on D[0, τ ] is absolutely continuous with respect to the distribu-
tion of the stable process Y (t), t ∈ [0, τ ] given by (3.1)–(3.2). Moreover,

log
dL(X)
dL(Y )

=
∫ τ

0

∫
g(x)≥ 1

2

log g(x) N̄ (dt, dx) (4.1)

+
∫ τ

0

∫
g(x)< 1

2

log g(x)N(dt, dx) + a

where

g(x) =


q
(
‖x‖, x

‖x‖
)

q
(
0+, x

‖x‖
) if q(0+, x

‖x‖) > 0

1 otherwise

(4.2)

and q is given by (2.3), while N is the process of jumps of Y , N̄ is the compensated version of N ,
and a is a normalizing constant.

5 Series representations

The inverse of the tail of the Lévy measure of a tempered stable distribution does not have a
closed form even in the simplest case of ν = δ1. This makes the method of Inverse Lévy Measure
practically difficult to apply. Therefore, we give another series representation in the framework of
a generalized shot noise, see [11].

Theorem 5.1. Let X(t), t ∈ [0, 1] be a tempered stable Lévy process in Rd with L(X(1)) ∼
TS(α, ν; 0). If α ∈ (0, 1), or if ν is symmetric and α ∈ (0, 2), then

X(t) d=
∞∑
j=1

Vj

[m(ν)
‖Vj‖

(αΓj)−1/α ∧EjU1/α
j

]
I[Tj ,1](t) (5.1)

where the equality holds for finite dimensional distributions and the convergence on the right hand
side holds a.s. uniformly in t ∈ [0, 1]. Here Tj , Uj are i.i.d. uniform on [0, 1] random variables and
Γj − Γj−1, Ej are i.i.d. exponential random variables with mean 1, j ≥ 1, Γ0 = 0. Vj are i.i.d.
random vectors in Rd0 with the common distribution ν1 given by

ν1(dx) =
1

m(ν)α
‖x‖α ν(dx)

where

m(ν) =
( ∫

Rd
0

‖x‖α ν(dx)
)1/α

.

Furthermore, the sequences {Tj}, {Uj}, {Γj}, {Ej}, and {Vj} are independent of each other.

Terms EjU
1/α
j in (5.1) produce exponential tempering; without these terms the series converges

to a stable Lévy process given by (3.1)–(3.2) of Theorem 3.1. Series representations in a general
nonsymmetric case and α ∈ [1, 2) involve centering in (5.1) that we do not consider here for the
sake of simplicity. One can also extend (5.1) to represent general infinitely divisible processes whose
finite dimensional marginal distributions are tempered stable. Finally, (5.1) can also be used for
simulation of tempered stable random vectors and processes; in addition, Gaussian approximation
of the small jumps part is applicable along the lines of Asmussen and Rosiński [1].

218



Jan Rosiński

6 BDLP

Let µ ∼ TS(α, ν; 0). Since µ is self-decomposable, there exists a Lévy process Y (t), t ≥ 0 in Rd,
called a background driving Lévy process (BDLP) for µ, such that

µ = L
(∫ ∞

0

e−t dY (t)
)

(6.1)

(see Jurek and Vervaat [6]). By [6], Lévy measure Q0 of Y (1) is related to Lévy measure Q of µ by

Q(A) =
∫ ∞

0

Q0(etA) dt, A ⊂ Rd0.

It is easy to verify that

Q0(A) =
∫

Rd
0

∫ ∞
0

IA(sx)(αs−α−1 + s−α)e−s ds ν(dx).

The following result extends a series representation of the BDLP given in [10] for tilted stable
positive random variables.

Proposition 6.1. Under assumptions of Theorem 5.1,

Y (t) d=
∞∑
j=1

Vj

[
m(ν)
‖Vj‖

(αUjΓj)−1/α ∧ Ej
]
I[−1

α lnUj ,1]
(t), t ≥ 0 (6.2)

where the equality holds for finite dimensional distributions and the convergence on the right hand
side holds a.s. uniformly in t on each bounded subinterval of [0,∞).

Using series (6.2) in the development of
∫∞
0 e−t dY (t) we get∫ ∞

0

e−t dY (t) d=
∞∑
j=1

U
1/α
j Vj

[
m(ν)
‖Vj‖

(αUjΓj)−1/α ∧Ej
]

=
∞∑
j=1

Vj

[
m(ν)
‖Vj‖

(αΓj)−1/α ∧ EjU1/α
j

]
.

The latter series is exactly (5.1) for t = 1, which confirms (6.1).
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2nd MaPhySto Lévy Conference, January 2002

[7] I. Koponen. Analytic approach to the problem of convergence of truncated Lévy flights towards
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Lévy processes and convolution semigroups

with parameter in a cone

Ken-iti Sato (joint work with Jan Pedersen)

This is a report of our work [13]. Proofs of all assertions are given there.
Usual Lévy processes and convolution semigroups have R+ = [0,∞) as domain of the parameter.

The basic correspondences among them are formulated as follows.

(i) The class of convolution semigroups {µt : t > 0} on Rd corresponds to the class of infinitely
divisible distributions µ through µ = µ1, as the characteristic function µ̂t(z) of µt satisfies
µ̂t(z) = µ̂1(z)t.

(ii) The class of Lévy processes in law {Xt : t > 0} on Rd corresponds to the class of convolution
semigroups on Rd through µt = L(Xt), the distribution of Xt. This correspondence is one-to-
one if processes with the same law are identified. Here we recall that a Lévy process in law is
continuous in probability, but, unlike Lévy processes, the sample functions are not assumed
to be cadlag.

(iii) Every Lévy process in law has a modification which is a Lévy process.

A natural generalization of R+ is a cone K in a Euclidean space. We study K-parameter
convolution semigroups, Lévy processes, and Lévy processes in law, and investigate whether the
correspondences above are generalized. The study of the case K = RN+ was initiated by Barndorff-
Nielsen, Pedersen, and Sato [1]. Here we study the case where K is a general cone.

Our main results are summarized in the following.

Definition 1. A subset K of RM is a cone if it is a non-empty closed convex set closed under
multiplication by nonnegative reals and containing no straight line through 0 and if K 6= {0}.

Definition 2. Write s1 6K s2 (or s2 >K s1) if s2 − s1 ∈ K. A sequence s1 6K s2 6K . . . is
K-increasing. A sequence s1 >K s2 >K . . . is K-decreasing. A mapping f : K → Rd is K-right
continuous at s0 ∈ K if, for every K-decreasing sequence {sn}n=1,2,... in K with |sn − s0| → 0, we
have |f(sn) − f(s0)| → 0; f has K-left limits at s0 ∈ K \ {0} if, for every K-increasing sequence
{sn}n=1,2,... in K \ {s0} satisfying |sn − s0| → 0, limn→∞ f(sn) exists in Rd; f is K-cadlag if it is
K-right continuous at each s0 ∈ K and has K-left limits at each s0 ∈ K \ {0}.

Definition 3. A family {Xs : s ∈ K} of random variables on Rd is a K-parameter Lévy process
on Rd if

(i) Xsj+1 −Xsj , 1 6 j 6 n− 1, are independent for every K-increasing sequence {sj}16j6n,

(ii) L(Xs2 −Xs1) = L(Xs4 −Xs3) for s2 − s1 = s4 − s3 ∈ K,

(iii) X0 = 0 a. s.,

(iv) Xs is K-cadlag in s a. s.,

(v) Xsn → Xs0 in probability if |sn − s0| → 0.

{Xs : s ∈ K} is called a K-parameter Lévy process in law if it satisfies (i)–(iii) and (v).
(We can prove that (v) follows from (i)–(iv).)
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Definition 4. A family {µs : s ∈ K} of probability measures on Rd is a K-parameter convolution
semigroup on Rd if

(i) µs1 ∗ µs2 = µs1+s2 for all s1, s2 ∈ K,

(ii) µts → δ0 for s ∈ K as t ↓ 0. (It follows from (i)–(ii) that, if |sn − s0| → 0, then µsn → µs0 .)

Definition 5. A system {e1, . . . , eN} is a weak basis of K if it is a basis of the linear subspace L
generated by K and if ej ∈ K for j = 1, . . . , N . A system {e1, . . . , eN} is a strong basis of K if it is
a weak basis of K and if every s ∈ K is expressible as s = s1e

1 + · · ·+ sNe
N with s1, . . . , sN ∈ R+.

(Every cone K has a weak basis, which is not unique. A strong basis of K is essentially unique, if
it exists.)

Example 1. Every 2-dimensional cone has a strong basis. A 3-dimensional cone has a strong
basis if and only if it is a triangular cone. The cone RN+ has a strong basis.

Example 2. Let K have a strong basis {e1, . . . , eN}. The following three constructions of Xs for
s = s1e

1 + · · ·+ sNe
N ∈ K give K-parameter Lévy processes on Rd.

(i) Let {Vt : t > 0} be a Lévy process on Rd. Fix cj ∈ R+, 1 6 j 6 N , and define Xs =
Vc1s1+···+cNsN .

(ii) Let {V jt : t > 0}, 1 6 j 6 N , be independent Lévy processes on Rd. Define Xs = V 1
s1 + · · ·+

V NsN
.

(iii) Let {U jt : t > 0}, 1 6 j 6 N , be independent Lévy processes on Rdj , where d1 + · · ·+ dN = d.
Define Xs = (U1

s1 , . . . , U
N
sN

)>. (This notation gives a stacked vector. We understand that Rd

is the set of column d-vectors.)

Example 3. Let K = M+
d×d be the set of symmetric nonnegative-definite d× d matrices. This is

a nondegenerate cone in Rd(d+1)/2 and does not have a strong basis. For s ∈ K let µs = Nd(0, s),
the Gaussian distribution on Rd with mean 0 and covariance matrix s. Then, {µs : s ∈ K} is a K-
parameter convolution semigroup on Rd, which we call the canonical M+

d×d-parameter convolution
semigroup.

In the following let K be an N -dimensional cone and let {e1, . . . , eN} be a weak basis of K.

Theorem 1. If {µs : s ∈ K} is a K-parameter convolution semigroup on Rd, then µs is infinitely
divisible and determined by µe1 , . . . , µeN as

µ̂s(z) = µ̂e1(z)s1 . . . µ̂eN (z)sN for s = s1e
1 + · · ·+ sNe

N ∈ K,

where s1, . . . , sN are not necessarily nonnegative.

Definition 6. A set of infinitely divisible distributions {ρ1, . . . , ρN} on Rd is admissible with
respect to {e1, . . . , eN} if there is a K-parameter convolution semigroup {µs} such that µej = ρj
for j = 1, . . . , N .

In Theorem 2, Examples 4, and 5 below, ρj is an infinitely divisible distribution on Rd with
generating triplet (Aj , νj , γj) in the sense of Sato [14] for each j. We denote by B0(Rd) the class
of Borel sets B ⊂ Rd satisfying infx∈B |x| > 0.

Theorem 2. If {e1, . . . , eN} is a strong basis, then any set {ρ1, . . . , ρN} on Rd is admissible. If
{e1, . . . , eN} is not a strong basis, then, for every d, there exists a set {ρ1, . . . , ρN} on Rd which is
not admissible. A necessary and sufficient condition for admissibility is that, if s1e1 + · · ·+sNeN ∈
K, then s1A1+ · · ·+sNAN is nonnegative-definite and s1ν1+ · · ·+sNνN is nonnegative on B0(Rd).

Example 4. Let K be the circular cone in R3 defined by x2
1 + x2

2 = x2
3, x3 > 0, and let e1, e2, e3

be points on the circle x2
1 + x2

2 = 1 = x3 which have equal distances from each other. Then a set
{ρ1, ρ2, ρ3} is admissible with respect to {e1, e2, e3} if and only if, for (j, k, l) = (1, 2, 3), (2, 3, 1),
and (3, 1, 2), 〈Ajz, z〉1/2 6 〈Akz, z〉1/2 + 〈Alz, z〉1/2 for all z and νj(B)1/2 6 νk(B)1/2 + νl(B)1/2

for all B ∈ B0(Rd). This cone K is isomorphic to the cone M+
2×2.
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Example 5. Let K be the square cone generated by e1 = (0, 0, 1)>, e2 = (1, 1, 1)>, e3 = (1, 0, 1)>,
e4 = (0, 1, 1)>. Then {e1, e2, e3} is a weak basis. A set {ρ1, ρ2, ρ3} is admissible with respect to
{e1, e2, e3} if and only if A1 + A2 −A3 is nonnegative-definite and ν1 + ν2 − ν3 is nonnegative on
B0(Rd).

Theorem 3. AnyK-parameter Lévy process in law {Xs} on Rd induces a K-parameter convolution
semigroup {µs} by µs = L(Xs). In the converse direction, for a given K-parameter convolution
semigroup {µs} on Rd, two cases can occur:

(a) there exists a K-parameter Lévy process in law which induces {µs};

(b) no K-parameter Lévy process in law induces {µs}.

In the case (a) two subcases can occur:

(a1) all K-parameter Lévy processes in law which induce {µs} are identical in law (that is, have
an identical system of marginal distributions),

(a2) there are two K-parameter Lévy processes in law which induce {µs} and which are not identical
in law.

Definition 7. A K-parameter convolution semigroup {µs} is called generative or non-generative
if it is in the case (a) or (b), respectively. It is called unique-generative or multiple-generative if it
is in the case (a1) or (a2), respectively. A K-parameter Lévy process in law which induces {µs} is
said to be associated with {µs}.

Example 6. Let K = R2
+, e1 = (1, 0)>, and e2 = (0, 1)>. Let {µs : s ∈ K} be the convolution

semigroup on R given by µs = N(0, s1 + s2) for s = s1e
1 + s2e

2. Then {µs} is multiple-generative.
Indeed, let {V jt : t > 0}, j = 1, 2, be independent Brownian motions on R and define, for s =
s1e

1 + s2e
2, X0

s = V 1
s1 + V 2

s2 and X1
s = V 1

s1+s2 . Then both {X0
s} and {X1

s} are K-parameter Lévy
processes associated with {µs} but they are not identical in law.

Definition 8. Let {Xs} be a K-parameter Lévy process in law on Rd. When {sj}16j6n is a
K-increasing sequence, the distribution of (Xs1 , . . . , Xsn)> is called a K-increasing marginal of
{Xs}.

Theorem 4. If {Xs} is a K-parameter Lévy process in law on Rd associated with {µs}, then all
K-increasing marginals of {Xs} are determined by {µs} and are infinitely divisible. If, moreover,
{µs} is unique-generative and K has a strong basis, then all marginal distributions of {Xs} are
infinitely divisible. But there are examples of K-parameter Lévy processes in law of which some
marginal distributions are not infinitely divisible (see Example 7).

Theorem 5. Let K = M+
d×d with d > 2. Let {µs : s ∈ K} be a nontrivial K-parameter convolution

semigroup on Rd such that
∫
|x|2µs(dx) < ∞ and the covariance matrix vs of µs satisfies vs 6K

s for all s ∈ K. Then {µs} is non-generative. In particular, the canonical M+
d×d-parameter

convolution semigroup is non-generative.

Theorem 6. Let {µs} be a K-parameter convolution semigroup on Rd such that each µs is purely
non-Gaussian with triplet (0, νs, γs). Then {µs} is generative. To construct an associated K-
parameter Lévy process in law {Xs}, let ν = νe1 + · · · + νeN and let {J(A) : A ∈ B(R+ × Rd)} be
the Poisson random measure with intensity measure λ(d(t, x)) = dt ν(dx). Choose an appropriate
version φs(x) of νs(dx)/ν(dx) which is measurable in (s, x) and let

Xs = lim
ε↓0

∫
Ds

x1{ε<|x|61}(x)(J(d(t, x)) − λ(d(t, x))) +
∫
Ds

x1{|x|>1}J(d(t, x)) + γs,

where Ds = {(t, x) ∈ R+ × Rd : 0 6 t 6 φs(x)} and the limit is in probability.

Theorem 7. Any K-parameter convolution semigroup {µs} on R is generative.

Theorem 8. If K has a strong basis, then any K-parameter convolution semigroup {µs} on Rd

is generative and an associated Lévy process can be given in the form of (ii) of Example 2.
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Theorem 9. Let {µs} be a generative K-parameter convolution semigroup on Rd. Let L be the
set of probability measures, on the path space (Rd)K , induced by K-parameter Lévy processes in
law associated with {µs}. Then L is a convex set.

Example 7. Let K = R2
+ and let {µs}, {X0

s}, and {X1
s} be as in Example 6. Denote by P 0 and

P 1 the probability measures on the path space RK induced by {X0
s} and {X1

s}, respectively, and
let P p = (1 − p)P 0 + pP 1 for 0 < p < 1. Then, for any p, P p determines a K-parameter Lévy
process in law {Xp

s } associated with {µs}. If p 6= 0, 1, then the joint distribution of Xp
e1 and Xp

e2

is not infinitely divisible.

Theorem 10. . Let K have a strong basis {e1, . . . , eN}. Let {µs} be a K-parameter convolution
semigroup on Rd and let (As, νs, γs) be the generating triplet of µs.

(i) In order for {µs} to be unique-generative, it is necessary and sufficient that, for every K-
parameter Lévy process in law {Xs} associated with {µs}, Xs = Xs1e1 + · · ·+XsNeN a. s. for
s = s1e

1 + · · ·+ sNe
N ∈ K.

(ii) If {µs} is unique-generative and {Xs} is the associated K-parameter Lévy process in law,
then {Xtej : t > 0}, 1 6 j 6 N , are independent.

(iii) Let Lj, 1 6 j 6 N , be additive subgroups of Rd such that each Lj is a Borel set and
Lj ∩ Lk = {0} for j 6= k. If µtej (Lj) = 1 for all t and j, then {µs} is unique-generative.

(iv) If Aej (Rd) ∩ Aek(Rd) 6= {0} for some j 6= k or if νej and νek are not mutually singular for
some j 6= k, then {µs} is multiple-generative.

Theorem 11. If K has a strong basis and if {Xs} is a K-parameter Lévy process in law associated
with a unique-generative K-parameter convolution semigroup, then {Xs} has a modification which
is a K-parameter Lévy process.

In the cone-parameter case, study of subordination of convolution semigroups is important, as
they do not always correspond to Lévy processes in law. For j = 1, 2 let Kj be an Nj-dimensional
cone in RMj . For a probability measure µ and a bounded continouous function f we denote
µ(f) =

∫
f(x)µ(dx).

Theorem 12 (Subordination of semigroups). Let {µu : u ∈ K2} be a K2-parameter convolu-
tion semigroup on Rd and {ρs : s ∈ K1} a K1-parameter convolution semigroup with Supp(ρs) ⊂
K2. For each s ∈ K1 a probability measure σs on Rd is defined by σs(f) =

∫
K2
µu(f)ρs(du)

and {σs : s ∈ K1} forms a K1-parameter convolution semigroup on Rd. (We can determine their
generating triplets. It is an extension of Theorem 30.1 of [14] and Theorem 4.7 of [1].)

Theorem 13 (Subordination of processes). Let {Zs : s ∈ K1} be a measurable K1-parameter
Lévy process in law on RM2 such that Zs ∈ K2 a. s. for each s ∈ K1 and let {Xu : u ∈ K2} be a
measurable K2-parameter Lévy process in law on Rd. Suppose that they are independent. Define
Ys = XZ′s , where Z ′s = Zs 1K2(Zs). Then {Ys : s ∈ K1} is a measurable K1-parameter Lévy process
in law on Rd.

Theorem 14. Let {e1, . . . , eN1} be a weak basis of K1. Let {ρs} be a K1-parameter convolution
semigroup on RM2 . Let (As, νs, γs) be the triplet of ρs. Then Supp(ρs) ⊂ K2 for all s ∈ K1 if and
only if the following two conditions are satisfied:

(i) Aej = 0, νej (RM2 \K2) = 0, and
∫
K2∩{|s|61} |s|νej (ds) <∞ for 1 6 j 6 N1,

(ii) if s1e1 + · · ·+ sN1e
N1 ∈ K1, then s1γ

0
e1 + · · ·+ sN1γ

0
eN1 ∈ K2, where γ0

ej is the drift of ρej .

Application 1. Barndorff-Nielsen and Pérez-Abreu [2] introduce the class of distributions of type
multG, which is a generalization on Rd of the type G on R1. This is studied also by Maejima and
Rosiński [11]. A necessary and sufficient condition for a distribution on Rd to be of type multG
can be given by using subordination of the canonical M+

d×d-parameter convolution semigroup.

Application 2. Preservation of selfdecomposability, stability, and the Lm property in cone-
parameter subordination can be studied.
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As to works earlier than [1], we mention that Bochner, [3] pp. 106–108, made a heuristic dis-
cussion of cone-parameter convolution semigroups, and that there exist several studies of RN+ -
parameter Lévy processes of the form (ii) or (iii) of Example 2. Hirsch [8] and Khoshnevisan, Xiao
and Zhong [9] and others studied the process of the form (ii). Dynkin [4], Evans [6], Fitzsimmons
and Salisbury [7] and others worked on processes which generalize the process of the form (iii). The
Brownian sheet discussed in many papers (e. g. Orey and Pruitt [12]), the multiparameter stable
processes of Ehm [5], and the two-parameter Lévy processes of Lagaize [10] and Vares [15] do not
satisfy the condition (ii) in Definition 3 of K-parameter Lévy processes with K = RN+ , although
they satisfy the condition (i).

In the following we give a proof of Theorem 5. Since it uses Theorem 10 (ii) and (iii) and since
Theorem 10 (ii) and (iii) are proved from Theorem 10 (i), we also give their proofs.

Proof of Theorem 5. We assume that K = M+
2×2 and that µs has mean 0. We can show that it

is enough to give a proof in this case. The covariance matrices vs satisfy vs1+s2 = vs1 + vs2 and
vts = tvs. Suppose that there is {Xs : s ∈ K}, a K-parameter Lévy process in law on R2 associated
with {µs}. Let us show that we are led to a contradiction. Let

e1 =
(

1
√

2√
2 2

)
, e2 =

(
2

√
2√

2 1

)
, e3 =

(
2

√
2√

2 2

)
and let K0 be the cone generated by e1 and e2. Let L1 and L2 be the straight lines through 0
generated by (1,

√
2)> and (

√
2, 1)>, respectively. Since vs 6K s and since e1 and e2 are of rank

1, ve1 = t1e
1 and ve2 = t2e

2 with some t1, t2 > 0. Thus Supp(µte1) ⊂ L1 and Supp(µte2) ⊂ L2

for any t > 0. Hence, applying Theorem 10 (ii) and (iii) to the K0-parameter Lévy process in law
{Xs : s ∈ K0}, we see that Xe1 and Xe2 are independent. Since

Xe3 −Xe1
d= Xe3−e1 and ve3−e1 6K e3 − e1 =

(
1 0
0 0

)
,

we have (Xe3 − Xe1)2 = 0 a. s. Similarly (Xe3 − Xe2)1 = 0 a. s. Here (·)j denotes the jth
component. It follows that (Xe3)2 = (Xe1)2 a. s. and (Xe3)1 = (Xe2)1 a. s. Thus (Xe3 )1 and
(Xe3)2 are independent. This means that

ve3 =
(
a1 0
0 a2

)
with some a1, a2 > 0.

Notice that there are t3, t4 > 0 such that

t1

(
1

√
2√

2 2

)
= ve1 = ve3 − ve3−e1 =

(
a1 0
0 a2

)
− t3

(
1 0
0 0

)
,

t2

(
2

√
2√

2 1

)
= ve2 = ve3 − ve3−e2 =

(
a1 0
0 a2

)
− t4

(
0 0
0 1

)
.

Thus t1 = t2 = a1 = a2 = 0. It follows that ve1 = ve2 = ve3 = 0, that is, µe1 = µe2 = µe3 = δ0.
Since {e1, e2, e3} is a weak basis of K, we get µs = δ0 for all s ∈ K by Theorem 1. This contradicts
our assumption of nontriviality.

Proof of Theorem 10 (i) and (ii). We are given a cone K with a strong basis {e1, . . . , eN} and a
K-parameter convolution semigroup {µs}. Let {V jt : t > 0}, 1 6 j 6 N , be independent Lévy
processes with L(V j1 ) = µej and let Ys = V 1

s1 + · · ·+ V NsN
for s = s1e

1 + · · ·+ sNe
N . Then {Ys} is

a K-parameter Lévy process associated with {µs}.
Assume that {µs} is unique-generative and let {Xs} be a K-parameter Lévy process associated

with {µs}. Then {Xs} d= {Ys}. Hence

P [Xs1e1+···+sNeN = Xs1e1 + · · ·+XsNeN ]
= P [Ys1e1+···+sNeN = Ys1e1 + · · ·+ YsNeN ] = 1.
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Conversely assume that, for every K-parameter Lévy process in law {Xs} associated with {µs},
Xs1e1+···+sNeN = Xs1e1 + · · ·+XsNeN a. s. Given 0 = s0 6 s1 6 . . . 6 sn, define

Zj,k = Xsne1+···+snej−1+skej for 1 6 j 6 N and 0 6 k 6 n.

Thus Z1,0 = 0 and Zj,0 = Zj−1,n for j > 1. By Definition 3 (i), Zj,k − Zj,k−1 with 1 6 j 6 N and
1 6 k 6 n are independent. Since, by the assumption,

Zj,k = Xsne1 + · · ·+Xsnej−1 +Xskej a. s.,

Xskej−Xsk−1ej with 1 6 j 6 N and 1 6 k 6 n are independent. Since n and 0 = s0 6 s1 6 . . . 6 sn

are arbitrary, we see that {Xtej : t > 0}, 1 6 j 6 N , are independent. It follows that {Xs} d= {Ys},
which implies that {µs} is unique-generative. This shows (i). A proof of (ii) is contained in the
argument above.

Proof of Theorem 10 (iii). Induction in N . If N = 1, the assertion is trivially true. Assume that
the assertion is true for N − 1 in place of N . Let {µs : s ∈ K} be such that µtej (Lj) = 1 for
1 6 j 6 N and t > 0. In order to show that {µs} is unique-generative, we use Theorem 10 (i).
Let {Xs : s ∈ K} be a Lévy process in law associated with {µs}. Denote by K1 and K2 the cones
generated by {e2, e3, . . . , eN} and by {e1, e3, . . . , eN}, respectively. For s = s1e

1 + · · · + sNe
N ,

denote s1 = s− s1e
1 and s2 = s − s2e

2. Then, for j = 1, 2, {µs : s ∈ Kj} is unique-generative by
the induction hypothesis and {Xs : s ∈ Kj} is associated with it. Hence, by Theorem 10 (i),

Xs = Xs1 + (Xs −Xs1) = Xs2e2 +Xs3e3 + · · ·+XsNeN + (Xs −Xs1) a. s.,
Xs = Xs2 + (Xs −Xs2) = Xs1e1 +Xs3e3 + · · ·+XsNeN + (Xs −Xs2) a. s.

Thus
(Xs −Xs1)−Xs1e1 = (Xs −Xs2)−Xs2e2 a. s.

The left-hand side is in L1 a. s. since Xs1e1 ∈ L1 a. s. and since Xs−Xs1
d= Xs−s1 = Xs1e1 ; similarly

the right-hand side is in L2 a. s. Since L1 ∩ L2 = {0}, this implies that (Xs −Xs1) −Xs1e1 = 0
a. s. It follows that

Xs = Xs1e1 +Xs2e2 + · · ·+XsNeN a. s.

Thus {µs} is unique-generative by Theorem 10 (i).
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[8] Hirsch, F. (1995). Potential theory related to some multiparameter processes. Potential Anal.
4 245–267.

226



Ken-iti Sato

[9] Khoshnevisan, D., Xiao, Y., and Zhong, Y. (2001). Local times of additive Lévy processes I.
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[11] Maejima, M. and Rosiński, J. (2000). Type G distributions on Rd. J. Theor. Probab. to appear.

[12] Orey, S. and Pruitt, W. E. (1973). Sample functions of the N -parameter Wiener process. Ann.
Probab. 1 138–163.
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Abstract

Limit distribution results on realised power variation, that is sums of absolute powers of
increments of a process, are derived for certain types of semimartingale with continuous local
martingale component, in particular for a class of flexible stochastic volatility models. The
theory covers, for example, the cases of realised volatility and realised absolute variation. Such
results should be helpful in, for example, the analysis of volatility models using high frequency
information.
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1 Introduction

Stochastic volatility processes play an important role in financial economics, generalising Brownian
motion to allow the scale of the increments (or returns in economics) to change through time in a
stochastic manner. We show such intermittency can be coherently measured using sums of absolute
powers of increments, which we name realised power variation. This paper derives limit theorems
for these measures, over a fixed interval of time, as the number of high frequency increments goes
off to infinity.

2 Models, notation and regularity conditions

We first introduce some notation for realised power variation quantities of an arbitrary semimartin-
gale x. Let δ be positive real and, for any t ≥ 0, define

xδ(t) = x(bt/δc δ),

where bac for any real number a denotes the largest integer less than or equal to a. The process
xδ(t) is a discrete approximation to x(t). Further, for r positive real we define the realised power
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variation of order r1 or realised r-tic variation of xδ(t) as

[xδ][r](t) =
M∑
j=1

|xδ (jδ)− xδ((j − 1)δ)|r

=
M∑
j=1

|x (jδ)− x((j − 1)δ)|r (2.1)

where M = M(t) = bt/δc. Then, in particular, for M →∞, realised quadratic variation

[xδ][2](t)
p→ [x](t),

where [x] is the quadratic variation process of the semimartingale x. Note also that,

[xδ][2] = [xδ].

Henceforth, for simplicity of exposition, we fix t and take δ so that M = bt/δc is an integer
(and then δM = t).

Our detailed results will be established for the stochastic volatility (SV) model where basic
Brownian motion is generalised to allow the volatility term to vary over time and there to be a
rather general drift. Then the y∗ follows

y∗(t) = α(t) +
∫ t

0

σ(s)dw(s), t ≥ 0, (2.2)

where σ > 0 and α are assumed to be stochastically independent of the standard Brownian motion
w. Throughout this paper we will assume that the processes τ = σ2 and α are of locally bounded
variation. This implies that τ and α are locally bounded Riemann integrable functions and that y∗

is a semimartingale with a continuous local martingale component. We call σ the spot volatility
process and α the mean or risk premium process. (For some general information on processes
y∗ of this type, see for example [20] and [9]). By allowing the spot volatility to be random
and serially dependent, this model will imply its increments will exhibit volatility clustering and
have unconditional distributions which are fat tailed. This allows it to be used in finance and
econometrics as a model for log-prices. In turn, this provides the basis for option pricing models
which overcome some of the major failings in the Black-Scholes option pricing approach. Leading
references in this regard include [25], [23] and [35]. See also the recent work of [33].

For the price process (2.2) the realised power variation of order r of y∗ is, at time t and
discretisation δ, [y∗δ ]

[r](t). Letting

yj(t) = y∗(jδ)− y∗((j − 1)δ)

we have that

[y∗δ ]
[r](t) =

M∑
j=1

|yj(t)|r .

We use the notation τ(t) = σ2(t) and

τ∗(t) =
∫ t

0

τ(s)ds

1The similarly named p-variation, 0 < p < ∞, of a real-valued function f on [a, b] is defined as

sup
κ

∑
|f(xi)− f(xi−1)|p ,

where the supremum is taken over all subdivisions κ of [a, b]. If this function is finite then f is said to have bounded
p-variation on [a, b]. The case of p = 1 gives the usual definition of bounded variation.

This condition has been studied recently in the probability literature. See the work of, for example, [28] and [30].
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and, more generally, we consider the integrated power volatility of order r

τr∗(t) =
∫ t

0

τr(s)ds.

That τr is Riemann integrable for every r > 0 follows from the assumed locally bounded variation
of τ and the fact, due to Lebesgue, that a bounded function f on a finite interval I is Riemann
integrable on I if and only if the Lebesgue measure of the set of discontinuity points of f is equal
to 0 (see [24, pp. 465–466], [32, p. 174, Theorem 24.4] or [27]). In our case the latter property
follows immediately from the bounded variation of τ (any function of bounded variation is the
difference between an increasing and a decreasing function and any monotone function has at most
countably many discontinuities).

Throughout the following, r denotes a positive number. Moreover we shall refer to the following
conditions on the volatility and mean processes:

(V) The volatility process τ = σ2 is (pathwise) locally bounded away from 0 and has, moreover,
the property

p- lim
δ↓0

δ1/2
M∑
j=1

|τr(ηj)− τr(ξj)| = 0 (2.3)

for some r > 0 (equivalently for all r > 0)2 and for any ξj and ηj such that

0 ≤ ξ1 ≤ η1 ≤ δ ≤ ξ2 ≤ η2 ≤ 2δ ≤ · · · ≤ ξj ≤ ηj ≤Mδ = t.

(M) The mean process α satisfies (pathwise)3

lim
δ↓0

max
1≤j≤M

δ−1|α(jδ)− α((j − 1)δ)| <∞. (2.4)

These regularity conditions are quite mild.4 Of some special interest are cases where α is of
the form

α(t) =
∫ t

0

g(σ(s))ds,

for g a smooth function. Then regularity of τ will imply regularity of α.
Note that the assumptions allow the spot volatility to have, for example, deterministic diurnal

effects, jumps, long memory, no unconditional mean or to be non-stationary.

3 Results

Our main theoretical result is

Theorem 1 For δ ↓ 0 and r ≥ 1/2, under conditions (V) and (M),

µ−1
r δ1−r/2[y∗δ ]

[r](t)
p→ τr/2∗(t) (3.1)

and
µ−1
r δ1−r/2[y∗δ ]

[r](t)− τr/2∗(t)

µ−1
r δ1−r/2

√
µ−1

2r vr[y
∗
δ ][2r](t)

L−−→ N(0, 1), (3.2)

2The equivalence follows on noting that for each j there exists an ωj with

inf
(j−1)δ≤s≤jδ

τ(s) ≤ ωj ≤ sup
(j−1)δ≤s≤jδ

such that
|τr(ηj)− τr(ξj)| = rωr−1

j |τ(ηj)− τ(ξj)|
and then using that τ is pointwise bounded away from 0 and ∞.

3This condition is implied by Lipschitz continuity and itself implies continuity of α.
4Condition (V) is satisfied in particular if τ is of OU type, cf. Example 1 below, and condition (M) is valid if,

for instance, α is the intOU process plus drift, cf. Example 2.
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where µr = E {|u|r} and vr = Var {|u|r}, with u ∼ N(0, 1). �

In the proof of this theorem, to be given in the next section, the only place where the assumption
r ≥ 1/2 is needed is where Lemma 3 is invoked.

This theorem tells us that, for δ ↓ 0, scaled realised power variation converges in probability to
integrated power volatility and follows asymptotically a normal variance mixture distribution with
variance distributed as

δµ−2
r vrτ

r∗(t),

which is consistently estimated by the square of the denominator in (3.2). Hence the limit theory
is statistically feasible and does not depend upon knowledge of α or σ2.

Leading cases are realised quadratic variation, which is usually called realised volatility in the
finance and econometrics literature,

[y∗δ ]
[2](t) =

M∑
j=1

y2
j (t),

in which case ∑M
j=1 y

2
j (t)− τ∗(t)√

2
3

∑M
j=1 y

4
j (t)

L−−→ N(0, 1), (3.3)

and realised absolute variation

[y∗δ ]
[1](t) =

M∑
j=1

|yj(t)| ,

when √
π/2

√
δ
∑M
j=1 |yj(t)| − σ∗(t)√

(π/2− 1) δ
∑M

j=1 y
2
j (t)

L−−→ N(0, 1). (3.4)

In the case of r = 2 the result considerably strengthens the well known quadratic variation
result that realised quadratic variation converges in probability to integrated volatility

∫ t
0
σ2(s)ds

— which was highlighted in concurrent and independent work by [2] and [9]. The asymptotic
distribution of realised quadratic variation was discussed by [10] in the special case where α(t) =
µt+β

∫ t
0 σ

2(s)ds. To our knowledge the probability limit of (normalised) realised absolute variation
has not been previously derived, let alone its asymptotic distribution.

Taking sums of squares of increments of log-prices has a very long tradition in financial eco-
nomics — see, for example, [34], [36], [39], [14], [16], [5] and [4]. However, for a long time no
theory was known for the behaviour of such sums outside the Brownian motion case. Since the
link to quadratic variation has been made there has been a remarkably fast development in this
field. Contributions include [15], [5], [4], [10], [6], [8], [29], [7], [19], [12] and [11].

[3] and [1] empirically studied the properties of
∑M

j=1 |yj(t)| computed using sums of absolute
values of intra-day returns on speculative assets (many authors in finance have based their empirical
analysis on absolute values of returns — see, for example, [38, Ch. 2], [13], [18], [40], [21], [26],
[37, Ch. IV] and [22]). This was empirically attractive, for using absolute values is less sensitive to
possible large movements in high frequency data. There is evidence that if returns do not possess
fourth moments then using absolute values rather than squares would be more reliable (see, for
example, the work on the distributional behaviour of the correlogram of squared returns by [17]
and [31]). However, the approach was abandoned in their subsequent work reported in [2], [4] and
[5] due to the lack of appropriate theory for the sum of absolute returns as δ ↓ 0, although recently
[6] have performed some interesting Monte Carlo studies in this context, while [37, pp. 349–350]
mention interests in the limit of sums of absolute returns. Our work provides a theory for the use
of sums of absolute returns.
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On the Construction of Feller and Lévy-Type

Processes Starting with the Symbol of the Process
René L. Schilling,

University of Sussex

A Feller process {Xt}t≥0 is a process with values in Rn such that the associated operator semi-
group

Ttu(x) = Exu(Xt), u ∈ C∞(Rn),

on the continuous functions vanishing at infinity, C∞(Rn), is a Feller semigroup. This means
that {Tt}t≥0 is a strongly continuous family of sub-Markovian contraction operators acting on (in
particular: preserving) the space C∞(Rn); examples comprise convolution semigroups which are
just the operator semigroups associated with Lévy processes.

Denote by (A,D(A)) the infinitesimal generator of the semigroup {Tt}t≥0, that is Au =
d
dtTtu

∣∣
t=0

(norm-sense) on its domain D(A) ⊂ C∞(Rn). Under the additional assumption that
the test functions C∞c (Rn) ⊂ D(A), the following astonishing structure result was proved by Ph.
Courrège:

Theorem 1 (Courrège). Let (A,D(A)) be the generator of a Feller semigroup (or Feller process)
such that C∞c (Rn) ⊂ D(A), then the generator, restricted to C∞c (Rn), is a pseudo-differential
operator, i.e.,

Au(x) = −p(x,D)u(x) = (2π)−n/2
∫

Rn

eix·ξ p(x, ξ)û(ξ) dξ ∀u ∈ C∞c (Rn) (∗)

(û(ξ) stands for the Fourier transform of u(x)) with symbol p(x, ξ), where p : Rn ×Rn → C. The
symbol is locally bounded in both variables and continuous and negative definite as a function
of ξ whenever x is fixed.

The condition that ξ 7→ p(x, ξ) is continuous and negative definite is equivalent to saying that
we have, for every fixed x, a Lévy-Khinchine represenation:

p(x, ξ) = a(x) − i`(x) · ξ + ξ ·Q(x)ξ +
∫
y 6=0

(
1− eiy·ξ +

iy · ξ
1 + |y|2

)
N(x, dy) (∗∗)

where, for each fixed x ∈ Rn, the tuple (a(x), `(x), Q(x), N(x, •)) is a Lévy tuple.
Using (**) and Fourier inversion we can easily see that the representation (*) takes a slightly

more familiar shape (for probabilists...),

Au(x) = −a(x)u(x) + `(x)∇u(x) +
n∑

j,k=1

qjk(x)∂j∂ku(x)

+
∫
y 6=0

(
u(x+ y)− u(x)− y · ∇u(x)

1 + |y|2

)
N(x, dy).

Both representations of the generator, as integro-differential and as pseudo-differential operator, do
have (dis-)advantages. It should be mentioned, however, that there is a vast and extremely powerful
theory of pseudo-differential operators which can be (partly) used in studying Feller processes.

These are all necessary conditions, i.e., we assume that the process or the semigroup are given.
Of course, in the case of a Lévy process and a convolution semigroup, we just have p(x, ξ) = ψ(ξ)—
the latter being the characteristic exponent of the Lévy process—and (a(x), `(x), Q(x), N(x, dy))
also shows no x-dependence, i.e., becomes (a, `,Q, ν). This is the case of constant coefficient
generators and building on long-established facts it is easy to see that there is a one-to-one corre-
spondence between
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• constant-coefficient continuous negative definite functions ψ (i.e., constant-coefficient sym-
bols);

• constant-coefficient pseudo-differential operators generating Feller semigroups;

• Lévy processes.

Not so in the variable coefficient case. Here the situation is much more complicated and
only the necessary condition (Courrège’s Theorem) is clear. Some 10 years ago, N. Jacob started
to investigate this question in detail. He, and subsequently W. Hoh, M. Tsuchiya, A. Negoro, F.
Baldus and others found conditions in terms of the symbol p(x, ξ) that were sufficient to guarantee
the existence (and uniqueness) of Feller and Lévy-type processes. Typically, their conditions involve
some smoothness assumptions for x 7→ p(x, ξ) as well as growth and “ellipticity” assumptions for
ξ → p(x, ξ) as ξ → ∞. The latter are expressed through two-sided comparison estimates of
1 + p(x, ξ) against a fixed Lévy-symbol 1 + ψ(ξ). This approach is very natural if one knows how
to deal with second-order elliptic differential operators with variable coefficients which are in a
similar way compared with the Laplacian!

Here is a slight generalization of their criteria.

Theorem 2. Let p : Rn × Rn → C, (x, ξ) 7→ p(x, ξ), be locally bounded in (x, ξ) and continuous
and negative definite as a function of ξ. Assume that

1. sup
x∈Rn

|p(x, ξ)| ≤ κp(1 + |ξ|2) ∀ξ ∈ Rn;

2. ξ 7→ p(x, ξ) is uniformly (in x ∈ Rn) continuous at ξ = 0;

3. x 7→ p(x, ξ) is continuous for all ξ ∈ Rn.

Then the operator (−p(x,D), C∞c (Rn)) has an extension which generates a Feller process.

The conditions of the theorem, apart from (1) which is essentially saying that the coefficients
of the generator are bounded, are rather close to the conditions known to be necessary for the
existence of a Feller process. The proof is essentially a combination of methods of pseudo-differential
operators and the Yosida’s technique to prove the famous Hille-Yosida Theorem. Notice that
Theorem 2 only asserts existence but not uniqueness of the semigroup resp. the process.

Once the symbol of a process is known, we can use it to derive various stochastic properties
(Hausdorff dimension, asymptotics of the paths, smoothness of the paths etc.) from it. On the
other hand, the above theorem now allows us to guarantee existence of processes with certain
properties, a fact, that could be interesting in mathematical modelling.

For Feller processes (and, in fact, for a greater class of Markov processes) the symbol has an
interesting stochastic interpretation. For Feller processes this can be stated in the following
little

Lemma. Let {Xt}t≥0 be a Feller process such that the test functions C∞c (Rn) are in the domain
of its infinitesimal generator. Then

d

dt
Ex
(
eiξ·(Xt−x)

)∣∣∣∣
t=0

= −p(x, ξ).

Note that this formula nicely encapsules the fact that the derivative of the characteristic function
of a Lévy process at t = 0 is the characteristic exponent. In the general case the proof is far from
being trivial since p(x, ξ) is not at all an characteristic exponent; it is, however, the leading term
in an (asymptotic) expansion of the logarithm of the characteristic function of the process.

A comprehensive bibliography and more information, in particular on stochastic properties and
constructions using pseudo-differential methods (not Theorem 2, though...) is given in the survey
paper
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N. Jacob, R. L. Schilling: Lévy-Type Processes and Pseudodifferential Operators. In O.E.

Barndorff-Nielsen, T. Mikosch, S. I. Resnick (eds.): Lévy Processes—Theory and Applica-
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Financial mathematics has recently enjoyed considerable prestige on account of its impact on
the finance industry. In parallel, the theory of Lévy processes has also seen exciting developments
in recent years [2] [4] [16]. The fusion of these two fields of mathematics has provided new applied
modeling perspectives within the context of finance and further stimulus for deep and intrinsically
interesting problems within the context of Lévy processes.

We will focus on one particular Lévy process: The Meixner process. The Meixner process
originates from the theory of orthogonal polynomials. Its underlying distribution, the Meixner
distribution, is the measure of orthogonality of the Meixner-Pollaczek polynomials. The Meixner
process was introduced in [17] (see also [18]) and was proposed to serve as a model of financial
data in [10] (see also [19]).

The density of the Meixner distribution (Meixner(a, b, d,m)) is given by

f(x; a, b,m, d) =
(2 cos(b/2))2d

2aπΓ(2d)
exp

(
b(x−m)

a

) ∣∣∣∣Γ(d+
i(x−m)

a

)∣∣∣∣2 ,
where a > 0,−π < b < π, d > 0, and m ∈ R.

The characteristic function of the Meixner(a, b, d,m) distribution is given by

E [exp(iuM1)] =

(
cos(b/2)

cosh au−ib
2

)2d

exp(imu)

Clearly, the Meixner(a, b, d,m) distribution is infinitely divisible and we can associate with it a
Lévy process which we call the Meixner process. More precisely, a Meixner process {Mt, t ≥ 0} is
a stochastic process which starts at zero, i.e. M0 = 0, has independent and stationary increments,
and where the distribution of Mt is given by the Meixner distribution Meixner(a, b, dt,mt). It is
easy to show that our Meixner process {Mt, t ≥ 0} has no Brownian part and a pure jump part
governed by the Lévy measure

ν(dx) = d
exp(bx/a)
x sinh(πx/a)

dx.

Because
∫ +∞
−∞ |x|ν(dx) = ∞ it follows from standard Lévy process theory [4] [16], that our process

is of infinite variation.
Moments of all order of the Meixner(a, b, d,m) distribution exist. Next, we give some relevant

quantities; similar, but more involved, expressions exist for the moments and the skewness.

Meixner(a, b, d,m) Normal(µ, σ2)

mean m+ ad tan(b/2) µ

variance a2d
2 (cos−2(b/2)) σ2

kurtosis 3 + 3−2 cos2(b/2)
d 3

One can clearly see that the kurtosis of the Meixner distribution is always greater than the Normal
kurtosis.

237
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A number of stylized features of observational series from finance are discussed in [3]. One of
this features is the semihaviness of the tails. Our Meixner(a, b, d,m) distribution has semiheavy
tails [11]. This means that the tails of the density function behave as

f(x, a, b, d,m) ∼ C−|x|ρ− exp(−σ−|x|) as x→ −∞
f(x, a, b, d,m) ∼ C+|x|ρ+ exp(−σ+|x|) as x→ +∞,

for some ρ−, ρ+ ∈ R and C−, C+, σ−, σ+ ≥ 0. In case of the Meixner(a, b, d,m),

ρ− = ρ+ = 2d− 1, σ− = (π − b)/a, σ+ = (π + b)/a.

The Meixner process (a = 1, m = 0, d = 1, ζ = (b + π)/2) is also connected with the monic
Meixner-Pollaczek polynomials {P̃m,m = 0, 1, . . . } [12] by a martingale relation:

E[P̃m (Mt; t, ζ) |Ms] = P̃m (Ms; s, ζ)

Note the similarity with the classical martingale relation between standard Brownian motion
{Wt,≥ 0} and the Hermite Polynomials {Hm(x;σ),m = 0, 1, . . .} [18]:

E
[
H̃m(Wt; t) |Ws

]
= H̃m(Ws; s)

The Meixner distribution can be seen as a special case of the Generalized z-distributions: The
Generalized z-distribution (GZ) [11] is defined through the characteristic function:

φGZ(z; a, b1, b2, d,m) =

(
B(b1 + iaz

2π , b2 −
iaz
2π )

B(b1, b2)

)2d

exp(imz),

where a, b1, b2, d > 0 and m ∈ R.
For

b1 =
1
2

+
b

2π
and b2 =

1
2
− b

2π
,

we obtain the Meixner Process. Note that the Generalized z-distributions and the Generalized
Hyperbolic distribution [9] [15] are non-intersecting sets.

The Meixner Process is also related to the process studied by Biane, Pitman and Yor [5] (see
also [14]):

Ct =
2
π2

∞∑
n=1

Γn,t
(n− 1

2 )2
,

for a sequence of independent Gamma Processes Γn,t, i.e. Lévy process with E[exp(iθΓn,t)] =
(1− iθ)−t.

In [5] one shows that Ct has Laplace transform

E[exp(−uCt)] =
(

1
cosh

√
2u

)t
This means that the Brownian time change BCt has characteristic function

E[exp(iuBCt)] =
(

1
coshu

)t
,

or equivalently BCt follows a Meixner(2, 0, t, 0) distribution.
We will apply the Meixner distribution and the Meixner process in the context of mathematical

finance. More precisely, we will use the process to model the stochastic behaviour of financial
assets like stocks or indices. The most famous continuous-time model for stock prices or indices
is the celebrated Black-Scholes model [6]. It uses the Normal distribution to fit the log-returns of
the underlying: the price process of the underlying is given by the geometric Brownian Motion

St = S0 exp
((

µ− σ2

2

)
t+ σBt

)
,
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where {Bt, t ≥ 0} is standard Brownian motion, i.e. Bt follows a Normal distribution with mean
0 and variance t. It is well known however that the log-returns of most financial assets have an
actual kurtosis that is higher than that of the Normal distribution. In this paper we therefore
propose another model which is based on the Meixner distribution.

In the late 1980s and in the 1990s several other similar process models where proposed. Madan
and Seneta [13] have proposed a Lévy process with Variance Gamma distributed increments. We
mention also the Hyperbolic Model [9] proposed by Eberlein and Keller and their generalizations
[15]. In the same year Barndorff-Nielsen proposed the Normal Inverse Gaussian Lévy process [1].
Recently the CMGY model was introduced [7]. All models give a much better fit to the data and
lead to an improvement with respect to the Black-Scholes model. We provide statistical evidence
that the Meixner model performs also significantly better then the Black-Scholes Model.

A second application can be found in the same context: the pricing of financial derivatives.
First we will try to price derivatives using a model where the Brownian motion of the BS-model
is just replace by a Lévy process. Although there is a significant improvement in accuracy with
respect to the BS-model, there still is a discrepantion between model prices and market prices. The
main feature which these Lévy models are missing, is the fact that the volatility or more general
the environment is changing stochastically over time. In order to deal with this problem, we make
(business) time stochastic as proposed in [8]. We show that by following the procedure of [8], we
can almost perfectly calibrate model prices of the Meixner model with stochastic business time,
also called the Meixner Stochastic Volatility model (Meixner-SV model), to market prices.

To illustrate the applications, we make use of two data sets. The first data set consist of
the log-returns of the Nikkei-225 Index during a period of three years. We show that the Meixner
distribution can be fitted much more accurate to this set than the Normal distribution using χ2-test
and QQ-plots.

–0.05

0

0.05

–0.05 0 0.05
x

Meixner

Meixner QQ-plot

A second data set consists of the mid-prices of a set of European call and put options on the
SP500-index at the close of the market on the 4th of December 2001. We will calibrate models
based on the Meixner process to our set of option prices. We will show that the Meixner-SV model
leads to option prices which can be calibrated almost perfectly to the market prices:
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and Applications. Boston: Birkhauser.

[3] Barndorff-Nielsen, O.E. and Shephard, N. (2000) Modelling by Lévy Processes for Financial
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Fock Space Decomposition of Lévy Processes

R. F. Streater,
Dept. of Mathematics, King’s College London,

Strand, London, WC2R 2LS

1 Cyclic representations of groups

Let G be a group and g 7→ Ug a multiplier cyclic representation of G on a Hilbert space H, with
multiplier σ : G×G→ C and cyclic vector Ψ. This means that

• UgUh = σ(g, h)Ugh for all g, h ∈ G.

• U(e) = I where e is the identity of the group and I is the identity operator on H.

• Span {UgΨ : g ∈ G} is dense in H.

If σ = 1 we say that U is a true representation.

Recall that a multiplier of a group G is a measurable two-cocycle in Z2(G,U(1)); so σ is a map
G×G→ U(1) such that σ(e, g) = σ(g, e) = 1 and

σ(g, h)σ(g, hk)−1σ(gh, k)σ(h, k)−1 = 1. (1.1)

Here, U(1) denotes the unit circle in the complex plane, which is a group under multiplication.
We note that (1.1) expresses the associativity of operator multiplication of the U(g). From this,
or directly from (1.1), we discover that the set of two-cocycles form an abelian group denoted
Z2(G,U(1)). We say that σ is a two-coboundary if there is a map b : G→ U(1) with b(e) = 1 and

σ(g, h) = b(gh)/(b(g)b(h)). (1.2)

The product of coboundaries is also a coboundary, and they form a group B2(G,U(1)).

We also need the concept of a one cocycle ψ in a Hilbert space K carrying a unitary representation
V . A cocycle ψ is a map G→ K such that

V (g)ψ(h) = ψ(gh)− ψ(g) for g, h ∈ G. (1.3)

The cocycles form an abelian group under addition, using the vector structure of K; this group is
denoted Z1(K, V ). We say that ψ is a coboundary if there is a vector ψ0 ∈ K such that

ψ(g) = (V (g)− I)ψ0. (1.4)

Again, the coboundaries form an abelian group, here denoted B1(K, V ). We call V the action of G
on the space K. In these terms, for multipliers the action of G on U(1) is trivial. Coboundaries are
always cocycles, so the coboundary group is an invariant subgroup of the cocycle group. We say
that, in (1.2) and (1.4), σ is the coboundary of b and ψ is the coboundary of ψ0. The cohomology
group is the quotient group H = Z/B, and we say that a group has non-trivial cohomology (of a
given action V and degree) if H consists of more than the identity element.

We say that two cyclic σ-representations {H, U,Ψ} and {K, V,Φ} are cyclically equivalent if
there exists a unitary operator W : H → K such that Vg = WUgW

−1 for all g ∈ G, and WΨ = Φ.
Any cyclic multiplier representation {H, U,Ψ} defines a function F on the group by

F (g) := 〈Ψ, UgΨ〉, (1.5)
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which satisfies σ-positivity:

F (e) = 1 (1.6)∑
ij

λiλjσ(g−1
i , gj)F (g−1

i gj) ≥ 0. (1.7)

F is called the characteristic function of the representation, because

• Two cyclic multiplier representations of G are cyclically equivalent if and only if they have
the same characteristic function;

• Given a function on G satisfying σ-positivity, then there exists a cyclic σ-representation of
which it is the characteristic function.

If G = {s ∈ R}, σ = 1 and Us is continuous, then F obeys the hypotheses of Bochner’s theorem
and defines a probability measure µ on R. More generally, we can apply Bochner’s theorem (if
σ = 1) to any one-parameter subgroup s 7→ g(s) ∈ G0 ⊆∈ G. Then Ug(s), s ∈ R is a one-parameter
unitary group; its infinitesimal generator is a self-adjoint operator X on H. The relation to µ is
given as follows: let X =

∫
λdE(λ) be the spectral resolution of X . Then

µ(λ1, λ2] = 〈Ψ, (E(λ2)− E(λ1)) Ψ〉. (1.8)

Conversely, given any random variable X on a probability space (Ω, µ), we can define the cyclic
unitary representation of the group R by the multiplication operator

U(s) = exp{isX} (1.9)

and use the cyclic vector Ψ(ω) = 1 on the Hilbert space L2(Ω, dµ). In this way, probability theory
is reduced to the study of cyclic representations of abelian groups, and quantum probability to
that cyclic σ-representations of non-abelian groups.

2 Processes as Tensor Products

Given a cyclic σ-representation {H, U,Φ} of a group G, we can get a multiplier representation of
the product group Gn := G ×G × . . .×G (n factors) on H ⊗H . . .⊗H, by acting on the vector
Ψ ⊗ Ψ . . . ⊗ Ψ by the unitary operators U(g1, . . . , gn) := U(g1) ⊗ . . . U(gn), as each gj runs over
the group G. The resulting cyclic σ⊗n-representation is denoted{

H⊗n, U⊗n,Ψ⊗n
}
. (2.1)

The twisted positive function on Gn defined by this cyclic representation is easily computed to be

F⊗n(g1, . . . , gn) = F (g1)F (g2) . . . F (gn). (2.2)

If G has a one-parameter subgroup G0, then the infinitesimal generatorsXj of this subgroup in the
jth place define random variables (j = 1, . . . , n) that are all independent in the measure µ⊗n on Rn

defined by F⊗n, and are all identically distributed. They can thus be taken as the increments of
a process in discrete time t = 1, . . . , n. To get a process with time going to infinity, we can embed
each tensor product H⊗n in the “incomplete infinite tensor product” of von Neumann, denoted

∞⊗
j=1

ΨHj where Hj = H for all j. (2.3)

It is harder to construct processes in continuous time. We made [12] the following definition:

Definition 2.1. A cyclic G-representation {H, U,Ψ} is said to be infinitely divisible if for each
positive integer n there exists another cyclic G-representation {K, V,Φ} such that {H, U,Ψ} is
cyclically equivalent to {K⊗n, V ⊗n,Φ⊗n}.

243
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The picturesque notation
{
H⊗ 1

n , U⊗
1
n ,Ψ⊗

1
n

}
can be used for {K, V,Φ}.

If G = R then {H, U,Ψ} is infinitely divisible if and only if the corresponding measure µ given by
Bochner’s theorem is infinitely divisible [12]. It is clear that {H, U,Ψ} is infinitely divisible if and
only if there exists a branch of F (g)

1
n which is positive semi-definite on G.

This criterion was extended in [10] to σ-representations. In that case, for each n, there should exist
an nth root σ(g, h)

1
n which is also a multiplier. One can then consider cyclic representations such

that for each n, F (g)
1
n has a branch which is σ

1
n -positive semi-definite.

If {H, U,Ψ} is an infinitely divisible G-representation, then we may construct a continuous tensor
product of the Hilbert spacesHt, where t ∈ R and all the Hilbert spaces are the same. This gives us,
in the non-abelian case, quantum stochastic processes with independent increments. The possible
constructions are classified in terms of cocycles of the group G. Here we shall limit discussion to
the analysis of the Lévy formula in these terms.

3 The cocycle

Let F : G → C and F (e) = 1. It is a classical result for G = R that a function F
1
n has a branch

that is positive semidefinite for all n > 0 if and only if logF has a branch f such that f(0) = 0 and
f is conditionally positive semidefinite. This is equivalent to f(x−y)−f(x)−f(−y) being positive
semidefinite. This result is easily extended to groups [12] and σ-representations [10, 11]. Let us
consider the case where σ = 1. It follows that an infinitely divisible true cyclic representation
{H, U,Ψ} of G defines a conditionally positive semidefinite function f(g) = log〈Ψ, U(g)Ψ〉, so that∑

j,k

αjαk
(
f
(
g−1
j gk

)
− f(gj)−1 − f(gk)

)
≥ 0. (3.1)

We can use this positive semidefinite form to make SpanG into a pre-scalar product space, by
defining

〈ψ(g), ψ(h)〉 := f(g−1h)− f(g−1)− f(h), g, h ∈ G. (3.2)

Let K be the Hilbert space, that is the separated and completed space got this way. There is a
natural injection ψ : G→ K, namely, g 7→ [g], the equivalence class of g given by the relation g ∼ h
if the seminorm defined by (3.1) vanishes on g− h. The left action of the group G on this function
is not quite unitary; in fact the following is a unitary representation [1]:

V (h)ψ(g) := ψ(hg)− ψ(h). (3.3)

One just has to check from (3.2) that the group law V (g)V (h) = V (gh) holds, and that

〈V (h)ψ(g1), V (h)ψ(g2)〉 = 〈ψ(g1), ψ(g2)〉. (3.4)

Thus we see that ψ(g) is a one-cocycle relative to the G-representation V [1].

4 The embedding theorem

Given a Hilbert space K, the Fock space defined by K is the direct sum of all symmetric tensor
products of K,

EXP K := C
⊕

K
⊕

(K ⊗K)s
⊕

. . . . (4.1)

The element 1 ∈ C is called the Fock vacuum. The following coherent states form a total set in
EXP K:

EXP ψ := 1 + ψ + (1/2!)ψ ⊗ ψ + . . . , ψ ∈ K. (4.2)

The notation is natural, in view of the easy identity

〈EXP ψ(g), EXP ψ(h)h〉 = exp{〈ψ(g), ψ(h)〉}. (4.3)
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Fock space also has the functorial property

EXP (H⊕K) = EXP H⊗EXP K, (4.4)

the equality being given by an isomorphism that intertwines the number operators. In particular,
it maps the vacua to each other.

Then the embedding theorem [12] says that if {H, U,Ψ} is an infinitely divisible cyclic rep-
resentation, then it is cyclically equivalent to the cyclic representation W on EXP K, with the
Fock vacuum as the cyclic vector, with the unitary representation W (h) defined on the total set of
coherent states by

W (h)EXP ψ(g) = F (hg)/F (g)EXP ψ(hg). (4.5)

The proof is simply a verification. An immediate consequence is the occurrence of orthogonal
polynomials associated with any infinitely divisible random variable X : the nth symmetric tensor
product in the Fock space is a polynomial in X orthogonal to the mth tensor product, if n 6= m.
This construction has been called [12, 10] the Araki-Woods embedding theorem, but it does not
actually appear in [2]; more properly this name belongs to the embedding [12] of the process that
one constructs from {H, U,Φ}, which is reminiscent of a deep result in [2]. The coherent vectors in
the continuous tensor product lead to exponential martingales [7]. For the group R with Gaussian
cocycle the expansion of a martingale into its n-particle components amounts to its decomposition
into Wiener chaos.

5 The Lévy Formula

Every multiplier for the group R is a coboundary. This has the consequence that every projective
representation of R can be implemented by a true representation, which is multiplicity free if it is
cyclic. By reduction theory, it is then determined by a measure on the dual group, here R. Araki
[1] showed that a one-cocycle can be algebraic or topological. The topological cocycles are of the
form

ψ(g) = (U(g)− I)ψ0 (5.1)

where ψ0 need not be in the Hilbert space, but ψ(g) is. For the group R, the algebraic cocycles
are all of the form f(x − y) − f(x) − f(−y) = axy. This is satisfied by the Gaussian term
logF (x) = −a

2x
2 + ibx, and this is the only possibility. The Poisson(λ) is an example of a

coboundary, when logF (t) = cλ(eipt − 1) for some p, the increment of the jumps. The weighted
mixture of these coboundaries gives di Finetti’s formula [3]:

logF (t) = λ

{
ibt− a2t2

2
+ c

∫ (
eipt − 1

)
dP (p)

}
. (5.2)

That this is not the most general infinitely divisible measure was recognised by Kolmogorov [8]. In
our terms, this is the statement that not all topological cocycles are coboundaries (the topological
cohomology is non-trivial). Kolmogorov considered random variables with finite variance relative
to the measure dP . This is equivalent in our terms to dP = |ψ̂(p)|2dp and the cocycle ψ being of
the form ψ(x) = (V (x) − I)ψ0, where i∂xψ0 is square integrable over the group R, but ψ0 might
not be. This can be expressed by saying that ψ is a cocycle for the Lie algebra of the group, a case
treated in general in [14]. This gives us Kolmogorov’s formula

logF (t) = λ

{
ibt− a2t2/2 +

∫ (
eipt − 1− itp

)
|ψ(p)|2dp

}
. (5.3)

The term
∫
(−itp)|ψ(p)|2dp is possibly divergent near p = 0 but is not required to exist on its

own near p = 0, since the function M = eipt − 1 − ipt behaves as p2 near the origin. But to
retain a meaning, Kolmogorov’s formula does need p|ψ̂(p)|2 to be integrable at infinity. This is not
needed for the general cocycle, so the formula is not the most general. Lévy gave the answer [9]
by replacing M by

eipt − 1− ipt/(1 + p2), (5.4)

so that ψ̂ has no constraint at infinity other than being L2. Lévy, in effect, constructed the most
general cocycle of the group R.
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The Lévy-Itô Decomposition in Free Probability

O.E. Barndorff-Nielsen
∗†
and S. Thorbjørnsen

‡§

1 About Free Probability

In classical probability, the basic objects of study are random variables X defined on a probabil-
ity space (Ω,F , P ). Any such random variable X gives rise to a probability measure µX on R
determined by the expression:∫

R

f(t) µX(dt) = E(f(X)), (f ∈ Bb(R)),

where Bb(R) is the space of bounded Borel functions f : R → R, and where E denotes expectation
(or integration) w.r.t. P . We call µX the distribution of X and denote it also by L{X}.

In non-commutative probability, the random variables are replaced by operators on a Hilbert
space. LetH be a Hilbert space and let B(H) denote the vector space of continuous linear mappings
T : H → H. Recall that there is also a (non-commutative) multiplication on B(H) given by ab = a◦b
(composition of mappings).

The expectation of an operator a in B(H) is the value at a of a specified state on B(H). More
concretely, let ξ0 be a unit vector in H, and then consider the vector state τ : B(H) → C given by

τ(a) = 〈aξ, ξ〉, (a ∈ B(H)).

Then we consider τ(a) as the expectation of a w.r.t. τ . Note that τ(a) ≥ 0 if a ≥ 0 and that
τ(111) = 1. Having specified a (vector) state on B(H), we can associate a corresponding distribution
to any selfadjoint (or hermitian) operator in B(H): Let a be a selfadjoint operator in B(H), i.e.

〈aξ, η〉 = 〈ξ, aη〉, (ξ, η ∈ H).

Then there exists a unique probability measure µa on (R,B), such that∫
R

f(t) µa(dt) = τ(f(a)), (f ∈ Bb(R)),

where f(a) is defined in terms of spectral theory (in particular, f(a) has the obvious meaning if f
is a polynomial). We call µa the distribution of a w.r.t. τ , and denote it also by L{a}. Since a is
bounded, µa is compactly supported (in fact, supp(µa) is contained in the spectrum of a). If one
wants to consider, in the non-commutative setting, distributions with unbounded support, one has
to allow for a to be unbounded (i.e. non-continuous). In that case, the equation∫

R

f(t) µa(dt) = τ(f(a)), (f ∈ Bb(R)),

determines, again, a unique probability measure µa = L{a} on R,which, in general, has unbounded
support. Any probability measure on R can be realized as the distribution of a (possibly un-
bounded) selfadjoint operator.

∗Department of Mathematical Sciences, University of Aarhus, Denmark.
†MaPhySto - Centre for Mathematical Physics and Stochastics, funded by The Danish National Research Foun-

dation.
‡Department of Mathematics and Computer Science, University of Southern Denmark.
§Funded by the Danish Natural Science Research Council.
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2nd MaPhySto Lévy Conference, January 2002

Example 1.1. Consider the Hilbert space H = Cn and recall that B(H) ' Mn(C) (the n × n
matrices over C). Consider the state1 trn : Mn(C) → C defined by:

trn[(aij)] =
1
n

n∑
i=1

aii, ((aij) ∈Mn(C)).

Let a be a selfadjoint matrix in Mn(C) (i.e. a = a∗ = (a)t). Then the distribution µa of a w.r.t.
trn is given by:

µa =
1
n

n∑
i=1

δλi ,

where λ1, λ2, . . . , λn are the (real) eigenvalues of a repeated according to multiplicity.

Recall next that two (classical) random variables X and Y on (Ω,F , P ) are independent if and
only if

E
{
[f(X)− E{f(X)}] · [g(Y )− E{g(Y )}]

}
= 0, (f, g ∈ Bb(R)). (1.1)

The notion of free independence was introduced by D.V. Voiculescu in the early 1980’s.

Definition 1.2. Let a1, a2 be selfadjoint operators in B(H) and let τ : B(H) → C be a (vector)
state. Then a1, a2 are freely independent w.r.t. τ if the following condition is satisfied:

k ∈ N, i1, i2, . . . , ik ∈ {1, 2},
i1 6= i2, i2 6= i3, . . . , ik−1 6= ik,

f1, f2, . . . , fk ∈ Bb(R),

⇓
τ
{
[f1(ai1 )− τ(f1(ai1 ))] · [f2(ai2)− τ(f2(ai2))] · · · [fk(aik)− τ(fk(aik))]

}
= 0.

(1.2)

Although condition (1.2) may seem rather similar to (1.1), the non-commutativity of the mul-
tiplication among the appearing operators makes free independence a quite different notion com-
pared to classical independence. In particular, it is crucial that condition (1.2) involves products
of arbitrary length k.

Example 1.3 (Classical random variables are “never” freely independent). Let X and
Y be random variables on (Ω,F , P ) and assume, for simplicity, that X and Y are (essentially)
bounded. If X and Y are freely independent w.r.t. E, then one of them has to be a constant (almost
surely). Indeed, assume that X and Y are freely independent w.r.t. E and put mX = E(X) and
mY = E(Y ). Then by free independence we have:

0 = E
{
(X −mX)(Y −mY )(X −mX)(Y −mY )

}
= E

{
(X −mX)2(Y −mY )2

}
= E{(X −mX)2}E{(Y −mY )2},

where the last equality is another consequence of the free independence. Hence, either X or Y has
to be a constant (almost surely).

2 Voiculescu’s Random Matrix Model.

One motivation for studying free independence is its interpretation as the asymptotic appearance
of classical independence among large random matrices with complex entries.

1This state is not a vector state, but it is a convex combination of vector states.
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Definition 2.1. Let (Ω,F , P ) be a probability space. By SGRM(n, σ2) we denote the set of ran-
dom n×n matrices X = (xij)1≤i,j≤n, defined on (Ω,F , P ), which satisfies the following conditions:

• ∀i ≥ j : xij = xji.

• the random variables xij , 1 ≤ i ≤ j ≤ n, are independent.

• ∀i < j : Re(xij), Im(xij) ∼ i.i.d. N(0, 1
2σ

2).

• ∀i : xii ∼ N(0, σ2).

Apart from providing the above mentioned interpretation of free independence, the following
theorem, due to D.V. Voiculescu, generalizes E.P Wigner’s famous semi-circle law.

Theorem 2.2 ([6]). For each n in N, let X(n)
1 , . . . , X

(n)
r be independent random matrices in

SGRM(n, 1
n ). Then for any p in N and i1, i2, . . . , ip in {1, 2, . . . , r},

E ◦ trn
[
X

(n)
i1
X

(n)
i2

· · ·X(n)
ip

]
−−−−→
n→∞

τ(xi1xi2 · · ·xip),

where

• x1, x2, . . . , xr are selfadjoint, freely independent operators in (B(H), τ).

• L{xi} = 1
2π

√
4− t2 · 1[−2,2](t) dt, (i = 1, 2, . . . , r).

3 Free convolution and infinite divisibility

Let µ1 and µ2 be probability measures on R. Recall then that the (classical) convolution µ1 ∗ µ2

of µ1 and µ2 is defined as follows: Consider independent (classical) random variables X1 and X2,
such that L{X1} = µ1 and L{X2} = µ2. Then µ1 ∗ µ2 = L{X1 +X2}.

Definition 3.1. Let µ1 and µ2 be probability measures on R. Then their free (additive) convolution
µ1 �µ2 is defined as follows: Choose freely independent selfadjoint operators x1 and x2, such that2

L{x1} = µ1 and L{x2} = µ2. Then

µ1 � µ2 = L{x2 + x2}.

As in the classical case, one can verify that the above definition of µ1 � µ2 does not depend on
the specific choice of the operators x1 and x2.

Having introduced free convolution �, we can define free infinite divisibility just as in classical
probability.

Definition 3.2. A probability measure µ on R is infinitely divisible w.r.t. free additive convolution
(or just �-infinitely divisible), if there exists, for each positive integer n, a probability measure µn
on R, such that:

µ = µn � µn � · · ·� µn︸ ︷︷ ︸
n terms

.

We denote by ID(�) the class of �-infinitely divisible probability measures on R.

In classical probability, the infinitely divisible probability measures are characterized by their
Lévy-Khintchine representation.

Theorem 3.3 (Lévy-Khintchine). Let µ be a probability measure on R with characteristic func-
tion (or Fourier transform) fµ. Then µ is infinitely divisible w.r.t. classical convolution ∗, if and
only if fµ has a representation in the form:

log fµ(u) = iγu− 1
2au

2 +
∫

R

(
eiut − 1− iut1[−1,1](t)

)
ρ(dt),

2This situation can always be realized on a suitable Hilbert space.
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where γ ∈ R, a ≥ 0 and ρ is a Lévy measure on R, i.e.

ρ({0}) = 0 and
∫

R

min{1, t2} ρ(dt) <∞.

In that case the generating triplet (a, ρ, γ) is uniquely determined.

For a probability measure µ on R, the free analog of log fµ is the free cumulant transform
Cµ : Γµ ⊆ C → C, defined on a certain region Γµ of the complex plain. The key property of the
free cumulant transform (proved in [3], [4] and [5]) is that

Cµ1�µ2(z) = Cµ1(z) + Cµ2(z),

for any probability measures µ1, µ2 on R. In terms of the free cumulant transform, the �-infinitely
divisible probability measures are characterized by the following Lévy-Khintchine type theorem:

Theorem 3.4 ([3]). Let µ be a probability measure on R with free cumulant transform Cµ. Then
µ is �-infinitely divisible if and only if Cµ has a representation in the form:

Cµ(z) = γz + az2 +
∫

R

( 1
1− tz

− 1− tz1[−1,1](t)
)
ρ(dt),

where γ ∈ R, a ≥ 0 and ρ is a Lévy measure on R. In that case, the free generating triplet (a, ρ, γ)
is uniquely determined.

4 The Bercovici-Pata bijection

From the two Lévy-Khintchine representations (Theorem 3.3 and Theorem 3.4), it follows immedi-
ately, that there is a bijection between the class ID(∗) of classically infinitely divisible probability
measures and the class ID(�) defined above.

Definition 4.1. The Bercovici-Pata bijection Λ: ID(∗) → ID(�) is defined as follows: For a
measure µ in ID(∗) with generating triplet (a, ρ, γ), Λ(µ) is the measure in ID(�) with free
generating triplet (a, ρ, γ).

Although the bijection Λ may seem, at a first glance, as a very formal correspondence, it turns
out that it has some very useful algebraic properties. If µ is the distribution of a (classical) random
variable X and c ∈ R, then we denote by Dcµ the distribution of cX . Furthermore, δc denotes the
Dirac measure at c.

Theorem 4.2 ([1]). The Bercovici-Pata bijection Λ has the following algebraic properties:

(i) If µ1, µ2 ∈ ID(∗), then Λ(µ1 ∗ µ2) = Λ(µ1) � Λ(µ2).

(ii) If µ ∈ ID(∗) and c ∈ R, then Λ(Dcµ) = DcΛ(µ).

(iii) For any c in R, Λ(δc) = δc.

From a topological point of view too, the Bercovici-Pata bijection behaves very nicely.

Theorem 4.3 ([1]). The Percovici-Pata bijection is a homeomorphism w.r.t. weak convergence.
More precisely, for measures µ, µ1, µ2, µ3, . . . in ID(∗), we have

µn
w−−→ µ ⇐⇒ Λ(µn)

w−−→ Λ(µ).

Examples 4.4.

(1) Let µ be the standard Gaussian distribution, i.e.

µ(dx) =
1√
2π

exp(− 1
2x

2) dx.

Then Λ(µ) is the semi-circle distribution, i.e.

Λ(µ)(dx) =
1
2π

√
4− x2 · 1[−2,2](x) dx.
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(2) Let µ be the Poisson distribution with parameter λ > 0, i.e.

µ({n}) = e−λ
λn

n!
, (n ∈ N0).

Then Λ(µ) is the free Poisson distribution (also known as the Marchenko-Pastur distribution)
with parameter λ, i.e.

Λ(µ)(dx) =

(1− λ)δ0 + 1
2πx

√
(x− a)(b − x) · 1[a,b](x) dx, if 0 ≤ λ ≤ 1,

1
2πx

√
(x− a)(b − x) · 1[a,b](x) dx, if λ > 1,

where a = (1−
√
λ)2 and b = (1 +

√
λ)2.

5 Lévy Processes in free probability.

The following definition of Lévy processes in free probability corresponds exactly to the definition
of classical Lévy processes, when classical independence is replaced by free independence.

Definition 5.1 ([1]). Let H be a Hilbert space and let τ be a state on B(H). A free Lévy
process (in law) on H is a family (Zt)t≥0 of selfadjoint operators on H, which satisfies the following
conditions:

(i) whenever n ∈ N and 0 ≤ t0 < t1 < · · · < tn, the increments

Zt0 , Zt1 − Zt0 , Zt2 − Zt1 , . . . , Ztn − Ztn−1 ,

are freely independent selfadjoint operators.

(ii) Z0 = 0.

(iii) for any s, t in [0,∞[, L{Zs+t − Zs} does not depend on s.

(iv) for any s in [0,∞[, L{Zs+t − Zs} w→ δ0, as t→ 0.

If (Zt) is a free Lévy process, then, just as in the classical case, L{Zt} ∈ ID(�) for all t. Indeed,
for any t in [0,∞[ and n in N,

Zt = Zt/n + (Z2t/n − Zt/n) + · · ·+ (Zt − Z(n−1)t/n).

In particular, one may apply the Bercovici-Pata bijetion to each L{Zt}, and it follows then, by
virtue of the algebraic and topological properties of Λ, that Λ gives rise to a one-to-one correspon-
dance (in law) between classical and free Lévy processes (in law).

Theorem 5.2 ([1]). Let (Xt) be a classical Lévy process (in law) defined on some probability space
(Ω,F , P ). Then there exists a free Lévy process (in law) (Zt) on some Hilbert space H, such that

Λ(L{Xt}) = L{Zt}, (t ≥ 0). (5.1)

Conversely, to any free Lévy process (in law) (Zt) there correponds a classical Lévy process (in
law) (Xt), such that (5.1) holds.

6 The Lévy-Itô decomposition in free probability

In classical probability, the Lévy-Khinchine representation has a counterpart for Lévy-processes,
the Lévy-Itô decomposition, which was actually derived, by P. Lévy, before the Lévy-Khintchine
representation.
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Theorem 6.1 (Lévy-Itô). Let (Xt) be a classical Lévy process and let ρ be the Lévy measure
appearing in the generating triplet for L{X1}. Assume, for simplicity, that

∫ 1

−1 |t| ρ(dt) < ∞.
Then (Xt) has a representation in the form3:

Xt
a.s.= at+ bBt +

∫
]0,t]×R

x N(ds, dx), (t ≥ 0), (6.1)

where

• a ∈ R, b ≥ 0 and (Bt) is a Brownian motion,

• N is a Poisson random measure on ]0,∞[×R with intensity measure Leb ⊗ ρ (see Defini-
tion 6.2 below),

• the processes appearing in the right hand side of (6.1) are independent.

Poisson random measures are defined as follows:

Definition 6.2. Let (Θ, E , ν) be a σ-finite measure space. A Poisson random measure on Θ with
intensity measure ν is a family {N(E) | E ∈ E} of random variables (defined on some (Ω,F , P ))
with the following properties:

(i) for all E in E , L{N(E)} is the Poisson distribution with parameter ν(E),

(ii) E1, . . . , Er disjoint sets from E =⇒ N(E1), . . . , N(Er) are independent,

(iii) for all ω in Ω, N(·, ω) is a measure on E .

The free version of the Lévy-Itô decomposition decomposes any free Lévy process (in law) into
the sum of a drift term, a free Brownian motion (i.e. the free Lévy process corresponding to the
classical Brownian motion as in Theorem 5.2) and an integral w.r.t. a free Poisson random measure.
The latter notion is defined as follows:

Definition 6.3. Let (Θ, E , ν) be a σ-finite measure space, and put

Ef = {E ∈ E | ν(E) <∞}.

A free Poisson random measure on Θ with intensity measure ν is a family {M(E) | E ∈ Ef} of
selfadjoint operators (on some Hilbert space H) with the following properties:

(i) for all E in Ef , L{M(E)} is the free Poisson distribution with parameter ν(E) (cf. Exam-
ple 4.4),

(ii) E1, . . . , Er disjoint sets from Ef =⇒ M(E1), . . . ,M(Er) are freely independent,

(iii) E1, . . . , Er disjoint sets from Ef =⇒ M(E1 ∪ · · · ∪ Er) = M(E1) + · · ·+M(Er).

Although the definition of a free Poisson random measure may seem a little “poor”compared to
that of a classial one, Definition 6.3 is sufficient to prove the following free version of the Lévy-Itô
decomposition.

Theorem 6.4 ([2]). Let (Zt) be a free Lévy-process on a Hilbert space H and let ρ be the
Lévy measure appearing in the free generating triplet for L{Z1}. Assume, for simplicity, that∫ 1

−1
|t| ρ(dt) <∞. Then (Zt) has a representation in the form4:

Zt
d= at+ bWt +

∫
]0,t]×R

x M(ds, dx), (t ≥ 0), (6.2)

where

• a ∈ R, b ≥ 0 and (Wt) is a free Brownian motion,

• M is a free Poisson random measure on ]0,∞[×R with intensity measure Leb⊗ ρ,

• the processes appearing in the right hand side of (6.2) are freely independent.
3Here, a.s. stands for “almost surely”.
4Here,

d
= means “equal in distribution”.
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Limit theorems for selfsimilar

additive processes

Toshiro Watanabe (The Univ. of Aizu)

1 Selfsimilar additive processes

An Rd-valued stochastic process {Y (t), t ≥ 0} is said to be a selfsimilar additive process with
exponent H if the following two conditions are satisfied :

(i) The process {Y (t), t ≥ 0} is selfsimilar with exponent H , that is, there exists H > 0 such
that, for any c > 0,

{Y (ct), t ≥ 0} d= {cHY (t), t ≥ 0},

where the symbol d= stands for the equality in finite-dimensional distributions.

(ii) The process {Y (t), t ≥ 0} has independent increments.

Let a > 1. An Rd-valued random sequence {X(n), n ∈ Z} is called a shift a-selfsimilar additive
random sequence if the following two conditions are satisfied :

(i) The sequence {X(n), n ∈ Z} has shift a-selfsimilarity, that is,

{X(n+ 1), n ∈ Z} d= {aX(n), n ∈ Z}.

(ii) The sequence {X(n), n ∈ Z} has independent increments, that is, for every n ∈ Z, {X(k), k ≤
n} and X(n+ 1)−X(n) are independent.

Note that shift selfsimilarity does not imply the usual selfsimilarity. For an Rd-valued random
variable Y , denote by L(Y ) the distribution of Y . We use the words “increase” and “decrease” in
the wide sense allowing flatness. Let 0 < b < 1. A probability distribution µ on Rd is said to be
b-decomposable if there exists a probability distribution ρ on Rd such that

µ̂(z) = µ̂(bz)ρ̂(z). (1.1)

The probability distribution µ in (1.1) on Rd is called semi-selfdecomposable if it is b-decomposable
for some b and if the distribution ρ in (1.1) is an infinitely divisible distribution on Rd. A probability
distribution µ on Rd is said to be selfdecomposable if, for every b ∈ (0, 1), there exists a probability
distribution ρb on Rd such that

µ̂(z) = µ̂(bz)ρ̂b(z).

The marginal distributions of stochastically continuous selfsimilar additive processes are selfde-
composable. Conversely, for any selfdecomposable distribution µ on Rd, there exists a unique
in law stochastically continuous selfsimilar additive process {Y (t), t ≥ 0} with exponent H > 0
and L(Y (1)) = µ. The marginal distributions of shift a-selfsimilar additive random sequences are
a−1-decomposable. Conversely, for any b-decomposable distribution µ on Rd, there exists a (not
necessarily unique in law) shift a-selfsimilar additive random sequence {X(n), n ∈ Z} on Rd with
a = b−1 and L(X(0)) = µ. In the case where the support of µ is contained in Rd

+, the sequence
{X(n), n ∈ Z} is determined uniquely in law.

Let {Zn, n ∈ Z+} be a supercritical Galton-Watson branching process with Z0 = 1 and a =
E(Z1) > 1. Let f(s) be the probability generating function of the offspring distribution L(Z1).
Then there exists an increasing sequence {cn}∞n=0 and an R+-valued random variable W such that
cn+1/cn → a as n → ∞ and Zn/cn → W almost surely as n → ∞. In the case where f(0) = 0,
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there exists a unique in law increasing shift a-selfsimilar additive random sequence {W (n), n ∈ Z}
with L(W (0)) = L(W ). We say that the sequence {W (n), n ∈ Z} is associated with the process
{Zn, n ∈ Z+}.

We obtained in [21,22,23,24] general limit theorems of “limitinf” type and “limitsup” type com-
pletely for increasing selfsimilar additive processes and increasing shift selfsimilar additive random
sequences. We explain those limit theorems by applying them to three important examples.

2 Laws of the iterated logarithm for Bessel processes

Let {X(t), t ≥ 0} be a Bessel process on R+ starting at the origin with a real dimension d =
2(1 + ν) > 0. Define the first hitting time and the last exit time as Tr = inf{t ≥ 0 : X(t) = r}
and Lr = sup{t ≥ 0 : X(t) = r} for r ≥ 0. Then {Tr, r ≥ 0} and {Lr, r ≥ 0} are stochastically
continuous increasing selfsimilar additive processes with exponent H = 2.

Theorem 2.1. We have

lim inf
log | log r|

r2
Tr =

1
2

a.s.

and
lim sup

Tr
r2 log | log r| =

2
j2ν

a.s.

both as r → 0+ and as r → ∞ where jν is the first positive zero of the Bessel function Jν(x) of
the first kind.

Corollary 2.2. We have

lim sup
1√

t log | log t|
sup

0≤s≤t
X(s) =

√
2 a.s.

and

lim inf

√
log | log t|

t
sup

0≤s≤t
X(s) =

jν√
2

a.s.

both as t→ 0+ and as t→∞.

Theorem 2.3. Let ν > 0. We have

lim inf
log | log r|

r2
Lr =

1
2

a.s.

and

lim sup
Lr

r2| log r|δ =

{ ∞ a.s. for 0 < δ ≤ 1/ν

0 a.s. for δ > 1/ν.
both as r→ 0+ and as r →∞.

Corollary 2.4. Let ν > 0. We have

lim sup
1√

t log | log t|
inf
t≤s

X(s) =
√

2 a.s.

and

lim inf
| log t|δ√

t
inf
t≤s

X(s) =

{
0 a.s. for 0 < δ ≤ 1/(2ν)

∞ a.s. for δ > 1/(2ν).
both as t→ 0+ and as t→∞.

Remark 2.1 (1) In the second equalities of Theorem 2.3 and Corollary 2.4, there are no exact
laws of the iterated logarithm. Moreover we have integral tests in those cases.

(2) As x→ 0+ and as y →∞ with c > 0,

− logP (T1 ≤ x) ∼ 1
2x
, − logP (L1 ≤ x) ∼ 1

2x
,

− logP (T1 > y) ∼ j2νy

2
, P (L1 > y) ∼ cy−ν .
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3 Laws of the iterated logarithm for BM on SG

Let G be the Sierpinski gasket in R2 and let Ĝ =
⋃∞
n=0 2nG, F = {x ∈ Ĝ : |x| = 1} and Fn = 2nF

for n ∈ Z. Let {B(t), t ≥ 0} be a Brownian motion on Ĝ. We assume that B(0) is the origin.
Then it is semi-selfsimilar, that is,

{B(5t), t ≥ 0} d= {2B(t), t ≥ 0}.

Let W (n), n ∈ Z, be the first hitting time of the set Fn for the process {B(t)}, namely,

W (n) = inf{t > 0 : B(t) ∈ Fn}.

Proposition 3.1. The sequence {W (n), n ∈ Z} is an increasing shift 5-selfsimilar additive random
sequence associated with a supercritical branching process {Zn, n ∈ Z+} with f(s) = s2/(4 − 3s)
and E(W ) = 1.

Remark 3.1 Barlow and Perkins [3] raised a question whether L(W (0)) is unimodal or not. It is
known by Yamazato [26] that all selfdecomposable distributions on R1 are unimodal. Yamazato
[25] remarked that if a supercritical branching process {Zn, n ∈ Z+} with f(0) = 0 is embeddable
in a continuous time branching process, then L(W ) is selfdecomposable. However, we find from
Karlin and McGregor [13] that the associated branching process to this {W (n), n ∈ Z} is not
embeddable. Thus we know that L(W (0)) is semi-selfdecomposable but do not know whether it is
selfdecomposable.

Theorem 3.2. Let β = log 2/ log 5.

(i) We have

lim inf
n→±∞

W (n)
5n(log |n|)−(1−β)/β

= δ
(1−β)/β
0 a.s.

where δ0 is a positive constant determined by

E exp(δW−β/(1−β))
{
<∞ for 0 < δ < δ0
= ∞ for δ > δ0.

(ii) We have

lim sup
n→±∞

W (n)
5n log |n| = σ−1 a.s.

where σ is a positive constant given by

σ = lim
n→∞

5n+1((fn)−1(4/3)− 1)

with f(s) = s2/(4− 3s) and fn(s) being the n-fold iteration of f(s).

Corollary 3.3.

(i) We have

lim sup
t→∞

1
tβ(log log t)1−β

sup
0≤s≤t

|B(s)| = C1 a.s.

lim sup
t↓0

1
tβ(log | log t|)1−β sup

0≤s≤t
|B(s)| = C2 a.s.

lim inf
t→∞

1
tβ(log log t)−β

sup
0≤s≤t

|B(s)| = C3 a.s.

and
lim inf
t↓0

1
tβ(log | log t|)−β sup

0≤s≤t
|B(s)| = C4 a.s.
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(ii) The constants Cj (1 ≤ j ≤ 4) are bounded as follows :

δβ−1
0 ≤ C1, C2 ≤ 2δβ−1

0

and
2−1σβ ≤ C3, C4 ≤ σβ .

Remark 3.2 The equalities in (i) of Corollary 3.3 were already proved by Ben Arous and Kumagai
[6], Barlow and Perkins [3] and Fukushima et al [10]. We do not know whether C1 = C2 = δβ−1

0

and C3 = C4 = σβ . It is difficult to identify the constants Cj (1 ≤ j ≤ 4) and the explicit values
are not known. But σ is computed numerically as σ = 1.318 · · · . A roughly approximate value of
δ0 is known as 1.26 which is due to Bingham [8] based on the numerical calculation by Barlow and
Perkins [3]. By virtue of large deviation principles, the equalities in (i) were proved for Brownian
motions on other nested fractals by Bass and Kumagai [5] and Fukushima et al [10].

4 Exact packing measure for C∞

Let {Ck, k ∈ Z+} be a fractal percolation on [0, 1]d with base M ≥ 2 and probability p. Denote the
limiting set and the branching set in a Galton-Watson tree by C∞ := ∩∞k=0Ck and Ĉ∞, respectively.
It is known that P (C∞ 6= ∅) > 0 if and only if pMd > 1. Let q := P (C∞ = ∅). The constant q is
the first positive solution of the following equation : (1− p+ pq)M

d

= q.
We denote by φ-H(C) and φ-P (C) the φ-Hausdorff measure and φ-paking measure of the set C.

Theorem 4.1. Let pMd > 1 and α := log(pMd)/ logM .

(1) (Graf-Mauldin-Williams [11])

We have, a.s. on {C∞ 6= ∅},
0 < φ-H(C∞) <∞,

where φ(t) := tα(log | log t|)1−α/d.

(2) (Watanabe[24])

A.s. on {C∞ 6= ∅}, there is no exact paking measure for Ĉ∞. We have

φ1-P (Ĉ∞) =
{

0 for β > 1/γ
∞ for 0 < β ≤ 1/γ,

where φ1(t) := tα| log t|−β and γ := log(1−p+pq
q )/ log(pMd).

We finish this article by posing a problem :

Problem Is there an exact packing measure for C∞ on {C∞ 6= ∅} a.s.?

References

[1] Athreya, K.B. and Ney, P.E. (1972). Branching Processes, Springer-Verlag.

[2] Barlow, M.T. and Bass R.F. (1999). Brownian motion and harmonic analysis on Sierpinski
carpets. Canadian J. Math. 51, 673-744.

[3] Barlow, M.T. and Perkins, E.A. (1988). Brownian motion on the Sierpinski gasket. Probab.
Theory Relat. Fields 79, 543-624.

[4] Bass, R.F. and Erickson, K.B. (1985). Local laws of the iterated logarithm for diffusions. Ann.
Probab. 13, 616-624.

257
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[20] Sato, K. (1999). Lévy Processes and Infinitely Divisible Distributions. Cambridge Univ. Press.

[21] Watanabe, T. (1996). Sample function behavior of increasing processes of class L. Probab.
Theory Relat. Fields 104, 349-374.

[22] Watanabe, T. (2001). Limit theorems for shift selfsimilar additive random sequences. To ap-
pear in Osaka J. Math.

[23] Watanabe, T. (2001). Shift selfsimilar additive random sequences associated with supercritical
branching processes. To appear in J. Theoret. Probab.

[24] Watanabe, T. (2002). Exact packing measure on a Galton-Watson tree. Preprint.

[25] Yamazato, M. (1975). Some results on infinitely divisible distributions of class L with appli-
cations to branching processes. Sci. Rep. Tokyo Kyoiku Daigaku Sect. A 13, 133-139.

[26] Yamazato, M. (1978). Unimodality of infinitely divisible distribution functions of class L. Ann.
Probab. 6, 523-531.

258



Approximation of subordinated Lévy processes

with infinite jump rate and some related

stochastic integrals

Magnus Wiktorsson∗

1 Approximation of subordinated Lévy processes

We consider approximations of subordinated Lévy processes with application to simulation. Let
{Y (t)}t≥0 be an Rd-valued Lévy process, d ≥ 1 and let {V (t)}0≤t≤1 be a subordinator. We then
consider the process {X(t)}0≤t≤1 := {Y (V (t))}0≤t≤1. We suppose that that the subordinand Y
can be fairly easily simulated and further that it has at least two finite moments. We further
suppose that the the subordinator has infinite jump rate and that it cannot easily be exactly
simulated. We can decompose {X(t)}0≤t≤1 as

{X(t)} d= {Y1(VT (t))} + {Y2(εTV (t))} := {XT (t)} + {εTX(t)}

where Y1 and Y2 are independent copies of Y , VT is a compound Poisson process consisting of the
large jumps of V and εTV (t) = V (t) − VT (t) the process consisting of the remaining jumps of V .
The parameter T determines the level of truncation for the jumps in εTV (t) with respect to some
series representation of V . More precisely we have

V (t) = VT (t) + εTV (t) :=
∑

k:Tk≤T
H(Tk)I(Uk ≤ t) +

∑
k:Tk>T

H(Tk)I(Uk ≤ t)

where {Tk} are the points in a homogeneous Poisson process with intensity λ and {Uk} is a sequence
of i.i.d. random variables uniformly distributed on (0, 1), {H(s)} is a family of independent random
variables such that for x > 0, λ

∫∞
0
P (H(s) > x) ds =

∫∞
x
M(dy), M being the Lévy measure of

V (1) and that H(s, ω) is non-increasing in s. Further we have that the sequences {H(s)}, {Uk}
and {Tk} are independent. There always exist a family {H(s)} with the above properties. We
can choose H(s) = g(s), where g(s) = inf{u > 0 :

∫∞
u M(dx) < s}. For more details on series

representations we refer to [6].
Let T > 0 be arbitrary but fixed. We now propose the approximation

XT (t) := Y1(VT (t)) + Y2(tEεTV (1)) := XT (t) + εTX(t).

Theorem 1.1. MISE For any fixed T > 0 we have that

∫ t

0

E
∣∣X(t)−XT (t)

∣∣2 dt =

(
d∑
k=1

VYk(1)

)∫ t

0

E
∣∣∣εTV (t)− tEεTV (1)

∣∣∣ dt+
1
2

∣∣EY (1)
∣∣2VεTV (1)

≤ 2
3

(
d∑
k=1

VYk(1)

)
(VεTV (1))1/2 +

1
2

∣∣EY (1)
∣∣2VεTV (1).

This should be compared to the error obtained if just use the truncated series representation
(
∑d

k=1 VYk(1))EεTV (1)/2.

∗Department of Statistics and Operations Research, University of Copenhagen, Universitetsparken 5, DK-2100
Copenhagen Ø, Denmark
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Theorem 1.2. EfficiencyWe have that

lim
ε→0

1
ε

∫ ε

0

xM(dx) = ∞

is a sufficient condition for the above proposed approximation to have an asymptotically better rate
than the truncated series representation as T →∞. Moreover it assures that

{εTV (t)/EεTV (1)}0≤t≤1
L2

−−−→ {t}0≤t≤1 as T →∞

This condition approximately says that there must not be too few small jumps. In the one
dimensional case [1] proposed a slightly different approach of approximating Lévy processes, where
they used that in many cases the centred process of small jumps rescaled by its standard deviation
converge weakly to a Brownian motion. This weak convergence is in fact guaranteed by a condition
of the same type as in Th. 1.2.

We will now utilise the approximation proposed above to obtain approximations of stochastic
integrals driven by Lévy processes.

2 Approximation of stochastic integrals driven by Lévy pro-

cesses

We study stochastic integrals of the form

Z(t) = h(t) +
∫ t

0

f(t, s−) dX(s) (2.1)

where {X(s)} is a subordinated Lévy process as above and {f(t, s)} is adapted in s for each t ∈ [0, 1]
with càdlag̀ (RCLL) paths, g is adapted in t and that f , h and X have compatible dimensions.
We further suppose that we can simulate f1 and f2 exactly. We assume that h is independent of
X but f and X may be dependent. For simplicity we from now on suppose that EY (1) = 0 and
that we use the series representation with H(s) = g(s). The main reason for this assumption is
that it makes {Y (εTV (t))} an L2-martingale for each T > 0. We will also denote

∫ t
0 f(t, s−) dX(s)

by IX(f)t.

Example 2.1. Suppose that we want to approximate the solution of the SDE dZ(t) = A(t)Z(t) dt+
B(t) dX(t), Z(0) = Z0 ∈ F0 where A and B are deterministic d × d matrix-valued functions.
This equation has the explicit solution Z(t) = exp(

∫ t
0
A(s) ds)Z0 +

∫ t
0

exp(
∫ t
s
A(u) du)B(s) dX(s).

This is a stochastic integral of the above type where g(t) = exp(
∫ t
0
A(s) ds)Z0 and f(t, s) =

exp(
∫ t
s
A(u) du)B(s).

2.1 Series representations of the stochastic integrals

For the special case of X being a real-valued type G process with no Gaussian component (i.e. a
subordinated Wiener process) [5] suggested

{Z(t)}0≤t≤1
d=
{∑

k

GkH(Tk)1/2f(t, Uk−)
}

0≤t≤1
(2.2)

as a series representation of the corresponding stochastic integrals, where {Uk}, {H(s)} and {Tk}
are as defined above and {Gk} is a sequence of i.i.d. standard Gaussian variables independent
of the other sequences. This series representation can in principle be generalised to an arbitrary
Lévy process if we add some centring terms and impose further restrictions on f . We basically
need to replace {GkH(Tk)} by a more general random sequence {H̃(Tk, Vk)}. We will however,
not proceed further in this direction.
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2.2 The approximation procedure

To avoid measurability technicalities for the approximation in the case where f and X are depen-
dent we by partial integration we rewrite the stochastic integral (2.1) as

Z(t) :=
∫ t

0

f(t, s−) dXT (s) + f(t, t)εTX(t)−
(∫ t

0

(εTX(t))′ dsf(t, s)
)′

The measurability problem arise from that Y2(εTV (t)) and Y2(tEεTV (1)) are not L2-martingales with
respect to the same filtration. We propose the approximation

ZT (t) :=
∫ t

0

f(t, s−) dXT (s) + f(t, t)εTX(t)−
(∫ t

0

(εTX(t))′ dsf(t, s)
)′

where X ′ denote X transposed. In order to guarantee that the last integral is well defined we need,
unless f is independent of X , that f is of finite variation.

Theorem 2.2. MSE If f has finite variation and four finite moments or if f is independent of
X and has two finite moments then there exist a constant Cf , depending on f such that

E
∣∣∣Z(t)− Z

T
(t)
∣∣∣2 ≤ (VεTV (1)

)1/2( d∑
k=1

VYk(1)

)
Cf .

In the next section we will propose another approximation technique based on a stochastic time
change representation. This approach only works in the one dimensional case and for subordinated
Wiener processes it is however of independent theoretical interest.

2.3 Time change representations of stochastic integrals driven by type
G Lévy processes

Stochastic time change representations of stochastic integrals with respect to symmetric stable
Lévy processes were first studied by [4], who also gave a necessary and sufficient condition for
the existence of these stochastic integrals. Let {X(t)} be a symmetric α-stable Lévy process with
0 < α ≤ 2. We then have that

Z(t) =
∫ t

0

f(s) dX(t) = X̃

(∫ t

0

|f(s)|α ds
)
,

where {X̃(t)} d= {X(t)}, provided that f satisfies the condition
∫ t
0
|f(s)|α ds < ∞ a.s. for any

finite t. Moreover, the process {X̃(t)} can explicitly be constructed as

X̃(t) = Z(τ(t)),

where

τ(t) = inf
{
s > 0 :

∫ s

0

|f(u)|α du) > t

}
.

[2] generalised these results to asymmetric stable Lévy processes and indicated possible multi-
dimensional extensions. [3] showed that this time change property is valid only for the class of
α-stable Lévy processes. We will, however, show that a modification of the time change property is
valid for type G Lévy processes in finite-dimensional distribution sense, provided that the integrand
f and the integrator X are independent.

Proposition 2.3. If {X(t)} d= {W (V (t))} is a type G Lévy process, the process {Z(t)} =
{
∫ t
0
f(s) dX(s)}0≤t≤1 can be represented as

{Z(t)} d= {Z̃(t)} =
{
W̃

(∫ t

0

f(s)2 dV (s)
)}

,
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where {W̃ (t)} is a Wiener process independent of {V (t)} and {f(t)}, provided that {f(t)} is inde-
pendent of {X(t)} and satisfies∫ t

0

f(s)2 dV (s) <∞ a.s. for 0 ≤ t ≤ 1.

In order to obtain approximations of the stochastic integral we first split the integral into a
sum of two terms,

Z(t) = ZT (t) + εTZ(t) = IXT (f)t + IεT
X

(f)t,

where IXT (f)t and IεT
X

(f)t are conditionally independent given f . Using the weak time change
property of Proposition 2.3 we can represent the stochastic integral {Z(t)} by

{Z(t)} d= {W1(IVT (f2)t)} + {W2(IεT
V
(f2)t)},

where {W1(t)} and {W2(t)} are independent standard Wiener processes. We now propose an
approximation {ZT (t)} of {Z(t)}. For 0 ≤ t ≤ 1 define {ZT (t)} by

ZT (t) = W1(IVT (f2)t) +W2

(
EεTV (1)

∫ t

0

f(s)2 ds
)
.

The difference ∆(T )t between Z(t) and its approximation ZT (t) is thus given by

∆(T )t = Z(t)− ZT (t) = W2(IεT
V

(f2)t)−W2

(
EεTV (1)

∫ t

0

f(s)2 ds
)
.

Theorem 2.4.

(i) If f has two finite moments then the MSE of the approximation is given by

E|∆(T )t|2 = E
∣∣∣∣∫ t

0

f(s)2 d
(
εTV (s)− EεTV (s)

)∣∣∣∣ .
(ii) If f has four finite moments then

E|∆(T )t|2 ≤ V
(
εTV (1)

)1/2 (∫ t

0

Ef(s)4 ds
)1/2

.

Corollary 2.5. (MISE) If f has four finite moments then∫ 1

0

E|∆(T )t|2 dt ≤ 2-
¯
g(VεTV (1)

)1/2(∫ 1

0

Ef(s)4 ds
)1/2

.
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[1] Asmussen, S. & Rosiński, J. (2001). Approximations of small jumps of Lévy processes with a
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Some aspects of subordinators and subordination∗

Matthias Winkel†

MaPhySto‡

Extended abstract. The work [7] presented here was initiated by a video“The Foreign Exchange
Market” [3] that Neil Shephard drew my attention to. Two curves move on the screen representing
current offers to buy and sell a foreign currency:

Figure 1: Snapshot of the DEM-USD electronic foreign exchange market (1997),
taken from the London School of Economics video [3] by Charles Goodhart
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Figure 2 is meant to be an illustrated version of Figure 1. Each horizontal line of the two
curves corresponds to an offer: its length x2 − x1 represents the amount of currency offered, its
height p0 is the price. Sellers’ prices are above buyers’ prices, since otherwise transaction would
take place and the offers removed from the market. Sellers’ offers are ordered by increasing price,
buyers’ offers by decreasing price so that the most interesting offers are on the left hand side.
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Figure 2: Offers on the market
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Figure 3: + realised transactions

A mathematical model is proposed suggesting to add
realised offers as in Figure 3. The picture is now con-
sidered as two paths of independent (inverse) subor-
dinators, the first increasing from zero, the second
decreasing from a positive height. The interest then
lies in their passage event that provides the collec-
tive market price P and the total quantity Q traded
at this price.

The level passage event of stochastic processes
is a classical problem. Motivations can be found in
insurance, dams, finance etc. It concerns for some
h > 0 the laws of times

Th = inf{a ≥ 0 : Xa > h}
or T ∗h = inf{a ≥ 0 : Xa < −h}

and the height X(Th) ≥ h or X(T ∗h ) ≤ −h attained
by X at the passage. They are often at the center of
interest in applications, e.g. the ruin of an insurance,
the overflow of a reservoir, several events related to
the price of the underlying or other financial assets.
Reasonable process classes for X vary from one ap-
plication to another. When X is a subordinator, the
study was initiated by Gusak [4] and Kesten [5] in
the 60s carrying out cumbersome approximations.
Today, more elegant techniques are available based
on Poisson point processes, cf. e.g. Bertoin [2] Sec-
tion III.2. On this basis, [7] refines the study and
gives two multivariate extensions formulated in the
sequel.

Firstly, let X = X(0) +X(1) + . . .+X(m) be the
sum of a deterministic drift and m independent pure
jump subordinators X(j) whose Laplace exponents
are denoted by Φ(j)(ξ) = − logE(exp{−ξX(j)

1 }), re-
spectively. The study then concerns the individual heights and identifies the subordinator X(j)

whose jump ∆j performs the passage of X across level h, an event denoted by A(j).

Theorem 1. Let τ ∼ Exp(q) be an independent exponentially distributed level. Then for all
j = 0, . . . ,m

E
(
exp

{
−κτ − αTτ − ξ1X

(1)(Tτ−)− . . .− ξmX
(m)(Tτ−)− ν∆τ

}
1A(j)

)
=

q
(
Φ(j)(q + κ+ ν)− Φ(j)(ν)

)
(q + κ)

(
α+ Φ(1)(q + κ+ ξ1) + . . .+ Φ(m)(q + κ+ ξm)

) .
One deduces in particular that (Tτ , X(1)(Tτ−), . . . , X(m)(Tτ−)) and (∆τ , A

(0), . . . , A(m)) are
independent. This extends in fact to (X(0)

a , . . . , X
(m)
a )a<Tτ on the one hand, and ∆τ decomposed

into undershoot uτ = τ −X(Tτ−) and overshoot oτ = X(Tτ )− τ on the other hand.
Secondly, let Z =

(
Z(1), . . . , Z(n)

)
be any multivariate subordinator, or Z = (X,Y ) for n = 2.

Note the joint Laplace exponent by Φ(X,Y )(ξ, η) = − logE(exp{−ξX1−ηY1}). One can then study
the level passage of individual components, i.e. times

TXh = inf {a ≥ 0 : Xa > h} and T Yk = inf {a ≥ 0 : Ya > k} ,
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and associated heights and jumps. In the two-dimensional setting one obtains e.g.

Theorem 2. Let τ ∼ Exp(q) and σ ∼ Exp(p) be two independent exponential levels. Then

E
(
exp

{
−αTXτ − ξXTX

τ − − ηYTY
σ − − β∆XTX

τ
− γ∆YTY

σ

}
1{TX

τ =TY
σ }
)

=
Φ(X,Y )(β, p+ γ) + Φ(X,Y )(q + β, γ)− Φ(X,Y )(β, γ)− Φ(X,Y )(q + β, p+ γ)

α+ Φ(X,Y )(q + ξ, p+ η)

E
(
exp

{
−αTXτ − ξXTX

τ − − β∆XTX
τ
− α̃T Yσ − η̃YTY

σ − − γ̃∆YTY
σ

}
1{TX

τ <TY
σ }
)

=
Φ(X,Y )(q + β, p+ η̃)− Φ(X,Y )(β, p+ η̃)

α+ α̃+ Φ(X,Y )(q + ξ, p+ η̃)
× ΦY (p+ γ̃)− ΦY (γ̃)

α̃+ ΦY (p+ η̃)
.

The theorems give double Laplace transforms, i.e. the random variables in question are trans-
formed and the level h is transformed as well which yields in fact an independent exponential
level. The explicit non-transformed joint laws are established as well, in terms of the laws of the
subordinators and their Lévy measures.

Theorem 1 for m = 1 completes the one-dimensional study in that it makes explicit the joint
law of the four random variables Tτ , X(Tτ−), ∆τ and τ , that are related to the level passage event.
It seems that this had not been done before. Of course, other quantities like overshoot, undershoot
and passage height can be deduced by linear transformations.

The situation in the model of an electronic foreign exchange market (Figure 3) is close to
Theorem 1. Roughly, the passage time of the two processes is the passage in zero of their difference,
which is a subordinator with a negative starting point. After some linear transformations one
obtains

E (exp {−αP − ξQ− ηQ′ − ν∆})

=
q (ΦB(q + ν)− ΦB(ν − η) + ΦS(q + ν + η + ξ)− ΦS(ν + ξ))

(q + η) (α+ ΦB(q) + ΦS(q + η + ξ))

where P is the current market price, Q and Q′ are the quantities offered to buy and sell at a price
at most P and at least P , respectively. As Q 6= Q′ a.s., the total quantity ∆ offered precisely at
the price P bears some additional interest and has been included.

Theorem 2 was established to introduce a dynamic feature in the exchange market model
and then study the evolution of the market price and associated quantities. Unfortunately, the
subordinator property required for each fixed t restricts the dynamic behaviour considerably. More
precisely, the aim would be a field (Z(a, t))a≥0,t≥0 which is a subordinator for each t and Markovian
for each a. Continuous space branching processes are such a class (cf. Le Gall [6]), and one can
construct the same for positive Ornstein-Uhlenbeck type processes. One can consider this in a
wider framework of multivariate subordinators constructed by subordination or superposition, cf.
Barndorff-Nielsen et al. [1]. Although the dynamics obtained do not seem suitable to model foreign
exchange markets, Theorem 2 may be applied to study the evolution of the level passage event in
these families of subordinators. For branching processes, this corresponds to studying the initial
population size producing h children at time t, as t evolves.
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Lévy measures of the hitting time distributions

for skip-free Lévy processes
Makoto Yamazato

1 Introduction

We say that a Lévy process {Xt} on R is a Lévy process skip-free to the right if its moment
generating function

EewXt = etΨ(w) for w ≥ 0

satisfies one of the following three cases.
Case 1:

Ψ(w) =
A

2
w2 +Bw +

∫ 0

−∞
(ewx − 1− 1[−1,0)(x)wx)ν(dx), (1.1)

A,B ≥ 0 and, A > 0 or
∫ 0

−1

|x|ν(dx) = ∞.

Case 2:

Ψ(w) = Bw +
∫ 0

−∞
(ewx − 1)ν(dx), (1.2)

B > 0 and 0 <
∫ 0

−1

|x|ν(dx) <∞.

Case 3:

Ψ(w) =
∫
R

(ewx − 1)ν(dx), (1.3)

supp ν ⊂ {. . . ,−2,−1, 1}, 0 < ν(R) <∞.

Let w0 be the biggest root of Ψ(w) = 0. Then there is an inverse function of Ψ on [w0,∞). We
write the inverse function as Ψ−1. Let τx be the hitting time of {x}, x > 0, for {Xt}, i.e.

τx =
{

inf{t > 0 : Xt = x} if the set {} is not empty,
∞ if otherwise.

Then, in all the cases, τx is a subordinator by the skip-freeness and its Laplace transform is given
by

Ee−θτx = e−xΨ
−1(θ) for x > 0. (1.4)

In Case 3, while the left hand side of the above equality has a meaning only for x = 1, 2, . . . , the
right hand side is the Laplace transform of a (sub) probability distribution for every x > 0. For
x 6= 1, 2, . . . , we use the same symbol in the left hand side as for x = 1, 2, . . . in the sequel.

Although the Laplace transform of τx is completely determined by (1.4), its Lévy measure is
known partially [2]. In this talk, we give a unified representation of the Lévy measure of τx in
terms of the local time at level 0 of the Lévy process {Xt} skip-free to the right. We give other
representations in terms of Lévy measure of the original process in compound Poisson with drift
case and in terms of transition density if it exists in section 3. We also give a criterion whether
the total mass of the Lévy measure of τx is finite or not in terms of the Lévy measure of {Xt} in
Section 3. Section 4 is devoted to exmaples. While we can also define Lévy process skip-free to
the left, the result is symmetric. So, we restrict ourselves to the skip-free to the right case.

In the sequel, we denote by {Xt} Lévy process skip free to the right and we use the notations
Ψ,Ψ−1, A,B, ν, τx as above for {Xt}.
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2 A representation of the Lévy measure of τx

In Cases 1 and 2, one-point set is not essentially polar. Then, it is known that q-potential (q > 0)
of {Xt} has a bounded density and its q-co-excessive version is continuous except at 0. We denote
it by uq(x) in the sequel. Further, in Case 1, 0 is regular for itself. Hence uq is continuous on R.
Refer [4].

Lemma 2.1. In Cases 1 and 2, uq(x) is represented as

uq(x) = (Ψ−1)′(q)e−Ψ−1(q)x for x > 0, (2.1)

uq(x) is integrable with respect to q on (0,∞) and∫ θ

0

uq(x)dq =
e−Ψ−1(θ)x − e−Ψ−1(0)x

x
.

This lemma is given in [2] as an exercise (7.5 Exercise 2).

Theorem 2.1. In Cases 1 and 2,

E(e−θτx) = exp[−x{Ψ−1(0) +
∫ θ

0

uq(0+)dq}] for x > 0.

Proof. The conclusion is immediate by Lemma 2.1.

In Case 3, according to Bertoin [1] we set L(x, t) =
∫ t
0

1{x}(Xs)ds.
In Case 2, 0 is irregular for itself and hence P (τ0 > 0) = 1. We define

L(x, t) =
∑

0≤s<t,Xs=x

1
B

for x ∈ R, t ≥ 0.

This quantity L(x, t) is nondecreasing and left continuous in t and is denoted L
(2)
t (x) in [5]. We

denote by 1A(x) the indicator function of A.

Proposition 2.2. In Case 2, for each x ≥ 0 and t > 0,

1
ε

∫ t

0

1(x,x+ε](Xs)ds→ L(x, t) (2.2)

as ε→ 0 for a.e. ω.

Convergence in L2 also holds ([5]).
In Case 1, 0 is regular for itself and for every x ∈ R

1
2ε

∫ t

0

1(x−ε,x+ε)(Xs)ds

converges uniformly on compact time intervals as ε→ 0+, in L2. Define L(x, t) by this limit. Then
L(x, t) is continuous in t a.s. See Bertoin [1].

In all Cases 1 ∼ 3, we call L(x, t) the local time of {Xt} at level x and time t.

Lemma 2.2. Let q > 0. It holds that

E

∫
[0,∞)

e−qtdL(x, t) = uq(x+) for x ≥ 0

in Cases 1 and 2, and

L(0, 0+) =
1
B

a.e. ω

in Case 2.
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Proof. The formula for Case 1 is seen in [1]. The formula for Case 2 is seen in [5] Lemma 1. Note
that in [5] Lemma 1, compound Poisson process with drift is excluded, but the proof also works in
this case.

Theorem 2.3. In Cases 1 and 3,

E(e−θτx) = exp[x{−Ψ−1(0) +
∫

(0,∞)

(e−θt − 1)
1
t
dE(L(0, t))}]

holds. In Case 2, it holds that

E(e−θτx) = exp[x{−Ψ−1(0)− θ

B
+
∫

(0,∞)

(e−θt − 1)
1
t
dE(L(0, t))}]

for x > 0 and

E(e−qτ0) =

∫∞
0 e−qtdE(L(0, t))

1 +
∫∞
0 e−qtdE(L(0, t))

.

Here L(0, t) is the local time of {Xt} at level 0 and time t.

Proof. Case 3: An argument parallel to the part (iv) of Borovkov-Burq [3] yields the conclusion.
Cases 1 and 2: Lemma 2.2 and Theorem 2.1 yield the conclusion.

3 Other representations of the Lévy measures

Theorem 3.1. Assume Case 2. If λ = ν((−∞, 0)) <∞, then

E(e−θτx) = exp[x{−Ψ−1(0)− θ

B
+

1
B

∫
(0,∞)

(e−θt − 1)
∞∑
n=1

tn−1

n!
e−λtGn∗(dt)}]

and

Ψ−1(0) =
λ

B
− 1
B

∞∑
n=1

1
n!

dn−1

dλn−1
{ν̂( λ

B
)n}

where Gn∗((0, x]) = νn∗([−Bx, 0)) and ν̂(λ) =
∫
(−∞,0) e

λxν(dx).

Theorem 3.2. Suppose that P (Xt ∈ dx), t > 0 is absolutly continuous. Let pt(x) be its canonical
density (Hawks [6]). Then in Case 1,

E(e−θτx) = exp[x{−Ψ−1(0) +
∫

(0,∞)

(e−θt − 1)
1
t
pt(0)dt}]

holds and in Case 2,

E(e−θτx) = exp[x{−Ψ−1(0)− θ

B
+
∫

(0,∞)

(e−θt − 1)
1
t
pt(0)dt}]

holds.

Proof. In Hawks [6], it is shown that uq(0) =
∫∞
0
e−qtpt(0)dt for q-co-excessive version uq. It is

known that uq(0+) = uq(0) + 1
B in Case 2 (Port [7]). We get the conclusion by Theorem 2.3.

Remark 3.1. Bertoin [2] shows the following : If the transition probability P (Xt ∈ dx) has a
density pt(x) continuous at the origin, then the Lévy measure of τx has the density 1

t pt(0).

Now, we give a criterion for the finiteness of the total mass of the Lévy measure of a hitting
time. Note that Ψ−1(0) = − 1

x logP (τx <∞) ≥ 0.
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Theorem 3.3. Let λ = ν((−∞, 0)).

(1) If λ <∞ in Case 2, then
∫∞
0

1
t dEL(0, t) <∞ and

Ψ−1(0) =
λ

B
−
∫ ∞

0

1
t
dEL(0, t) ≥ 0.

(2) If λ = ∞ in Case 2, then
∫∞
0

1
t dEL(0, t) = ∞.

(3) In Case 1,
∫∞
0

1
t dEL(0, t) = ∞ holds.

(4) In Case 3, it holds that
∫∞
0

1
t dEL(0, t) = ∞ and

Ψ−1(0) =
∫ ∞

0

{e−t − P (Xt = 0)}1
t
dt− log ν({1}) ≥ 0.

4 Examples

In some cases, Lévy measures of the hitting times can be written explicitly. We list some of them.

Example 4.1. Let B, λ > 0. Let Ψ(w) = Bw + λ(ew − 1) for w ≥ 0. Then, by Theorem 3.1,

Ee−θτx = e−xΨ
−1(θ) = exp[x{−(

θ

B
+
λ

B
) +

∞∑
n=1

nn−1

n!
(
λ

B
)ne−n

θ+λ
B }].

Example 4.2. (Gamma process with drift) Let a > 0 and

Ψ(w) = B +
∫ 0

−∞
(ewx − 1)

e−a|x|

|x| dx

Then the density pt(x) of transition probability of {Xt} is given by

pt(x) =
at

Γ(t)
|x−Bt|t−1e−a|x−Bt| for x < Bt.

By Theorem 3.2, the Lévy measure of the hitting time τx is given by

a

tΓ(t)
(aBt)t−1e−aBtdt for t > 0

Example 4.3. (One sided 1
2 -stable process with drift) Let c > 0 and let

Ψ(w) = −cw1/2 +Bw.

Then the density of the transition probability of {Xt} is

(2
√
π)−1ct|x−Bt|− 3

2 exp{− c2t2

4|x−Bt| } for x < Bt.

By Theorem 3.2, the Lévy measure of the hitting time τx is given by

(2
√
π)−1c(Bt)−

3
2 exp{− c

2t

4B
}dt for t > 0.
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224 65 Lund
Sweden
f97jo@efd.lth.se

Fehmi Özkan
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