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1 Introduction

This workshop was the second in a series organized by MaPhySto. The workshop brought together
researchers with varied backgrounds, and common interest in inverse problems seen from a statistical
perspective. There was a series of lectures by leading scientists having an active interest in the
themes of the workshop. It fostered fruitful discussions on the role of statistics in solution of inverse
problems.

The Workshop was organized by

� Martin B. Hansen (MaPhySto, Aalborg)

� Jens Ledet Jensen (MaPhySto, Aarhus)

� Steffen Lilholt Lauritzen (MaPhySto, Aalborg)

2 Content

The term inverse problems is used to denote a wide area of problems from both pure and applied
mathematics, where one must recover information about a quantity or a phenomenon under study
from measurements which are indirect and possibly noisy as well. This corresponds to the situations
confronting engineers, scientists and industrial mathematicians on a daily basis. Informally, a direct
problem corresponds to calculating the effect of some given cause, whereas the inverse problem
corresponds to deriving the cause given some of its effects.

A practical example comes from the scattering of sound waves as occurs in ultrasonic imaging. The
direct problem is to calculate the scattered waves given the scattering medium. On the other hand,
the inverse problem consists in determining the structure of the scattering medium, given the wave
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source and measurements of the scattered waves. As noise and uncertainty is inevitable in most
applications the focus of the workshop will be on statistical aspects of inverse problems.

3 Program

Wednesday 28 March

09.30 - 10.15 Registration/Coffee
10.15 - 10.30 Welcome by Martin B. Hansen

Chairman: Steffen L. Lauritzen
10.30 - 11.30 Finbarr O’Sullivan : Quantitative analysis of data from PET imaging

studies
11.30 - 11.45 Break
11.45 - 12.45 Philip B. Stark : Inverse problems in helioseismology
12.45 - 14.00 Lunch

Chairman: Martin B. Hansen
14.00 - 15.00 Viktor Benes: On stereological unfolding problems
15.00 - 15.15 Coffee
15.15 - 16.15 Markus Kiderlen : Discrete inversion of the spherical cosine transform

in stereology

Thursday 29 March

Chairman: Jesper Møller
09.00 - 10.00 Geoff Nicholls: Bayesian inversion of boundary value data
10.00 - 10.30 Coffee
10.30 - 11.30 Henning Omre: Bayesian inversion in reservoir characterization with

complex forward models
11.30 - 11.45 Break
11.45 - 12.45 Klaus Mosegaard: Geophysical applications of MCMC: Bayesian cal-

culations and MC-optimization with slow forward algorithms
12.45 - 14.00 Lunch

Chairman: Bob Anderssen
14.00 - 15.00 Odd Kolbjørnsen: Bayesian inversion of piecewise affine inverse prob-

lems
15.00 - 15.15 Coffee
15.15 - 15.45 Marcela Hlawiczkova: Estimating fibre process anisotropy
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Friday 30 March

Chairman: Geoff Nicholls
09.00 - 10.00 Grace Wahba: Combining observations with models: Penalized likeli-

hood and related methods in numerical weather prediction
10.00 - 10.30 Coffee
10.30 - 11.30 Douglas W. Nychka: Posterior distributions for numerical weather

forecasts
11.30 - 11.45 Break
11.45 - 12.45 Robin Morris : 3D surface reconstruction as Bayesian inference
12.45 - 14.00 Lunch

Chairman: Grace Wahba
14.00 - 15.00 Maria D. Ruiz-Medina : Inverse estimation of random fields: Regular-

ization and approximation
15.00 - 15.15 Coffee
15.15 - 16.15 Anne Vanhems: Nonparametric study of differential equations and in-

verse problems
16.15 - 16.30 Break
16.30 - 17.30 Round table discussion
19.00 Conference Dinner

Saturday 31 March

Chairman: Douglas Nychka
09.00 - 10.00 Bob Anderssen: Recovering molecular information from the mixing of

wheat-flour dough
10.00 - 10.30 Coffee
10.30 - 11.30 Frits Ruymgaart : Spectral methods for noisy integral equations
11.30 - 11.45 Break
11.45 - 12.45 Per Christian Hansen: Inverse acoustic problems: Sound source re-

construction
12.45 - 14.00 Lunch
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4 Abstracts (in alphabetical order)

Recovering molecular information from the mixing of
wheat-flour dough

Bob Anderssen (Bob.Anderssen@cmis.csiro.au)

CSIRO Mathematical and Information Sciences, Canberra, Australia

The study of the mixing of wheat-flour dough on recording mixers, such as the Farinograph and
Mixograph, is central to issues related to the milling of hard and soft wheats, the mixing of the
resulting flours with water and other ingredients and the baking of the resulting doughs, as well as
the design of scientific and industrial mixers. It plays an even greater and more fundamental role in
the breeding of new wheat varieties. It is this latter aspect that will be the focus of the talk, though
related aspects of bread, cake, pasta and Danish pastry making will not be ignored. It is guaranteeing
their quality that is the control back to which plant breeding must respond.

The overall goal of the talk is an examination of some of the recent statistics and mathematics
involved with extracting molecular information from various types of cereal chemistry experiments.
In particular, the talk will focus on the following four topics:

1. The Measurement of the Hardness of Wheat.

When a particular variety of wheat is milled, the resulting flour will have either a unimodal
or a bimodal size distribution. This relates directly to how the wheat has fractured during
the milling. Hard wheats give the unimodal distribution, because the breakage is along cell
walls and across the cells rupturing the starch granules. Soft wheats give the bimodal because
the breakage is across the cells and around the starch granules with virtually no rupturing of
the granules. Under the same milling conditions, the particle size of the hard wheats tends
to be larger than for the softs. This strong and definite phenotype has been shown to have an
unambiguous genetic explanation, in terms of genes that express proteins that induce adhesion
between the gluten polymers and the surface of the starch granules.

For cereal chemists, hardness characterizes wheats according to the way in which they frac-
ture, when subjected to grinding or milling (cf. Simmonds (1989)). Consequently, the hard-
ness classes ‘hard’ and ‘soft’ serve as the primary basis for the initial classification of hexa-
ploid wheats. However, the expression of the hardness genes is greatly influenced by the en-
vironmental conditions prevailing during grain filling, and during conditioning prior to flour
milling (Manley et al, 1995; Bechtel et al, 1996; Delwiche, 2000). Genetically, it has been
confirmed (Morris et al (1999)) that major allelic differences are assignable to a single dom-
inant gene (Hardness, Ha) on the short arm of the 5D chromosome, and that various minor
genes play a not unimportant role.

Independently, it has been confirmed (Osborne et al. (2001)) that, among the various proce-
dures available, the Single-Kernel Characterization System (i.e. the SKCS 4100 instrument)
provides the most discrimination in the measurement of wheat hardness. The SKCS 4100
instrument, now marketed worldwide by Perten Instruments, was initially developed at the
USDA Grain Marketing and Production Research Center in Manhattan, Kansas. The original
motivation was the need for objectivity and reliability in the classification and grading of US
wheats. Full details about the operation of the SKCS instrument can be found in Martin et
al. (1993). Some interesting questions arise about how the data recorded on such instruments
should be modelled.
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2. Estimating the Number of Active Genes in Endosperm Development.

In the study of genes in plants (and animals), an important issue is the identification, classifi-
cation and comparison of the different genes that are active in various parts of the plant being
examined at key stages in its development and growth. Among other things, such information
is crucial in identifying the genes which play multiple roles and why. For example, for the
efficient breeding of new wheat varieties, there is a need to know which genes are controlling
the different stages of the starch and protein synthesis in the seeds.

However, when isolating such active genes experimentally, one is confronted with a situation
where the different active genes are present in proportion to their expression activity. Conse-
quently, one has the problem of estimating the number of distinct classes in a population of
many individuals when a random sample of the individuals is all that is observed.

The same problem arises in many other contexts, for example, finding the species richness
of some family of plants or animals in a specified environment (Fisher et al. (1943)), and
estimating the size of an author’s vocabulary (Efron and Thisted (1976)). As the sampling
progresses, one will identify many members from the plants, animals or words (or genes) that
are common, and few or no members from those that are uncommon. Bunge and Fitzpartick
(1993) review the general problem, and Hass and Stokes (1998) focus on the situation where
the total population size is known. In a recent analysis of wheat endosperm EST data, Wood
et al. (2001) have shown that the earlier estimators of Goodman (1949) are more appropriate
than the popular jackknife estimators.

3. Recovering Molecular Information from High Resolution Mixograms. In a traditional ex-
amination of the rheology of a wheat-flour dough, one first mixes the dough to peak dough
development, then performs a suitable rheological experiment on the dough, and finally, for-
mulates a qualitative or a simple mathematical modelling to analyse and interpret the observed
behaviour of the dough. However, in such situations, the dough is being treated separately
from the process by which it has been manipulated and produced, as if it were not a ‘living
system’ (Meisner and Hostettler (1994)). An alternative approach is to directly utilize the
information in the measurements obtained from a recording mixer, such as a MixographTM.
This allows one to monitor the changing behaviour of a dough during mixing. In this way, the
rheology of the dough is simulated as a part of the overall modelling of the mixing, and the
constitutive relationship, which defines the changing rheology of the dough, is encapsulated
implicitly within the modelling. The first step in a project to examine the feasibility and merit
of performing such a study of the ‘elongate-rupture-relax’ mixing action of a MixographTM
has been performed (Anderssen et al. (1998)). Normally, this is done as two separate steps
where the dough is first mixed and then a sample of it is tested in an extension tester. In
essence, a mixogram is a record of a series of extension tests that result from the ‘elongate-
rupture-relax’ action which a MixographTM performs on the dough. The significance of this
fact has been discussed in the recent literature (Gras et al. (2000)). In particular, it has been
established that the bandwidth of a mixogram measures the changing extensional viscosity of
a dough as it is being mixed.

Consequently, the flow and deformation occurring within a dough can be viewed as a repetitive
loading process consisting of a sequence of ‘elongate-rupture-relax’ events. Chemically and
physically, the elongation relates to the nature of the protein unfolding and cross-linking which
the extension of the dough induces, while the relaxation relates to the partial refolding of the
proteins, which occurs after the rupture, until the start of the next extension. Because the
unfolding and refolding will occur at different rates, partially in response to the intensity of
the cross-linking being stimulated by the mixing, one is led naturally to the hypothesis that ‘the
behaviour of wheat-flour dough during mixing is hysteretic in nature’. There are various ways
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in which information about this hysteretic behaviour can be recovered from high resolution
mixograms, such as the determination of the partial Bauschinger plots of the changing stress-
strain behaviour of the dough during mixing (Anderssen and Gras (2000)) and the application
of incremental change analysis (rainflow counting) to the individual ‘elongate-rupture-relax’
events (Anderssen and Gras (2001)). The advantage of such methodologies is that they give
one the opportunity to see to the molecular level of the changing rheology of a dough during
mixing, which is important for plant breeding investigations and the optimization of industrial
mixing.

4. Recovering the Relaxation Spectrum and Molecular Weight Distribution of Polymers.

A popular molecular characterization of polymers is their molecular weight distribution. There
are various ways in which it is estimated. They range from direct experimental procedures
like gel chromatography electrophoresis and flow field flow fractionation (flow-FFF), to indi-
rect measurement procedures such as the utilization of rheological measurements and mixing
rules. The direct procedures spawn many interesting statistical and mathematical questions,
while the indirect pose challenging questions about the formulation, solution and interpreta-
tion of inverse problems in rheology. In particular, questions about the formulation of the
mixing rules that relate estimates of the relaxation modulus of the polymer (determined via
a relaxation spectrum recovery process) to the molecular weight distribution. For example,
some interesting mathematics arises when characterizing the family of mixing rules for which
the scaling of rheological parameters, in terms of the molecular weight distribution, remains
invariant. Recently, Anderssen and Loy (2001) have established how integral mean value
theorems can be utilized to assist with the characterization.

It one takes a practical and important subject, like the breeding of new varieties of wheat,
one finds that it has a long and interesting history that involves much science, statistics and
mathematics. Because of the work of William Farrer, Australia has a long and distinguished
history as a breeder, grower and exporter of wheat. Through the work of CSIRO’s Wheat
Research Unit (subsequently, the Grain Quality Research Laboratory), it has also played a
dominant role in the development of the cereal science of wheat.

Cereal science lived on the invention and success of the recording mixer in the early 1930’s.
It has been molecular biology that has forced it to become more quantitative!
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Inverse estimation of random fields: Regularization
and approximation

Jose Miguel Angulo (jmangulo@ugr.es)

Department of Statistics & Operations Research, University of Granada, Spain

Maria Dolores Ruiz-Medina (mruiz@ugr.es)

Department of Statistics & Operations Research, University of Granada, Spain

The problem of least-squares linear estimation of an input random field from the observation of an
output random field in a linear system is considered. Different approaches to statistical inversion
are reviewed, for example, in De Villers (1992). Miller and Willsky (1995) present a wavelet-
based approximation to the problem for uniparameter processes under a fractal-type prior model
(multiscalemodel class) for the input. In the case where the system is defined by a mean-square
integral equation relating two second-order random fields, Angulo and Ruiz-Medina (1999) derive
a discretization method in terms of wavelet-based orthogonal expansions, related by the system
equation, of the random input and output. An extension of this approach to the spatio-temporal case
is given in Ruiz-Medina and Angulo (1999).

In this paper, we study the least-squares linear inverse estimation problem in a fractional generalised
framework, using the definition of generalised random functions on fractional Sobolev spaces. The
consideration of appropriate spaces according to the second-order properties of the input and obser-
vation (output, possibly affected by additive noise) random fields leads, under suitable conditions, to
the definition of a stable solution. In the ordinary case, the solution derived is found in a distribution
space. Furthermore, this approach allows the treatment of systems defined in terms of improper
random fields with positive singularity orders. Finally, the computation of the solution, in both the
generalised and ordinary cases, is carried out by using orthogonal expansions of the random fields
involved in terms of dual Riesz bases (see Angulo and Ruiz-Medina, 1998, 1999). In the case where
these dual Riesz bases are constructed from orthonormal wavelet bases, the approach presented pro-
vides amultiresolution-likeanalysis to the problem.

Angulo, J.M. and Ruiz-Medina, M.D. (1998). A series expansion approach to the inverse problem.
J. Appl. Prob.35, 371-382.

Angulo, J.M. and Ruiz-Medina, M.D. (1999). Multiresolution approximation to the stochastic in-
verse problem.Adv. Appl. Prob.31, 1039-1057.

De Villiers, G. (1992). Statistical inversion methods. In M. Bertero and E.R. Pike (eds.),Inverse
Problems in Scattering and Imaging, 371–392. Adam Hilger.

Miller, E.L. and Willsky, A.S. (1995). A multiscale approach to sensor fusion and the solution of
linear inverse problems.Appl. Comput. Harmonic Anal.2, 127-147.

Ruiz-Medina, M.D. and Angulo, J.M. (1999). Stochastic multiresolution approach to the inverse
problem for image sequences. In K.V. Mardia, R.G. Aykroyd, and I.L. Dryden (eds.),Proceedings
in Spatial Temporal Modelling and its Applications, 57–60. Leeds University Press.
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On stereological unfolding problems

Viktor Benes (benesv@karlin.mff.cuni.cz)

Department of Probability and Statistics, Charles University, Praha, The Czech Republik

In this lecture recent results in an inverse problem concerning stereology of particle systems will be
reviewed. First the technique of derivation of an integral equation describing the problem is shown in
the multivariate case. Besides theoretical solution more attention is paid to the numerical solution.
The statistical extreme value theory may enter in the problem to discuss stereology of extremes.
Finally a practical application in materials research is demonstrated.
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Inverse acoustic problems: Sound source reconstruction

Per Christian Hansen (pch@imm.dtu.dk)

Informatics and Mathematical Modelling, Technical University of Denmark

Andreas P. Schuhmacher and Jørgen Hald

Brüel & Kjær A/S, Denmark

Karsten Bo Rasmussen

Oticon A/S, Denmark

The goal of this work is to develop robust software for computing the unknown surface velocity dis-
tribution on a complex acoustic source from measured acoustic field data. Hence we are faced with
an inverse source problem, which involves forming a transfer matrix relating the pressure at every
field point to the normal component of the surface velocity. The forward modeling is done by means
of a boundary element method (BEM) and the inverse problem is solved by means of Tikhonov
regularization. A practical case using a car tyre demonstrates the capabilities of our regularization
scheme.

Throughout we use complex notation for harmonic time variation, andj denotes the imaginary unit.
Our forward modeling problem is based on adouble-layer formulation, which relates the pressure
p at an arbitrary pointP in the exterior regionΩ to the normal componentvn of the velocity of the
surfaceS:

p(P) =
Z

S
µ(Q)

∂
∂nQ

�
e� jkR

4πR

�
dS(Q); P2Ω: (1)

HereQ is a point on the surface,R is the distance betweenP andQ, k is the acoustic wave number,
andµ is a distribution ofacoustic dipoleson the surface. In addition we need the following relation
betweenµ and the velocityvn:

� jωρvn(P) =
Z

S
µ(Q)

∂2

∂nP∂nQ

�
e� jkR

4πR

�
dS(Q); P2 S; (2)

whereω is the angular frequency andρ is the fluid density.

Equations (1) and (2) are both discretized by means of a boundary element method with triangular
linear elements for both the geometry and the acoustic variables on the surface. The resulting linear
systems of equations take the form

p = Gµ and � jωρBvn = Qµ; (3)

in whichp is a vector with the measurements of the acoustic pressure, whileµandvn are vectors with
BEM nodal values of the dipole sources and the normal surface velocities, respectively. Moreover,
G andQ are complex matrices arising from the BEM discretization of the surface integrals, andB
is real symmetric matrix that takes the BEM geometry into account; see [5] for details. Combining
the two systems in (3) we obtain

p =� jωρGQ�1Bvn = Hvn (4)

which is a discrete inverse problem (in the terminology of [3]) that relates the unknown normal
surface velocityµ to the measured acoustic pressurep via the “transfer matrix”H =� jωρGQ�1B.
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Figure 1: Reconstructed normal surface velocityvn at 60Hz computed by means of the L-curve
criterion.

We note that the above formulation breaks down for frequencies close to the so-called irregular
frequencies (i.e., the eigenfrequencies of the associated interior problem), where the condition num-
ber of Q becomes very large. An alternative formulation that can be used at these frequencies is
described in [5].

The discrete inverse problem (4) is solved by means of Tikhonov regularization in the form

min
n
kHvn�pk2

2+λ2kLvnk
2
2

o
(5)

where the diagonal matrixL defines an approximate kinetic energy smoothing norm [5]. The reg-
ularization parameterλ is computed by means of the L-curve criterion [4] as well as generalized
cross-validation [1], and the results computed by Tikhonov regularization with the two parameter-
choice methods are compared with results computed by means of near-field acoustic holography [2].

In one of our experimental setups, we measured the acoustic pressure from a car tyre rolling at 80
km/h. A total of 977 measurements were recorded on a plane at the side of the tyre as well as on two
curved surfaces in the front and the back of the tyre. The BEM discretization of the tyre itself consists
of 266 nodes. The BEM discretization as well as the reconstructed normal surface velocity at 60 Hz
is shown above, and we note that only the highest 20 dB are displayed. The computed results agree
with those from the near-field acoustic holography analysis. More results will be shown in the talk.
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Estimating fibre process anisotropy

Marcela Hlawiczkov´a (mhlawiczkova@yahoo.com)

Department of Probability and Statistics, Charles University, Praha, The Czech Republik

Viktor Benes (benesv@karlin.mff.cuni.cz)

Department of Probability and Statistics, Charles University, Praha, The Czech Republik

Key words: rose of directions, zonotope, zonoid, fiber process, Prokhorov distance

The anisotropy of 3D fiber processes may be studied by counting intersections of the fiber process
with a planar test probe. The 3D problem is reduced to the 2D problem this way.

LetX be a fiber process in 3D space with the length densityLV and the directional distributionR(also
called the rose of directions), which is a probability measure. To estimate the rose of directions, the
geometrical approach can be used based on zonotopes and zonoids (limits of zono topes with respect
to the Haussdorff metric). Given a rose of directionsR, there is a unique zonoidZ corresponding
to it. Its support functionu is determined by the cosine transformation formula (Goodey & Weil,
1993). Further, there exists a zonotopeZn with the property that the values of its support function
un(ni) in the directionsni equal the values of the support functionu(ni) of the zonoidZ. Let zi be the
number of intersections of the test plane of a given orientation (normal vectorsni) with the process
X on the unit area of the test plane. The zonotopeZn may be estimated from the valueszi using the
EM-algorithm (Kiderlen, 1999). The probability measureRn corresponding to the zonotopeZn is the
estimate of the rose of directions. The distance between the true rose of directions and its estimation
is measured using the Prokhorov distance (Beneˇs & Gokhale, 2000).

In the present study, the case of isotropy is considered. The corresponding zonoidZ is then a sphere.
The number of intersections between the fiber process and the test probe is evaluated for two test
probes (cube, regular octahedron) and realizations of three isotropic fiber processes, for which the
edges of 3D Voronoi tessellations generated by various isotropic point processes were chosen. The
generating point processes are special cases of Bernoulli cluster fields (BCF, Saxl & Pon´ıžil, 2001)
generalizing the Neyman-Scott process of independent clustering (Stoyan et al., 1995) in such a
way that the parent points are replaced by point clusters (Mat´ern globular clusters of the mean car-
dinality N = 200 in the present case) with a probability 0� p� 1. Denotingλp the intensity of
the parent process, the resulting intensity isλB = (1+ p(N�1))λp. BCF’s of p= 0;1;0:5 produce
Poisson-Voronoi tessellation (PVT), inhomogeneous tessellation NS200 generated by a standard
Neyman-Scott process and the extremely inhomogeneous tessellation B200, respectively. The strik-
ing differences between these tessellations are at best revealed by the the coefficient of cell volume
variation CVv; they are 0.42, 3.1 and 7.9 and for PVT, NS200 and B200, respectively.

The tessellations have been constructed in a unite cube by means of the incremental method with
the nearest neighbour algorithm (Okabe et al., 1992). The probes were placed in the centre of the
cube and their size was chosen such that the edge effects were nearly completely suppressed (the
higher is the local inhomogeneity of the tessellation the smaller must be the probe size). The choice
of intensitiesλB = 1984;11 577 and 17 095 for PVT, NS200 and B200 ensured� 397 intersections
for all processes and probes and the number of process realizations was 1000 in all cases.

Using this data, the Prokhorov distance and its pdf were estimated. Two different approaches were
chosen:

1. the discrete measureR corresponding to the zonotope in the case when the expected number
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of intersections with all test planes is independent of their directions (cube for a cubic probe,
tetrakaidecahedron for an octahedral probe),

2. the continuous measureR represented by the zonoid (i.e. by sphere in the considered case).

The results obtained for discrete measure approach are shown in Fig. 1. The effect is clearly man-
ifested of the local inhomogeneity of the examined processes on the distributions of the Prokhorov
distances - see Tab. I. The mean value and the standard deviation of PVT edges are significantly
smaller than these ones of NS200 and B200 edges. In the latter two inhomogeneous cases, the
difference in the two discrete measures is clearly revealed. In a high number of realizations, the
Prokhorov distance corresponds to the angles between the normal vectors of zonotopeZ faces (π=2
for cube and 0:95;1:23 for octahedron) and is represented by peaks in the histogram. The continu-
ous measure approach is presented in Fig. 2. The local inhomogenity has the same effect as in the
discrete case. It can be seen that the values of Prokhorov distance are shifted from zero to higher
values, because discrete and continuous measures are compared here. The estimation of Prokhorov
distance and its minimum value are based on the evaluation of the sphere covering by spherical caps.
The Prokhorov distance of a significant number of fiber processes realizations equals this minimum
value. The mean values and standard deviations for all investigated cases are shown in the Tab. I.
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Figure 1: Probability density functionsf (x) of the Prokhorov distances in the discrete approach;
k= 2π.
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Figure 2: Probability density functionsf (x) of the Prokhorov distances in the continuous approach;
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Tab. I Prokhorov distancesP and their standard deviations
in thediscrete andcontinuous cases

EPdis SDPdis EPcon SDPcon

tess. oct: cub: oct: cub: oct: cub: oct: cub:
PVT 0:053 0:025 0:024 0:014 0:097 0:126 0:005 0:002
NS200 0:142 0:105 0:029 0:053 0:118 0:133 0:015 0:006
B200 0:154 0:137 0:033 0:068 0:131 0:138 0:019 0:011
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Discrete inversion of the spherical cosine
transform in stereology

Markus Kiderlen (kiderlen@imf.au.dk)
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Several Stereological questions lead to the problem to estimate a (positive) measure on the unit
sphere from (approximate) values of its cosine transform in finitely many directions. In the talk, a
short introduction to the geometric background of the problem will be given. Then, a nonparametric
maximum likelihood method will be presented. The resulting estimator is a discrete measure on
the unit sphere, which can be calculated numerically using the EM algorithm. Under some mild
conditions on the input data we will show consistency for this estimator. Simulations will illustrate
the methods.
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Abstract

Piecewise affine inverse problems are solved in Bayesian framework with Gaussian random
field priors and a Gaussian likelihood. The posterior distribution for this problem is not Gaussian
because of the nonlinearity in the problem. An algorithm to sample the posterior for piecewise
affine inverse problems is defined under Gaussian assumption.

Introduction

Inverse problems arise in many scientific problems and engineering applications. An inverse problem
is obtained when the observations are related to transforms of the object of interest. Let the object of
interest be a function,z, assumed to be in a function spaceZ. The observations are theno=ω(z)+ε,
with ω : Z !Rr being the known forward map of the inverse problem, andε2Rr being observation
error.

The Bayesian approach to inverse problems, is in principle no different from the Bayesian approach
to any other problem, see Gelman et al. (1995). The analyzer must specify a prior,DfZg, on the
parameter spaceZ and a likelihood,DfOjZ = zg, for the observations. The posterior distribution,
DfZjO = og, is the Bayesian answer to an inverse problem. A common way of representing the
posterior is through a finite sample. For general nonlinear inverse problems, the posterior is usually
sampled by the use of a general purpose algorithm such as rejection sampling, resampling schemes
or Markov chain based methods. When the observations are measured with high precision, many
general purpose algorithms experience problems and fail for the case of exact observations. When
explicit choices have been made for the prior and the likelihood, specialized algorithms may be
implemented to overcome these problems.

The problem

In the current presentation the inverse problem is assumed to be piecewise affine. Piecewise affine
inverse problems are very general. In particular inverse problems having a variational structure,
such as the Fermat principle of travel time tomography can be phrased as piecewise affine inverse
problems. In the current setting a solution is sought for the case of a Gaussian random field prior
on Z and a Gaussian likelihood. A similar problem was investigated by Kolessa (1986) in a slightly
different setting.

An inverse problem is classified as piecewise affine if the forward map of the problem is a piecewise
affine operator.
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Definition 1 (Piecewise affine operator)An operatorω : Z ! Rr , is said to be piecewise affine, if
it can be represented in the following way:

ω(z) = Bxz+bx for z2 Ax ; x2 X

with X being an index set,fAxgx2X being a partition ofZ; Bx : Z ! Rr being bounded linear
operators onZ and bx being r dimensional vectors. The indexed set of tripletsfAx;Bx;bxgx2X are
the parameters of the piecewise affine operator.

The type of piecewise affine inverse problems depend on the index setX . For the caseX = f1g
it correspond to linear inverse problems, forX 6= f1g they constitute a general class of nonlinear
inverse problems. In current work bothX = f1;2; :::;mg andX � Rd is considered.

The results

The posterior distribution is calculated to be a mixture of truncated Gaussian distributions both in
the case of a finite index and in the case of a continuous index.

For the finite index case,X = f1;2; :::;mg, a mixing distribution onX can be explicitly calculated,
and an algorithm based on rejection sampling that produces exact independent samples from the
posterior can be provided.

In the case of a continuous index,X � Rd, more attention must be given to the partitionfAxgx2X .
Under the right assumptions there also exist a mixing distribution for this case, however the distribu-
tion must be extended beyondX to deal with the continuous dependence onx in the partition (Adler
1981). Moreover as a part of the final sampling algorithm a distribution that is only known to pro-
portionality must be sampled by the use of general purpose algorithms. This distribution is however
of finite dimension, and nonsingular even for the case of exact observations, which is a substantial
improvement on the initial problem.

Example

A meteorologist want to reconstruct the temperature field of the previous day. The observations at
hand, are the temperatures each morning and the global extremes in between.

A stochastic model for the temperature during one day,t 2 [0;24] is described by,

Z(t) = Z0+Z1sin
πt
12

+Z2cos
πt
12

+ eZ(t);
with Z0;Z1;Z2 and eZ(t) being independent;Z0 � N(15;52), Z1 � N(5;22), Z2 � N(0;0:52), andeZ(t) is a zero mean residual stochastic field with covariance function C

eZ(t; t +h) = expf�3jh=4j2g:
Figure 1 shows 200 samples from this prior distribution. Assumez(0) = 19:78, z(24) = 19:74,
max0�t�24z(t) = 26:04 and min0�t�24z(t) = 16:61 is observed, and that the observations are exact.

The posterior was sampled in three steps. Firstly the location of the extremal points and the second
derivative at these points was sampled according to a distribution known up to a constant, this was
done using a SIR algorithm. Secondly the Gaussian random field was sampled conditioned to linear
constraints imposed by the problem. In the last step the sample was accepted if the minimum and the
maximum values of the obtained sample where the values observed. In the third step 43:8% of the
samples where accepted. In Figure 2, 400 samples from the posterior are shown. For this particular
problem general purpose algorithms does not work.
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Figure 1: The Figure shows 200 samples from the prior distribution of the example. The horizon-
tal lines shows the observed level of maximum and minimum values. The white circles at each
end, show the values observed at the boundaries. Some of samples from the prior are partially or
completely outside the scaling of the figure.
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Figure 2: The figure show 400 realizations from the posterior distribution from the example. The
white curve is the actual path.
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3D surface reconstruction as Bayesian inversion
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The problem of three dimensional surface reconstruction from images can be formulated as an in-
version problem – inverting the image formation process. From a Bayesian viewpoint, the problem
becomes one of estimating the parameters of a surface model from observations (images) of that
model. In this talk I will show how a computer model of the forward problem (going from a model
to an image, the computer graphics problem of rendering) can be augmented to also compute the
derivatives of the image pixel values with respect to the 3d surface model parameters. This allows us
to efficiently invert the process and infer the MAP surface estimate. It also allows us to reconstruct
the 3d model at any scale that is justified by the data, including the super-resolved case, where many
surface elements project into a single pixel in each of the (many) low-resolution images.

Consider a height field surface described by a regular triangular mesh. At each vertex of the mesh
we store the values of the height and the albedo, so the surface isfz;ρg. We group the heights and
albedos into a vectoru. Applying Bayes Theorem gives

p(ujI1 : : : In) ∝ p(I1 : : : Inju)p(u); (6)

whereIi are the observed images.

We assume that the likelihood results from Gaussian residuals, and use a simple smoothing prior on
u that penalizes curvature. The negative log-posterior is then

L(u) =
1

2σ2
f
∑
f ;p

(I f ;p� Î f ;p(u))2+xQxT (7)

wherep indexes the pixels. The formation ofÎ(u) is the computer graphics process of rendering,
and so clearlyL(u) is a nonlinear function ofu. To make progress with finding the MAP estimate,
we linearize the rendering process about the current estimateu0, to give

Î(u) = Î(u0)+Dx (8)

whereD is the matrix of derivatives,∂Î f ;p=∂ui andx = u�u0. This linearization turns the problem
into the minimization of a quadratic form, which can be performed using, for example, conjugate
gradient. At the convergence of the minimization the new estimate foru can be used asu0 and the
process iterated. We have found that four or five iterations are usually sufficient.

It now remains to describe how to compute the image,Î(u), and the derivative matrixD. Computing
an image from a triangulated mesh description of a surface is a well studied problem in computer
graphics [1]. However, because of the emphasis in computer graphics of producing a visually ap-
pealing image quickly, much modern computer graphics is unsuitable, and we must return to the
early work, when computation was done inobject space. The brightness of a pixel in the image is a
sum of the contributions from individual surface triangles whos projection overlaps the pixel

Î p =∑
4

f p
4Φ4 (9)
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Figure 1: Geometry of the triangular facet, illumination direction and viewing direction.ẑs is the
vector to the illumination source;ẑv is the viewing direction.

whereΦ4 is the radiation flux reflected from the triangular facet4 and received by the camera, and
f p
4 is the fraction of that flux that falls into pixelp.

Φ4 = ρE(αs) cosαv cosκ θ∆Ω; (10)

E(αs) = A (I s cosαs+ I a) :

∆Ω = S=d2:

whereαs;αv are respectively the angles between the normal to the triangle and the illumination
direction, and the normal to the triangle and the viewing direction,θ is the angle between the camera
axis and the viewing direction, andκ is the lens falloff factor, see figure 1. We assume Lambertian
reflection, andρ is the albedo of the triangle.A is the area of the triangle,I s;I a are the intensities
of the direct and ambient light, and∆Ω is the solid angle subtended by the lens.

To compute the image intensities we therefore need to compute the areas of the polygons which
are the intersections of the pixel boundaries and the projection of the triangles onto the pixel plane.
This is an exercise in computational geometry [2]. To compute the derivative matrix we need to
take derivatives of equation 9. The derivatives with respect to the albedo components ofu are
straightforward. The derivatives with respect to the height components are more complex. They
have two distinct contributions

∂Î p

∂zi
= ∑

4

 
f p
4

∂Φ4

∂zi
+Φ4

∂ f p
4

∂zi

!
: (11)

Variation of the height of a vertex of a triangle gives rise to variations in the normal of the triangle,
and this produces the derivatives of the total radiation fluxΦ4. Variation in the heights also gives
rise to displacements of the projection of that point in the image plane, and hence changes in the
areas of the polygons with edges containing this point. This produces the derivatives of the area
fractions f p

4
.

The flux derivative can be computed directly from the coordinates of the triangle vertices and the
camera position. Computation of the derivatives of the projected area fraction necessitates consider-
ing how the projection of the vertex on the image plane moves as the vertex height changes, ie the
point displacement derivative,∂P=∂zi . Then

∂ f p
4

∂zi
=

1
A4

 
∂Apolygon

∂Pi
� f p

4

∂A4
∂Pi

!
∂Pi

∂zi
(12)
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Figure 2: Two images rendered from the synthetic Death Valley surface
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Figure 3: Surface reconstructed from the images in figure 2

which shows that to compute the derivative of the area fraction we need to compute the derivative of
the triangle area,A4, and the polygon areas,Apolygon. These derivatives can be computed by a very
general algorithm that considers one edge of the polygon at a time, and accumulates the contributions
to the derivative.

The point displacement derivatives,∂P=∂zi can be derived from the definition of the simple perspec-
tive sensor [3], where

Px =
[AR(P� t)]x
[R(P� t)]z

(13)

A is the matrix of camera internal parameters,R is the rotation matrix andt the position of the
camera. The point displacement derivatives are given in [4].

Figure 2 shows two of the four images rendered from an artificial surface. The surface was generated
by taking a USGS digital elevation model for Death Valley, and using the intensities from a co-
registered Landsat-TM image as surrogates for the albedos. Figure 3 shows the surface reconstructed
from the four images. Further details can be found in [5].
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Geophysical applications of MCMC: Bayesian
calculations and MC-optimization with slow
forward algorithms
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Department of Geophysics, University of Copenhagen, Denmark

Monte Carlo methods are becoming increasingly important for solution of non-linear inverse prob-
lems in two different, but related, situations. In the first situation we need a near optimal solution
(measured in terms of data fit and adherence to given constraints) to the problem. In the second
situation, the inverse problem is formulated as a search for solutions fitting the data within a cer-
tain tolerance, given by data uncertainties. In a non-probabilistic setting this means that we search
for solutions with calculated data whose distance from the observed is less than a fixed, positive
number. In a Bayesian context, the tolerance is “soft”: a large number of samples of statistically
near-independent models from the a posterior probability distribution are sought. Such solutions are
consistent with the data as well as the available prior information.

Early examples of solution of inverse problems by means of Monte Carlo methods are abundant in
geophysics and other disciplines of applied physics. SinceKeilis-Borok and Yanovskaya[1967] and
Press[1968, 1971] made the first attempts at randomly exploring the space of possible Earth models
consistent with seismological data, there has been considerable advances in computer technology,
and therefore an increasing interest in these methods. Recently, Bayes theorem and the Metropolis
algorithm have been used for calculating approximate a posteriori probabilities for inverse problems
(see, e.g.,Pedersen and Knudsen[1990], Koren et al.[1991], Gouveia and Scales[1998], Dahl-
Jensen et al.[1999], Khan et al.[2000], Rygaard-Hjalsted et al.[2000], and Khan and Mosegaard
[2001]).

Most applications of Monte Carlo Methods for inversion suffer from the major problem that misfit
calculations are so computer intensive, and the model parameter space is so vast, that, in practice,
only relatively few models can be sampled. This has led to the development of methods that seek
to obtain (in some sense) optimum results within a given (fixed) number of iterations. Some of the
most successful of these methods are based on ideas borrowed from statistical mechanics (Nulton
and Salamon[1988]).
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Electrical conductivity imaging is one of several non-invasive imaging techniques in which an object
is probed by irradiating it with waves of current, heat or ultrasound, and measurements are made of
the scattered field. The imaged quantityσ is then related to the wave fieldu by

Electrical ∇ �σ∇u = 0

Thermal ∇ �σ∇u =
∂u
∂t

Acoustic ∇ �σ∇u =
σ
c2

∂2u
∂t2

In each of these canonical expressions the “forward problem” (fromσ to u) requires solution of the
corresponding boundary, or initial-boundary value problem in two or three dimensions. To recover
the image,σ we must solve the “inverse problem”, which is ill-posed and non-linear.

Exact inverses have been found for some of these problems (see for example [3]). However, anal-
ysis shows that the linearised forward problems above have singular values that decrease at least
geometrically (for example [1]) and hence any inverse must be discontinuous and will give images
dominated by noise. This inherent ill posed behaviour is actually severe since, in the presence of
noise, only a limited amount of information aboutσ is transmitted through the forward map. Con-
sequently, any image reconstruction algorithm must provide information that is not available in the
measurements. To make best use of the information that is measurable, algorithms must use accurate
models of both the forward map and noise process. Finally, we would like to quantify uncertainty
in our “solution”. A solution is not a single image, it is a distribution over more or less plausible
images. We are not aware of any inferential framework which meets all these criteria, unless it be an
essentially Bayesian inferential scheme, with a physics-based likelihood.

New sampling methodologies open up the possibility of sampling distributions involving such like-
lihoods, and thereby carrying out sample-based Bayesian inference. We focus on the conductivity
imaging problem, and a corresponding family of Markov chain Monte carlo algorithms. Such al-
gorithms require millions of likelihood ratio evaluations, in each of which a number of Green’s
functions must be computed. Over the last few years, we have been investigating methods to make
this iterative calculation tractable. We are particularly concerned with the order of one likelihood
ratio calculation, as a function of the number of elements in the finite element and boundary element
schemes used to solve for the Green’s function of the forward problem. It seems hard to go past a
local linearisation scheme [2], which is order constant in the number of elements. However, we will
discuss a wide range of Markov chain Monte carlo schemes, including Langevin and hybrid algo-
rithms, and algorithms related to continuous time MCMC, and consider how they may be coupled
to numerical methods for solving the forward boundary value problem.

In order to solve an inverse problem, it is not necessary to invert anything, except possibly our way
of thinking.
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Posterior distributions for numerical weather forecasts
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Given sparse irregular observation functionals of the atmosphere, the goal is to update the estimate
of the current state of the atmosphere and then to use this update to forecast ahead in time. The
updating step is a huge inverse problem, perhaps the largest solved on a routine basis; the number
of observations is on the order of 105 and the state vector describing the atmosphere is 106. This
talk reports our research to find computable, Bayesian solutions to this problem. The focus is on
an ensemble technique (i.e. Monte Carlo sampling) to estimate reasonable regularizing penalties
that adapt to the changing state of the atmosphere and provide credible posterior probabilities. An
interesting statistical problem is to estimate regularization parameters sequentially because the large
size of this problem does not allow for storage of previous forecasts.

Ensemble forecasting is used in numerical weather prediction to give an improved estimate of the
atmospheric state and provide measures of forecast accuracy. Essentially one carries along a set of
forecasts where the spread among the group is a measure of forecast uncertainty and the group mean
is interpreted as the best single forecast. While the method is effective, there are some fundamental
issues in interpreting the ensemble as a statistically valid representation of uncertainty in the state of
the atmosphere. In Bayes language, in what sense does the distribution among ensemble members
approximate a posterior distribution for the state vector? Coupled with this interpretation is the
difficulty in the specification of large, complex covariance matrices used to combine a numerical
forecast with observed data. We approach this problem by representing the prior distribution as a
mixture of Gaussian distributions, then generate an ensemble as a random sample from the posterior.
A crucial step in this process to go backwards from an ensemble to a prior distribution for the next
forecast cycle. Here we use a kernel density estimate. The bandwidth in this kernel approximation is
an important tunable parameter and we construct a sequential estimate using discrepancies between
the forecasts and the observed data.
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Problem setting

Reliable forecasts of production from petroleum reservoirs are crucial for efficient reservoir man-
agement. These forecasts must be based on general reservoir knowledge and reservoir specific ob-
servations.

Consider a reservoir with production start at timet0, and let time for evaluation bete, with te� t0.
The production variables, containing oil production-rate, gas-oil ratio, bottom-hole pressure etc., is
termedpt ; t 2 [t0;∞). The production is crucially dependent on the reservoir variables,rx;x 2 D,
containing porosity, permeability etc. in the three dimensional reservoir domainD. The reservoir
specific observations contain seismic amplitude data coveringD, ds; observations along the well
trace,dw; and production history observed in time[t0; te), dp.

Focus of the study is on forecasting future production,pt ; t 2 [te;∞), termedpt+ , based on the avail-
able information. The time reference,t, is continuously defined, but in practicept will be a finite-
dimensional vector on a grid along the time axis.

Stochastic model

The problem is solved in a Bayesian inversion setting, see Omre and Tjelmeland (1997), and the
model is presented in the graph in Figure 1.

A prior model for the reservoir variables,Rx, is represented by the probability density function
(pdf), f (rx). These variables are linked to the production variables by a fluid flow simulator,Pt =
ω(Rx). Implicitly in this is a recovery strategy for oil, i.e. a well design and injection procedure,
defined. The simulator is assumed to be perfect, i.e. it linksPt andRx without error, f (pt jrx). The
reservoir specific observations are linked to(Pt ;Rx) through likelihood modelsf (dsjrx), f (dwjrx)
and f (dpjpt). The two former are defined in Eide et al.(1999) and Buland and Omre (2000). The
latter representspt in the time interval[t0; te), termedpt� , with an additive Gaussian observation
error.

The reservoir is usually evaluated at two stages:

� Appraisal stage, withte = t0, and the posterior pdf of interest being:

f (pt jds;dw) =

Z
f (pt jrx) f (rxjds;dw)drx (14)
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� Production stage, withte� t0, and the posterior pdf of interest being:

f (pt+ jds;dw;dp) = f�1(dp)

Z Z
f (dpjpt�) f (pt� jrx) f (pt+ jrx) f (rxjds;dw)drxdpt� (15)

Sampling procedure

The posterior models are not analytically tractable, primarily due to strong non-linearity in the fluid
flow simulatorω(�). Moreover, it may take days, or even weeks, to run one forward model in
ω(�). This makes general purpose sampling algorithms like rejection sampling, SIR, Kitanidis-
Oliver algorithm and McMC-algorithms unsuitable, see Omre (2000).

In order to improve the sampling, an approximate fluid flow simulator is defined,p�t = ω�(rx). This
may be done by solving the differential equations involved on a coarser mesh. The production
variables are assumed to be linked to the approximate ones through,

f (pt jp
�
t )!Gauss(A�p�t ;Σ�) (16)

with A� andΣ� being unknown parameters.

The forecast of production can then be written as:

� appraisal stage:

f (pt) =
Z

f (pt jp
�
t ) f (p�t )dp�t (17)

� production stage:

f (pt+ jdp) = f�1(dp)
Z Z

f (dpjpt�) f (pt� jp
�
t ) f (pt+ jp

�
t ) f (p�t )dpt�dp�t (18)

The conditioning on(ds;dw) is implicitly done throughp�t and is not shown in the notation.

The following sampling is performed:

r i
x; i 2 f1; :::;ng iid f (rxjds;dw) (19)

and

p�it = ω�(r
i
x); i 2 f1; :::;ng (20)

This can be done with small computational cost even for largen. Based on this, an estimate of the
pdf f (p�t ) can be made:̂f (p�t ).

Considerf1; :::;mg being a subset off1; :::;ng with m� n. Compute:

pj
t = ω(r j

x); j 2 f1; :::;mg (21)

Each computation will be very computationally expensive. Based on(pj
t ; p� j

t ); j 2 f1; :::;mg esti-
mates forA� andΣ� can be made and hence an estimatef̂ (pt jp�t ) can be obtained. Note that the
selection of the subsetf1; :::;mg amongf1; :::;ngmay be optimized.

The estimated forecasts of production can be based on:
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� appraisal stage:

f̂ (pt) =

Z
f̂ (pt jp

�
t ) f̂ (p�t )dp�t (22)

� production stage:

f̂ (pt+ jdp) = f�1(dp)

Z Z
f (dpjpt�) f̂ (pt� jp

�
t ) f̂ (pt+ jp

�
t ) f̂ (p�t )dpt�dp�t (23)

The former estimate is straight forward to compute. While the latter can be determined by a proce-
dure similar to the SIR algorithm. Note that the uncertainty related to using the approximate fluid
flow simulator instead of the correct one will be reflected in the production forecast uncertainty.

Example

The example is based on the study in Hegstad and Omre (1999). The setting is as in Figure 1.
The correct fluid flow simulator,ω(�), is based on a(50� 50� 15) discretization, and each run
requires 24 hours processing time. The approximate simulator,ω�(�), is based on a(10�10�15)
discretization and can be run in less than five minutes.

*

Reservoir Specific Observations

d pdds w

         

 

 

Reservoir 
Variables

Production

Approximate
Production

R

P

Pt

t

x

Figure 1: Graph of stochastic reservoir model.

The production from a reference reservoir taken to be the truth is presented in Figure 2. There is one
vertical injection well in which the bottom-hole pressure is monitored, and two horizontal production
wells in which oil production-rate and gas-oil ratio are monitored. Evaluation time,te, is at 1491
days, hence the production plotted with solid lines are observed.

In the study,n= 100, i.e. one hundred runs of the approximate simulatorω�(�), andm= 5, i.e. five
runs of the correct simulator,ω(�), are run. The estimatêf (pt jp�t ) is obtained and evaluated against
independent runs ofω(�). One typical case is shown in Figure 3. Note that the forecast is improved
relative to usingP�t only. The accuracy is improved on the cost of precision.
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Figure 2: Production variables from reference reservoir
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Figure 3: Forecast of one arbitrary realization,rx.
pt = ω(rx):— ; p�t = ω�(rx) :- - -; f̂ (pt jp�t ) : exp-�-�- , 0.80 interval -�-�-
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In Figure 4, estimated forecast of production,f̂ (pt+ jdp), is presented. Note that if onlym= 5 runs
of the correct simulator are possible, none of the general purpose sampling algorithms can be used.
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Figure 4: Forecast at production stage:f̂ (pt+ jdp) : exp-�-�- , 0.80 interval -�-�- .
Reference production: observed—, future —

References

See www.math.ntnu.no/�omre/recentwork.html and references therein.
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Quantitative analysis of data from PET imaging studies

Finbarr O’Sullivan (finbarr@stat.ucc.ie)

Department of Statistics, University College Cork, Ireland

Positron emission tomography (PET) is a radiological imaging technique that has the ability to mea-
sure metabolic characteristics of tissue in-vivo. Statisticians are familiar with the reconstruction
problem of PET which involves the inversion of the Radon transform based on scaled Poisson data
to produce estimates of the distribution of activity of an injected radio-tracer.

Data sets arising from PET studies involve dynamic volumetric scans representing the temporally
integrated time-course of the distribution of a radiotracer and its metabolites in a tissue region. Dose
constraints on the injected radio-tracer place critical limitations on the spatial and temporal accuracy
of the data. In modern PET machines the nominal spatial resolution of scans is between 2 and 5mm.
Temporal sampling varies with the radiotracer used - there can be as many as 1 scan per second to
perhaps as few as 2 scans per hour. A typical data set would be on the order of 140Mb in size.

A range of statistical methodologies, including semi-blind deconvolution, image segmentation, mix-
ture modeling, non-linear functional estimation arise in the context of the analysis of modern PET
studies. This talk presents an overview of research conducted on the development of these techniques
in the context of two primary applications: (i) Construction of functional images for brain and car-
diac studies, and (ii), Assessment of tissue heterogeneity for human sarcoma. Data from on-going
studies conducted at the University of Washington, PET imaging facility are used for illustration.
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Spectral methods for noisy integral equations

Frits H. Ruymgaart (ruymg@math.ttu.edu)

Department of Mathematics and Statistics, Texas Tech University, Lubbock, USA

Inverse estimation concerns the recovery of an unknown input signal from blurred observations on
a known transformation of that signal. The estimators of such indirectly observed curves to be
considered here are derived from a regularized inverse of the transformation involved, exploiting
Halmos’s (1963) version of the spectral theorem. The usual criterion for asymptotic optimality of
such curve estimators is based on the mean integrated squared error. It will be seen that the proposed
estimators are rate optimal in general. One may also consider optimality related to weak convergence
in the sense of Ha’jek’s (1970) ”convolution” theorem and its generalizations as developed in van der
Vaart (1988). The curve estimators induce natural estimators for certain linear functionals that turn
out to be optimal in the case of indirect density estimation. However,the estimators are not in general
optimal in the indirect regression model, except when the errors are normal. This suboptimality is
due to the error density that plays the role of a nuisance parameter.
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Inverse problems in helioseismology

Philip B. Stark (stark@stat.berkeley.edu)

Department of Statistics, University of California, Berkeley, USA

The Sun vibrates constantly in a superposition of acoustic normal modes excited by turbulence in
the Suu’s convective zone. The modes have a velocity amplitude of about 1cm/s in the photosphere.
They have characteristic periods on the order of 5 minutes, lifetimes ranging from hours to months,
and are excited many times per lifetime. The Sun is thought to support about 107 modes; about
3�105 have been observed.

Each mode has two quantum numbers, l and m, that characterize its angular dependence, and a third
quantum number, n, that characterizes its radial dependence. If the Sun were spherically symmetrical
and did not rotate, the

freguencies of the 2l +1 modes with the same values ofl andn would have the same temporal fre-
quency; that frequency is related to soundspeed as a function of radius by an Abel transform. The
Sun rotates, but not rigidly. Differential rotation splits the 2l +1 degenerate frequencies symmetri-
cally. Asphericity of material properties splits the 2l +1 degenerate frequencies asymmetrically; this
splitting is a weighted average of the rotation rate as a function of radius and latitude. The frequen-
cies of the modes thus contain information about the composition, state, and kinematics of the solar
interior. Extracting estimates of solar structure and kinematics from the normal mode frequencies
are the fundamental inverse problems of normal mode helioseismology.

However, estimating the frequencies of the modes is itself an inverse problem, whose ill-posedness is
exacerbated by gaps in the spatio-temporal data. Two current experiments take different approaches
to reducing diurnal gaps: the SOHO project observes the Sun from orbit around the L1 Lagrange
point, where the Sun never sets; the GONG network of solar telescopes spans the globe at mid
latitudes, so the Sun never sets on the network. Neither experiment can observe as much as half the
surface of the Sun at one time, and both suffer from occasional data loss, so there are gaps in the
data.

I will present an approach to estimating solar oscillation frequencies that mitigates the problems
caused by gaps by tailoring apodizing windows to the gap structure in an optimal way. The work,
joint with I.K. Fodor, extends work by Thompson, Riedel, Sidorenko, Bronez and others on optimal
tapering. Computing optimal tapers is very demanding computationally, but there is an inexpensive
approach that is nearly optimal in practice for typical helioseismic data. The frequencies of more
normal modes can be identified from these spectrum estimates than from estimates used previously
by the GONG project. Calculating confidence intervals for the multitaper spectrum estimates proves
to be challenging: existing methods–including parametric approximations and a variety of resam-
pling plans in the time and frequency domains–fail, partly because of the dependence structure of the
data. A novel resampling approach yields (apparently) conservative confidence intervals. Research
is underway to extend the approach to estimate the spatial spectra from spherical data.
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Nonparametric study of differential equations
and inverse problems

Anne Vanhems (anne.vanhems@univ-tlse1.fr)

Gremaq and Crest, University Toulouse, France

The aim of our work is to provide a general framework for studying nonparametrically differential
equations. We intend to replace our study in the context of inverse problems as treated by Tikhonov
and Arsenin (1977) and to link it with economic issues.

Therefore, let us consider independent identically distributed observations which admit an unknown
cumulative density functionF . Structural econometrics considers implicit transformation ofF . Of
course, the theory developped depends on the nature and properties of the transformation considered.
For example, there exists a wide literature about integral transformations, like additive models or
instrumental variables theory. We are interested in studying differential transformations ofF, and
by extension of the conditional expectation. In a general way, we want to characterize the solutions
of ordinary differential equations of that kind:�

y0 = m(x;y;F)
y(x0) = y0

wherey2 IR and m : IR� IR�z(IR)! IR is, for the moment, continuous. We want first to study
the existence and unicity of a solution, that is formally to inverse a differential operator. Second, our
objective is to consider the solution, if it exists, of the following system:(

y0 = m
�

x;y; bF�
y(x0) = y0

At last, we will study the asymptotic properties of these two solutions.

Such a purpose can be justified first by the numerous applications in economics. For example, in a
microeconomic context, Hausman and Newey (1995) estimate nonparametrically the exact consumer
surplus by solving a differential equation. In physics, Florens and Vanhems (2000) find the estimator
of the ionosphere thickness by solving a differential equation given by physics theory. In finance,
Ait-Sahalia (1996) studies the prices of derivative securities by solving a Cauchy problem.

Second, the properties of solutions of such systems are attractive. We all know that integrating
a nonparametric estimator will improve its properties. More generally, we want to examine the
properties of integral operators on a nonparametric estimator, and to show that it will improve it.
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Combining observations with models: Penalized
likelihood and related methods in numerical
weather prediction

Grace Wahba (wahba@cs.wisc.edu)

Department of Statistics, University of Wisconsin-Madison, Madison, USA

We will look at variational data assimilation as practiced by atmospheric scientists, with the eyes of a
statistician. Recent operational numerical weather prediction models operate on what might be con-
sidered a very grand penalized likelihood point of view: A variational problem is set up and solved
to obtain the evolving state of the atmosphere, given heterogenous observations in time and space,
a numerical model embodying the nonlinear equations of motion of the atmosphere, and various
physical constraints and prior physical and historical information. The idea is to obtain a sequence
of state vectors which is ‘close’ to the observations, close to a trajectory satisfying the equations of
motion, and simultaneously respects the other information available. The state vector may be as big
as 107, and the observation vector 105 or 106, leading to some interesting implementation questions.
Interesting non-standard statistical issues abound.

This talk is based partly on

J. Gong, G. Wahba, D. Johnson and J. Tribbia, ‘Adaptive Tuning of Numerical Weather Predic-
tion Models: Simultaneous Estimation of Weighting, Smoothing and Physical Parameters, Monthly
Weather Review 125, 210-231 (1998)

A related paper is G. Wahba, ”Adaptive Tuning, four Dimensional Variational Data Assimilation, and
Representers in RKHS, in ‘Diagnosis of Data Assimilations Systems’, Proceedings of a Workshop
held at the European Centre for Medium-Range Weather Forecasts, Reading, England, March 1999,
45-52. Both are available via Grace Wahba’s home page.
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