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Introduction

In the days 20–25 May, 2000 a Summer School on Stereology and Geometric Tomography
was held in the beautiful surroundings of Sandbjerg Manor in the Southern parts of
Denmark. The aim of the summer school was to give an overview of modern stereology
and its relation to geometric tomography, including both the mathematical and statistical
theory, and the practical applications.

In this small booklet we have gathered the program, abstracts, notes, and various other
information relating to the summer school. It is our hope that this collection can be
of use both to the participants of the school as well as to other researchers/students
working in the field(s).

I take pleasure in thanking the other lecturers for their dedicated work and the par-
ticipants for their positive attitude which were instrumental in creating the agreeable
atmosphere that was evident during the summer school. Last but certainly not least I
want to thank Søren Have Hansen and Oddbjørg Wethelund for their excellent organi-
sation of the summer school which we all benefited from.

Eva B. Vedel Jensen
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Aljoša Volčič . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Abstracts of Participants’ Lectures 20
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School Program (Final)

Legend:

(L) : Lectures
(TE) : Theoretical Exercises
(SL) : Special Invited Lectures
(PL) : Participants’ Lectures
(PE) : Practical Exercises

Saturday 20 May 2000

15.00—16.00 Coffee/tea

16.00—16.30
Welcome:
Presentation of teachers and participants.

16.30—17.10
Eva B. Vedel Jensen:
Introduction to stereology.

Richard Gardner:
Introduction to geometric tomography.

17.15—18.00
Adrian Baddeley:
Analogy between stereology and survey sampling (L).

18.00 Dinner

20.30— Get-together

Sunday 21 May 2000

09.00—09.45
Richard Gardner:
Star bodies, chord functions, and section functions (L).

10.00—10.45
Eva B. Vedel Jensen:
Stereological estimation of number (L).
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10.45—11.15 Coffee/tea

11.15—12.00
Niels Væver Hartvig:
Stereological estimation of number (TE).

12.00—14.00 Lunch

14.00—14.45
Richard Gill:
Quantum tomography as a statistical inverse problem (SL).

14.45—15.15 Coffee/tea

15.15—16.00
Aljoša Volčič:
Determination of a convex body by sections I (SL).

16.10—16.50
Markus Kiderlen:
Endomorphisms of convex bodies (PL).

17.00—17.30

Boris Rubin:
Arithmetrical properties of generalized Minkowski-Funk transforms
and small denominators on the sphere (PL).

18.00 Dinner

20.00—21.00
Adrian Baddeley:
The fractionator (PE).

Monday 22 May 2000

09.00—09.45
Richard Gardner:
The spherical Radon transform and Funk’s theorem (L).

10.00—10.45
Hans Jørgen G. Gundersen:
Counting and sampling in 3D (demonstration at the microscope).
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10.45—11.15 Coffee/tea

11.15—12.00
Adrian Baddeley:
Stereological sampling designs, volume estimation (L).

12.00—14.00 Lunch

14.00—14.45
Aljoša Volčič:
Determination of a convex body by sections II (SL).

14.45—15.15 Coffee/tea

15.15—16.00
Martin Bøgsted Hansen:
Statistical aspects of inverse problems (SL).

16.10—16.50
Niels Holm Olsen:
3D-reconstruction, light microscopy and optics of embryo (PL).

17.00—17.30

Andrew Olenko:
Closeness of random fields in different multidimensional metrics
(PL).

19.00— Summer school dinner

Tuesday 23 May 2000

09.00—09.45
Richard Gardner:
Determination by chord and section functions (L).

10.00—10.45
Eva B. Vedel Jensen:
Length and surface area estimation under isotropy (L).

10.45—11.15 Coffee/tea

11.15—12.00
Kiên Kiêu:
Length and surface area estimation under isotropy (TE).
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12.00—13.00 Lunch

13.00—17.30 Excursion

18.00 Dinner

Wednesday 24 May 2000

09.00—09.45
Richard Gardner:
Affine inequalities and volume estimates (L).

10.00—10.45
Adrian Baddeley:
Vertical sections (L).

10.45—11.15 Coffee/tea

11.15—12.00

Kiên Kiêu:
Variance of planar area estimators based on systematic sampling
(L).

12.00—14.00 Lunch

14.00—14.45
Boris Rubin:
Continuous wavelet transforms in geometric tomography (SL).

14.45—15.15 Coffee/tea

15.15—15.45
Eugene Spodarev:
One isoperimetrical problem for stationary flat processes (PL).

15.45—16.15
Martin Bøgsted Hansen:
Nonparametric estimation of the chord length distribution (PL).
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16.30—17.00

Marta Garcia-Finana:
Fractional trend of the variance under systematic sampling on R
(PL).

17.00—17.30
Stephan Böhm:
On Laslett’s test for Boolean model (PL).

18.00 Dinner

20.00—21.00
Hans Jørgen G. Gundersen:
How to estimate the volume and surface area of a banana (PE).

Thursday 25 May 2000

09.00—09.45
Eva B. Vedel Jensen:
Local stereology (L).

10.00—10.45

Kiên Kiêu:
Variance of planar area estimators based on systematic sampling
(TE).

10.45—11.15 Coffee/tea

11.15—12.00
Hans Jørgen G. Gundersen:
Connectivity (L).
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Abstracts of Lectures

Adrian Baddeley

University of Western Australia

Analogy between stereology and survey sampling

Abstract: The statistical principles which underlie modern stereological methods are
closely analogous to the classical theory of survey sampling. A slice through a three-
dimensional object is analogous to a survey sample of a population. The validity of
estimators is guaranteed by the randomness of the sampling design, which is under our
control, rather than by assumptions about the population or the observations. This
lecture will develop the analogy, and show that many of the key concepts of survey
sampling are also important in stereology. In particular, sampling bias is frequently
present in stereological experiments, and the Horvitz-Thompson device is frequently
used to correct for sampling bias.

Stereological sampling designs, volume estimation

Abstract: This lecture discusses some of the main types of stereological sampling
design with emphasis on the estimation of absolute volume and volume fraction.

Stereological methods for estimating geometrical quantities are based on identities in
integral geometry. For each integral formula, there are several possible stochastic inter-
pretations which will yield an unbiased estimator of the same quantity; these correspond
to different stereological sampling designs. It is also easy to construct erroneous designs
which superficially appear correct but which yield invalid estimators.

In biological applications of stereology, it is typical for the experimental protocol to con-
sist of several consecutive stages. At each stage the available material is subdivided or
sectioned, and a random sample of these pieces is taken. This “nested” design will be
discussed and the use of ratio estimators outlined.

Vertical sections

Abstract: In some stereological experiments, the section plane is constrained to
be normal to a fixed “horizontal” plane, or equivalently parallel to a fixed “vertical”
axis. Examples include cross-sections of metal fracture surfaces (taken normal to the
macroscopic plane of fracture); sections of a large biological organ cut perpendicular
to the laboratory bench; and transverse sections of skin. This sampling design does
not satisfy the usual requirement of isotropy, and indeed has a palpable sampling bias.
Nevertheless, it is possible to obtain an unbiased estimator of surface area from vertical
sections. We derive this estimator and sketch some practical implementations. The
underlying principle is one of the prototypes for ‘local’ stereology.
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Richard Gardner

Western Washington University

Star bodies, chord functions, and section functions

Abstract: We begin with a brief review of the principal methods of computer tomog-
raphy (namely, linear algebra and the Fourier transform), and a reminder of the main
theme of the lectures, mentioned in the introductory talk: the mysterious duality between
results and methods concerning projections of convex bodies and results and methods
concerning concurrent sections of star bodies. This duality, first noticed by E. Lutwak, is
not at all explained by the well-known polar duality; however, the latter already involves
the radial function ρL of a star body L , the function giving the signed distance from the
origin to the boundary of L. The i-chord functions ρi,L are generalizations of the radial
function that can be defined for any real number i. They are particularly useful when i is
an integer strictly between 0 and n, the dimension of the space (but other values are also
relevant, as in the various forms of the notorious equichordal problem). For these values
of i, the i-chord function is closely related (via the polar coordinate formula for volume)
to the ith section function of a star body, the function giving the i-dimensional volumes
of its intersections with i-dimensional subspaces. When i = 1, the ith section function
coincides with the 1-chord function, also known as the point X-ray at the origin (or, in
the computer tomography literature, the fan-beam X-ray at the origin). The (n − 1)th
section function is simply called the section function.

This and the other lectures are based on parts of the speaker’s book Geometric Tomog-
raphy, Cambridge University Press, New York, 1995, henceforth referred to as [G]. The
contents of Lecture 1 can be found in Sections 0.7, 0.8, 6.1, 6.3, and 7.2 of [G].

The spherical Radon transform and Funk’s theorem

Abstract: The spherical Radon transform Rf of a Borel function f on the unit sphere
is another function defined on the unit sphere whose value at a point u is the integral of
f over the great sphere orthogonal to u. The section function of a star body containing
the origin is, up to a constant, just R(ρn−1

L ). Using this and the injectivity of R on even
functions (a property that seems to require spherical harmonics for its proof), it can be
proved that under mild restrictions, two star bodies have equal ith section functions if and
only if they have equal i-chord functions. It follows that origin-symmetric star bodies are
determined by their ith section function (a general form of Funk’s theorem), and therefore
that an origin-symmetric star body of constant i-section must be a ball with center at the
origin. On the other hand, there are for each i non-spherical convex bodies of constant i-
section. Analogous results from the classical Brunn-Minkowski theory are Aleksandrov’s
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projection theorem, which states that origin-symmetric convex bodies are determined by
their ith projection function, and the existence of non-spherical convex bodies of constant
i-brightness (that is, constant ith projection function). Certain symmetric bodies are
also discussed: the i-chordal symmetrals, and some classical counterparts, the central
symmetral and the Blaschke body.

Lecture 2 is based on material in Sections 6.3, 7.2, and C.2 of [G].

Determination by chord and section functions

Abstract: The first part of this lecture continues the theme of determination of star
bodies by chord and section functions. We ask when a star body is determined by its
i- and j-chord functions, where i and j are different real numbers. In general one can
only say that a star body is locally determined, up to reflection in the origin, by such
data (even when its i-chord functions for all real i are known). However, additional
conditions, for example that the body contains the origin in its interior and has real
analytic boundary, or that the body does not contain the origin and is connected, suffice
for determination up to reflection in the origin. One can also conclude that a star body
of constant i-section and constant j-section, i 6= j, must be a ball with center at the
origin. Once again, there are classical analogs of these results. It is known that a convex
body of constant i-brightness and constant j-brightness must be a ball if its boundary
has positive Gaussian curvature everywhere; without the extra smoothness assumption,
however, it is even unknown whether a convex body in three dimensions of constant
width and constant brightness must be a ball.

The second part of the lecture begins to consider how the volume of a star body might be
estimated from its section function. Using Hölder’s inequality, one can obtain E. Lutwak’s
dual isoperimetric inequality. This, together with the dual of Cauchy’s surface area
formula, quickly leads to a lower bound for the volume in terms of the average of the
section function of the body, in which equality holds precisely for balls with center at
the origin.

Lecture 3 is taken from Sections 6.2, 7.2, and B.4 of [G].

Affine inequalities and volume estimates

Abstract: In this lecture we continue to study the question of how to estimate
volume from section functions. It turns out that the estimate obtained in Lecture 3 can
be dramatically improved: the average of the section function can be replaced by the nth
mean of the section function. Moreover, this improvement is best possible in that the nth
mean cannot be replaced by the pth mean for p > n, and it is affine invariant, equality
holding precisely for ellipsoids with center at the origin. The result can be reformulated
using the notion of the intersection body IL of a star body L containing the origin.
The radial function of IL equals the section function of L. Then the affine-invariant
estimate can be written as an upper bound for the volume of IL in terms of the volume
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of L and is known as Busemann’s intersection inequality. The classical analog is the
Petty projection inequality, an affine-invariant inequality stronger than the isoperimetric
inequality, giving an upper bound for the volume of the polar projection body of a convex
body K in terms of the volume of K. The proof of Busemann’s intersection inequality,
which uses Steiner symmetrization and the Blaschke-Petkantschin formula, is sketched.

Finally, some remarks are made about estimating upper bounds for volume from section
functions. This question quickly leads to one of the most important open problems in
the area, the so-called slicing problem concerning central sections of an origin-symmetric
convex body. Several formulations are briefly discussed.

Lecture 4 comes from Section 9.4 and Note 9.6 in [G].

Hans Jørgen G. Gundersen

Stereological Research Laboratory, University of Aarhus

Connectivity

Abstract: The Euler number and the connectivity of an arbitrary object is defined,
and it is illustrated why the connectivity of an n-dimensional object cannot be estimated
in an (n − 1)-dimensional section. The disector-principle for 3D counting of the Euler-
events is illustrated in cancellous bone. The correct handling for unbiased counting of
events at artificial edges is outlined. A nomogram for predicting the precision of an
estimate is provided.
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Eva B. Vedel Jensen

University of Aarhus

Stereological estimation of number

Abstract: In this lecture, we discuss how to estimate the number of objects in a
finite population. For a population of planar objects, estimates of population number
based on 2D disector sampling, Gundersen’s tiling rule, the associated point rule and
plus sampling are derived. All designs are special cases of a generalized type of cluster
sampling and the estimators are derived by the Horwitz-Thompson procedure. We also
discuss disector sampling in 3D as well as 3D counting. Finally, we will shortly mention
fractionator sampling.

Length and surface area estimation under isotropy

Abstract: The stereological method of estimating the length of a planar curve from
counting the number of intersection between the curve and a line grid goes back to Buffon
(1777). He found the probability that a randomly dropped needle crosses a grid line.
We will start by rederiving his result and explain how it can be used for estimating the
length of a planar curve, from intersection counts with a uniform and isotropic line grid.
We will thereafter discuss estimation of length and surface area in 3D, using isotropic
spatial line or plane grids. Finally, we will briefly mention the use of vertical sampling
planes in 3D.

Local steoreology

Abstract: Local stereology is a collection of stereological designs based on sections
through reference points. In this lecture we will give an introduction to local stereology
in E

n and relate this field to geometric tomography. We will begin by a simple example,
viz. local estimation of planar area. Next, we will present the local stereological volume
estimators in E

n and show that for a large class of bodies, they are proportional to the
section functions from geometric tomography. Finally, we will give a review of the local
stereological volume estimators in E

n .
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Kiên Kiêu (with Marianne Mora)

Institut National de la Recherche Agronomique

Variance of planar area estimators based on systematic sampling

Abstract: Systematic sampling is widely used in practical stereology. Examples
of systematic sampling probes are serial sections, line and point grids. Assessing the
precision of such designs is not a trivial task because of the statistical spatial dependency
of the data. First methods for assessing the precision of systematic geometric sampling
are due to Kendall (1948, 1953) and Matheron (1965, 1971).

We present their approach on a particular case: the estimation of planar area based on
sampling by parallel lines. First, the estimation variance is expressed in terms of the
Fourier transform of the indicator function associated to the investigated body. Using
classical tools from analysis (Gauss-Green formula, method of the stationary phase), an
asymptotic approximation of the Fourier transform is derived. This yields an asymptotic
approximation of the estimation variance involving some simple geometric features of the
body boundary.
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Abstracts of Special Invited Lectures

Richard Gill

University of Utrecht

Quantum tomography as a statistical inverse problem

Abstract: The idea that one could reconstruct the state of a quantum system by
taking appropriate measurements of many copies of the system has been a matter of
speculation in physics for many many years. It was actually done in the laboratory for
the first time in 1993 by Raymer, in the field of quantum optics. The non-stochastic
version of the problem turns out to be equivalent to the problem of recovering a function
on R

2 from all its one-dimensional projections, hence the name ’quantum tomography’.
Only very recently have physicists started to take account of the randomness of the
outcomes coming from what they call ’finite statistics’: the fact that only a finite number
of copies of the system can be measured. Randomness is intrinsic to any measurement
of a quantum system, and the theory actually specifies the probability density of the
measurements.

The problem can now be formulated as an inverse statistical problem: the data has a
density which is a given functional of an unknown infinite-dimensional parameter, and
one wants to estimate various functionals of the parameter. So far only ad hoc statistical
approaches have been tried. The challenge is to see if modern statistical theory (curve
estimation, sieved maximum likelihood estimation, ...?) can provide practically useful
estimators with good statistical properties.

Interestingly, recent work by the physicists in this area suggests also new approaches for
classical tomography (inversion of the Radon transform).

Introductory material on quantum statistics and quantum tomography can be found on
the speakers webpage http://www.math.uu.nl/people/gill
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Martin Bøgsted Hansen

MaPhySto & Aalborg University

Nonparametric estimation of the chord length distribution

Abstract: The distribution of the length of a typical chord of a stationary random
set is an interesting feature of the set’s whole distribution. A nonparametric (maximum
likelihood) estimator of the chord length distribution is given and its properties will be
studied. The estimator will be compared on simulated as well as real data.

Statistical aspects of inverse problems

Abstract: The purpose of the talk is to give an introduction to inverse problems, which
arise in many scientific areas. Informally, one can state a direct problem as calculating
the effect of some given causes, whereas the inverse problem is to derive the causes given
some effects.

An example is scattering of waves (e.g. ultrasound imaging). The direct problem is to
calculate the scattered waves given the scattering medium. On the opposite the inverse
problem is to find the scattering media given the wave source and the scattered waves.
As noise and uncertainty about the specified model are inevitable in many experiments
the talk will focus on statistical aspects of inverse problems.

Boris Rubin

The Hebrew University of Jerusalem

Continuous wavelet transforms in geometric tomography

Abstract: This is a survey lecture devoted to application of continuous wavelet trans-
forms to explicit inversion of various Radon-type transforms in Geometric Tomography.
We consider totally geodesic Radon transforms on real spaces of constant curvature, the
Minkowski-Funk transforms on the n-sphere, exponential k-plane transforms, horocycle
transforms in the hyperbolic space and related problems. The key idea is to include
Radon transforms under consideration into suitable analytic families of fractional inte-
grals which give rise to the relevant continuous wavelet transforms. Some open problems
leading to harmonic analysis and number theory are indicated.
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Aljoša Volčič

University of Trieste

Determination of a convex body by sections

1. Position of the problem

There are several papers in the literature which study the determination of convex bodies
from the measures of their intersections with lines and, in higher dimension, with affine
subspaces. These kind of questions where initiated by Hammer’s problem [H] which
motivated many papers since then. For an exhaustive account on the subject see [G],
Chapters 2, 5, 6 and 7.

The existing results can be divided in two classes. One group of papers gives conditions
on the position and number of points p1, p2, ...,pk which assure that a convex body
K ∈ IRm is uniquely detemined by the measures of the intersections of K with all the
affine subspaces of a given dimension i, 1 ≤ i ≤ m − 1, through ph, 1 ≤ h ≤ k (see [H],
[F]). We may also allow that some of the points are at infinity.

In other papers just one point p is fixed, and the measures of intersections correspond
to affine subspaces of (at least) two different dimensions (see [GSV] and [GV]).

In these lectures we will not address this second type of questions.

We will be concerned in fact with a more general situation, since the problem will be put
in the frame of the so-called i-chord functions, first introduced in [G1]. This concept is
not so appealing from the geometric point of view, but turns out to be an indispensable
tecnical mean.

2. Definitions and notations

A convex body in IRn is a compact convex set with non empty interior. We shall denote
by intK the interior of K and by ∂K its boundary. If p1, p2 are two points, we shall
denote by p1p2 the line joining them. If p1, p2, p3 are three non collinear points in IRm,
with m ≥ 3, we will denote by p1p2p3 the 2-dimensional plane containing them.

If K is a convex body, its radial function ρK is defined, for all u ∈ Sm−1 such that the
line through the origin parallel to u intersects K, by

ρK(u) = max{c : cu ∈ K} .

Let us denote by G(m, i) the set of all i-dimensional subspaces of IRm. By λi we denote
the i-dimensional Lebesgue measure.

If K is an m-dimensional convex body and i is a fixed integer, with 1 ≤ i ≤ m− 1, then
the i-section function of K at the origin is the function which assigns to every G ∈ G(n, i)
the number λi(G ∩K).

In particular, if i = 1, the i-section function is also called the X-ray function of K at p.
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We will consider also the X-ray function of a convex body K corresponding to a direction,
i.e. to a point at infinity. If u is a vector belonging to the unit sphere Sm−1 of IRm,
then the X-ray function of K in direction u is the function which assigns, to every line
L parallel to u, the number λ1(E ∩ L).

For i ∈ IR, let us define the i-chord function of a convex body K in IRm. If i ≤ 0,
we have to assume that the origin does not belong to the boundary of K. The i-chord
function ρi,K of K at the origin is the function defined for all u ∈ Sm−1 as follows. If
the line through the origin, parallel to u, does not intersect K, we define ρi,K(u) = 0.
Otherwise, if i 6= 0, we let

ρi,K(u) =

{
ρiK(u) + ρiK(−u) if K contains the origin∣∣|ρK(u)|i − |ρK(−u)|i

∣∣ if K does not contain the origin.

If i = 0, we let

ρi,K(u) =

{
ρK(u)ρK(−u) if K contains the origin

exp
∣∣log |ρK(u)/ρK(−u)|

∣∣ if K does not contain the origin.

The i-chord function of K at p ∈ IRm is simply the i-chord function at the origin of the
set K + p = {x ∈ IRm : x + p ∈ K}.
Note that for i = 1, the i-chord function and the i-section function are just the same.

Let us state now the following useful statement, which goes back to P. Funk, [Fu] and
gives a link between i-chord functions and i- section functions for 1 ≤ i ≤ m−1. A more
general result can be found in [GV].

Proposition 2.1. Suppose that K1 and K2 are convex bodies in IRm and let 1 ≤ i ≤
m− 1. Then

ρi,K1(u) = ρi,K2(u) for all u ∈ Sm−1

if and only if
λi(K1 ∩G) = λi(K2 ∩G) for all G ∈ G(m, i) .

The link between i-chord and i-section functions in a given direction u is given by the
following statement. Let us denote by u⊥ the plane through the origin orthogonal to u
and by Gu(m, i) the set of all the i-dimensional affine subspaces orthogonal to u⊥.

Proposition 2.2. Suppose that K1 and K2 are m-dimensional convex bodies, and let
1 < i ≤ m− 1 and let u be a direction. Then

λi(K1 ∩G) = λi(K2 ∩G) , (1)

for each G ∈ Gu(m, i) if and only if

λ1(K1 ∩ L) = λ1(K2 ∩ L) , (2)
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for every line in direction u.

This proposition confirms that there is no natural definition of i-chord functions of a
convex body in a direction u for i 6= 1.

Definition. Let i ∈ IR and consider the subspace G = {(x1, x2, . . . , xm) : xm = 0}. For
a bounded measurable set E in IRm let us define the measure

νi(E) =

∫
E

|xm|i−mdx1 . . . dxm .

The following proposition is one of the important tools which are used for proving the
uniqueness results listed in Section 3.

Proposition 2.3. Suppose that K1 and K2 are two convex bodies in IRm not intersecting
the plane {x = (x1, x2, . . . , xm) : xm = 0}. Suppose moreover that K1 and K2 have, for
some i ∈ IR, the same i-chord function at p = (t1, t2, . . . , tm−1, 0). Let A and A′ be two
components of int(K1 4 K2) such that a line through p intersects A if and only if it
intersects A′. Then

νi(A) = νi(A
′) .

3. The main results

We will list here the main theorems concerning the determination of convex bodies from
i-chord functions at two or more points.

Theorem 3.1 ([GM], [G]). Suppose K and H are convex bodies in IR2 and suppose
P is a finite set of points on a line l not intersecting K, not projectively equivalent to a
subset of directions of the edges of a regular polygon and such that K and H have the
same i-chord function at the points in P .

Then K = H.

Theorem 3.2 ([F], [G1], [V], [G]). Suppose K and H are convex bodies in IRm and
suppose p1 and p2 are points in IRm such that K and H have the same i-chord function
at pj, j = 1, 2. with i > 0. Suppose moreover that the line through p1 and p2 intersects
K.

Then K = H if

a) the line p1p2 meets int K and p1, p2 do not belong to int K, and K and H meet the
same component of p1p2 \ {p1, p2},
b) p1, p2 belong to int K or

c) the line through p1 and p2 supports K.

Theorem 3.3. Suppose K and H are convex bodies in IRm and suppose p1 and p2 are
points in IRm not belonging to K such that K and H have the same i-chord function at
p1, and the same j-chord function at p2, with i, j ∈ IR.
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Then K = H if int K and int H meet the segment [p1, p2].

Remark. There is no restriction on i and j.

Theorem 3.4 ([V]) . Suppose K and H are convex bodies in IR2 and suppose p1, p2,
p3 and p4 are points in generic position in IR2 such that K and H have the same X-rays
at pj , j = 1, 2, 3, 4.

Then K = H.

Theorem 3.5. Suppose K and H are convex bodies in IRm and suppose p1, p2 and p3

are non collinear points in IRm such that K and H have the same i-chord function at
pj , j = 1, 2, 3, with i > 1.

Then K = H if int K meets the plane p1p2p3 and pj 6∈ K for j = 1, 2, 3.

Remark. If pj ∈ K for j = 1, 2, 3, then K = H follows from Theorem 3.1, for all i > 0.
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Abstracts of Participants’ Lectures

Stephan Böhm

University of Ulm

On Laslett’s Test for Boolean Model

Abstract: In this talk plain images with black and white areas are considered, which
are, for example, extracted from data of groundwater examinations. The black areas
correspond to those geographical locations, where some groundwater index is above a
certain threshold. These areas are modeled as random closed sets. In order to prove the
hypothesis if the observed image could be the realization of a stationary Boolean Model
with compact and convex grains, Laslett’s Test is applied. Furthermore, a significance
test for the area fraction is considered, which is based on asymptotic normality of the
estimated area fraction and on consistency of the estimated covariance function. If one
can assume that the underlying random closed set is a stationary Boolean Model, the
assumtions of this significance test are satisfied reasonably well; see Baddeley (1980) and
Mase (1982). Finally, results of data analysis and implementation techniques will be
presented.
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Marta Garćıa-Fiñana (with Luis M. Cruz-Orive)
University of Cantabria

Fractional trend of the variance in systematic sampling on R

Abstract: Unidimensional systematic sampling is widely used in design stereology.
For this reason it is important to predict the variance of an estimator under this kind of
sampling. The corresponding theory has undergone significant advances in the last years
but it still has unsolved important points.

The problem is to estimate the integral Q of a non-random measurement function f :
IR → IR+ of bounded support by systematic sampling of period T on IR. The current
theory connects the variance of the estimator Q̂ of Q with the smoothness properties
of f . The singularities of the first non-continuous derivative of f , f (m), (m = 0, 1, ...),
determine the main contribution to the variance, called the extension term, which is
of O (T 2m+2) when T is small. If the singularities of f (m) are not finite, however, then
the current theory cannot be applied, as we illustrate with some examples. To handle
the problem we present an extended version of the Euler-MacLaurin summation formula
which allows a more general representation of the variance. We show that the extension
term decreases with fractional powers of the number of observations, that is:

VarE(Q̂) = O
(
T 2q+2

)
, q ≥ 0,

and we express VarE(Q̂), and the remaining variance components, in terms of fractional
q-derivatives of f . Our results lead to more general variance estimators. Finally, we
present a class of measurement functions which will still require a more general theory.

Marcus Kiderlen
University of Karlsruhe

Endomorphisms of convex bodies

Abstract: The talk ’Endomorphisms of Convex Bodies’ describes properties of certain
mappings, the ’endomorphisms’, from the set K of convex bodies in R

d into itself. These
mappings are compatible with the most basic geometrical structures onK. More precisely
they are assumed to be continuous, Minkowski-additive and to commute with all proper
rotations. An example is the function that maps a convex body to the invariant mean
(in the sense of Minkowski-addition) of orthogonal projections on k-planes (0 < k < d).

We state a representation theorem for endomorphisms using the generalized spherical
Radon transform. Injectivity properties are discussed. We will see that the only convex
bodies that are ’fixed points’ of (nontrivial monotonous) endomorphisms are balls.
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Andrew Olenko

Kyiv University

Closeness of random fields in different multidimensional metrics

Abstract: In many cases mathematical models for spatial phenomenon or images are
obtained as particular instances of random fields. Their correlation or spectral functions
often characterize models of this type reasonably well. There are a lot of numerical
methods for estimating the values of correlation or spectral functions. Since we usually
have a finite number of observations, it is clear that these methods build estimates only
for finite area. In this presentation there will be given some estimates of the closeness in
different metrics of the spectral and correlation functions of random fields.

Niels Holm Olsen

University of Copenhagen

3D-reconstruction, light microscopy and optics of embryo

Abstract: The evaluation of the fertility of living embryo is of practical importance
in the daily routines at fertility clinics as well as an ongoing biological research topic.
Living embryo may be studied through a light microscope. By focusing the microscope at
different optical sections, the three-dimensional structure of the embryo may be studied.
The reconstruction of the three-dimensional structure of living embryo from optical sec-
tional images, must be based on a model of the image formation. The image formation
is a result of the optical chararacteristics of the embryo and the microscope optics used.
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Boris Rubin

The Hebrew University of Jerusalem

Arithmetrical properties of generalized Minkowski-Funk transforms and
small denominators on the sphere

Abstract: The Cauchy problem for the Euler-Poisson-Darboux equation on the sphere
and various transforms of integral geometry (including those of Minkowski and Funk)
give rise to a family of fractional integrals associated with a spherical cap of fixed radius
θ. These fractional integrals are called the generalized Minkowski-Funk transforms.

Investigation of injectivity, invertibility and boundedness of these transforms in Sobolev
spaces leads to small denominators for spherical harmonic expansions and to some del-
icate problems related to arithmetical properties of zeros of the associated Legendre
functions.

Problems of such a type can be stated also for Jacobi (or Gegenbauer) polynomials. For
example, how does the number of common zeros of such polynomials, say, Pj(t), t = cosθ,
depend on θ? In other words, how many j’s satisfy the equation Pj(t) = 0 for t fixed?
The results are different depending on whether θ is a rational or irrational multiple of π.
In simplest cases the usual techniques of diophantine approximations are applicable.
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Eugene Spodarev

Friedrich-Schiller-Universität Jena

One isoperimetrical problem for stationary flat processes

Abstract: Consider any stationary process Φ of k-flats in R
d with intensity λ and

the directional distribution θ(·). Intersections of any two k-planes of Φ induce the new
stationary 2k− d flat process whose intensity is called the intersection density of Φ. A
series of researchers (R. Davidson (1974), J. Janson and O. Kallenberg (1981), J. Mecke
and C. Thomas (1984, 1988), J. Keutel (1992)) dealt with the following isoperimetrical
problem concerning Φ: one has to find such an extremal directional distribution θ(·) that
would maximize the above intersection density of Φ provided that λ is fixed. In the case
of hyperplanes (k = d−1) the solution is unique and coincides with Haar measure on the
sphere. In other particular cases the whole class of extremal measures θ(·) was described
but nevertheless there are still some open questions there (e. g. when d is not divisible
by d− k) .

The main result of our research yields the necessary conditions of extrema for arbitrary
dimensions d and k which are expressed in terms of the rose of intersections of Φ; we
get also retrieval formulae for the directional distribution of any stationary process of
k-flats in R

d from its rose of intersections for some important particular cases. Then the
characteristical properties of a rose of intersections are obtained.

The proofs involve the ideas of variational calculus on the cone of measures and harmonic
analysis on Grassman manifolds.
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Theoretical Exercises

Length and surface area estimation under isotropy

Exercise 1. Let Z be a line-segment in the plane R
2 of length l. Let Lθ,u be the line

with unit normal (cos θ, sin θ), θ ∈ [0, π), and signed distance u ∈ R to the origin, i.e.

Lθ,u = {(x, y) : x cos θ + y sin θ = u}.

A uniform and isotropic line G1 is then given by

G1 = {LΘ,U+j∆ : j = . . . ,−1, 0, 1, . . .},

where Θ is uniform random in [0, π) and U is independent of Θ and uniform in [0, ∆).

1. Show under the assumption l < ∆ that, conditionally on Θ,

P (G1 hits Z|Θ = θ) =
L(πθZ)

∆
=
| cos(θ − θ0)| · l

∆
,

where πθ is the orthogonal projection onto the line

{u(cos θ, sin θ) : u ∈ R}

and θ0 ∈ [0, π) is the angle that the line-segment Z makes with the x−axis.
Hint. Note that

Z ∩ LΘ,U+j∆ 6= ∅ ⇔ (U + j∆)(cos θ, sin θ) ∈ πθZ.

2. Show that the unconditional hitting probability becomes

P (G1 hits Z) =
2l

π∆
.

Hint.Without loss of generality we can assume that θ0 = 0.

Exercise 2. Let Z be a line-segment in R
3 of length l. Let Lω,u be the plane in R

3 with
unit normal ω ∈ S2

+ and signed distance u ∈ R to the origin. A uniform and isotropic
plane grid G2 in R

3 is then given by

G2 = {LΩ,U+j∆ : j = . . . ,−1, 0, 1, . . .},

where Ω ∈ S2
+ is an isotropic direction and U is independent of Ω and uniform in [0, ∆).

Using the same type of reasoning as in Exercise 1, it can be shown that

P (G2 hits Z) =
L(Z)

2∆
.
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The important new step, compared to the planar case described in Exercise 1, is to show
that the random variable L(πΩZ)/L(Z) is uniform in [0, 1]. Here, πΩ is the orthogonal
projection onto the line spanned by Ω.

Show that L(πΩZ)/L(Z) is uniform in [0, 1].
Hint. Without loss of generality, it can be assumed that Z is parallel to the z−axis. In
that case

L(πΩZ)/L(Z) = cos Θ,

where Θ is the angle between Ω and the z−axis. For an isotropic Ω, Θ has probability
density

p(θ) = sin θ, θ ∈ [0,
π

2
).

Exercise 3. Let X be a bounded flat surface in R
3 . Let P be the horizontal plane

through the origin. For any point z ∈ P , let Lz be the vertical line through z. A uniform
random grid of vertical lines is then given by

G1 =
{
LU+∆j : j ∈ Z2

}
,

where ∆ > 0 and U is a uniform random point in [0, ∆)× [0, ∆)× {0}.
Below, it is assumed that X is contained in a ball with radius smaller than ∆/2.

1. Let θ ∈ [0, π/2] be the angle between the normal to X and the vertical axis. Let
S(X) be the surface area of X. Compute the area S(πX) of the projection πX of
X onto the horizontal plane P .
Hint. The projection area may be written as∫

E

l
(
π(X ∩ (E⊥ + e))

)
de,

where E is a line parallel to X and P .

2. Compute the probability that X is hit by G1.

3. Consider the case where an isotropic random rotation r is applied to G1. Compute
the probability that X is hit by rG1.
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Solution to Exercise 1.

1. Since l < ∆, the line-segment Z can be hit by at most one line in the grid G1. If
we let 1{·} denote the indicator function, we therefore have

P (G1 hits Z|Θ = θ)

=
∞∑

j=−∞
P (LΘ,U+j∆ hits Z|Θ = θ)

=
∞∑

j=−∞
P (Lθ,U+j∆ hits Z)

=
∞∑

j=−∞

∫ ∆

0

1{Lθ,u+j∆ hits Z}du

∆

=
∞∑

j=−∞

∫ ∆

0

1{(u + j∆)(cos θ, sin θ) ∈ πθZ}
du

∆

=

∫ ∞
−∞

1{u(cos θ, sin θ) ∈ πθZ}
du

∆

=
L(πθZ)

∆
.

It is easy to show that L(πθZ) = | cos(θ − θ0)| · l, where l = L(Z) is the length of
the line-segment.

2. Let θ0 = 0. Then,

P (G1 hits Z) =

∫ π

0

P (G1 hits Z|Θ = θ)
dθ

π

=

∫ π

0

| cos θ| · l
∆

dθ

π

=
2l

π∆
.

Solution to Exercise 2. The only thing that has to be proved is that cos Θ is uniform
in [0, 1], when Θ has probability density p(θ) = sin θ, θ ∈ [0, π

2
). We find for u ∈ [0, 1]

P (cos Θ ≤ u) = P (Θ ≥ arccosu)

=

∫ 1

arccos u

sin θdθ

=

∫ u

0

dv

= u.
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Solution to Exercise 3.

1. The segment X ∩ (E⊥+ e) makes an angle equal to θ with the horizontal plane P .
Therefore,

l
(
X ∩ (E⊥ + e)

)
= l
(
X ∩ (E⊥ + e)

)
cos θ.

The projection area can be now written as

cos θ

∫
E

l
(
X ∩ (E⊥ + e)

)
de = cos θS(X).

Hence, we get the result

S(πX) = cos θS(X).

2. G1 hits X if and only if it hits πX. The probability that G1 hits πX is equal to
the ratio S(πX)/∆2. Therefore

P (G1 hits X) =
cos θS(X)

∆2
.

3. Let Θ be the random angle between the lines of rG1 and the normal to X. Since
r is isotropic random, Θ’s distribution has density: sin θ, θ ∈ [0, π/2).

Given Θ, the conditional probability that rG1 hits X is given by

P (rG1 hits X|Θ) =
S(X)

∆2
cos Θ.

The unconditional hitting probability is obtained by integration:

P (G1 hits X) =
S(X)

∆2

∫ π/2

0

cos θ sin θ dθ =
S(X)

2∆2

∫ π/2

0

sin 2θ dθ

=
S(X)

4∆2

∫ π/2

0

2 sin 2θ dθ =
S(X)

2∆2
.
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Stereological estimation of number

Exercise 1. This exercise concerns the systematic 2D-disector sampling design, applied
to the population of objects shown below.

1. The cluster Pj consists of those objects first seen in the j’th strip (vertical linear
band). The strips are ordered from left to right. Find Pj , j = 1, . . . , 5.

2. Systematic sampling of every second cluster is used, with a random start. Find the
resulting two different samples of objects.

3. Find the distribution of N̂ .

4. What is the distribution of N̂ if the ordering is reversed?

5. How can the two estimators of N be combined?

Exercise 2. Let P = {1, . . . , N} be a finite population and let S be a random sample
from the population. Suppose that all sampling probabilities are positive, i.e.

pi = P (i ∈ S) > 0, i ∈ P.

Let
N̂ =

∑
i∈S

p−1
i

be the Horvitz-Thompson estimator of N .

1. Show that N̂ is unbiased for N , i.e..

EN̂ = N.
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2. Show that the variance of N̂ is given by

VarN̂ =
∑

i∈P,j∈P

pi,j
pipj
−N2 =

∑
i∈P

1− pi
pi

+
∑

i∈P,j∈P,i6=j

pi,j − pipj
pipj

,

where pi,j = P (i ∈ S, j ∈ S).
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Solution to Exercise 1. With the ordering, indicated on the illustration, let Pj be the
set of objects first seen in the j’th strip. Then,

P1 = {1},P2 = {2, 3, 4, 8},P3 = {5, 6, 7, 9},P4 = {10, 11},P5 = ∅

The two possible samples become

S1 = P1 ∪ P3 ∪ P5 = {1, 5, 6, 7, 9} and S2 = P2 ∪ P4 = {2, 3, 4, 8, 10, 11},

which have each probability 1/2 of being sampled. Since

N̂ = 2 ·#S,

we get

P (N̂ = 10) = P (N̂ = 12) = 1/2.

If the ordering is reversed the clusters become

P1 = {10},P2 = {6, 7, 9, 11},P3 = {3, 4, 5, 8},P4 = {2},P5 = {1}

Here, we also find
P (N̂ = 10) = P̂ (N̂ = 12) = 1/2.

A combined estimator gives the answer 11, irrespectively of the sample chosen.

Solution to Exercise 2.

1. If we let 1{·} denote indicator function, we get

EN̂ = E
∑
i∈P

1{i ∈ S}p−1
i =

∑
i∈P

P (i ∈ S)p−1
i = N.
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2. For the first equality sign, it suffices to show that

E(N̂2) =
∑

i∈P,j∈P

pi,j
pipj

.

We find

E(N̂2) = E(
∑

i∈P,j∈P
1{i ∈ S}1{j ∈ S}p−1

i p−1
j )

=
∑

i∈P,j∈P
pi,jp

−1
i p−1

j .

For the second equality sign, we use that pi,i = pi.
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STEREOLOGICAL SAMPLING DESIGNS

Adrian Baddeley 1

University of Western Australia
adrian@maths.uwa.edu.au

Notes from Sandbjerg lecture 2

1 June 2000

Introduction

Stereology [53, 54] originated as the problem of studying a three-dimensional
physical object from random two-dimensional plane sections or projections,
and in particular of determining geometrical parameters such as volume, sur-
face area, length and total curvature. A typical result of classical stereology
states that (under suitable conditions) the fraction of volume occupied by
holes in Emmenthaler cheese can be statistically estimated from a random
thin slice of cheese, by measuring the fraction of area occupied by holes.

There is a very strong analogy between stereology and the classical meth-
ods of survey sampling [4, 52] | the statistical estimation of properties of
a population from observations made on random samples of the population.
In order to estimate the porosity of Emmenthaler cheese by this method we
do not need to know the spatial position of the slice of cheese, and indeed
the position of the section plane must have been random in a speci�c sense.
Hence this is a matter of statistical sampling inference, rather than computer
tomographic reconstruction. Many applied scientists are surprised to learn
that the volume of a three-dimensional object can be measured from plane
sections without having to perform a three-dimensional reconstruction of its
shape.

Modern stereology can be regarded as sampling theory for spatial pop-
ulations. It embraces a wide class of `geometrical random sampling' oper-
ations, such as clipping a two-dimensional image inside a window, taking
one-dimensional linear probes, or sampling a spatial pattern at the points of

1Copyright c
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a rectangular grid. The modern theory has links with stochastic geometry,
spatial statistics, image analysis and empirical processes [1, 8, 12, 25, 50].

This lecture is a very brief introduction to stereological sampling designs.
For more detail see [1, 8, 12, 25, 50, 53, 54, 55].

1 Basic concepts

1.1 Setting

A generic stereological sampling scheme is sketched in Figure 1. The exper-
imental material is a given, �xed set X � R

d (the `specimen' ) containing an
unknown subset Y � X (the `feature of interest' ). We generate a random
probe T intersecting X and we are able to observe the intersections X \ T ,
Y \ T of the probe with X and Y .

X

TY

Figure 1: Basic scheme: specimen X and feature Y intersected by probe T

For example X may be a three-dimensional solid object and Y may be
a solid component (or hole) within X, or a curved surface, a space curve,
etc. The probe T could be a randomly-positioned two-dimensional section
plane, a stack of parallel section planes, a sampling window of �xed size, a
one-dimensional line probe, etc.

Our objective is to statistically estimate geometrical properties of Y (such
as its volume or surface area) from the observed information in X \T , which
includes Y \ T . This is analogous to a survey sampling problem [4, 52]. We
may regard the specimen X as a `population' and the probe T as yielding a
`sample' X \ T from which we draw inferences.

The very close relation between stereology and survey sampling theory [4]
was �rst emphasised by Miles and Davy [13, 14, 42, 43, 44, 45] and developed
by Cruz Orive, Jensen, Gundersen and others [7, 11, 26, 28].
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The goal of stereological estimation is typically one of the following quan-
tities.

absolute size: the `size' �(Y ) of the feature of interest Y , where � is some
appropriate geometrical measure of size. Examples are the total volume
V (Y ) of neocortex Y in a human brain X available for sampling at
autopsy, and the surface area S(Y ) of the gas exchange surface Y in a
gazelle lung X.

relative size: the ratio �(Y )= (X) of `sizes' of the feature of interest Y to
the reference space X, where �;  are possibly di�erent measures of
size. Examples are the volume fraction VV = V (Y )=V (X) of neocortex
Y in brain X, and the surface area per unit volume SV = S(Y )=S(X)
of the gas exchange surface Y in a gazelle lung X.

particle average size: if Y consists of discretely identi�able objects or
`particles' Y1; Y2; : : : then the parameter of interest may be the aver-
age of the individual particle values �(Yi) of a measure of `size' �,
such as the particle volumes vi = V (Yi), surface areas si = S(Yi), etc.
and their higher moments if possible. Examples are the mean volume
vN =

P
i V (Yi)=N of individual air bubbles in neoprene rubber, and

the volume-weighted mean volume vV =
P

i V (Yi)
2=
P

i V (Yi) of bio-
logical cell nuclei in cancer diagnostic samples. [The total number N
of particles in a �nite population of particles Y1; : : : ; YN is regarded as
an `absolute' quantity. ]

Under the analogy with survey sampling, measures of absolute size �(Y )
are analogous to population totals, while ratios �(Y )= (X) are analogous
to population means, where the `population' is the specimen X. Particle
averages are also analogous to population means, but with respect to the
population of discrete particles.

In applications it is very important to distinguish carefully these three
types of parameters, as their practical interpretations are quite di�erent.
Changes in the absolute size (volume, surface area) of a biological organ are
relatively easy to interpret since the size is usually a measure of the func-
tional capacity of the organ. An increase in the surface area of the lung's
gas exchange surface implies an increased 
ow rate of oxygen into the blood.
However an increase in the relative size (volume fraction, surface area frac-
tion) of a feature Y relative to a reference space X may occur either because
Y has increased in size, X has decreased in size, or both have increased in
size with Y increasing proportionally more, or both have decreased in size
with Y decreasing proportionally less. Some spectacular errors in biological
science have been caused by misinterpretations of ratios.
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1.2 Integral geometry

As we noted in the Introduction, many researchers are surprised to learn
that the volume of a three-dimensional object can be measured from plane
sections without having to perform a three-dimensional reconstruction of its
shape. This is possible because of the volume of a three-dimensional object
is the integral of the areas of its plane slices:Z

1

�1

A(Y \ Th) dh = V (Y ) (1)

where Th is the plane f(x; y; z) : x = hg. This is a straightforward conse-
quence of Fubini's theorem.

[On a historical note, (1) was one of the main motivating examples for
the development of the integral calculus. An important half-way step in this
development was the discovery of Cavalieri's principle, namely, that two
solid objects which have equal plane sections (on all planes Th, say) have
equal volumes. Hence we could say it is Cavalieri's principle which enables
stereology to work.]

Certain other geometrical parameters, such as the surface area of a curved
surface in R3 , can also be determined from plane sections or line probes. This
relies on a class of identities analogous to (1) which have the general formZ

�(Y \ T ) dT = c �(Y ) (2)

where �; � are geometrical quantities and c = c�;� is a constant. The integral
is over all possible positions of the probe T , and dT is the appropriate
`uniform integration' over positions of T . Such results hold under minimal
regularity conditions without regard to the `shape' of the object Y , and hence
these estimation techniques have very wide application. However there is a
limited set of quantities � for which such results exist. The study of such
representations is integral geometry [48, 55].

1.3 Sampling interpretations

Each integral-geometric formula of the form (2) has many stochastic inter-
pretations, i.e. it can be applied in several di�erent ways to set up a ran-
dom sampling experiment and derive an estimator of the desired geometrical
quantity �(Y ).

Consider the identity (1) relating the volume of a solid Y to the areas of its
plane sections A(Y \Th) where again Th denotes the plane with x-coordinate
equal to h. Three possibilities are the following.
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simple random sample: equation (1) implies that we can estimate the vol-
ume V (Y ) from a single randomly-chosen plane section. Let [a; b] be
the interval obtained by projecting Y onto the x-axis. Generate a ran-
dom plane T by generating a random variable H uniformly distributed
on the interval [a; b] and taking T = TH . Slice the object Y through
the plane T , evaluate the section area A(Y \ T ), and estimate V (Y )
by bV = (b� a)A(Y \ T ):

Then we have

E [bV ] =

Z b

a

(b� a)A(Y \ Th)
1

b� a
dh

= V (Y )

so that bV is an unbiased estimator of V (Y ).

systematic random sample: we can estimate the volume V (Y ) by mea-
suring the areas of intersection of Y with a sequence of equally spaced,
parallel, section planes:

bV = �
X
m

A(Y \ TH+m�)

where � > 0 is a �xed spacing, the sum is over all integers m, and
H is uniformly distributed over [0;�]. This estimator can be viewed
simply as a �nite sum approximation to the integral of the function
f(x) = A(Y \ Tx) over the real line, based on a sequence of equally-
spaced sample points (h, h + �, h + 2�, . . . ). However, note that
the position of the sample is randomised, by assigning a value to h
which is uniformly distributed over an interval of length �. Under
these conditions the sample points form a systematic random sample
of points on the real line. This method is a direct analogue of systematic
sampling in �nite populations. The estimator is unbiased because

E [bV ] =

Z �

0

�
X
m

A(Y \ Th+m�)
1

�
dh

=
X
m

Z �

0

A(Y \ Th+m�) dh

=
X
m

Z (m+1)�

m�

A(Y \ Th) dh
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=

Z
A(Y \ Th) dh

= V (Y ):

In applied stereology this method is often called \the estimation of
volume by Cavalieri's principle."

estimation of a ratio: as noted above, we may wish to estimate the volume
fraction VV = V (Y )=V (X) of a solid Y inside another solidX. However
there is an important caveat here. Recall that the expectation of a
ratio of two random variables is generally not equal to the ratio of
their expectations:

E

�
A

B

�
6=
E A

E B

Hence if A;B are unbiased estimators of V (Y ); V (X) respectively, then
the ratio A=B is typically a biased estimator of V (Y )=V (X). This is
analogous to the problem of variable sample size in survey sampling:
the sample mean is of a uniform random sample is not an unbiased
estimator of the population mean if the sample size is random.

In the stereological context, this problem was �rst pointed out by Miles
and Davy [14, 44]. Suppose we take a single random plane section
T = TH where H is uniformly distributed on an interval [a; b] which
contains the projections of X and Y onto the x-axis. Then the ratio of
section areas A(Y \T )=A(X \T ) is a biased estimator of V (Y )=V (X),
because

E

�
A(Y \ T )

A(X \ T )

�
=

1

b� a

Z
A(Y \ Th)

A(X \ Th)
dh 6=

R b
a
A(Y \ Th) dhR b

a
A(X \ Th) dh

=
V (Y )

V (X)
:

In order that A(Y \T )=A(X\T ) be an unbiased estimator of V (Y )=V (X)
we need to change the probability distribution of the section plane
T . Let T have probability density proportional to the section area
A(X \ T ). Thus H has probability density

p(h) =
A(X \ Th)R
A(X \ Tz) dz

=
A(X \ Th)

V (X)

the area-weighted density. Then

E

�
A(Y \ T )

A(X \ T )

�
=

Z
A(Y \ Th)

A(X \ Th)

A(X \ Th)

V (X)
dh
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=

Z
A(Y \ Th)

V (X)
dh

=
V (Y )

V (X)
:

This technique is analogous to the survey sampling method of proba-
bility proportional to size (pps) sampling. Miles and Davy [14, 44] de-
veloped the theory of stereological estimation using weighted random
probes and showed how these could be implemented. This approach
was adopted in Weibel's classic textbook [53, 54].

stationary random set: a quite di�erent formulation of stereological meth-
ods is possible if the three-dimensional material has e�ectively in�nite
extent, and can be assumed to be \homogeneous" in a statistical sense.
This might be appropriate for the study of samples of metal taken from
a steel mill, or samples of volcanic rock.

Assume that Z is a random closed set in R
3 (see [51]) which is sta-

tionary in the sense that its probability distribution is invariant under
translations of R3 . The volume density VV of Z can be de�ned as the
expected volume fraction of Z within any �xed reference region X of
�nite positive volume:

VV =
E [V (Z \X)]

V (X)
: (3)

Stationarity implies that this ratio does not depend on X.

Now let S be a �xed, bounded subset of a two-dimensional plane in R3 ,
having �nite positive area A(S). The area fractionAA = A(Z\S)=A(S)
is an unbiased estimator of VV , by the following argument. Without
loss of generality assume S is a subset of the (y; z) coordinate plane
and construct the prism X = [0; 1]�S with unit height on the base T .
Applying (1) to the numerator of (3) we have

VV =
1

V (X)
E

�Z 1

0

A(Z \ Sh) dh

�
=

1

A(S)

Z 1

0

E [A(Z \ Sh)] dh

where Sh = Th\S = fhg�S is the plane section of X at height h. Now
Sh is the translation of S by a distance h parallel to S; by stationarity,
A(Z \ S) has the same distribution as A(Z \ Sh), so E [A(Z \ Sh)] =
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E [A(Z \ S)]. We obtain VV = E [A(Z \ S)] =A(S), so the estimator is
unbiased.

This argument is similar to the original derivation by Delesse [15]. This
approach to stereology is called model-based because it imposes model
assumptions such as stationarity. It is the approach adopted in [51,
chapter 10].

2 Sampling inference

Miles [42] �rst emphasised the importance of the correct speci�cation of
stereological sampling experiments. In this section we give details of how
such speci�cations are made.

2.1 Formulations

Miles [42] distinguished three kinds of inference in stereology:

`restricted case': the specimen X and feature Y are non-random, bounded
sets which are the sole object of interest (e.g. X is a whole organ or
tumour);

`extended case': the specimen X available for examination is but a portion
sampled from a much larger object W (e.g. a rock sample from a large
rock outcrop);

`random case': the internal structure of the sample is a realization of a
spatial random process. That is, the specimen X is a �xed set, but the
feature Y inside X is generated as Y = X \ Z where Z is a random
closed set (e.g. a sample from a continuous roll of steel formed under
given conditions).

The restricted case corresponds to �nite population survey inference, the
extended case roughly to in�nite population inference, and the random case
to superpopulation inference.

These three sampling contexts are di�erent with regard to their sampling
requirements and the inferences which may be drawn from the sample, as
Miles [42] explains. In the restricted case, we do not need to assume anything
about the geometrical con�guration of the feature Y and specimenX, but the
probe T must adhere strictly to a random sampling protocol. The estimates
of parameters �(Y ), �(Y )= (X) etc. obtained under these conditions are
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estimates of properties of the contents of the specimen X itself. This is
\randomised design based survey sampling".

In the extended and random cases, assumptions of `statistical homogene-
ity' are made about the contents of the specimen, and the position of the
probe T is often irrelevant. The parameter estimates are not interpretable in
terms of the specimen X; rather, they are estimates of averages over larger
(super-)populations. Sampling variability (due to the random placement of
T ) is ignored, or con
ated with other sources of variability.

Examples of the restricted case are the estimation of the total number
and total volume of tumour cells in a tumour excised (in its entirety) from a
patient; and estimation of the total length of glomerular tubules in the kidney
of a laboratory rat. In both examples we need to estimate these quantities
for the speci�c individual patient or animal. It would not be prudent to
assume these biological structures exhibit any kind of spatial homogeneity.

Examples of the random case are the estimation of the volume fraction VV
of tungsten carbide in a composite abrasive material, and estimation of the
surface area per unit volume SV of metal grain surfaces in a certain type of
steel. In both examples the parameter of interest is the average composition
of the material. This implies that we average over any large-scale spatial
variation in the characteristics of the material.

2.2 De�nition and interpretation of parameters

These three inferential contexts also a�ect the de�nition and interpretation
of stereological quantities.

Absolute geometrical quantities such as volume V (Y ) and surface area
S(Y ) are well-de�ned only in the `restricted' case. Under the analogy with
survey sampling, absolute quantities correspond to population totals.

Ratios such as the volume fraction VV = V (Y )=V (X) occupied by Y
within X, and the surface area per unit volume SV = S(Y )=V (X), are also
well-de�ned only in the `restricted' case. They correspond to population
means in �nite population sampling. However, in the `extended' and `ran-
dom' cases, we can de�ne analogous quantities called densities, which cor-
respond to averages over an in�nite population or superpopulation, respec-
tively. Examples in the `random' case are the mean volume fraction VV =
E [V (Y \X)]=V (X) and mean surface area fraction SV = E [S(Y \X)]=V (X)
of the random set Y . We need to assume that the underlying random set
process Z is stationary so that these quantities do not depend on X and can
genuinely be interpreted as average densities.

Particle average quantities are de�ned when Y consists of discretely iden-
ti�able objects or `particles' Y1; Y2; : : :. The averages of individual particle
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quantities �(Yi) over the particle population may be de�ned in all three set-
tings. In the `random' case we need the methods of stochastic geometry [51]
to describe a stationary random process of particles (compact sets) in order
to take an expectation over particles.

2.3 Containing space and reference space

Baddeley and Gundersen [3] make the further distinction between a con-
taining space and a reference space. A containing space serves simply as a
`container' X which we sample at random in order to obtain random samples
of the feature of interest Y . This is often the case when we are estimating
an absolute geometrical quantity. The containing space is required to com-
pletely contain Y , but its size and extent need not be known exactly. For
example, in order to estimate the total volume of a tumour, it suÆces to
remove enough tissue from the patient to ensure that the entire tumour has
been removed, and then to sample (correctly!) from this excised tissue.

In contrast, a reference space is a well-de�ned object X of known or
measurable size  (X). The size �(Y ) of the feature of interest Y is expressed
relative to X using the ratio �(Y )= (X). The reference space X need not
contain the feature Y , although it often does. The boundary of the reference
space must be clearly de�ned and its size  (X) must be known exactly,
in order to form the ratio �(Y )= (X). For example the volume fraction
VV = V (Y )=V (X) of neocortex Y in brainX is well-de�ned (and comparable
between di�erent publications) only if the spatial extent of the brain is de�ned
unambiguously (for example we must clearly de�ne the boundary between
brain and spinal cord).

2.4 Overview of sampling designs

The early development of stereology focused on the estimation of ratios and
densities such as VV and SV in the `extended' and `random' cases. Some very
elegant and simple estimators exist in this setting, and they are the standard
methods in materials science.

In biological applications, the `restricted' case is the natural setting, be-
cause biological structures have �nite extent and cannot be assumed to be
spatially homogeneous. The development of a valid statistical basis for stere-
ology in this context was hindered by the fact that many of the simplest stere-
ological sampling operations (such as taking a single plane section through
an organ) have variable sample size. Fixed sample size is obtainable using
a sampling window or `quadrat' [7, 11, 13, 43, 45] but only in the extended
or random cases. Variable sample size hampers the estimation of population
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means such as VV ; SV because the sample mean is not an unbiased estimator
of the population mean if the sample size is random. Miles and Davy [14, 44]
were the �rst to point this out, and statistical research in the 1980's gave
considerable attention to this problem [13, 26]. Miles and Davy [14, 44] also
suggested the use of size-weighted sampling designs which have probability
proportional to sample size (analogous to pps sampling in �nite population
survey sampling) and which do yield unbiased estimators of ratios such as
VV ; SV . This approach to stereological sampling is presented in Weibel's
classic book [53, 54].

Systematic random samples are also possible, in the form of a stack of
equally-spaced parallel section planes, a regular grid of test lines, etc. The
great importance of systematic sampling for estimating population totals
V (Y ); S(Y ) was not realised until somewhat later [10, 7, 21, 26]. The modern
theory of stereological estimation depends very much on the use of systematic
samples.

In classical survey sampling, it is possible to use sampling schemes which
have nonuniform sampling probabilities and variable sample size, provided
that when we form an estimator, the contribution from each unit in the
sample is weighted by the reciprocal of its sampling probability. This is the
well-known device of Horvitz and Thompson [24]. A very similar device can
be used in stereology to derive unbiased estimators of geometrical parameters
from nonuniform sampling designs, including plane sections through a �xed
point, line probes through a �xed point, and plane sections constrained to be
perpendicular to a given reference plane. This is the �eld of local stereology
[28].

3 Integralgeometric identities

3.1 Overview

As discussed in section 1.2, our ability to estimate geometrical parameters
by stereological methods rests on the section formulae of integral geometry
[48, 55]. These have the general formZ

�(Y \ T ) dT = c �(Y ) (4)

where �; � are geometrical quantities and c = c�;� is a constant. The integral
is over all possible positions of the probe T , and dT is the appropriate
`uniform integration' over positions of T . Such results hold under minimal
regularity conditions without regard to the `shape' of the object Y , and hence
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these estimation techniques have very wide application. However there is
a limited set of quantities � for which such results exist. Following is a
thumbnail sketch of some of the most well-known examples.

The mean content formulae enable us to determine the k-dimensional
content of a k-dimensional subset Y in Rd (where 0 < k � d) by integrating
over all m-dimensional section planes T , where d � k � m < d. The inter-
section Y \ T has dimension m + k � d generically. (In the example above
we had d = 3, m = 2 and k = 3 so that m + k � d = 2.) If �n denotes
n-dimensional content (Hausdor� measure), the formulae assert thatZ

m-planes

�m+k�d(Y \ T ) dT = ck;m;d �k(Y )

where the integral is over all m-dimensional planes T in Rd , and dT denotes
`uniform integration' over all T in an appropriate sense. Again ck;m;d is a
geometrical constant.

In three dimensions, the mean content formulae state that:

� the volume of a solid can be determined from the areas of its plane
sections (m = 2; k = 3);

� the surface area of a curved surface in R3 can be determined from the
lengths of its intersection curves with section planes (m = 2; k = 2);

� the length of a curve in space can be determined from the number of
intersection points it makes with section planes (m = 2; k = 1);

� the volume of a solid can be determined from the lengths of its inter-
sections with straight line probes (m = 1; k = 3);

� the surface area of a curved surface in R3 can be determined from the
number of times it meets a straight line probe (m = 1; k = 2).

In the rest of this section we spell out the details of these mean content
formulae.

3.2 Plane sections in R
3

The position of a two-dimensional plane in R
3 is determined by its unit

normal vector u and its distance s from the origin,

Tu;s =
�
x 2 R

3 : x � u = s
	

where � denotes inner product of vectors. It is convenient to take the unit
normal u to lie on the hemisphere S2

+ = f(x; y; z) : x2 + y2 + z2 = 1; z � 0g
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and to allow signed distances s 2 R. It turns out [48] that the appropriate
uniform measure for integrating over all planes T is dT = du ds where du
is the usual uniform (area) measure on the hemisphere, with total value 2�.
This measure is invariant under translations and rotations of R3 .

Integrating (1) uniformly over all orientations u we obtainZ
planes

A(Y \ T ) dT = 2�V (Y ) (5)

where the integral is now over all planes in R3 . This states that the volume of
a set Y (satisfying minimal conditions for measurability) can be determined
by integrating over all planes T in R3 the area of intersection between Y and
T . This obviously has direct application to stereology.

Other results are more surprising. Let S be a two-dimensional curved
surface in R

3 of �nite surface area A(S), satisfying certain regularity and
recti�ability conditions. ThenZ

planes

L(S \ T ) dT =
�2

2
A(S) (6)

where L(S \ T ) is the length of the curve S \ T of intersection between the
surface S and the plane T . Applications of this formula allow the area of a
curved surface to be statistically estimated from the lengths of plane section
curves.

Let C be a (one-dimensional) space curve in R
3 of �nite length L(C),

satisfying certain regularity and recti�ability conditions. ThenZ
planes

n(C \ T ) dT = �L(C) (7)

where n(C \ T ) is the number of points of intersection between the curve C
and the plane T . Applications of this formula allow the length of a curved
�lament to be statistically estimated from the number of crossings it makes
with plane sections.

3.3 Line probes in R
3

Instead of two-dimensional plane sections, we may consider random probes
of other types. A one-dimensional straight line probe can be used to estimate
the area of a curved surface or the volume of a solid.

To determine the position of a one-dimensional in�nite straight line L
in R

3 we specify its direction vector u (a unit vector parallel to L) and its
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vector displacement x from the origin. We may take x to be perpendicular
to u so that it lies in the two-dimensional plane u? perpendicular to u. The
appropriate uniform measure for integration over all lines in R3 turns out to
be dL = dx du where du is uniform integration over the sphere as before,
and dx is uniform integration over the plane u?. [Note the set of all pairs
(u; x) with x 2 u? is not a Cartesian product, so this statement only makes
sense when we integrate over x 2 u? with u �xed in the innermost integral.]

The volume V (Y ) of a measurable subset Y � R
3 can be recovered fromZ

lines

`(Y \ L) dL = 2�V (Y ) (8)

where `(Y \L) is the length of the intersection Y \L between the feature Y
and the line probe L. This is a straightforward consequence of Fubini's theo-
rem. Applications of this formula allow volumes to be statistically estimated
from intersections with systems of test lines.

Let S be a two-dimensional curved surface in R
3 of �nite surface area

A(S), satisfying certain regularity and recti�ability conditions. ThenZ
lines

n(S \ L) dL = �A(S) (9)

where n(S \ L) is the number of intersection points between the surface S
and the line probe L. Applications of this formula allow the area of a curved
surface to be statistically estimated from its intersections with systems of
test lines.

4 Stochastic interpretations

As explained in section 1.3 there are several possible random sampling inter-
pretations of an integral geometric identity (4). The interpretation depends
on the desired type of sampling inference, following Miles' trichotomy de-
scribed in section 2.1.

Four `template' sampling schemes were sketched in section 1.3 for the
special case of estimating volume from plane section area:

� uniform sampling

� systematic sampling

� size-weighted sampling (for estimating a ratio)

� arbitrary sample of a stationary random set.

In the general context, these four templates operate as follows.
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4.1 Uniform sampling

Here X and Y are �xed, bounded subsets of Rd with Y � X and the extent
of X is known. Thus X is both a containing space and a reference space (see
section 2.3). We generate a random probe T intersecting X with the uniform
probability distribution which has probability element

dP =
1

�(X)
dT (10)

with dT denoting uniform integration in the sense of the appropriate integral
geometric identity (4), and where

�(T ) =

Z
1 fT \X 6= ;g dT

is the measure of all positions of the probe T in which T intersects X. Then

E �(Y \ T ) =
�(Y )

�(X)
(11)

so that �(X)�(Y \ T ) is an unbiased estimator of �(Y ).
For example, if T is a two-dimensional plane in R

3 , then T is uniformly
distributed in the sense of (10) if the (direction, distance) parameters (u; s)
described in Section 3.2 are jointly uniformly distributed over the set�

(u; s) 2 S2
+ � R : Tu;s \X 6= ;

	
:

This is called an isotropic, uniformly random (IUR) plane.
Note carefully that an IUR plane does not have a marginally uniformly

distributed orientation u.

4.2 Systematic sampling

Here X; Y are �xed, bounded subsets of Rd with Y � X. We only need X to
serve as a containing space (so that the exact dimensions of X do not need
to be known).

Systematic sampling is easier to implement than IUR sampling in almost
all applications, and simpler to justify, since the variability of the sample
size does not present diÆculties. However, a general de�nition of systematic
sampling in an abstract setting is mathematically involved. See [48] for some
general integral-geometric identities for systematic arrays of geometrical ob-
jects. A systematic array can be de�ned as the image of a single geometrical
object (such as a line or plane) under a �nitely-generated group of Euclidean
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rigid transformations. The resulting integral geometric identities have the
same general form as (4), except that T is a systematic array of planes, lines,
etc., and the total measure

R
dT = � is a known, �nite geometrical constant.

The prime example is that of serial section planes in R3 . De�ning Tu;s =
fx 2 R

3 : x � u = sg as before, a serial section stack of constant spacing � >
0 is of the form

Su;s = fTu;s+m� : m 2 Zg

for u 2 S2
+ and s 2 [0;�]. The total measure of all serial section stacks is � =R

ds du = 2��. An isotropic, uniformly random (IUR) serial section stack
is generated by taking u and s to be independent and uniformly distributed
over S2

+ and [0;�] respectively. The identities (5){(7) yield respectively

E

"X
m

A(Y \ Tm)

#
=

1

�
V (Y )

E

"X
m

L(S \ Tm)

#
=

�

4�
A(S)

E

"X
m

n(C \ Tm)

#
=

1

2�
L(C)

in the same notation, where Tm = Tu;s+m�. Thus an IUR serial section stack
enables us to estimate volume, surface area and length knowing only the
spacing � between the sections.

Other commonly-used examples include a rectangular grid of points in
R
2 (a \test point grid"), a sequence of equally spaced parallel lines in R

2

(a \test line grid") and a systematic array of parallel lines in R
3 (a \fakir's

bed").

4.3 Weighted sampling

The setting is the same as in section 4.1, except that we exploit two identities
of the form (4) for pairs of quantities (�; �) and (�0; � 0) in order to estimate
the ratio � 0(Y )=�(X). We generate a random probe T intersecting X with
the �-weighted probability distribution which has probability element

dP =
�(X \ T )

c�(X)
dT (12)

where c = c�;� is the geometrical constant appearing in (4). Then

E

�
�0(Y \ T )

�(X \ T )

�
= b

� 0(Y )

�(X)
(13)
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where b = c�0;�0=c�;� is another geometrical constant. Thus,

1

b

�0(Y \ T )

�(X \ T )

is an unbiased estimator of the ratio � 0(Y )=�(X).
As explained in section 1.3, this is analogous to the survey sampling

method of probability proportional to size (pps) sampling. Miles and Davy
[14, 44] developed the theory of stereological estimation using weighted ran-
dom probes and showed how these could be implemented. This approach
was adopted in Weibel's classic textbook [53, 54].

The connection with ratio estimation was developed and it was later
realised that a more practical alternative is to invoke (13) using the ratio-of-
sums estimator Pm

i=1 �(Y \ Ti)Pm

i=1 �
0(X \ Ti)

based on a suÆcient number of independent uniform samples T1; : : : ; Tm.

4.4 Arbitrary sample of homogeneous material

In the `random' and `extended' cases we adopt a completely di�erent ap-
proach to sampling. The feature of interest Y is taken to be a random set
in R

d which is assumed to be statistically homogeneous. The probe T may
as well be a �xed k-dimensional subset of Rd with known, bounded extent.
Then we obtain interpretations of (4) in the form

E�(Y \ T )

�k(T )
= c

E�(Y \X)

V (X)
(14)

where X is an arbitrary solid in R3 , and on both sides E denotes expectation
with respect to the distribution of Y . Stationarity implies that the right
hand side of (14) does not depend on X and equals a desired parameter
of the distribution of Y (a density or `superpopulation average'). Again
c is a geometrical constant and �k(T ) denotes the k-dimensional content
(Hausdor� measure) of T .

Di�erences and links between design-based and model-based inference are
discussed in [1, 25, 49, 50]. Biological applications typically require a design-
based approach, e.g. because biological organs are highly organised; materials
science applications often lend themselves to a model-based approach.
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5 Strategies for designing stereological exper-

iments

This section of the notes is fragmentary at the moment.

In practical applications of stereology, the sampling protocol must be
designed with a view to ensuring the validity of the estimators and to min-
imising the variance contribution from sampling variation.

This section describes some of the main strategies which can be used to
develop good sampling protocols. We refer only to the `restricted' case where
X; Y are �xed bounded subsets of R3 and Y � X.

5.1 Strati�cation

Strati�cation of a population is a standard technique for reducing variance in
survey sampling. In stereology this method can be applied when the quantity
of interest is an absolute geometrical quantity �(Y ) which is additive in the
sense that �(Y1 [ Y2) = �(Y1) + �(Y2) when Y1; Y2 are disjoint.

We may stratify the specimen X by physically dividing X into disjoint
pieces X1; : : : ; XK (with consequent unseen division of Y into pieces Yi =
Y \ X). Then we treat each piece Xi as a separate specimen and estimate
the desired absolute geometrical property �(Yi) by sampling Xi. Finally we
form an estimate of �(Y ) =

PK

i=1 �(Yi) by summing the estimates of each
�(Yi).

Advantages of strati�cation include the ability to sample with di�erent
intensities or sample sizes in each subpopulation Xi, and the fact that it
allows us to randomise over the section orientation (the common orientation
of the section planes through Xi is random and di�erent in di�erent pieces
Xi).

5.2 Ratio estimation

In survey sampling theory, \ratio estimation" means the estimation of a
population parameter � by a two-stage process in which we �rst estimate
another parameter � that is easier to estimate, and then estimate the ratio
�=� of the two parameters by di�erent means.

Ratio estimation has many applications in biological stereology because
of the widely di�ering scales of organisation of biological structures. Suppose
we wish to estimate the total volume V (Y ) of the cortex Y of a kidney X.
Write

V (Y ) =
V (Y )

V (X)
� V (X):
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We can estimate V (X) macroscopically, for example by measuring the volume
of 
uid displaced by the kidney, or by using \Cavalieri's principle" at low
magni�cation. Then taking plane sections of the kidney and using higher
magni�cation we can estimate VV = V (Y )

V (X)
by test point counting.

Ratio estimation can be applied repeatedly at multiple scales. Suppose
we wish to determine the total volume of the tubules Z in the cortex Y of a
kidney X. We can write

V (Z) =
V (Z)

V (Y )
�
V (Y )

V (X)
� V (X);

estimating V (X) and V (Y )
V (X)

as before, we can estimate the tubule/cortex

fraction VV = V (Z)
V (Y )

at higher magni�cation, with test point counting.

5.3 Nesting

The typical stereological experiment is a nested design involving several levels
of subsampling [11, 18]. For example, in many biological applications, organs
are taken from each of several animals; several tissue blocks are sampled
from each organ; several thin sections are cut from each block; and several
sampling windows are photographed on each section.

5.4 Granularity and dimension of probes

Additionally one can choose from a variety of `test probes' of di�erent ge-
ometries and dimensions. For example the volume of a three-dimensional
object can be estimated using random 2-dimensional plane sections, random
1-dimensional linear probes, or random test points. There is a lively discus-
sion over their relative merits, particularly because low-dimensional probes
can be performed manually and quickly, whereas higher-dimensional probes
require computer image processing [19, 20, 40].

6 Information about variances

This is very rough at the moment

It is diÆcult to make general statements about the variance or eÆ-
ciency of stereological estimators, and this is still a matter of controversy
[13, 16, 17, 27]. Some progress has been made on the variance of systematic
sampling [9, 22, 30, 37, 41]. See Kiên Kiêu's lectures for up-to-date

information and references.
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Cruz Orive [6] developed a theory of best linear unbiased estimation of
ratios in stereology, which however appears to be successful only for �xed
sample size designs [27].

6.1 Variance components in nested designs

The typical stereological experiment is a nested design involving several levels
of subsampling [11, 18].

Standard techniques of nested ANOVA can be applied to estimate vari-
ances and variance contributions empirically. In biological experiments, the
results of ANOVA frequently indicate that the between-animal variance is
substantially larger than other sources of variation. The optimal allocation
of sampling e�ort is then to sample a large number of animals and spend
relatively little e�ort on measuring the data in each sampling window (\do
more less well" [11, 18]).

6.2 EÆciency of systematic sampling

See Kiên's talk.

Point count estimators using a random test grid have been much studied
[7, 23, 26, 31, 32, 45], [47, chap. 3], [35, 36, chap. 3] and recent work
[9, 22, 30, 37, 41] has shown that they are very accurate in most situations.

6.3 Rao-Blackwell

A typical issue [18, 19, 20, 40] concerns the relative eÆciency of the quadrat
and point-counting estimators of area fraction in the plane.

Intuitively one expects a point-counting estimator to have higher variance
than a corresponding quadrat sample estimator, because it is based on a
subsample. Davy and Miles [14, sec. 6] proved that, for the standard IUR
and WUR sampling probes, estimators based on lower-dimensional probes
have higher variances. However, Jensen & Gundersen [26, sec. 6] constructed
an example in which point counting is more eÆcient than quadrat sampling.
Ohser [46] and Baddeley & Cruz [2] noted that the length density of a random
line process can sometimes be estimated more eÆciently by counting the
number of intersections with a test line grid than by measuring lengths inside
a sampling quadrat.

The variance result of Miles and Davy is in fact an instance of the Rao-
Blackwell theorem, in a stereological version which we have proved in [2] (see
also [33, 34]). Similar results were stated by Lantu�ejoul [33] as a consequence
of \Cartier's formula" E [U jV ] = V whenever this holds for real random
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variables U; V . Jensen and Gundersen recently showed [29, eq. (5.1)] that
the `nucleator' and `rotator' estimates of mean particle volume are related
by the Rao-Blackwell process.

The comparison of variances is related to the `change of support' problem
in geostatistics [5, x5.2, pp. 284{289], [33, 38, 39].
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Eva B. Vedel Jensen: Supplementary notes on

Local Stereology and its relation to Geometric To-

mography

A simple example — local estimation of planar area

Let K be a compact subset of the Euclidean plane E
2 . Let us suppose that we want to

estimate its area A(K) by local stereological methods.

For this purpose, let lθ be the random line through o, the origin, that makes a uniform
angle θ ∈ [0, π) with a fixed axis. Let us find the probability that the line hits an
infinitesimal element dx of K. We will use the well-known transformation from polar
coordinates to Cartesian coordinates

(r, θ) ∈ R × [0, π)→ (r cos θ, r sin θ).

We have
λ2(dx) = |r|drdθ,

where λ2(dx) is the area (2-dimensional Lebesgue measure) of dx. Therefore, the prob-
ability that the line hits dx is

dθ

π
=

λ2(dx)

π|r|dr
.

Having determined the sampling probabilities the Horvitz-Thompson procedure can be
applied. The estimator of A(K) becomes a sum over those infinitesimal elements of K
which are hit by lθ and is given by∑

λ2(dx)/
dθ

π

=
∑

λ2(dx)π|r|dr/λ2(dx)

= π
∑
|r|dr.

The corresponding continuous version will be used as an estimator of A(K),

Â(K) = π

∫
K∩lθ

d(x, o)λ1(dx).

Here, we integrate along the intersection between K and the random line lθ, d(x, o) is
the distance from x to the origin o and λ1 is the 1-dimensional Lebesgure measure.

In what follows, we will discuss local stereological volume estimators in E
n . In Section 2,

we extend the definitons of chord functions and section functions, known from geometric
tomography. In Section 3, we derive the local stereological volume estimators and show
that for a general class of bodies in E

n the estimators are proportional to section func-
tions. In Section 4, we give a brief summary of local stereological volume estimators in
E

3 .
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Extensions of chord and section functions

Let K be a star-shaped (at o) body. The body K has thus the property that its inter-
section with any line through o consists of one line segment.

Let ρK(u), u ∈ Sn−1, be the restriction of the radial function of K to Sn−1. If we let lu
be the line through o with direction u ∈ Sn−1, the radial function ρK(u) is given by

ρK(u) =

{
max{c : cu ∈ K} if lu ∩K 6= ∅
0 if lu ∩K = ∅.

Note that if lu hits K, then ρK(u) is the maximal signed distance in the direction u from
o to the boundary of K.

The i−chord function ρi,K of K at o is defined for u ∈ Sn−1 in terms of the radial
function. If lu ∩K = ∅, we let ρi,K(u) = 0. Otherwise, for i 6= 0

ρi,K(u) =

{
ρK(u)i + ρK(−u)i if o ∈ K
||ρK(u)|i − |ρK(−u)|i| if o /∈ K.

(1)

Below we will only consider this function for i ∈ {1, . . . , n}.
It turns out to be interesting to extend the i-chord function to not-necessarily star-
shaped K. We extend the definition to bodies K in E

n which have the property that
K ∩ l consists of a finite number of line segments for any line l ∈ G(n, 1). The set of
bodies satisfying this property will be called the star ring and denoted by S(st).

(G(n, 1) is the notation used for lines in E
n through o. More generally, G(n, k) is the no-

tation used for k−dimensional linear subspaces of En . A k−dimensional linear subspace
is called a k−subspace below.)

For K ∈ S(st), let ρi,K(u) = 0 if lu ∩K = ∅. Otherwise, lu ∩K consists of a non-empty
finite union of line segments. Let eu be the set of end points of the line segments with
positive length. For x ∈ eu\{o}, let α(x) be the number of elements of eu which are on
the same side of o as x, but at a longer distance from o than x. If o ∈ eu, we let α(o) = 0.
Then we define

ρi,K(u) =
∑
x∈eu

(−1)α(x)d(x, o)i. (2)

This is an extension of the i-chord function, defined for star-shaped bodies. To see this,
let K be star-shaped and let u ∈ Sn−1 be chosen such that lu hits K. Let us concentrate
on the case where lu ∩K is a line segment of positive length.

If o ∈ K, then eu = {x+, x−} consists of two elements, both with α-value 0. The
definition (2) yields

ρi,K(u) = d(x+, o)i + d(x−, o)
i
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which coincides with (1), upper case. If o /∈ K, then eu = {x+, x−} consists of two
elements, on the same side of o. Let d(x+, 0) > d(x−, 0). Then, α(x+) = 0, α(x−) = 1
and (2) yields

ρi,K(u) = d(x+, o)i − d(x−, o)
i

which coincides with (1), lower case.

It is also natural to extend the definition of section functions to S(st). Since the section
functions are defined, using i-chord functions, the generalization is immediate. For K ∈
S(st) and S ∈ G(n, k), k = 1, . . . , n− 1, we define the section function by

Ṽi,k(K ∩ S) =
1

2k

∫
Sn−1∩S

ρi,K(u)λk−1(du), (3)

where ρi,K is defined in (2).

Local stereological volume estimators in E
n

Let K be a body in E
n . The object is to estimate its volume (n−dimensional Lebesgue

measure) V (K), based on information in an isotropic k−subspace S ∈ G(n, k). Such a
random subspace has as distribution the unique rotation invariant probability measure
on G(n, k).

The developments will be centered around a version of the Blaschke-Petkantschin for-
mula, cf. Jensen (1998, Proposition 4.5). For any non-negative Borel function g on E

n ,
we have ∫

En

g(x)λn(dx) =
ωn
ωk

∫
G(n,k)

∫
S

g(x)d(x, o)n−kλk(dx)dS, (4)

where λn(dx) is the element of n−dimensional Lebesgue measure, ωn = 2(π)
1
2
nΓ(1

2
n)−1

is the surface area of the unit sphere Sn−1 in E
n and dS is the element of the unique

rotation invariant probability measure on G(n, k).

In order to derive a local volume estimator, consider a volume element dx of K. Using
(4), we find

λn(dx) =
ωn
ωk

d(x, o)n−kλk(dx)dS. (5)

Therefore, using the Horvitz-Thompson procedure on an infinitesimal level, we are led
to consider the following estimator∑

λn(dx)/dS

=
∑

λn(dx)
ωn
ωk

d(x, o)n−kλk(dx)/λn(dx)

=
ωn
ωk

∑
d(x, o)n−kλk(dx),
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where the sum is over those infinitesimal volume elements of K hit by the isotropic
k−subspace S. We use the continuous form of this estimator

V̂n,k(K ∩ S) =
ωn
ωk

∫
K∩S

d(x, o)n−kλk(dx). (6)

For k = 1, (6) reduces to

V̂n,1(K ∩ l) =
πn/2

Γ(n/2)

∫
K∩l

d(x, o)n−1λ1(dx), (7)

where l ∈ G(n, 1). It is not difficult to see that for K ∈ S(st) and u ∈ Sn−1, cf. (2),

V̂n,1(K ∩ lu) =
πn/2

nΓ(n/2)
ρn,K(u). (8)

For K ∈ S(st), the local stereological estimator of volume, based on information along
a line, is thus proportional to the n−chord function.

The estimators based on subspaces of different dimensions are related by a conditional
mean-value operation. For k1 ≤ k2,

V̂n,k2(K ∩ S) =

∫
G(k2,k1)

V̂n,k1(K ∩ T )dT, (9)

where G(k2, k1) is the set of k1−subspaces, contained in S ∈ G(n, k2). The result (9) can
be obtained by combining (4) and (6). Note that (9) implies that for k1 ≤ k2

VarV̂n,k2(K ∩ S) ≤ VarV̂n,k1(K ∩ T ).

If we use (9) for k1 = 1 and k2 = k, we get

V̂n,k(K ∩ S) =

∫
G(k,1)

V̂n,1(K ∩ l)dl.

Using that the rotation invariant probability measure on G(k, 1) can be constructed by
lifting the normalized Hausdorff measure on Sk−1 = Sn−1∩S, using the mapping u→ lu,
we get from (9) that

V̂n,k(K ∩ S) =

∫
Sn−1∩S

V̂n,1(K ∩ lu)
λk−1(du)

ωk
. (10)

It follows from (3), (8) and (10) that for K ∈ S(st)

V̂n,k(K ∩ S) =
πn/2

nΓ(n/2)

2k

ωk
Ṽn,k(K ∩ S),

S ∈ G(n, k). The local stereological volume estmator is thus proportional to the section
function of geometric tomography.
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It is also possible to construct a local volume estimator, based on an isotropic k−subspace
S, containing a fixed r−subspace T , say, where r < k. This estimator takes the form

V̂n,k(r)(K ∩ S) =
ωn−r
ωk−r

∫
K∩S

d(x, T )n−kλk(dx).

Note that with this notation, V̂n,k(0) = V̂n,k. Using a decomposition of Lebesgue measure,
it is not difficult to see that

V̂n,k(r)(K ∩ S) =

∫
T

V̂n−r,k−r((K − x) ∩ S ∩ T⊥)λr(dx). (11)

For K ∈ S(st), we therefore have

V̂n,k(r)(K ∩ S)

=
π(n−r)/2

(n− r)Γ((n− r)/2)

2(k − r)

ωk−r

∫
T

Ṽn−r,k−r((K − x) ∩ S ∩ T⊥)λr(dx).

In this formula, section functions Ṽi,k with i < n appear.

Note also that (10) implies that V̂n,n−1 is proportional to the spherical Radon transform

of V̂n,1. Thus, it follows from (10) that for u ∈ Sn−1,

V̂n,n−1(K ∩ u⊥) =
1

ωn−1

∫
Sn−1∩u⊥

V̂n,1(K ∩ lv)λn−2(dv)

=
1

ωn−1
Rf(u),

where f(u) = V̂n,1(K ∩ lu).

Local stereological volume estimators in E
3

In E
3 , we have 3 different local stereological volume estimators, viz. V̂3,1, V̂3,2 and V̂3,2(1).

The estimator V̂3,1 is based on information along an isotropic line l through o and is
given by

V̂3,1(K ∩ l) = 2π

∫
K∩l

d(x, o)2λ1(dx)

=
2π

3
ρ3,K(u),

where the last equality holds if K ∈ S(st). Often, measurements along two perpendicular
directions are combined. In that case, the estimator is called the nucleator.

The estimator V̂3,2 is based on information in an isotropic plane S through o. From (6),
we find

V̂3,2(K ∩ S) = 2

∫
K∩S

d(x, o)λ2(dx).
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The planar integral can be discretized using a line grid in the plane S. The discretized
version is called the isotropic rotator in the stereological literature.

The estimator V̂3,2(1) is based on an isotropic plane S, containing a fixed line l. It is
given by

V̂3,2(1)(K ∩ S) = π

∫
K∩S

d(x, l)λ2(dx).

Using (11), we get

V̂3,2(1)(K ∩ S) =

∫
l

V̂2,1((K − x) ∩ S ∩ l⊥)λ1(dx).

If K ∈ S(st), V̂2,1 can be expressed in terms of the 2-chord function of K. A discretized

version of V̂3,2(1) is called the vertical rotator.
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1 Introduction

Systematic sampling is widely used in practical stereology. Examples of systematic
sampling probes are serial sections, line and point grids. Assessing the precision of
such designs is not a trivial task because of the statistical spatial dependency of the
data. First methods for assessing the precision of systematic geometric sampling are due
to Kendall [3, 4] and Matheron [5, 6].

We present their approach on a particular case: the estimation of planar area based
on sampling by parallel lines. First, the estimation variance is expressed in terms of the
Fourier transform of the indicator function associated with the investigated body. Using
classical tools from analysis (Gauss-Green formula, method of the stationary phase), an
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asymptotic approximation of the Fourier transform is derived. This yields an asymptotic
approximation of the estimation variance involving some simple geometric features of the
body boundary.

During the exercise session, we will apply the general approach in order to derive
variance approximations for other stereological estimators. Also, we will see how to use
the variance formulae in practice for assessing and improving stereological designs.

2 Sampling and estimation

Let X be a random bounded convex body X in the Euclidean plane R2 .
We assume that the following regularity conditions hold:

1. The mean area and the mean boundary length of X are �nite.

2. The boundary @X of X is almost surely (a.s.) C4.

3. The radius of curvature R(x) of @X at x 2 @X is uniformly bounded on @X:

sup
x2@X

R < Rmax a.s.

The parameter to be estimated is the mean area A of X. We consider the case where
X is sampled by parallel lines with �xed orientation (e.g. vertical) and uniform random
location, see Figure 1. Available measurements are intercept lengths. Let L(x1), x1 2 R,
be the intercept length for the vertical line with abscissa x1. The observed intercept
lengths can be written as

L ((U + k)T ) ;

where k 2 Z and T > 0 is the line spacing. The area estimator isbA = T
X
k

L ((U + k)T ) : (1)

This estimator is conditionally unbiased given X.
The variance of the estimator bA can be decomposed as follows

Var bA = VarA+ EVar[ bAjX]: (2)

The term EVar[ bAjX] is called below the sampling variance. Hence the estimation vari-
ance is the sum of the area variance and of the sampling variance. The sampling variance
depends both on T and on the distribution of X. Also, note that the estimation variance
cannot be less than the area variance.

The estimation of the mean area EA is usually based on a sample X1; X2 : : :Xn of
X as shown in Figure 1. If bA1; bA2; : : : ; bAn are the estimated areas, the mean area is
estimated by the average estimated area:

�A =
1

n

nX
i=1

bAi: (3)

65



2

X3 X4

X1X

T

Figure 1: A sample of 4 planar bodies. Each body is sampled by parallel lines. The area
of each body is estimated by the sampling distance times the total intercept length. The
mean body area is estimated by the average estimated area.
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This estimator is unbiased. The variance of the estimator �A is given by

Var �A =
1

n
Var bA =

1

n

�
VarA+ EVar[ bAjX]

�
: (4)

It decreases to 0 as the sample size n increases to in�nity.
Below, we focus on the sampling variance EVar[ bAjX].

3 Estimation variance and Fourier transform

The estimator (1) may be considered as a periodic function:

u 2 R 7! T
X
k

L ((u+ k)T ) : (5)

Note that the function (5) is integrable over [0; 1[ (its integral is equal to A). Let Cj be
the Fourier coeÆcients of (5):

Cj = T
X
k

Z 1

0

L ((u+ k)T ) exp (�2�iuj) du:

Using the change of variable x1 = (u+ k)T , the integral is written as

T�1

Z (k+1)T

kT

L (x1) exp (�2�ix1=T j) dx1:

Summing over all k 2 Z, we obtain the Fourier transform of L:

Cj = FL
�
j

T

�
:

Since X is bounded, the estimator bA is bounded and squared integrable. From
Parseval equality, it followsZ 1

0

� bA (u)� A
�2

du =
X0

j

jCjj2 =
X0

j

����FL� jT
�����2 ;

where the dash indicates summation over j 6= 0.
The intercept length L(x1) can be obtained by integrating the indicator function I

of X along the vertical line with abscissa x1:

L(x1) =

Z
R

I(x1; x2) dx2:

It follows that

FL (y1) =

Z
R

Z
R

I(x1; x2) exp (�2�ix1y1) dx1dx2:
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The right-hand side is just the Fourier transform of I along the horizontal axis:

FL (y1) = FI (y1; 0) :
Hence, we get

Var[ bAjX] =
X0

k

����FI � kT ; 0
�����2 ; (6)

and

EVar[ bAjX] =
X0

k

E

����FI � kT ; 0
�����2 : (7)

4 Asymptotic approximation of the Fourier trans-

form

In this section, we derive asymptotic approximations of FI.
Let ' be a continuous integrable function on R such that

y1 2 R 7! y1'(y1)

is integrable. Then the derivative of F' is given by

(F')0 (x1) = �2�i
Z
R

y1 exp (�2�ix1y1)'(y1) dy1: (8)

Let us consider the integral

2�i

Z
R

y1FI(y1; 0)'(y1) dy1:

Expanding the Fourier transform of the indicator function, we get

2�i

Z
X

Z
R

y1 exp (�2�ix1y1)'(y1) dxdy1:

Identifying the derivative of the Fourier transform of ', we obtain the identity

2�i

Z
R

y1FI(y1; 0)'(y1) dy1 = �
Z
X

(F')0 (x1) dx:

Using the Gauss-Green formula (see Section A.1 of the Appendix), the right-hand
side of the above equality can be written as an integral over the boundary @X of X:Z

X

(F')0 (x1) dx = �
Z
@X

(F') (x1)n1(x) dx:

Hence, we get

2�i

Z
R

y1FI (y1; 0)'(y1) dy1 =
Z
R

Z
@X

exp (�2�ix1y1)n1 (x)'(y1) dxdy1:
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The pointwise identity follows from the continuity of FI:

2�iy1FI (y1; 0) =
Z
@X

exp (�2�ix1y1)n1 (x) dx: (9)

Now, consider a parametric representation of @X:

� 2 [0; 2�[ 7! x (�) = (x1(�); x2(�)) 2 @X:
The right-hand side of (9) can be written asZ 2�

0

exp (�2�ix1(�)y1)n1 (x(�)) Jx(�) d�:

When y1 tends to 1, the asymptotic behavior of the integral above is determined by
the local behavior of x1(�) and n1 (x(�)) Jx(�) in the neighbourhood of critical points
for the function:

� 7! x1(�):

Observe that x01(�) = 0 if the tangent to X at x(�) is vertical (i.e. parallel to the sampling
lines).

An explicit approximation is obtained using the method of the stationary phase (see
Sections A.2 and B of the Appendix). For the squared modulus of FI, we get

jFI (y1; 0)j2 = 1

4�2
jy1j�3

X
R(x) + jy1j�3Z (y1) + O

�jy1j�7=2� ; (10)

where the sum is taken over the two points x� and x+ on the boundary @X where the
tangent is vertical, R(x) is the radius of curvature at x and Z is the oscillating function
de�ned by

Z (y1) = � 1

2�2

p
R(x�)R(x+) sin (2�Hjy1j) ;

H being the horizontal breadth (distance between the two vertical support lines) of X.
Next, consider the case where X is isotropic random. According to a well-known

result from di�erential geometry (see e.g. Santal�o's book [7, page 3]), we have for any
convex set K with a C2 boundaryZ �

0

X
R(x) d� = B;

where the sum is taken over the two points on the boundary of K where the angle
between the tangent and a given axis is equal to � and B is the boundary length of K.
For an isotropic random X, it follows

E
X

R(x) =
1

�
EB:

Hence, we get

E jFI (y1; 0)j2 ' 1

4�3
jy1j�3 EB + jy1j�3 EZ (y1) :
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Under some additional regularity conditions onX, it can be shown that the oscillating
term can be neglected. We have

jEZ (y1)j � 1

2�2
Rmax jE sin (2�Hy1)j :

If the distribution of H has a density h with respect to the Lebesgue measure on R, the
mean in the right-hand side is equal to the imaginary part of the Fourier transform of h.
It tends to 0 as y1 tends to 1. Hence, we get

E jFI (y1; 0)j2 ' 1

4�3
jy1j�3 EB: (11)

The speed of convergence of EZ to 0 depends on the distribution of H. For common
statistical distributions (Chi square, Gamma, Beta...), we have

jEZ(y1)j = O
�jy1j��� ;

where � > 0.

5 Approximation and estimation of the variance

In this section, we consider only the case where X is isotropic random. It is also assumed
that the breadth H is distributed such that the oscillating term EZ is a O

�
y��1

�
with

� > 0.
Combining formulae (6) and (11), we get the following asymptotic approximation (T

small):

EVar[ bAjX] ' T 3

4�3
EB

X0

k

jkj�3 = �(3)

2�3
T 3 EB; �(3) = 1: 202: (12)

Hence, the estimation variance can be determined from the sampling distance T and
the mean boundary length EB. When X is sampled by parallel lines, its boundary
length can be estimated by

�

2
TI; (13)

where I is the number of intersection points between the boundary @X and the sampling
lines. When X is convex, I is a.s. twice the number of lines hitting X.

6 Exercises

Exercise 1 (Length estimation for a �nite union of intervals in R) Let X =
n[

j=1
[aj; bj]

be a (deterministic) �nite union of n intervals in R. Let L denote the total length of X.
The sampling probe is the lattice of points with uniform random location fT (U + k) : k 2 Zg ;

T > 0, where U is a uniform random point in [0; 1[.
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Let I denote the indicator function of X. Consider the length estimator

bL = T
X
k2Z

I (T (U + k)) ;

based on the count of points of the lattice which intersect X.

1. Show that

Var bL =
X0

k

����FI � kT
����� :

2. Compute the Fourier transform FI.
3. Let E be the set of unordered pairs of distinct endpoints of X. Show that

jFI (y)j2 = 1

2�2 jyj2

0@n + X
fs;tg2E

� (s; t) cos (2�y (s� t))

1A
where � (s; t) = 1 if s and t are both left or right endpoints and � (s; t) = �1
otherwise.

4. Calculate Var L̂. Note: use the identity

1

�2

1X
k=1

cos(2�kx)

k2
= x2 � x+

1

6
; x 2 [0; 1];

and �(2) = �2=6.

In the following exercises, area estimation in R
2 is considered. The body X un-

der study is supposed to be isotropic random and satis�es all the necessary regularity
conditions. The parameter to be estimated is the mean area EA of X.

Exercise 2 (Area estimation in R
2 by point sampling) The estimation is performed

on a single observation X. The sampling probe is the square lattice of points with uni-
form random location fT (U + k) ; k 2 Z2g ; T > 0, where U is a uniform random point
in [0; 1[2 (see Figure 2).

Consider the area estimator

bA = T 2
X
k2Z2

I (T (U + k)) :

Using the same arguments as in Section 3 and Exercise 1, we can check that

EVar[ bAjX] =
X0

k2Z2

E

����FI � kT
�����2 :
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X

T

T

Figure 2: The planar body X is sampled by a square lattice of points. Its area is
estimated by the area of the fundamental tile of the lattice times the total number of
lattice points hitting X.
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Write an asymptotic approximation formula for EVar[ bAjX] using the approximation of
FI given by Formula (11) of Section 4. Note: you can use the two-dimensional Epstein
zeta function

Z (3) =
X0

k2Z2

kkk�3 ' 9: 033 6:

Exercise 3 (Area estimation in R
2 by strip sampling) The estimation is performed

on a single observation X.
For s 2 R, let S (s) be the vertical strip of width w > 0 de�ned by S (s) = [s; s+ w]�R .
The sampling probe is the series of strips

fS (T (U + k)) ; k 2 Zg ; T > w;

where U is a uniform random point in [0; 1[ (see Figure 3). The distance between neigh-
bour strips is T � w and the total sampling fraction is f = w=T .

T w

X

Figure 3: The planar body X is sampled by vertical strips. Its area is estimated by the
total area of X contained in the strips divided by the sampling fraction.
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1. For s 2 R, let A (s) be the area of X measured in the strip S (s). Show that

A (s) = wL � p (s)
where L (x1) is the intercept length for the vertical line with abscissa x1and p (s) =
1

w
I[�w;0] (s).

2. Consider the area estimator

bA = T
X
k2Z

A (T (U + k))

w
:

(a) Show that

EVar[ bAjX] =
X0

k

E

����FI �0; kT
�����2 (1� cos (2�fk))

2�2k2f 2
:

(b) Derive an asymptotic approximation formula for EVar[ bAjX]. Note: you may
use the polylogarithm function Li5:

Li5 (exp(2�ix)) =
1X
k=1

exp(2�ikx)

k5
; Li5 (0) = �(5):

The polylogarithm function can be calculated by standard mathematical soft-
wares such as Maple and Mathematica.

Exercise 4 (Practical exercise) Let X1; X2; : : : ; X6 be a sample of a random planar
body X in R2 . Each Xi has been sampled by parallel lines separated by a distance T =
1 cm.

The intercept lengths are given in Table 1.

1. Calculate for each Xi the estimated area bAi and the estimated boundary length bBi.

2. Calculate the estimations of EA, EB, Var bA, EVar[ bAjX] and VarA:

EA : �A =
1

6

6X
i=1

bAi

EB : �B =
1

6

6X
i=1

bBi

Var bA : S2
e =

1

5

6X
i=1

� bAi � �A
�2

EVar[ bAjX] : S2
s =

�(3)

2�3
T 3 �B

VarA : S2
e � S2

s
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intercept lengths measured on
X1 X2 X3 X4 X5 X6

2.3 1.5 2.3 2.4 1.5 2.9
3.9 3.8 2.7 4.4 2.6 3.9
4.7 4.9 2.9 5.4 3.1 4.3
5.0 5.0 3.1 5.7 3.4 4.4
4.6 4.7 3.1 5.2 3.5 3.9
3.7 3.8 3.1 3.7 3.4 2.7

0.7 2.8 3.1
2.2 2.5
1.1 1.0

Table 1: Lengths are given in cm.

3. Calculate the coeÆcient of error of the mean area estimator �A:

CE �A =

s
Var �A

E2 �A
=

r
VarA

6E2A
:

4. In order to get CE �A = 0:03, we may change the sample size (less Xi's) or the
value of the sampling distance T .

(a) Compute the required number of Xi's for �xed T .

(b) Compute the required value of T for �xed sample size.
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A Toolbox

A.1 Gauss-Green formula

The Gauss-Green formula is a classical result from analysis. A general version can be
found in Federer's textbook [1].

Theorem 1 Let C be a closed C2 curve in the Euclidean plane R2 . Below, X denotes
the domain bounded by C. Let  be a di�erentiable vector �eld on R2 . Then we haveZ

X

div (x) dx = �
Z
C

 (x) � n(x) dx; (14)

where n(x) is the outer normal to X at x 2 C.

A.2 Method of the stationary phase

The following theorem is a consequence of much more general results. In particular, one
can �nd in H�ormander's textbook [2] further results for higher-dimensional spaces and
other regularity conditions.

Theorem 2 Let f and u be real-valued periodic (period = 2�) functions on R. We
assume that f 2 C4 and u 2 C3. The set of non-degenerate critical points for f

K0 = fx0 2 [0; 2�[: f 0(x0) = 0; f 00(x0) 6= 0g

is supposed to be �nite. Then, we have

Z 2�

0

u(x) exp (iyf(x)) dx = y�1=2
X
x02K0

exp (iyf(x0))

�
f 00(x0)

2�i

��1=2

u(x0)

+ O
�
y�1
�
: (15)

B An application of the method of the stationary

phase

Let X be a bounded convex body in the Euclidean plane R2 . The boundary C of X is
assumed to be C4. Furthermore, the radius of curvature is supposed to be bounded on
C.

If r : R ! R+ is the radius function of X, the closed curve C can be parametrized
by

� 2 R 7! x(�) = (r(�) cos �; r(�) sin �) 2 C:
Note that the periodic function x is C4.
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Integration along the curve C is de�ned byZ
C

'(x) dx =

Z 2�

0

'(x(�))Jx(�) d�;

where the Jacobian Jx = kx0k.
Tangent vectors t to C at x are such that

t / x0:

Normal vectors n to C at x are such that

n ? x0:

In particular, the unit outer normal to X at x is

n(x) = (x0)�=Jx;

where (x0)� is the dual of x0:

(x0)� = (x02;�x01) :
The radius of curvature on C is given by the formula

R =
(Jx)2

x00 � n :

In this appendix, we use the method of the stationary phase (Theorem 2, Section
A.2) in order to derive an asymptotic approximation ofZ

C

exp (�2�ix1y1)n1(x) dx

for large positive y1's. The integral can be written asZ 2�

0

exp (�2�ix1(�)y1)n1 (x(�)) Jx(�) d�:

We apply the method of the stationary phase (Theorem 2 of Section A.2) with

f(x) � x1(�)

y � �2�y1
u(x) � n1 (x(�)) Jx(�):

Note that � is a critical point for x1 if the tangent to C at x(�) is vertical, i.e. if n(x(�)) =
(�1; 0) . Let �� be the two values such that n(x(��)) = (�1; 0) and let x� = x(��) and
x+ = x(�+).
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It is easy to check that

x001(��) = �Jx(��)
2

R(x�)

n1 (x�)Jx(��) = �Jx(��):

Hence, Formula (15) yields

Z
C

exp (�2�ix1y1)n1(x) dx =
exp (�2�iy1x1(�+)� i�=4)

p
R(x+)p

y1

� exp (�2�iy1x1(��)� i3�=4)
p
R(x�)p

y1
+O

�
y�11

�
:

In particular, the squared modulus of the integral is given by

R(x�) +R(x+)� 2
p
R(x�)R(x+) sin (2�y1 (x1(�+)� x1(��)))

y1
:
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C Solutions

Solution 1 (Length estimation for a �nite union of intervals in R)

Var bL =
nT 2

6
+ T 2

X
fs;tg2E

�(s; t)

 
r

�
s� t

T

�2

� r

�
s� t

T

�2

+
1

6

!
;

where r(x) = x� [x] is the fractional part of x.

Solution 2 (Area estimation in R
2 by point sampling)

EVar[ bAjX] ' Z(3)
4�3

T 3 EB:

Solution 3 (Area estimation in R
2 by strip sampling)

EVar[ bAjX] ' �(5)�<Li5 (exp(2�if))

4�5
T 3

f 2
EB;

where < indicates real part.

Solution 4 (Practical exercise)

1. � �A = 24: 1 cm2,

� �B = 22: 5 cm,

� S2
e
= 2: 40 cm4,

� S2
s
= 0: 44 cm4,

� S2
e
� S2

s
= 1: 97 cm4.

2. Estimate of CE �A = 0: 026 2.

3. (a) CE �A � 0:03 if the sample size is greater than or equal to 5.

(b) CE �A � 0:03 if T � 1: 39 cm.
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List of additional hand-outs/notes

• Geometric tomography by Richard Gardner, Notices Amer. Math. Soc. 42 (1995),
422–429. [http://www.ams.org/notices/199504/199504-toc-ps.html]

• Copies of slides for R. Gardner’s talks.

• Some new, simple and efficient stereological methods and their use in pathological
research and diagnosis by Hans Jørgen G. Gundersen, Acta Pathologica, Microbi-
ologica et Immunologica Scandinavica 96 (1988), 379-394.

• The new stereological tools — disector, fractionator, nucleator and point sampled
intercepts and their use in pathological research and diagnosis by Hans Jørgen G.
Gundersen, Acta Pathologica, Microbiologica et Immunologica Scandinavica 96
(1988), 857-881.

• Chapter 1 and List of References from Local Stereology by Eva B. Vedel Jensen,
Advanced Series on Statistical Science & Applied Probability 5, World Scientific,
1998.

• The Computer Assisted Stereological Toolbox, brochure about the C.A.S.T. grid
system, Olympus Denmark. [stereology@olympus.dk].
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Email: samk@louhi.stat.jyu.fi

Marcus Kiderlen
University of Karlsruhe
Postfach 6980
D-76128 Karlsruhe
Germany
Email: kiderlen@math.uni-karlsruhe.de

Kiên Kiêu
Unité de Biométrie
Institut National de la Recherche Agronomique
Domaine de Vilvert
F-78352 Jouy-en-Josas, France
Email: kien.kieu@jouy.inra.fr

Simone Klenk
Dept. of Stochastics
University of Ulm
Helmholtzstrasse 18
D-89081 Ulm, Germany
Email: goetz@mathematik.uni-ulm.de

83



Tomas Mrkvicka
VSK 17.listopadu
Patkova 3, pokol B413
CZ-18000 Praha
Czech Republic
Email: mrkvicka@karlin.mff.cuni.cz

Alberto Nettel
Statistical Research Group
University of Calgary
1206 Tuscarora Manor NW
T3L 2J9 Calgary, Alberta, Canada
Email: nettel@math.ucalgary.ca

Andrew Olenko
Statistics Dept., Mathematics Faculty
Kyiv University
Volodimirska 64
252033 Kyiv, Ukraine
Email: olenk@ukma.kiev.ua

Niels Holm Olsen
3D-Lab, School of Dentistry
University of Copenhagen
Nørre Allé 20
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