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1 Introduction

The Workshop on ‘Finance and Turbulence’ was held 5-7 May 1999 at University of Aarhus
and was organised jointly by CAF (Centre for Analytical Finance) and MaPhySto (Centre
for Mathematical Physics and Stochastics), the organizing committee consisting of Ole
E. Barndorff-Nielsen, Bent Jesper Christensen, Henning Bunzel (Aarhus) and Michael
Sørensen (Copenhagen).

The aim of the Workshop was to discuss the striking similarities, as well as the differences,
between key empirical features observed in the financial markets on the one hand and in
studies of the turbulence of fluids on the other. Particular emphasis was given to questions
relating to realistic stochastic modelling of the phenomena concerned.

The participants came from the fields of Physics, Stochastics, and Mathematical Fi-
nance/Econometrics, and among the topics treated were: Burgers’ Equation, Cascades,
Extremal Behaviour, Long Range Dependence, Scaling, Selfsimilarity, and Volatility and
Intermittency.

The present booklet contains extended abstracts of (most of) the talks given at the work-
shop. The programme and the list of participants are also included.
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2 Workshop Program

Wednesday May 5 (in Auditorium D1, building 531)

09.00-10.00 Registration and coffee/tea

Chair: Bent Jesper Christensen

10.00-10.50

Stewart Hodges:
The Risk Premium In Trading Equilibria Which Support Black-
Scholes Option Pricing.

Coffee/tea

11.20-12.10
Rama Cont:
Multi-resolution analysis of financial time series.

12.30-14.00 Lunch

Chair: Claudia Klüppelberg

14.40-15.10
Rudolf Friedrich:
A new stochastic concept.

15.20-15.50
Joachim Peinke:
Turbulence and Finance.

Coffee/tea

16.10-16.40
Ralf Hendrych:
Self-similarity and Wavelets.

16.50-17.30
Albert Shiryaev:
Kolmogorov and the Turbulence.

17.30-18.30 Poster Session and Small Reception

Thursday May 6 (in Auditorium G1, building 532)

Chair: Hanspeter Schmidli

9.00-9.50
Roberto Baviera:
Weak efficiency and information in foreign exchange markets.

10.00-10.50
Neil Shephard (joint work with Ole E. Barndorff-Nielsen):
Non-Gaussian OU based models and some of their uses in financial
economics.

Coffee/tea

11.20-12.10
Claudia Klüppelberg:
Analysing Extremal Behaviour of Financial Time Series.
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12.30-14.00 Lunch

Chair: Michael Sørensen

14.00-14.30
Rosario Delgado (joint work with M. Jolis):
On a Ogawa-type integral with application to the Fractional Brow-
nian Motion.

14.40-15.10

Francesco Mainardi:
Non local transport effects in skewed turbulence via fractional dif-
fusion and Lévy statistics.

15.20-15.50
Ole E. Barndorff-Nielsen (joint work with Preben Blæsild):
A case study in turbulence.

Coffee/tea

16.10-16.40
Patrick Cheridito:
Long-Range Dependence and Option Pricing.

16.50-17.20

Nils Svanstedt:
Two-scale limits and mean fields for the Navier-Stokes equation for
oscillatory fluids.

17.30-18.00 Discussion

19.00-22.00 Conference Dinner

Friday May 7 (in Auditorium D2, building 531)

Chair: Goran Peskir

10.10-11.00

Mykola Leonenko:
Non-Gaussian scenarios for fractional diffusion-wave equation with
singular data.

Coffee/tea

11.20-12.10

Martin Greiner:
What can we learn from one-dimensional observables in fully devel-
oped Navier-Stokes turbulence?.

12.30-14.00 Lunch

14.00-14.50
Rimas Norvaǐsa:
p-variation, integration and stock price modelling.
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3 Abstracts of talks and posters

(The abstracts/papers are ordered alphabetically after the lastname of the author who
presented the work.)

Ole E. Barndorff-Nielsen (MaPhySto) and Preben Blæsild (Aarhus):

A case study in turbulence.

Abstract: A turbulence data set∗ consisting of 100 time series, each comprising 125.000
consecutive and equidistantly spaced observations, is analysed. The time series are re-
garded as i.i.d.

Indications of systematic deviations from Kolmogorov’s theory of homogeneous and iso-
tropic turbulence are noted and some preliminary modelling of key features of the data is
proposed.

Key words: continuous time AR(3) behaviour; Lamperti transformation; normal inverse
Gaussian law; selfsimilarity; vague stationarity.

∗Data kindly put at our disposal by Rudolf Friedrich and Joachim Peinke.
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Weak e�ciency and information in foreign exchange markets

Abstract

In this paper we test the e�ciency hypothesis in �nancial market. A market
is called e�cient if the price variations \fully reect" relevant information, i.e.

a speculator cannot make a pro�t out of it. A currency exchange market is a
natural candidate to check e�ciency because of its high liquidity. We perform a

statistical study of weak e�ciency in Deutschemark/US dollar exchange rates using
high frequency data. In the weak form of e�ciency the information can only come

from historical prices.
The presence of correlations in the returns sequence implies the possibility of a

statistical prevision of market behavior. We show the existence of correlations by
means two statistical tools. A �rst analysis has been performed using structure
functions. This approach gives an indication on the returns distributions at

di�erent lags � . We have also computed the generalized correlation functions of
the return absolute values; roughly speaking this is a test of the independence of

the uctuations of �xed size. In both cases we have obtained a clear evidence of long
term return anomalies. This implies a failure of the usual \random walk" model

of the returns; nevertheless the presence of long term correlations does not directly
imply the fault of the weak e�ciency hypothesis : it is not obvious how to use time

correlation to make a pro�t in a realistic investment.
Then we show how this information is relevant for a speculator. First we

introduce a measure of the available information relevant from a �nancial point
of view, with a technique which reminds the Kolmogorov �-entropy. Second in the
case of no transaction costs, we propose a simple investment strategy which leads

to an exponential growth rate of the capital related to the available information.
We have performed two kind of information analysis in the return series. We

show that the available information is practically zero if the speculator wants to
change his portfolio systematically after a �xed lag � : for him the market is e�cient.

Instead, a �nite available information is observed by a patient investor who cares
only of uctuation of given size �. This is the �rst case, as far as we know, in which

the available information obtained by a suitable data analysis is directly linked to
the possible earnings of a speculator who follows a particular trading rule.

1 Introduction

A large amount of research suggests that prices are related with information, and in

particular it focuses on e�ciency in �nancial markets. A market is ine�cient if a

speculator can make a pro�t out of information present in the market. Since the celebrated

work of Fama [1] a big e�ort has been done to test empirically and to understand

theoretically the e�ciency of �nancial markets.
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A market is said to be e�cient if prices \fully reect" all available information, i.e. such

information is completely exploited in order to determine the price, after having taken

into account the costs to use this information and a transient time, due to costs, to reach

equilibrium. The idea is that the investor destroys information while using it and as a

consequence he contributes to produce equilibrium.

In the last years long term correlations have been observed in �nancial markets. We

shall not review in details the contributions to the �eld. We stress that long term return

anomalies are usually revealed via test of e�ciency in a semi-strong form, i.e. not only

considering the asset prices but also some other publicly known news. The interest

is generally focused on the market reactions to an event occurred a �xed period time

before (three to �ve typically) such as divested �rms [2], mergers [3] or initial public

o�erings [4, 5]. Recent research [6, 7, 8, 9, 10] has pointed out the existence of long range

correlations also in the weak form. However only low frequency data are considered and

implications on e�ciency are not completely understood.

In this paper we focus on e�ciency in the weak form, i.e we consider only the information

coming from historical prices. We are interested on a time scale longer than the typical

correlation returns time (few minutes) but lower than the characteristic time after which

we do not have statistical relevance of the results: in this sense we deal with long term

return anomalies. Currency exchange seems to be the natural subject for an e�ciency

test. We expect that such markets are very e�cient as a consequence of the large liquidity.

For these reasons we have decided to analyze a one year high frequency dataset of the

Deutschemark/US dollar exchange, the most liquid market. Our data, made available

by Olsen and Associated, contains all worldwide 1; 472; 241 bid{ask Deutschemark/US

dollar exchange rate quotes registered by the inter-bank Reuters network over the period

October 1, 1992 to September 30, 1993.

One of the main problem in tick data analysis, is the irregular spacing of quotes. In this

paper we consider business time, i.e. the time of the transaction given by its rank in the

sequence of quotes. This seems to be a reasonable way to consider time in a worldwide

time series, where time delays and lags of no transaction are often due to geographical

reasons.

In this paper we test the independence hypothesis of returns and de�ne and measure

an available information. In section 2 we check the independence with two di�erent

techniques. The �rst one, called structure functions analysis, shows whether it is possible

to rescale properly the distribution functions at di�erent lags [11]. The second one is a

direct independence test. The independence of two random variables x, y implies that

f(x) and g(y) are uncorrelated for every f and g. We check it for f(�) = g(�) = j � jq. We

interpret these quantities as an estimate of the correlation between returns of given size.

We want to quantify the available information and discuss its �nancial relevance. In

section 3 we consider a speculator with a given resolution, i.e. he is concerned only about

uctuations at least of size �. This reminds the � entropy introduced by Kolmogorov [12]

in the context of information theory. A similar �lter has been �rst introduced by
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Alexander [13, 14]. To show the ine�ciency of the market he proposed the following

trading rule : if the return moves up of �, buy and hold until it goes down of � from a

subsequent high, then sell and maintain the short position till the return rises again of �

above a subsequent low.

Here we divide the problem in two parts. First we de�ne the available information for

any �xed resolution � of the speculator. Second, as suggested by Fama [1], we relate

the available information with the pro�tability by means of a particular trading rule. We

show how this information is related to the optimal growth rate portfolio using a simple

approximation in terms of Markov process.

In section 4 we summarize and discuss the results.

2 Long term correlations

After the seminal work of Bachelier [15], it was widely believed that the price variations

follow an independent, zero mean, gaussian process. The main implications of the

\fundamental principle" of Bachelier are that the price variation is a martingale and

it is an independent random process.

Bachelier considers the market a \fair game" : a speculator cannot exploit previous

information to make better predictions of forthcoming events. Information can come only

from correlations and in absence of them from the shape of the probability distribution

of the returns.

For about sixty years this contribution was practically forgotten, and quantitative analysis

on �nancial data started again with advent of computers.

Following Fama [1], we shall call hereafter \random walk" the �nancial models where the

returns

rt � ln
St+1

St

(1)

are independent variables. In this paper we de�ne St as the average between bid and ask

price. We do not want to enter here in a detailed analysis of the huge literature about

\random walk" models. We just mention that, before the contribution of Mandelbrot [16],

the return rt was considered well approximated by an independent gaussian process.

Mandelbrot proposed that the returns were distributed according a Levy-stable, still

remaining independent random variables.

At present, it is commonly accepted that the variables

r
(�)
t �

t+�X

t0=t+1

rt0 = ln
St+�

St

(2)

do not behave according a gaussian at small � , while the gaussian behavior is recovered for

large � . Of course a return rt distributed according to a Levy, as suggested by Mandelbrot,

is stable under composition and then also r
(�)
t would follow the same distribution for every
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� . A recent proposal is the truncated Levy distribution model introduced by Mantegna

and Stanley [17] which �ts well the data and reproduces the transition from small to large

� .

Let us focus our attention on independence tests. We remark once again that an inuence

of the return rt at time t on the return rt+� at time t+� implies a not fully e�cient market

in a weak form. The relevance of the question is clear in the case of an investor analyzing

historical data to a make market forecast and a pro�t out of it.

As a test of independence it is generally considered the correlation functions on time

intervals �

C(� ) � hrtrt+�i � hrtihrt+� i ; (3)

where h�i denotes the temporal average

hAi �
1

T

TX

t=1

At

and T is the size of the sample.

The presence of correlations in Deutschemark/US dollar exchange returns before the

nineties is a well known fact. For example in [18], where it is considered the same

dataset we use, it is shown that the returns are negatively correlated for about three

minutes.

We remind that in general uncorrelation does not imply independence. A sort of long

term memory can be revealed with appropriate tools, see for example the seminal works

in the �eld of Alexander [13, 14] and Niederho�er and Osborne [19], and the most recent

literature [6, 7, 8, 9, 20, 21], where it is shown that absolute returns or powers of returns

exhibit a long range correlation. It is a common belief that it is not possible to exploit

this kind of information because of transaction costs.

We shall show in next section that dependent (even if uncorrelated) returns have a clear

�nancial meaning because they imply the existence of available information.

In subsection 2.1 we show the persistence of a long range memory for the

Deutschemark/US dollar exchange rate by means of the analysis of structure functions.

In subsection 2.2, we test directly the independence of returns with a generalization of

the correlation analysis.

2.1 Structure functions

There is some evidence that the process r
(�)
t cannot be described in terms of a unique

scaling exponent [22, 23], i.e. it is not possible to �nd a real number h such that the

statistical properties of the new random variable r
(�)
t =�h do not depend on � .

The scaling exponent h gives us information on the features of the underlying process. In

the case of independent gaussian behavior of rt the scaling exponent is 1=2.
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On the contrary, the data show that the probability distribution function of

r
(�)
t =
q
V ar[r

(�)
t ] changes with � [22, 23]. This is an indication that rt is a dependent

stochastic process and it implies the presence of wild uctuations.

A way to show these features, which is standard for the fully developed turbulence

theory [24], is to study the structure functions :

Fq(� ) � hjr(�)t jqi : (4)

In the simple case where rt is an independent random process, one has (for a certain range

of � )

Fq(� ) � �hq ; (5)

where h > 1=2 in the Levy-stable case while the gaussian behavior is recovered for h = 1=2.

The truncated Levy distribution corresponds to h > 1=2 for � su�ciently small and to

h = 1=2 at large � . \Random walk" models present always a unique scaling exponent. If

the structure function has the behavior in (5) we call the process self-a�ne (sometimes

called uni-fractal).

Figure 1: Structure functions 1
q
log2 Fq(� ) versus log2 � for Deutschemark/US dollar

exchange rate quotes. The three plots correspond to di�erent value of q : q = 2:0 (�),
q = 4:0 (2) and q = 6:0 (+). In the insert we show �q versus q. We estimate with linear
regression two di�erent regions in this graph. The �rst one is a line of slope 0:5 (dashed
line), and the second has a slope 0:256 (dash dotted line).

As previously mentioned a description in terms of a unique scaling exponent h, does not
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work. Therefore instead of (5) one has

Fq(� ) � � �q ; (6)

where �q are called scaling exponents of order q. If �q is not linear, the process is called

multi-a�ne (sometimes multi-fractal). Using simple arguments it is possible to see that

�q has to be a convex function of q [25]. The larger is the di�erence of �q from the linear

behavior in q the wilder are the uctuations and the correlations of returns. In this sense

the deviation from a linear shape for �q gives an indication of the relevance of correlations.

In �gure 1 we plot, the Fq(� ) for three di�erent values of q. A multi-a�ne behavior is

exhibited by di�erent slopes of 1

q
log2(Fq) vs. log2(� ), at least for � between 24 and 215.

For larger business lags a spurious behavior can arise because of the �nite size of the

dataset considered. In the insert we plot the �q estimated by standard linear regression

of log2 Fq(� ) vs. log2(� ) for the values of � mentioned before. To give an estimation

of errors, the most natural way turns out to be a division of the year dataset in two

semesters. This is natural in the �nancial context, since it is a measure of reliability of

the second semester forecast based on the �rst one. We observe that the traditional stock

market theory (brownian motion for returns), gives a reasonable agreement with �q ' q=2

only for q < 3, while for q > 6 one as �q ' ~hq+ b with ~h = 0:256 and c = 0:811. We stress

once again that such a behavior cannot be explained by a \random walk" model (or other

self-a�ne models) and this e�ect is a clear evidence of correlations present in the signal.

2.2 Long term correlations analysis

Let us consider the absolute returns series fjrtjg, which is often shown to be long range

correlated in recent literature [6, 7, 8, 9, 10, 20, 21]. Absolute values mean that we are

interested only in the size of uctuations.

Let us introduce the generalized correlations Cq(� ):

Cq(� ) � hjrtj
qjrt+� j

qi � hjrtj
qihjrt+� j

qi : (7)

We shall see that the above functions will be a powerful tool to study correlations of

returns with comparable size: small returns are more relevant at small q, while Cq(� )

is dominated by large returns at large q (the usual de�nition of correlation for absolute

returns is recovered for q = 1).

Following the de�nitions in [26], let us suppose to have a long memory for the absolute

returns series, i.e. the correlations Cq(� ) approaches zero very slowly at increasing � , i.e.

Cq(� ) is a power-law:

Cq(� ) � ���q :

If jrtjq is an uncorrelated process one has �q = 1, while �q less than 1 corresponds to long

range memory.

Instead of directly computing correlations Cq(� ) of single returns we consider rescaled

sums of returns. This is a well established way, if one is interested only in long term
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analysis, in order to drastically reduce statistical errors that can a�ect our quantities [27].

Let us introduce the generalized cumulative absolute returns [10]

�t;q(� ) �
1

�

��1X

i=0

jrt+ij
q (8)

and their variance

�q(� ) � h�t;q(� )
2i � h�t;q(� )i

2
: (9)

After some algebra (see Appendix), one can show that if Cq(� ) for large � is a power-law

with exponent �q, then �q(� ) is a power-law with the same exponent :

Cq(� ) � ���q =) �q(� ) � ���q :

In other words the hypothesis of long range memory for absolute returns (�q < 1), can be

checked via the numerical analysis of �q(� ).

Figure 2: log2 �q versus log2 � . The three plots correspond to di�erent value of q : q = 1:0
(�), q = 1:8 (2) and q = 3:0 (+). In the insert we show �q versus q, the horizontal line
shows value � = 1 corresponding to independent variable.

In �gure 2 we plot the �q vs. � in log-log scale, for three di�erent values of q. The variance

�q(� ) is a�ected by small statistical errors, and it con�rms the persistence of a long range

memory for a � larger than 24 and up to 215.

The exponent �q can be pro�tably estimated by standard linear regression of log2(�q(� ))

versus log2(� ), and the errors are estimated in the same way of subsection 2.1.
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We notice in the insert that the \random walk" model behavior is remarkably di�erent

from the one observed in the Deutschemark/US dollar exchange for q < 3. This implies

the presence of strong correlations, while one has �q = 1 for large values of q, i.e. big

uctuations are practically independent.

An intuitive meaning of the previous results is the following. Using di�erent q one selects

di�erent sizes of the uctuations. Therefore the non trivial shape of �q is an indication of

the existence of long term anomalies.

3 Available information

Let us focus our attention on information analysis of the return rt. We must treat the

dataset in such a way that methods of information theory can be applied.

The usual approach is the codi�cation of the original data in a symbolic sequence. There

are several ways to build up such a sequence: one should make sure that this treatment

does not change the structure of the process underlying the evolution of the �nancial data.

In order to construct a symbolic sequence from a time series, at least two steps are needed :

� A �ltering procedure to remove most of the noise in the dataset.

� A coarse graining procedure to partition the range of variability of the �ltered data,

in order to assign a conventional symbol to each element of the partition.

The codi�cation is then straightforward: a symbol corresponds unambiguously to the

data stored in each element of the partition.

From the original signal rt we obtain a discrete symbolic sequence :

c1; c2; : : : ; ci; : : :

where each ci takes only a �nite number, say m, of values. In such a way we reduce ourself

to the study of a discrete stochastic process.

A simple way to obtain a symbolic sequence is to consider only a two-valued symbol and

de�ne a discrete random variable without performing any �ltering operation :

ci =

(
�1 if ri < 0
+1 if ri � 0

: (10)

The �nancial meaning of this codi�cation is rather evident: the symbol �1 occurs if the

stock price decreases, otherwise the symbol is 1.

Let us now remind some basic concepts of information theory. Consider a sequence of n

symbols Cn = fc1; c2; : : : ; cng and its probability p(Cn). The block entropy Hn is de�ned

by

Hn � �
X
Cn

p(Cn) ln p(Cn) : (11)
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The di�erence

hn � Hn+1 �Hn (12)

represents the average information needed to specify the symbol cn+1 given the previous

knowledge of the sequence fc1; c2; : : : ; cng.

The series of hn is monotonically not increasing and for an ergodic process one has

h = lim
n!1

hn (13)

where h is the Shannon entropy [28].

It is easy to show that if the stochastic process fc1; c2; : : :g is markovian of order k (i.e. the

probability to have cn at time n depends only on the previous k steps n�1; n�2; : : : ; n�k),

then hn = h for n � k. In other cases, or hn goes to zero for increasing n which means that

either for n su�ciently large the (n+1)th-symbol is predictable knowing the sequence Cn

or it tends to a positive �nite value. The maximum value of h is ln(m). It occurs if the

process has no memory at all and the m symbols have the same probability.

The di�erence between ln(m) and h is intuitively the quantity of information we may use

to predict the next result of the phenomenon we observe, i.e. the market behavior. We

de�ne available information :

I � ln(m)� h = R ln(m) (14)

where R = 1 � h= ln(m) is called the redundancy of the process [28].

Hereafter we limit the discrete process to take only two values, �1 and 1 which have an

evident �nancial meaning. We expect that the high frequency details are not relevant

and cannot be easily used by �nancial analysts. It seems rather reasonable to study the

process rt with a �nite lag � (see subsection 3.1) or a �nite resolution � on the values of

rt (see subsection 3.2).

In the following we shall show that di�erent discretization procedures lead to completely

di�erent results. This corresponds to two di�erent kind of investment, one systematic

and the other patient. The systematic investor modi�es his portfolio every � steps, where

the lag � is measured in the usual business time (but the same results hold also for the

calendar time). The patient investor, instead, waits to update his strategy until a certain

behavior of the market is achieved, for example, a uctuation of size �.

In the last part of this section we shall show that this kind of investment seems to be the

most suitable for �nancial aims.

3.1 A naive approach: �xed lag analysis

In a recently proposed time series model [29] the price variation is considered as a result

of a true underlying process plus an uncorrelated white noise. If we think the observed

return as the sum of these two components, it is natural to try to eliminate the additional

noise taking the average of the signal over a given lag.

More precisely we treat the �nancial data as follows :
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� we group the sequence of the rt in non overlapping blocks of � data and we de�ne

the sum of the data in the jth block

r0j �
j(�+1)X

k=j�+1

rk :

Notice that r0j is equivalent to r
(�)
j� where r

(�)
t is de�ned in equation (2).

� we decimate the data, i.e. we take from the sequence r0j only one data every m :

Rk � r0mk :

This procedure should eliminate the eventual short time correlation of the noise.

� we build up the symbolic sequence, like in equation (10) :

ck =

(
�1 if Rk < 0
+1 if Rk � 0

: (15)

Let us remark that the �rst two steps have been performed to reduce the noise.

The total number of the data of the symbolic sequence is N=(m� ), where N is the

number of original data. This �lter is linear, i.e. if the signal is a linear combination of

various contributes, at the end of the �ltering procedure we have the sum of the �ltered

contributes. The theory of linear �lter is well developed in literature (see for example

[27]), and we use this simple approach to check whether a noise is added to our signal.

At this point we have a binary sequence from which we compute the Shannon entropy.

Figure 3 reports the results of our analysis for the linear �lter. We plot hn vs n for various

� and m, compared with the entropy of Bernoulli trials with probability p = 0:5 (this is

nothing that the usual coin tossing).

We know that the entropy hn of a fair binary Bernoulli trial must be ln(2) for every n.

The folding of hn at large n depends on the �nite number of sequence elements. It can be

proved [30] that the statistical analysis does not give the proper value of hn for n larger

than :

n�
�

1

h
ln(N)

where h is the entropy of the signal and N is the length of the sequence.

It should be now clear that the entropy of the sequence is given by the value of the plateau.

The entropy does not di�er sensibly from ln(2), of the coin tossing, and, therefore,

we cannot make prevision on the market. In conclusion, the �nancial data cannot be

represented as a white noise added on a true underlying signal.

Nevertheless, because of the long term correlations (see section 2), there is a clear

indication that the present state of the market depends non trivially on the past.
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Figure 3: hn versus n. The three plots correspond to di�erent value of � and m :
� = 10; m = 10 (2), � = 10; m = 100 (�) and � = 100; m = 100 (+). We show also the
entropy numerically obtained from a coin tossing sequence with the same number of data
of the case � = 10; m = 10 (�). The dotted line indicates ln(2).

3.2 A �xed resolution analysis

The failure of the previous analysis lead us to try another approach in order to keep the

information present in the �nancial data, this time we use a non-linear �lter with a clear

�nancial meaning.

The procedure to create the symbolic sequence is now :

� we �x a resolution value � and we de�ne

rt;t0 � ln
St

St0

; (16)

where t0 is the initial business time, and t > t0. We wait until an exit time t1 such

as :

jrt1;t0j � � :

In this way we consider only market uctuations of amplitude �. Since the

distribution of the returns is almost symmetric, the threshold � has been chosen

equal for both positive and negative values. Starting from St1 we obtain with the

same procedure St2 .
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� following the previous prescription we create a sequence of returns

frt1;t0; rt2;t1; : : : ; rtk;tk�1; : : :g ;

from which we obtain the symbolic dynamics :

ck =

(
�1 if rtk;tk�1 < 0
+1 if rtk;tk�1 > 0

: (17)

We de�ne k as � trading time, i.e. we enumerate only the transactions at which �

is reached.
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Figure 4: Evolution of rtk;tk�1 with � = 0:01. t0 = 0 corresponds at 00:00:14 of October
1, 1992 in calendar time to the , and the t4 = 9939 corresponds at 11:59:28 of October 2,
1992.

Let us notice that the variable jrtk;tk�1j has a narrow distribution close to the threshold,

and for all practical purposes jrtk;tk�1j can be well approximated with �. In �gure 4 we

show an example of evolution of the rtk;tk�1.

The entropy analysis of the symbolic sequence frtk;tk�1g gives a completely di�erent result

from the one in the previous section. In �gure 5 it is shown that the entropy is clearly

di�erent from ln(2) in a wide range of �, i.e. there is a set of � for which the available

information (see eq. (14)) is very large.

In �gure 6 we plot the available information versus � and the distribution of transaction

costs. Because these two quantities do not have similar size they are plotted on di�erent

vertical scales but they are superimposed to make easier comparison between them. We
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Figure 5: hn versus n. The three plots correspond to di�erent value of � : � = 0:00005
(�), � = 0:0002 (2) and � = 0:004 (+). The dotted line indicates ln(2).

observe that the maximum of the available information is almost in correspondence to the

maximum of the distribution of the transaction cost.

We have estimated the transaction costs  as

t =
1

2
ln

S
(ask)
t

S
(bid)
t

'
S

(ask)
t � S

(bid)
t

2S(bid)
t

;

of course this is an upper bound for the true transaction cost.

We notice that the available information is almost equal zero when we consider very small

and very large values of �. These limit values cannot be reached for two di�erent reasons;

since St can assume only discrete values, it is not possible to take the limit � ! 0. In

addition, we cannot compute I
�
for large � because in the sequence rtk;tk�1 there are not

enough data for an e�cient statistical analysis.

3.3 Pro�table information

We focus our attention on optimal strategies in a �nancial market with non zero available

information. We then show the economic relevance of such a quantity in case of weak

e�ciency of the market.

Consider the optimal growth rate strategy for a patient speculator. The returns frtk;tk�1g

are almost symmetrically distributed and they can be well approximated by the two

threshold values � and ��.
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Figure 6: Available information I� versus� (on the left), superimposed to the distribution
of transaction costs, P () versus  (on the right).

We shall only deal with the markovian case. In fact as suggested by �gure 5 and shown

in [31], one has that the markovian approximation well reproduces the signal �ltered with

a �xed resolution �. The symmetry of the return distribution and the markovian nature

of the process implies that the transition matrix is close to
 

p
�

1 � p
�

1� p
�

p
�

!
: (18)

where p
�
is the probability to have +1 at � trading time (t+1), knowing that ct was +1

at time t.

In this particular case the available information is :

I
�
= p

�
ln(p

�
) + (1 � p

�
) ln(1 � p

�
) + ln(2) : (19)

We focus our attention on an investor who decides to diversify his portfolio only in a

security asset with a given interest rate return r, and to invest, every � trading time t,

a fraction lt of his capital in the Deutschemark/US dollar exchange. Our convention is

that the fraction l is positive if he exchange dollars into marks, negative vice versa, and

we allow the speculator to borrow money from a bank.

We assume a vanishing interest rate return. This hypothesis is reasonable: in the period

we are dealing with, the o�cial discount rate �xed by the Federal Reserve is of 3 percent

per year and uctuates between 5.75 and 8.75 percent in the German case. The patient
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speculator rehedges his portfolio on average every 66 seconds when � is equal to the mean

transaction cost. The largest � corresponds to an average time of 8:6 hours of standby. In

the time scales involved the true interest rate return is about one hundred times smaller

than �: the approximation of a vanishing interest rate appears to be fair.

We deal with the no transaction costs case: this will allow us to understand easily the

meaning of available information for a patient investor. The more general situation with

transaction costs is treated in detail in [32].

Let us focus on the investment at time t: the speculator commits a fraction lt in dollars.

At the following time step t+ 1 his capital becomes

Wt+1 = [1 + lt(Exp(ct+1�)� 1)]Wt ' (1 + ltct+1�)Wt ; (20)

where the �rst order approximation in � is enough accurate for the �s considered in this

paper (see Figure 6). We notice that in this case, a consequence of the symmetry, is that

the optimal lt can assume only two values lt = ctl where l is a real number.

We de�ne the pro�table information as the exponential rate of the capital of an investor

who follows an optimal growth rate strategy. The strict connection between this quantity

and the available information was �rst noticed by Kelly [33], who, considering an

elementary gambling game, �rst gave an interpretation of Shannon entropy in the context

of optimal investment.

The computation of capital growth rate is a simple application of [33], and for the

investment above described is

�
�
(l) � lim

T!1

1

T
ln

WT

W0

= p
�
ln(1 + l�) + (1� p

�
) ln(1 � l�) ; (21)

where we neglect O(�2) in (20). It reaches its maximum for

l� =
2p
�
� 1

�
: (22)

An intuitive consequence of equation (22) is that an anti-persistent return (p
�
< 1=2),

as in the �nancial series we have considered, implies that the optimal strategy is to buy

marks if the dollar rises, and to do the opposite otherwise. Of course a persistent case

(p
�
> 1=2) would imply an lt greater than zero every time the positive threshold � is

reached.

From (21) and (22) one has that the optimal growth rate is equal to the available

information:

��
�
= max

l

�
�
(l) = p

�
ln(p

�
) + (1 � p

�
) ln(1 � p

�
) + ln(2) = I

�
: (23)

We stress that the equivalence between available and pro�table information, if we forget

the costs involved in this trading rule, means that a speculator, who follows a particular

strategy, has the possibility to obtain a growth rate of his capital exactly equal to this

information: this makes clear why we have called it pro�table.
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We underline that we have considered the growth rate measuring the time in � trading

time. To obtain the exponential rate of the capital in the usual calendar time we have

to normalize (21) with the average exit time for the speci�ed � [34]. For example for

� = 0:0002 corresponding to the maximum available information is characterized by

h� i = 66 seconds. This means that the average optimal growth rate is equal to 0:27

percent per second.

A naive consequence of previous results could be that an e�cient market hypothesis should

be rejected.

Unfortunately (for the authors) this is not obvious.

We have previously noticed that the available information can be transformed in pro�table,

let us now comment the feasibility of the proposed trading rule.

When � is near the value of the maximum available information, the speculator changes

his position with high frequency, and � is comparable with transaction costs: it is not

any more possible to neglect them.

Furthermore in equation (22) � appears at the denominator, and then the values of l
�

can be enormous. For example for � corresponding to the maximum of the available

information, the speculator who follows the optimal growth rate strategy, should borrow

2830 times the capital he has! Even a small uctuation from the expected average behavior

can lead to bankruptcy.

On the other hand if he wants to use reasonable values of l
�, he has to chose a su�ciently

large �; in this situation the �ltered series is almost indistinguishable from a \random

walk" and then there is almost no available information.

We have now all the ingredients to comment the shape of the available information shown

in �gure 6.

The speculator cannot have a resolution � lower than the transaction costs, pro�ts from

such an investment would be in fact less than costs. Therefore in this range of � the

available information increases. The discretization of the prize changes does not allow

for reaching in a continuous way � = 0, where the \random walk" model is practically

recovered as shown in the �rst part of this section.

For � larger than the transaction costs the information can be exploited by proper

strategies. However, small uctuations are more di�cult to detect and to distinguish

from the \noise" and the pro�table information is almost useless because of the huge

values of l
� involved. This fact is even more evident when transaction costs are included.

On the other hand for large �, the investors are able to discover the available information

and to make it pro�table with a feasible strategy. As a consequence, the e�cient

equilibrium is than restored for all practical purposes.

Let us briey mention what happens instead to the systematic investor. We can repeat

exactly the above discussion and the only di�erence is that now he decides to modify

his portfolio every � business time. Because there is almost no available information

(see subsection 3.1) the optimal growth rate of his capital is vanishing even without

considering the costs involved in the transactions.
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4 Conclusions

In this paper we have considered the long term anomalies in the Deutschemark/US dollar

quotes in the period from October 1, 1992 to September 30, 1993 and we have analyzed

the consequences on the weak e�ciency of this market.

In section 2 we have shown the presence of long term anomalies with two techniques: the

structure functions and a generalization of the usual correlation analysis. In particular we

have pointed out that \random walk" models (or other self-a�ne models) cannot describe

these features.

Once we have shown the existence of correlations in �nancial process, we have tested

whether they allow for a pro�table strategy.

With such a goal in mind, in section 3 we have �rst introduced a direct measure of the

available information, then we have shown in a particular case that this is equivalent to

a pro�table information. In other words following a suitable trading rule it is possible in

absence of transaction costs to have an exponential growth rate of the capital equal to

this information.

We have measured the available information with a technique which reminds the

Kolmogorov � entropy. Two di�erent codi�cations for �nancial series (�xed lag � and

�nite resolution �) lead to completely di�erent results.

The available information strongly depends on the kind of investment the speculator has

in mind. We show that if he wants to change his position systematically at �xed lags �

the available information is practically zero: for this investor the market is e�cient.

Instead, a patient investor, who waits to modify his portfolio till the asset has a uctuation

�, observes a �nite available information.

However, the existence of such a trading rule does not imply that the investment is feasible

in practice. Namely we show that when reasonable investments are involved almost no

available information survives. On the contrary, it is extremely di�cult to use it when it

is still present.

The technique described here can be considered as a powerful tool to test weak e�ciency :

the speculator contributes to reach e�cient equilibria destroying the available information

that could be exploited in practice. The e�ciency hypothesis is then restored for almost

all practical purposes.

Appendix

In this appendix we show that if the correlations Cq(� ) exhibit a long range memory

Cq(� ) � ���q then also the variance �q(� ) of the generalized cumulative absolute returns

f�t;q(� )g behaves at large � as ���q .
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Making explicit expression of �t;q(� ) (see equation (8)) one can write equation (9) as :

�q(� ) =
1

� 2

��1X

�1=0

��1X

�2=0

hjrt+�1 j
qjrt+�2j

qi � hjrt+�1j
qihjrt+�2 j

qi :

Taking into account the fact that rt is a stationary process, and using the de�nition of

Cq(� ), one has:

�q(� ) =
1

�
Cq(0) +

2

� 2

X

�>�1>�2�0

Cq(�1 � �2)

where

Cq(0) = hjrtj
2qi � hjrtj

qi2 :

The expression of �q(� ) can be rewritten as:

�q(� ) =
1

�
Cq(0) +

2

� 2

��1X

�1=1

(� � �1) Cq(�1) :

Under the hypothesis Cq(� ) � ���q , one has for large �

2

� 2

��1X

�1=1

(� � �1) Cq(�1) � ���q ;

which leads to :

�q(� ) = O(��1) +O(���q) :

Since �q � 1, the thesis follows, i.e. :

�q(� ) � ���q :
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Patrick Cheridito (ETH):

Long-Range Dependence and Option Pricing.

Abstract: Several attempts have been made to remedy some of the shortcomings of the
Black-Scholes model by describing the risky asset by a process with correlated increments.
Fractional Brownian motion BH

t exhibits long-range dependence between the increments,
but it is not a semimartingale. By a general result of Delbaen and Schachermayer (1994)
this guarantees the existence of a sequence of simple predictable integrands yielding a
free lunch with vanishing risk. Rogers (1997) and Shiryayev (1998) even constructed
arbitrage strategies for fractional models. Hence, it is certainly not reasonable to model
the discounted price of a financial asset by

St = 1 +BH
t or St = eB

H
t .

Rogers (1997) proposed to change the kernel in the Mandelbrot-Van Ness representation
of fractional Brownian motion at zero to obtain a Gaussian semimartingale with the same
long-range dependence as fractional Brownian motion.

We present an arbitrage strategy which needs to see a smaller filtration than the one of
Rogers and exists for fractional Brownian motion with every Hurst parameter H ∈ (0, 1),
whereas Shiryayev’s strategy can only be defined for H ∈ (1

2
, 1). Further we show that

Roger’s Gaussian semimartingale Rt is equivalent to Brownian motion. This means that
if we model a risky asset by the SDE

dSt = µStdt+ σStdRt, (∗)

the option pricing formulas are the same as in the Black-Scholes model. However, if we
combine such Gaussian semimartingales with different long-range dependence rates

Rt =
n∑
i=1

αiR
i
t,

it might well be that (∗) yields a sensible model not equivalent to the Black-Scholes model.
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Rama Cont (CMAP, CNRS - Ecole Polytechnique):

Multiresolution analysis of financial time series.

Abstract: While financial applications involve many different time scales, ranging from
a few minutes (intraday) to a few months, most techniques used in econometrics focus on
modeling the returns (first differences) of price series on a single time scale. By contrast,
multiresolution analysis probes the properties of time series at various time scales and
focuses on their scaling properties i.e. how their statistical features change with time
resolution.

We present a “pathwise” approach to the analysis of scaling and regularity properties
of financial time series, using the wavelet transform as a mathematical microscope for
probing the local Hölder regularity of price trajectories. Using three different methods,
we estimate the Hölder spectrum of these time series and compare them with properties
of various stochastic processes used in financial modeling.

Finally, we compare these results to previous studies on turbulent velocity fields and
point out similarites and differences. We will show that, although it is tempting to apply
the Kolmogorov cascade approach to model financial data, some serious problems are
encountered in such approaches.

Keywords: random cascades, financial time series, high-frequency data, Hölder regularity,
multifractal formalism, multiscale stochastic processes, multiresolution analysis, scaling,
self-similarity, singularity spectrum, turbulence, wavelet transform.

27



Rosario Delgado (Barcelona):

On an Ogawa-type integral with application to the Fractional Brownian
Motion†.

Extended Abstract:

Recently, several authors have used different approaches to the construction of a stochas-
tic calculus with respect to the process known as Fractional Brownian motion (FBM for
short), introduced in the celebrated paper of Mandelbrot and Van Ness ([2]). The in-
terest on this subject takes root in the recognition of this process as a good model in
many applications (in Engineering, Economics, Physics, Biology, ...), due to its long-term
dependence and self-similarity character. Since this non-Markovian process is not even a
semimartingale, it is not possible to apply the classical theory in order to define a stochas-
tic integral with respect to it. Here we construct a deterministic Ogawa-type integral with
respect to a continuous function that, in particular, can be a trajectory of the FBM. This
integral is inspired by the (stochastic) Ogawa integral (see for instance Ogawa ([3])), that
we also consider in our work when we integrate with respect to the FBM.

1. A deterministic Ogawa-type integral with respect to continuous functions.

Let t ∈ [0, 1], f ∈ L2 ([0, 1]) and g ∈ C ([0, 1]). For any n ∈ N we introduce the sums

Un(f, g, t) =
n∑
i=1

( ∫ t

0

f(s)φi(s) ds
)
gi ,

where {φi, i ≥ 1} is the Haar system of L2 ([0, 1]) and {gi, i ≥ 0} are the coefficients of
the development of g in terms of the basis of Schauder of C ([0, 1]), {ϕi, i ≥ 0} . Note
that gi, i ≥ 1, coincide with the Stieltjes integral of φi with respect to g on [0, 1]. The
fact that f 1[0, t] =

∑∞
i=1

( ∫ t
0
f(s)φi(s) ds

)
φi makes natural the next definition.

Definition 1.1 We will say that the indefinite (Ogawa-type) integral of f with respect
to g exists if Un(f, g, t) converges for all t ∈ [0, 1], as n goes to infinity, and we will denote
its limit by ∫ t

0

f(s)dg(s) =
∞∑
i=1

( ∫ t

0

f(s)φi(s) ds
)
gi .

Equivalently, we also will say that f is Ogawa-type integrable with respect to g.

We point out that this integral coincides with the smoothed Stratonovich integral, and
under rather general conditions, it also coincides with

∑∞
i=1

( ∫ 1

0
f(s)φi(s) ds

)
I (φi, g, t) ,

where I (φi, g, t) is the Stieltjes integral of φi with respect to g on [0, t].

A fundamental property that satisfies the integral introduced above is given in the follow-
ing result.

†Joint work with Maria Jolis
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Proposition 1.2 Let f be a simple function of the form f(s) =
∑`

j=1 aj 1[tj ,tj+1)(s) ,
with aj ∈ R, 0 ≤ t1 < t2 < . . . < t`+1 ≤ 1 . Then, for any g ∈ C ([0, 1]), there exists the
indefinite Ogawa-type integral of f with respect to g, and equals to their Stieltjes integral,
that is,

∫ t

0

f(s) dg(s) =
∑̀
j=1

aj (g(tj+1 ∧ t)− g(tj ∧ t)) .

By other way, Ciesielski et al. ([1]) introduce an integral of any function f ∈ L2 ([0, 1])
with respect to any function g ∈ C ([0, 1]), with finite development in the basis of Haar
and Schauder, respectively {fi}i and {gi′}i′, as

∑
i,i′≥1 figi′

∫ t
0
φi(s)φi′(s)ds . They prove

that their integral can be extended by continuity to any functions f and g in the Besov
subspaces of C ([0, 1]) B1−α

p,1 and Bαp,∞, respectively, with α and p such that 1 ≤ p ≤ ∞,
and 1/p < α < 1−1/p. For the sake of completeness, we recall that the Besov space Bsp,q,
with s > 0 and 1 ≤ p, q ≤ ∞, is the Banach space of functions f : [0, 1]→ R such that
||f ||s,p,q is finite, endowed with this norm, where

||f ||s,p,q =

||f ||p +
( ∫ 1

0

(
1
ts
ωp (f, t)

)q dt
t

)1/q

if q <∞
||f ||p + sup0<t<1

(
1
ts
ωp (f, t)

)
if q =∞ ,

and ωp (f, t) = sup0<h≤t ||(f(·+ h)− f(·)) 1[0,1−h](·)||p .

In the next Proposition we relate the integral of Ciesielski et al. with the Ogawa-type
integral that we are considering.

Proposition 1.3 If f ∈ B1−α
p,1 and g ∈ Bα

p,∞ with 1 ≤ p ≤ ∞ and 1/p < α < 1 − 1/p,
then f is Ogawa-type integrable with respect to g and this integral coincides with the
integral introduced by Ciesielski et altri in [1].

Our following result gives a sufficient condition of integrability for functions f that are
not necessarily continuous. To get this kind of result we have to pay the price of restrict
the class of functions g with respect to which we can integrate to a sufficiently good Besov
subspace of C ([0, 1]).

Theorem 1.4 Let H ∈ (1/2, 1) and let g ∈ BHq,∞, with 1/q < H − 1/2. Let f be a
function of L2([0, 1]) for which the following condition is satisfied:

(h) f ∈ Brp,∞, for some r > 1−H, with p =
q

q − 1
.

Then, f is Ogawa-type integrable with respect to g and the indefinite integral is a con-
tinuous function.
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From the proof of this result we also obtain that there exists a constant C > 0 such that

||
∫ ·

0

f(s)dg(s)||∞ ≤ C
(
||f ||r,p,∞ + ||f ||2

)
||g||H,q,∞ .

Then, a natural question to next consider is that if the indefinite integral belongs to some
Besov subspace of C ([0, 1]), and if we can prove some kind of norms inequality for it. The
positive answer to this question is given in the next result.

Theorem 1.5 Under the assumptions of Theorem 1.4, if, in addition, we suppose that
the following hypothesis is satisfied:

(h′) f ∈ L∞ ([0, 1]),
1

q
≤ 1−H ,

then, the indefinite Ogawa-type integral belongs to the Besov subspace of C ([0, 1]) BHq′,∞
for q′ = 1

1−r and the following norms inequality holds, for some C > 0,

||
∫ ·

0

f(s)dg(s)||H,q′,∞ ≤ C
(
||f ||r,p,∞ + ||f ||∞

)
||g||H,q,∞ .

2. Application to the fractional Brownian motion.

We denote by BH the FBM of Hurst parameter H ∈ (0, 1). This family of processes
includes the ordinary Brownian motion, that corresponds to H = 1/2. We point out that
the case 1/2 < H < 1 is the most frequently encountered in mathematical modeling. It is
known that the trajectories of BH belong to the Besov subspace of C ([0, 1]) BHq,∞, for any
0 < 1/q < H. In particular, for H ∈ (1/2, 1), we can take 0 < 1/q < H − 1/2. Therefore,
we can apply Theorem 1.4, that ensures the integrability in the trajectorial (Ogawa-type)
sense of any process whose trajectories live in L2 ([0, 1]) ∩ Brp,∞, with r > 1 − H and
p = q/(q− 1). This theorem also gives the continuity of the indefinite integral. If we take
0 < 1/q < (1−H) ∧ (H − 1/2) and we suppose, in addition, that the trajectories of the
process that we are integrating belong to L∞ ([0, 1]), Theorem 1.5 gives that the indefinite
integral belongs to some Besov subspace of C ([0, 1]) and that a norms inequality holds.

Moreover, we can also consider the stochastic Ogawa integral (see [3], for instance) with
respect to the FBM of parameter H ∈ (0, 1). We denote by bHi the coefficients of the
development of the trajectories of BH in the basis of Schauder. Then, we have that for any
ω P-a.s, BH (ω) =

∑
i≥1 b

H
i (ω)ϕi . Let X = (Xt)t∈[0, 1] be a measurable process defined

on the same probability space that the FBM, that satisfies that its paths are in L2 ([0, 1])
P-a.s. Let us denote by (xi)i≥1 the coefficients of the development in the Haar system of
the trajectories of X.
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Definition 2.1 For any t ∈ [0, 1] and n ∈ N , we define Un (X, t) to be

n∑
i=1

( ∫ t

0

Xs φi (s) ds
) ( ∫ 1

0

φi (s) dB
H
s

)
,

where
∫ 1

0
φi (s) dB

H
s is defined in the natural way as bHi . Then, we say that X is Ogawa

integrable with respect to BH if there exists the limit in probability, as n goes to infinity, of
Un (X, t), for all t ∈ [0, 1]. We will denote this limit by

∫ t
0
Xs dB

H
s . Moreover, if H ≥ 1/2,

∫ t

0

Xs dB
H
s =

∞∑
i=1

( ∫ 1

0

Xs φi (s) ds
) ( ∫ t

0

φi (s) dB
H
s

)
,

where
∫ t

0
φi (s) dB

H
s is defined in the natural way.

In the next result we give a sufficient condition for the integrability of a process with
respect to BH , with H > 1/2, in the sense of Definition 2.1.

Proposition 2.2 Let H ∈ (1/2, 1). Let X = (Xt)t∈[0, 1] be a measurable process whose
trajectories belong to L2 ([0, 1]) P-a.s, for which the following condition is satisfied:

(h′′)

{
there exist p ∈ (1, 2

3−2H
) and r > 1−H such that

supj≥0

(
2j(r−1/p+1/2)

(
E(
∑2j

k=1 |x2j+k|p)
)1/p
)
<∞ .

Then, X is Ogawa integrable with respect to BH .

Remark 2.3 It is straightforward to prove that hypothesis (h′′) is satisfied for any
centered process X starting from zero and with E(X2

s ) < ∞ for some s ∈ (0, 1], whose
increments are stationary and with the property of self-similarity of parameter M > 1−H.
An example of such a process is the FBM of parameter M > 1−H, but there are other
examples.
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Martin Greiner (MPI Dresden):

What can we learn from one-dimensional observables in fully developed
Navier-Stokes turbulence?.

Abstract: Fully developed Navier-Stokes turbulence is a three-dimensional nonlinear
process. Standard experimental observations record time series of the velocity field in
one point, which according to Taylors frozen flow hypothesis can be interpreted as a one-
dimensional spatial cut through the three-dimensional velocity field at a given fixed time.
This reduction in dimensions is an important point to keep in mind when analysing and
interpreting the ‘one-dimensional’ data. We discuss its implications on various inertial
range observables by employing turbulent cascade models. Such observables are, for ex-
ample, velocity structure functions and pdfs, and multiplier and wavelet correlations for
the energy dissipation field.

Ralf Hendrych (CeVis, Bremen):

Self-similarity and Wavelets.

Abstract: We’ll give a historical overview about the concept of self-similar stochastic
processes, starting with the work of Lamperti on “semi-stability”. This concept of scaling
invariance has several generalizations and applications. One problem is the estimation
of Hurst-exponents. Different methods are used. Some of them based on the wavelet-
transform. The wavelet-transform as a tool for the analysis and synthesis of self-similar
stochastic processes will be motivated and discussed.
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Stewart Hodges (Warwick):

The Risk Premium In Trading Equilibria Which Support Black-Scholes Op-
tion Pricing.

Abstract: This paper provides further analysis of the behaviour of the risk premium on
the market portfolio of risky assets. Earlier work by Hodges and Carverhill (1993), and by
others, has characterised the evolution of the market risk premium in economies where the
variance of the return on the market has constant variance and market index options can
be priced using the Black-Scholes model. In such economies the risk premium satisfied a
non-linear partial differential, equation called Burgers’ equation. This also provides some
significant new insights into this analysis. First we describe the nature of the existing
results and provide a much simpler and more intuitive derivation. Next, we consider the
time homogeneous case. Our original objective was to find a time homogeneous economy
which allows the risk premium to vary inversely with the level of the market so that some
kind of mean reversion could take place. Sadly, this is impossible. We obtain the inter-
esting, but negative, result that the risk premium must be constant or increasing in the
market level for time homogeneous equilibria which rule out arbitrage. Finally, this result
is shown to tie in to earlier work asymptotic portfolio selection. the article also illustrates
that caution is required in this kind of modelling to avoid writing down models which
admit arbitrage. The analysis also shows the limitations of the representative investor
paradigm. Current research on the inefficiency of the market portfolio if the form of the
risk premium is static will also be described.
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Esben Høg (Aarhus School of Business):

A note on a representation and calculation of the long-memory Ornstein-
Uhlenbeck process.

Extended Abstract:

Abstract

In this paper we analyze the covariance function for a long memory generalization
of Ornstein-Uhlenbeck type processes which are the analogues in continuous time of
long memory autoregressions of order 1. A Fractional Brownian Motion with drift
is a special case. We find the exact expression for the covariance function of the
long memory OUP by using the confluent hypergeometric function.

Introduction

This paper is concerned with the analysis of a long memory version of the Ornstein-
Uhlenbeck process.

Behaviour of interest rates and other financial series generally tend to be highly positively
autocorrelated with long swings (especially long rates) and sample autocorrelations that
die out slowly. Thus they appear to be non–stationary. The concepts of fractional integra-
tion or long memory provide a framework for these processes. To incorporate first order
autoregressive behaviour as well a fractional Ornstein-Uhlenbeck process is considered.
Eventually this model may be used to estimate the long memory (Hurst) index.

The Ornstein-Uhlenbeck process

In continuous time the analogue of autoregressions of order 1 are the Ornstein-Uhlenbeck
type processes. Recall a Gaussian Ornstein-Uhlenbeck process of the form

dX = (µ− ϕX)dt+ σdW

or

X(t) = X(0) +

∫ t

0

(µ− ϕX(u))du+ σW (t),

where {W (t) : t ≥ 0} is a standard Brownian motion. It has the well known solution

X(t) = e−ϕtX(0) +
µ

ϕ
(1− e−ϕt) + σ

∫ t

0

e−ϕ(t− u)dW (u).

Now consider the process with the mean subtracted

X̃(t) = X(t)− E (X(t)) = X(t)− e−ϕtX(0) +
µ

ϕ
(1− e−ϕt)

= σ

∫ t

0

e−ϕ(t− s)dW (s).
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Then write

X̃(t) = σ

{
W (t) +

∫ t

0

[e−ϕ(t− s)− 1] dW (s)

}
= σ

{
W (t) +

∫ t

0

[∫ t−s

0

d

du
(e−ϕu)du

]
dW (s)

}
= σ

{
W (t) +

∫ t

0

[∫ t

s

d

du
(e−ϕ(v − s))dv

]
dW (s)

}
,

so that applying Fubini’s theorem for stochastic integrals

X̃(t) = σ

{
W (t) +

∫ t

0

[∫ v

0

d

du
(e−ϕ(v − s))dW (s)

]
dv

}
(1)

= σ

{
W (t)− ϕ

∫ t

0

[∫ v

0

e−ϕ(v − s)dW (s)

]
dv

}
= σW (t)− σϕ

∫ t

0

e−ϕ(t− u)W (u)du,

or in differential representation

dX̃(t) = σ

{
dW (t)− ϕ

[∫ t

0

e−ϕ(t− s)dW (s)

]
dt

}
.

Now the question is, can we make similar calculations with the Brownian Motion replaced
by a Fractional Brownian Motion?

Generalization of Fractional Brownian Motion

The answer to the question in the previous section is yes, at least if we define a Fractional
Brownian Motion with Hurst coefficient H, where 0 < H < 1, as

Wd(t) =
1

Γ(d+ 1)

∫ t

0

(t− s)ddW (s),

where W is a Brownian Motion, and d is the “difference” parameter d = H − 1/2, see for
instance Comte & Renault (1996).

Comte & Renault (1996) then define a fractionally integrated process of order d, −1/2 <
d < 1/2, as

X(t) =
1

Γ(d+ 1)

∫ t

0

(t− s)dã(t− s)dW (s),

or in our notation

X(t) =
1

Γ(H + 1/2)

∫ t

0

(t− s)H−1/2ã(t− s)dW (s) (2)
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where ã is C1.

The advantage of this definition is that it turns out that it allows to generalize (1) by
hiding the singular part td inside the Brownian term by replacing W by WH .

For that purpose stochastic integration w.r.t. WH is defined in the following. If WH(t) =∫ t
0

(t−s)H−1/2

Γ(H+1/2)
dW (s) then under certain regularity conditions,

X(t) =

∫ t

0

c(t− s)dWH(s) (3)

is defined as

X(t) =

∫ t

0

c(t− s)dWH(s) :=
d

dt

[∫ t

0

c(t− s)WH(s)ds

]
.

Thus (2) and (3) are two representations of X(t).

If c is C1 there is a one–to–one correspondence between c(·) and ã(·).
Moreover it turns out that the generalization of decomposition for ordinary Brownian
Motion (cf. (1)) is

X̃(t) = c(0)WH(t) +

∫ t

0

[∫ v

0

c′(v − s)dWH(s)

]
dv, (4)

or in differential representation

dX̃(t) = c(0)dWH(t) +

[∫ t

0

c′(t− s)dWH(s)

]
dt.

Example:

The fractionally integrated version of the Ornstein-Uhlenbeck type process is expressed
in either of two ways:

X̃(t) =

∫ t

0

a(t− s)dW (s) =

∫ t

0

(t− s)H−1/2

Γ(H + 1/2)
ã(t− s)dW (s),

X̃(t) =

∫ t

0

c(t− s)dWH(s),

where obviously c(x) = σe−ϕx and it may be shown that

a(x) =
σ

Γ(H + 1/2)

d

dx

[∫ x

0

e−ϕu(x− u)H−1/2du

]
=

σ

Γ(H + 1/2)

(
xH−1/2 − ϕe−ϕx

∫ x

0

eϕuuH−1/2du

)
.

Also there is a one-to-one relation between the ã and c functions.
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To calculate the autocovariances, it is convenient to use the representation with stochas-
tic integration w.r.t. FBM. We use the so-called confluent hypergeometric function
(Gradshteyn & Ryzhik 1980, formula (9.210)) to calculate integrals of the form

∫ x
0

eϕuuα−1du,
also see the Appendix.

Consider the representation

X̃(t) = σ

∫ t

0

e−ϕ(t− u)dWH(u)

which by definition is

d

dt

[
σe−ϕt

∫ t

0

eϕuWH(u)du

]
Simple differentiation then shows

X̃(t) = −σϕe−ϕt
∫ t

0

eϕuWH(u)du+ σe−ϕteϕtWH(t)

= σWH(t)− σϕ
∫ t

0

e−ϕ(t− u)WH(u)du.

The autocovariance function is (for t ≥ s)

E (X̃ (t)X̃(s)) = σ2

[
E (WH (t)WH(s))− ϕ

∫ t

0

e−ϕ(t− u)E (WH (s)WH(u))du

−ϕ
∫ s

0

e−ϕ(s− v)E (WH (t)WH(v))dv (5)

+ϕ2

∫ t

0

∫ s

0

e−ϕ(t− u)− ϕ(s− v)E (WH (u)WH(v))dudv

]
.

The exact covariance function for the long memory OUP

We have the following exact expression for the autocovariance function in equation (5):

Proposition 1 Let X(t) be a long memory OU process starting at time 0 with parameters
ϕ, σ2, and H. Then the covariance function of X(·) for t ≥ s is

Cov(X(t), X(s)) =
σ2

2

[
t2He−ϕs + s2He−ϕt − (t− s)2H

]
(6)

+
σ2ϕ

4

[
−e−ϕ(t+s) (M(H,ϕ, s) + M(H,ϕ, t))

+e−ϕ(t−s) (M(H,−ϕ, s) + M(H,ϕ, t− s))
+eϕ(t−s) (M(H,−ϕ, t)−M(H,−ϕ, t− s))

]
,
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where M(·, ·, ·) is the following simple “version” of the confluent hypergeometric function

1F1:

M(H, δ, x) =

∫ x

0

u2Heδudu =
1

2H + 1
x2H+1

1F1(2H + 1, 2H + 2, δx).

Remarks:

• There exist efficient algorithms to calculate M(H, δ, x).

• Note that the covariance function for the Fractional Brownian Motion is obtained
from (6) when ϕ = 0:

ϕ = 0 : Cov(X(t), X(s)) =
σ2

2

[
t2H + s2H − (t− s)2H

]
, t ≥ s.

• Also note that the covariance function for the (ordinary) OU process is obtained
from (6) when H = 1/2:

H = 1/2 : Cov(X(t), X(s)) =
e−ϕ (t−s) (1− e−2 sϕ)

2ϕ
, t ≥ s.

Proof

The first term in (5) is

σ2

2

[
t2H + s2H − (t− s)2H

]
.

The second term is

−ϕσ2

2

[∫ t

0

e−ϕ(t− u)s2Hdu+

∫ t

0

e−ϕ(t− u)u2Hdu−
∫ t

0

e−ϕ(t− u)|s− u|2Hdu

]
= −−ϕσ

2

2

[
s2H 1

ϕ
(1− e−ϕt) + e−ϕt

∫ t

0

eϕuu2Hdu

+

∫ s

0

e−ϕ(t− u)(s− u)2Hdu+

∫ t

s

e−ϕ(t− s)(u− s)2Hdu

]
= −ϕσ

2

2

{
s2H(1− e−ϕt)/ϕ+

1

2H + 1
e−ϕtt2H+1

1F1(2H + 1, 2H + 2, ϕt)

+e−ϕ(t− s) 1

2H + 1

[
s2H+1

1F1(2H + 1, 2H + 2,−ϕs)

− (t− s)2H+1
1F1(2H + 1, 2H + 2, ϕ(t− s))

]}
.

Likewise the third term becomes

−ϕσ
2

2

{
t2H(1− e−ϕs)/ϕ+

1

2H + 1
e−ϕss2H+1

1F1(2H + 1, 2H + 2, ϕs)

+eϕ(t− s) 1

2H + 1

[
t2H+1

1F1(2H + 1, 2H + 2,−ϕt)

− (t− s)2H+1
1F1(2H + 1, 2H + 2,−ϕ(t− s))

]}
.

38



Finally, the fourth term reads

ϕ2σ2

2

[∫ s

0

e−ϕ(s− v)

∫ t

0

e−ϕ(t− u)u2Hdudv

+

∫ t

0

e−ϕ(t− u)

∫ s

0

e−ϕ(s− v)v2Hdvdu

−
∫ s

0

∫ t

0

e−ϕ(t− u)− ϕ(s− v)|v − u|2Hdvdu

]

=
ϕ2σ2

2

[∫ s

0

e−ϕ(s− v)

∫ t

0

e−ϕ(t− u)u2Hdudv

+

∫ t

0

e−ϕ(t− u)

∫ s

0

e−ϕ(s− v)v2Hdvdu

−
∫ t

0

∫ min(s,u)

0

e−ϕ(t− u)− ϕ(s− v)(u− v)2Hdvdu∫ t

0

∫ v

0

e−ϕ(t− u)− ϕ(s− v)(v − u)2Hdudv

]
.

After some tedious calculations (see also the Appendix) these formulas reduce to

ϕσ2

2

[
(e−ϕs− e−ϕ(t− s))M(H,ϕ, s) + (e−ϕt− e−ϕ(t+ s))M(H,ϕ, t)

−e−ϕ(t + s)
1

2
(e2ϕtM(H,−ϕ, t)−M(H,ϕ, t))

−e−ϕ(t + s)
1

2
(e2ϕsM(H,−ϕ, s)−M(H,ϕ, s))

+e−ϕ(t− s)1

2
(e2ϕ(t− s)M(H,−ϕ, t− s)−M(H,ϕ, t− s))

]
.

By adding all the terms and simplifying appropriately we obtain formula (6).

Appendix

Some useful formulas

Recall the definition of the confluent hypergeometric function

1F1(α, β, z) =
Γ(β)

Γ(α)

∞∑
n=0

Γ(α+ n)

Γ(β + n)

zn

n!
.

39



We then define

K(α, δ, x) =
1

α
xα 1F1(α, α+ 1, δx)

=

∫ x

0

uα−1eδudu

= xα
∞∑
n=0

(δx)n

n!(α+ n)
.

Note that

Γ(α, z) = Γ(α)−
∫ z

0

uα−1e−udu

= Γ(α)− 1

α
zα 1F1(α, α+ 1,−z)

= Γ(α)−K(α,−1, z),

where Γ(α, z) =
∫∞
z
uα−1e−udu (the incomplete gamma function).

Also note that, according to Gradshteyn & Ryzhik (1980) (a consequence of formula
9.212), we have

1F1(α, α+ 1,−z) = e−z 1F1(1, α+ 1, z). (7)

Furthermore define

Λ(µ, α, δ, x) = B(µ, α)xµ+α−1
1F1(α, µ+ α, δx)

=

∫ x

0

uα−1(x− u)µ−1eδudu

= xµ+α−1

∞∑
n=0

B(µ, n+ α)
(δx)n

n!
,

where B(·, ·) denotes the beta function.

When µ = 1 we have

Λ(1, α, δ, x) = K(α, δ, x)

= xα
∞∑
n=0

(δx)n

n!(α+ n)
,

and when µ = 2 we have

Λ(2, α, δ, x) =

∫ x

0

uα−1(x− u)eδudu

= xα+1
∞∑
n=0

1

(n+ α)(n+ α+ 1)

(δx)n

n!
.
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Double summation and the confluent hypergeometric function

∞∑
j=0

δj

j!(α+ j)
sα+1+j

∞∑
i=0

(εs)i

i!(α + 1 + j + i)

=
∞∑
j=0

δj

j!(α+ j)

∫ s

0

uα+jeεudu

=

∫ s

0

uαeεu
∞∑
j=0

(δu)j

j!(α+ j)
du

=

∫ s

0

eεu
∫ u

0

xα−1eδxdxdu

=

∫ s

0

∫ s

x

eεuxα−1eδxdudx

=

∫ s

0

xα−1eδx
∫ s

x

eεududx

=

∫ s

0

xα−1eδx
1

ε
(eεs − eεx)dx

=
eεs

ε

∫ s

0

xα−1eδxdx− 1

ε

∫ s

0

xα−1e(δ+ε)xdx

=
sα

αε
{eεs 1F1(α, α+ 1, δs)− 1F1(α, α+ 1, (δ + ε)s)} .

Specifically, for δ = −ϕ, and ε = 2ϕ, we have the formula

∞∑
j=0

(−ϕ)j

j!(α+ j)
sα+1+j

∞∑
i=0

(2ϕs)i

i!(α + 1 + j + i)

=
sα

2αϕ

{
e2ϕs

1F1(α, α+ 1,−ϕs)− 1F1(α, α+ 1, ϕs)
}
.
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Analysing Extremal Behaviour of Financial Time Series
Claudia Kl�uppelberg, Technische Universit�at M�unchen

Large losses in �nance as happened for instance during the Black Monday on
October 19, 1987, or the LTCM crises during fall 1998 have stimulated discus-
sions about appropriate Risk Management.

According to Richard Felix, chief credit o�cer at Morgan Stanley, \Risk
management is asking what might happen the other 1% of the time". This
formulation leads immediately to so-called downside risk measures as the Value-
at-Risk (based on a very low quantile of the returns), the expected shortfall or
the semivariance, both based on a low quantile (see [1] and [6])).
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Figure 1: Estimated Value-at-Risk as the 5%-quantile of a DAX portfolio,
where the returns of the DAX prices, taken from 29.8.95{26.8.96, are assumed
to be iid.

Such a risk measure can certainly not be estimated by a normal model
and moment �tting. Quite contrary, the problem suggests the application of
stochastic extreme value theory, usually formulated in terms of large order
statistics, i.e. in terms of large losses. This means that the most extreme data,
which are responsible for far out tail behaviour or high quantiles, are modelled
by an appropriate extreme value model. The method is standard for iid data
(e.g. [5]).

It is well-known, however, that �nancial data often show a change in their
uctuations in time and a very special dependence structure, usually captured
by volatility modelling, which also may a�ect tail- and quantile estimation.
Common volatility models include di�usion processes (as solutions to SDE's)
or ARCH and GARCH processes.

In [3] we investigate the extremal behaviour of a di�usion given by the SDE

dXt = �(Xt)dt+ �(Xt)dBt ; t > 0 ;

where X0 = x, B is standard Brownian motion, � is a drift term and � is the
di�usion coe�cient or volatility.
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The extremes of such a process can be compared to the extremes of iid
random variables with some speci�c distribution, which in general di�ers from
the stationary distribution of the process, but can explicitly be given for any
speci�c example.
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0
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Figure 2: Simulated sample path of the Cox-Ingersoll-Ross model given by
the SDE dXt = (c � dXt) dt + �

p
Xt dBt ; t > 0 ; (X0 = x) and (Bt) standard

Brownian motion. (with parameters c = d = � = 1).

ARCH and GARCH models describe the volatility as a function of the sam-
ple path and the past volatility. These models capture certain stylised facts of
�nancial data like heavy-tailedness, uncorrelatedness and a special dependence
structure often found in �nancial data (see [5], Section 8.4, [7] and references
therein). The estimation of risk measures has here to deal with clustering in
the extremes, see [2, 4, 7].

References

[1] Artzner, P., Delbaen, F., Eber, J-M. and Heath, D. (1998) A characterization of
measures of risk. Preprint ETH-Zurich.

[2] Borkovec, M. (1998) Extremal behavior of the autoregressive process with
ARCH(1) errors. Preprint TU-M�unchen
(www-m4.mathematik.tu-muenchen.de/m4/Papers/Borkovec/mb-pubs.html)

[3] Borkovec, M. and Kl�uppelberg, C. (1998) Extremal behaviour of di�usion models
in �nance. Extremes 1, 47-80.

[4] Borkovec, M. and Kl�uppelberg, C. (1998) The tail of the stationary distribution
of an autoregressive process with ARCH(1) errors. Preprint TU-M�unchen
(www-m4.mathematik.tu-muenchen.de/m4/Papers/Borkovec/mb-pubs.html)

[5] Embrechts, P. Kl�uppelberg, C. and Mikosch, T. (1997)Modelling Extremal Events

for Insurance and Finance. Springer, Berlin.

[6] Fishburn, P.C. (1977) Mean-risk analysis with risk associated with below-target
returns. American Economic Review 67, 116-126.

[7] Mikosch, T. and St�aric�a, C. (1998) Limit theory for the sample autocorrelations
and extremes of a GARCH(1,1) process. Preprint University of Groningen.

43



N. N. Leonenko (Kiev):

Homogenization and renormalization of the fractional diffusion equations
with random data‡.

Extended Abstract:

Abstract

Gaussian and non-Gaussian limiting distributions of the rescaled solutions of the fractional
in time or in space diffusion equation for Gaussian and non-Gaussian initial data with
long-range dependence are described in terms of multiple Wiener-Itô integrals.

1. Introduction

The fractional diffusion equation is obtained from the classical diffusion (or wave) equation
by replacing the first or second-order derivatives by fractional derivatives.

The fractional diffusion equation has been proposed by Nigmathulin (1986) to describe
diffusion in porous media with fractal geometry. Mainardi (1995) pointed out that the
fractional wave equation governs the propagation of mechanical diffusive waves in vis-
coelastic media with exhibit a power-law creep, and consequently provided a physical
interpretation of this equation in the framework of dynamic viscoelasticity. In the non-
stochastic situation the fractional diffusion equation has been studied by Schneider and
Wyss (1989), Kochubei (1989, 1990), Schneider (1990, 1992), Fujitu (1990), Mainardi
(1996), Saichev and Zaslawsky (1997), Mainardi, Paradisi and Corenlo (1999) and oth-
ers. More general fractional Burgers equation has been considered by Biler, Funaki and
Woyczynski (1998) (see, also, Woyczynski (1998)).

We are interested in fractional in time or in space diffusion equation with singular random
initial condition as models of random fields which describe the singular properties of real
data arising in ecology, turbulence and finance, for example.

Such data is known to possess long-range dependence (LRD) and/or intermittency. Frac-
tional operators are natural mathematical objects for description of this phenomena.

In particular, Gay and Heyde (1990) introduced a class of random fields that allow LRD
via the stochastic operational Laplace equation with fractional Laplace operator. Angulo
et al. (1999) introduced the stochastic heat equation in which the Laplacian ∆ is replaced
by fractional Laplacian of the form (I −∆)α/2(−∆)γ/2, α ≥ 0, γ > 0. They proved that
the stationary solution of such equation displays spatial LRD and intermittency. On the
other hand, random fields with singular spectra can be obtained as rescaled solution of
the linear diffusion equation with singular initial conditions (see, Albeverio et al. (1994),
Leonenko and Woyczynski (1998), Leonenko (1999), Anh and Leonenko(1999a) and the
references therein).

‡Joint work with V.Anh, Center in Statistical Science and Industrial Mathematics, Queensland.
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In this paper we present Gaussian and non-Gaussian scenarios for the rescalled solutions
of fractional diffusion-wave equation with singular initial data (see, Anh and Leonenko
(1999b)). In a sense, our results are non-central limit theorems (see, Taqqu (1979) or
Dobrushin and Major (1979)) for random fields arising as solutions of fractional diffusion
equations with singular initial data.

2. Fractional in time diffusion-wave equitation

We consider the fractional (in time) diffusion-wave equitation

∂2βu

∂t2β
= µ

∂2u

∂x2
, µ > 0, 0 < β ≤ 1, (2.1)

where u = u(t, x, β), t > 0, x ∈ R1, is the field variable, and the time derivative of order
a = 2β is defined via Riemann-Liouville calculus (see, for example, Miller and Ross (1993)
or Samko et al. (1993)).

Schneider and Wyss (1989) and Mainardi (1996) (see, also Fujitu (1990), Schneider (1990,
1992), Mainardi et al. (1999)) extended the classical analysis to fractional diffusion-wave
equation (2.1). In particular, let g(x), x ∈ R1, be a given sufficiently well-defined function.
Consider the Cauchy problem

u(0, x, β) = g(x), x ∈ R1, u(t,±∞, β) = 0, t > 0. (2.2)

The solution of Cauchy problem (2.1)-(2.2) can be represented as

u(t, x, β) =

∫
R1

G(t, y, β)g(y)dy, (2.3)

where the Green function

G(t, x, β) =
1

2tβ
√
µ
M

(
|x|
tβ
√
µ

; β

)
, x ∈ R1, t > 0,

and the function M (z; β), z ≥ 0, β ∈ (0, 1) has the following representation:

M (z; β) =
∞∑
n=0

(−1)n zn

n!Γ(−βn+ 1− β)
, z ≥ 0, β ∈ (0, 1).

3. Scaling laws

We consider the to fractional diffusion-wave equation (2.1) subject to the random initial
condition

u(0, x, β) = ν(ω, x), ω ∈ Ω, x ∈ R1, (3.1)

where the random process ν(x) = ν(ω, x), ω ∈ Ω, x ∈ R1, is defined on a suitable complete
probability space (Ω, F, P ).
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The process ν(x), x ∈ R1, is assumed to be a separable measurable mean-square continu-
ous, almost sure continuously differentiable, stationary process with expansion Eν(x) = 0
and true covariance function

R(x) = cov(ν(0), ν(x)) =

∫
R1

eiλxF (dλ), (3.2)

where F (·) is the spectral measure defined on a measurable space (R1,B(R1)).

In view of Karhunen’s Theorem, there exists a complex-valued orthogonally scattered
random measure Z(∆) = Z(ω,∆), ω ∈ Ω, ∆ ∈ B(R1), such that for every x ∈ R1 the
process

ν(x) =

∫
R1

eiλxZ(dλ), (3.3)

where E|Z(∆)|2 = F (∆), ∆ ∈ B(R1), and the stochastic integral in (3.3) is viewed as an
L2(Ω)-integral with control measure F , L2(Ω) being a Hilbert space of complex random
variables with finite second order moments.

From (2.3) and (3.3) we obtain that the solution of the initial-value problem (2.1) and
(3.1) can be written as

u(t, x, β) =

∫
R1

eiλyA(t, λ, β)Z(dλ), (3.4)

where

A(t, λ, β) =

∫
R1

e−iλyG(t, y, β)dy =

=
1

2

[
Eβ
(
iλ
√
µtβ
)

+ Eβ
(
−iλ√µtβ

)]
, (3.5)

t > 0, λ ∈ R1, β ∈ (0, 1)

and

Eβ (z) =
∞∑
k=0

zk

Γ(1 + βk)
, 0 < β ≤ 1,

is Mittag-Leffler function of a complex variable z ∈ C.

Note that for β = 1
2

M

(
z;

1

2

)
=

1√
π
e−

z2

4 , z ∈ R1, A(t, λ, β) = e−λ
2µt, λ ∈ R1,

and for β = 1
3

M

(
z;

1

3

)
= 32/3Ai

(
z31/3

)
, z ≥ 0, M

(
−z; 1

3

)
= M

(
z;

1

3

)
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where the Airy function Ai (u) , u ≥ 0, is defined via the formula

Ai (z) =
1

π

√
z

3
K 1

3

(
2

3
z

3
2

)
, z ≥ 0,

where

Kν(z) =
1

2

∞∫
0

sν−1 exp

{
−1

2

(
s +

1

s

)
z

}
dz, z ≥ 0,

is the modified Bessel function of the third kind of order ν (see, for example, Watson
(1944)).

If ν(x), x ∈ R1, is a stationary Gaussian process with spectral density f(λ), λ ∈ R1, then

u = u(t, x, β), t > 0, x ∈ R1, 0 < β < 1,

is a stationary in x Gaussian field with covariance structure

cov (u(t, x, β), u(t′, x′, β)) =

∫
eiλ(x−x′)f(λ)A(t, λ, β)A(t′, λ, β)dλ,

where A(t, λ, β) is defined in (3.5).

In this paper we consider the limiting distributions of the rescalled solutions of the initial-
value problem (2.1)-(3.1) in the case where the stochastic process ν(x), x ∈ R1, is a
pointwise transformation of a stationary Gaussian process ξ(x), x ∈ Rn with n = 1, i.e.,

ν(x) = h(ξ(x)), x ∈ Rn, (3.6)

where the non-random function h : R1 → R1 is such that Eh2(ξ(0)) <∞.

The underlying stationary field ξ(x), x ∈ Rn, and non-random function h(·) are assumed
to satisfy the following conditions

A. The field ξ(x), x ∈ Rn, is a real, measurable, separable, mean-square continuous, a.s.
continuous differentiable stationary Gaussian with Eξ2(x) = 1 and covariance function

R(x) = cov(ξ(0), ξ(x)) = (1 + |x|2)−α/2, 0 < α < n, x ∈ Rn.

B. The function h : R1 → R1 is such that Eh2(ξ(0)) <∞.
The (non-linear) function h(·), already assumed to satisfy condition B, may be expanded
in the series

h(u) =
∞∑
k=0

(Ck/k!)Hk(u),

Ck =

∫
R1

h(u)ϕ(u)Hk(u) du,
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of orthogonal Chebyshev-Hermite polynomials {Hk(u)}∞k=0 which complete an orthogonal
system in the Hilbert space L2(R1, ϕ(u)du), where

ϕ(u) =
1√
2π
e−

u2

2 , u ∈ R1.

C. There exists an integer m ≥ 1 such that

C1 = . . . = Cm−1 = 0, Cm 6= 0.

Under the condition A, with n = 1, the spectral density

fα(λ) = fα(|λ|) =
(

2
1−α

2 /Γ(
α

2
)
√
π
)
K 1−α

2
(|λ|)|λ| 1−α2 =

= c(α)|)|λ|1−α(1− θ(λ)), 0 < α < 1, λ ∈ R1, (3.7)

where θ(λ)→ 0, as |λ| → 0, and

c(α) =
1

Γ(α) cos απ
2

.

From (3.7) we observe that fα(|λ|)→∞, as |λ| → 0, thus we have a random process with
LRD.

Our main result is the following:

Theorem 1. Let u(t, x; β), t > 0, x ∈ R1, 0 < β < 1, be a solution of the initial- value
problem (2.1) – (3.1) with random initial condition (3.6) with n = 1 satisfying conditions
A with n = 1, B and C with 0 < α < 1/m. Then the finite-dimensional distributions of
the random fields

Uε(t, x; β) =
1

ε
mαβ

2

[
u

(
t

ε
,
x

εβ
; β

)
− C0

]
, t > 0, x ∈ R1, 0 < β < 1,

converge weakly, as ε→ 0, to the finite-dimensional distributions of the random field

Um(t, x; β) =
Cm
m!

[c(α)]m/2
∫ ′
Rm

eix(λ1+...+λm)A(t, λ1 + . . .+ λm; β)
W (dλ1) . . .W (λm)

|λ1 · · ·λm|
1−α

2

,

t > 0, x ∈ R1, 0 < β < 1,where the function A(t, λ; β) is defined in (3.5),
∫ ′
. . . is the

multiple Wiener-Itô integral with respect to complex Gaussian white noise random measure
W (·) associated with the Gaussian process ξ(x), x ∈ R1.

The proof of the Theorem 1 will be given in Anh and Leonenko (1999b). The case β = 1
2
,

G(u) = e−u, u ∈ R1, was considered by Albeverio et al. (1994) (for the case m = 1).
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For β = 1
2

and m ≥ 1 corresponding results are obtained in Leonenko and Woyczynski
(1998a) and Anh and Leonenko (1999a).

4. Fractional in space heat equation

We consider the fractional in space diffusion heat equation of the following form

∂u

∂t
= µ(I −∆)κ/2(−∆)γ/2, µ > 0, (4.1)

where u = u(t, x), t > 0, x ∈ Rn, µ > 0, ∆ is the Laplasian, I is identity operator and
κ ≥ 0, γ ∈ (0, n).

The fundamental solution to equation (4.1) can be represented in the following form (see,
Angulo et al. (1999)):

G(t, x) = p(t, x, κ, γ, µ) =
1

(2π)n

∫
Rn

ei〈λ,x〉−µt|λ|
γ (1+|λ|2)κ/2dλ. (4.2)

Note that

p(2t, x; 0, 2, 1) =
1

(4πt)n/2
e−
|x|2
4t , t > 0, x ∈ Rn

be fundamental solution of the classical heat equation, and

p(2t, x; 0, 1, 1) = Γ

(
n+ 1

2

)
π−

n+1
2

t

(t2 + |x|2)
n+1

2

, t > 0, x ∈ Rn

be a Cauchy density. More general

p(t, x; 0, γ, 1) =
1

(2π)n

∫
Rn

ei〈x,λ〉−
t
2
|λ|γdλ, t > 0, x ∈ Rn

be a density function of a symmetric stable distribution when 0 < γ ≤ 2.

Theorem 2. Let u(t, x), t > 0, x ∈ Rn be a solution of the initial- value problem (4.1)–
(3.1), (3.1) with random initial condition (3.6) satisfying conditions A, B and C with
0 < α < n

m
. Then the finite-dimensional distributions of the random fields

U ′ε(t, x) =
1

ε
mα
2γ

[
u

(
t

ε
,
x

ε1/γ

)
− C0

]
,

t > 0, x ∈ Rn, 0 < γ < n, 0 < αm < n,

converge weakly to the finite-dimensional distributions of the random fields

U ′m(t, x) =
Cm
m!

[
Γ

(
n− α

2

)/
2απn/2Γ (α/2)

]m/2
×
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×
∫ ′
Rmn

ei〈λ1+···+λm,x〉−µt|λ1+···+λm|γW (dλ1) . . .W (dλm)

(|λ1| · · · |λm|)
n−α

2

, t > 0, x ∈ Rn,

where W (·) is the complex Gaussian white noise random measure on (Rn,B(Rn) such that

ξ(x) =

∫
Rn

ei〈λ,x〉
√
fα(λ)W (dλ), x ∈ Rn

and

fα(λ) =
[
π
n
2 2

n
2

+α−2
2 Γ(α/2)

]−1

Kn−α
2

(|λ|) · |λ|α−n2 , λ ∈ Rn.

The proof of the Theorem 2 will be given elsewhere.

For m = 1 the random fields Um(t, x; β) and U
′
m(t, x) are Gaussian. For m ≥ 2 these fields

have non-Gaussian structure.
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Francesco Mainardi (Bologna):

Non local transport effects in skewed turbulence via fractional diffusion and
Lévy statistics.

Extended Abstract:

Foreword

I would like to recall after Hunt [1] the alleged saying of Einstein that if he could, after
solving all the other problems of physics, he would “solve the problem of turbulence”.
Nowadays, even more so, this saying can be referred also to the ”problem of finance”.

Einstein’s oft-repeated saying has continued to have a powerful effect, because it implies
a ”solution” in the same way that Einstein solved other problems. However, there are
such widely differing views on the objectives of turbulence or finance research, so that, in
recent times, scientists prefer to focus their attention on more restricted range of problems
rather than on a general theory or general models.

Here we consider the application of fractional calculus and Lévy statistics in a special
problem of geophysical turbulence, i.e. in modelling the vertical profiles of the effective
eddy diffusivity for horizontally homogeneous diffusion of a passive, conservative scalar in
the convective boundary layer (CBL) of the atmosphere. In fact, large-eddy simulations
have shown that passive, conservative scalars emitted into the CBL have “unusual” (i.e.
not local) diffusion properties, see e.g. [2-4], which can be explained in terms of a fractional
diffusion with skewness.

Fractional Fick’s law and fractional diffusion

Based on a pioneering work by Feller, Gorenflo and Mainardi, see e.g. [5-8], have recently
investigated a fractional diffusion equation, which generates all the Lévy stable densities,
and have provided original discretization schemes (in time and in space), which can be
properly used to simulate the related Lévy flights. This equation reads

∂

∂t
u(x, t) = Dα

θ u(x, t) , x ∈ IR, t > 0 , (1)

where u(x, t) is the field variable (concentration) and Dα
θ is the Feller pseudo-differential

operator acting with respect to the space variable x , with symbol

D̂α
θ = −|κ|α e i(sign κ)θπ/2 . (2)

The two relevant parameters, α , called the index of stability, and θ (related to the asym-
metry), referred to as the skewness, are real numbers subject to the conditions

0 < α ≤ 2 ; |θ| ≤
{
α , if 0 < α ≤ 1 ,

2− α , if 1 < α ≤ 2 .
(3)
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So doing Gorenflo and Mainardi have pointed out (in a natural way) a sort of analogy
with the classical case of the standard diffusion (α = 2 , θ = 0), where the Gaussian
density and Brownian motion are known to play a key role.

Here we would like to extend this argument discussing how Fick’s empirical law for the
flux f(u) must be suitably generalized by the tools of the fractional calculus in order to
obtain the fractional diffusion equation (1) from the continuity equation

∂

∂t
u(x, t) +

∂

∂x
f [u(x, t)] = 0 . (4)

As a consequence we obtain a model for non local transport effects with skewness not
related to pure drift, which is based on Lévy statistics. In our opinion our model, which
improves the recent one proposed by Chaves [9], is a good candidate to interpret some
basic features of dispersion in geophysical turbulence described in [2-4]. We like also
to recall that in the past other models based on Lévy statistics have been applied to
turbulence [10].
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Rimas Norvaǐsa (Vilnius):

p-variation, integration and stock price modelling.

Extended Abstract: Continuous–time stochastic processes have become central to
many areas of applied mathematics including stock price modelling. The main concepts
of stochastic calculus such as filtrations and martingales have a natural interpretation
in financial models. It is not surprising that the semimartingale property has become
the “underlying” assumption for several models of stock price changes, and processes
which are not semimartingales often become unrealistic for stock price modelling. The
well known example of a non-semimartingale is a fractional Brownian motion with the
Hurst exponent H > 1/2. Stochastic processes of this class are sometimes considered as
models for returns of a stock price (they also play an essential role in a series of problems
in the statistical theory of turbulence since the earlier works of A.N. Kolmogorov on
turbulence, see e.g. Obukhov and Yaglom, 1956). Theoretical arguments supporting the
semimartingale assumptions often overlook empirical evidence. On the other hand, the
econometric evaluation of continuous–time stock price models based on the log returns is
not adequate for models other than exponential. A fractional Brownian motion with the
Hurst exponent H > 1/2 is a pleasant exception for using log returns since the exponential
model and the model defined by a linear Riemann–Stieltjes integral equation driven by
this process, both coincide. However for recent empirical results see Willinger, Taqqu and
Teverovsky (1999). We plan to show that the p-variation and pathwise integration may
shed a new light to these types of problems.

The pathwise approach to stock price modelling was initiated by Bick and Willinger
(1994). Their approach was motivated by Föllmer (1981) who derived a non–probabilistic
version of Itô’s formula. An important ingredient in the proof of this Itô formula is the
notion of quadratic variation of a function. In this talk we make use of the classical
notion of p-variation; in addition to Föllmer’s quadratic variation. We consider the class
of all functions f having a non-zero Föllmer’s quadratic variation such that f = g + h,
where g has finite p-variation for each p > 2 (but may have infinite 2-variation) and h has
finite p-variation for some p < 2. The function g may be considered as a trajectory of a
continuous martingale, while the function h may be considered either as a trajectory of
a Lévy process, or as a trajectory of a process which need not be a semimartingale (for
example, it may be a trajectory of a fractional Brownian motion with the Hurst exponent
H > 1/2). We use the integration approach of L.C. Young to deal with functions of
bounded p-variation for some p < 2. In fact Bick and Willinger (1994) proved that Black
and Scholes hedging strategies are self–financing with the portfolio value (f(T )−K)+ at
maturity time T whenever a stock price follows a path of a continuous function f which
has a suitable non-zero Föllmer’s quadratic variation, and f(T ) 6= K. In particular, this
is true for functions f = g+h as above. One can show that this is not so if g = 0. That is,
Black and Scholes hedging strategies are not self–financing if a path of stock price follows
a continuous function with bounded p-variation for some p < 2. A probabilistic variant
of Bick and Willinger’s result was discovered by Schoenmakers and Kloeden (1997).

The primary objective for most financial theories is analysis of asset returns. Therefore
it is important to extend the notion of return associated with a stock price to a pathwise
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setting. The idea behind this construction is based on known results about a one–to–one
correspondence between an evolution and its generator. Let P be a function representing a
stock price in the time period [0, T ]. Then define return R as the generator of the evolution
of stock price changes given by U(t, s) := P (t)/P (s) for 0 ≤ s ≤ t ≤ T . The resulting
notion of return appears to be a continuous time analogue of the simple net return used in
discrete–time models which differs from the log return in general. The stock price P in this
case has a representation of an indefinite product integral which may be considered as an
analogue of the stochastic exponent in stochastic calculus. The existence and properties
of a price P and its return R, depend on their p-variation. Therefore we consider the
problem of estimating the index of p-variation from empirical data of a stock price, where
the index of p-variation of a function f is defined to be the greatest lower bound of p such
that f has bounded p-variation. This problem is quite different from usual estimation
problems because it focus on the analytical properties of sample functions of stochastic
processes rather than their distributional properties.

Finally we notice that the p-variation and Riemann–Stieltjes integration with respect
to processes with unbounded variation, can be incorporated into stochastic calculus by
extending the notion of semimartingale as follows. Given 1 ≤ p < 2, we say that an
adapted stochastic process X is the p-semimartingale if there exist stochastic processes
M and Z such that X(t) = X(0) +M(t) +Z(t), t ≥ 0, where M is a local martingale and
almost all sample functions of Z have bounded p-variation. So that a 1-semimartingale
is the same as classical semimartingale. The Itô formula extends to p-semimartingales by
using the Stieltjes integrability theorem of L.C. Young (1936). Since arbitrage is possible
when a stock price follows a path of continuous function with bounded p-variation for
some p < 2 (see Salopek, 1998), it will be of interest to extend the fundamental theorems
of financial mathematics to the above context.
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Rudolf Friedrich (Stuttgart) and Joachim Peinke (Oldenburg):

Disentangling determinism and fluctuations
Part I: A new stochastic concept.
Part II: Turbulence and Finance.
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Neil Shephard (Nuffield College):

Non-Gaussian OU based models and some of their uses in financial eco-
nomics§.

Abstract: Non-Gaussian processes of Ornstein-Uhlenbeck type, or OU processes as we
shall call them, have considerable potential as building blocks for stochastic models of ob-
servational series from a wide range of fields. They offer the possibility of capturing impor-
tant distributional deviations from Gaussianity and for flexible modelling of dependence
structures. This paper develops this potential, drawing on and extending powerful results
from probability theory for applications in statistical analysis. We illustrate their power
by a sustained application of OU processes within the context of finance and econometrics.
Based on well-known (empirical) stylized facts, we construct continuous time stochastic
volatility models for financial assets where the volatility processes are superpositions of
positive OU processes, and we study these models in relation to financial data and theory.

§Based on joint work with Ole E. Barndorff-Nielsen
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Albert Shiryaev (Steklov Mathematical Institute, Moscow):

Kolmogorov and the Turbulence.

The manuscript for this talk has appeared in the separate note Kolmogorov and the Tur-
bulence, Miscellanea No. 12, May 1999, Centre for Mathematical Physics and Stochastics,
University of Aarhus.

Nils Svanstedt (Chalmers and Göteborg University):

Two-scale limits and mean fields in turbulence and finance.

Extended Abstract:

Let us consider the Navier-Stokes equation
∂uε
∂t

+ (uε · ∇)uε − εk∆uε +∇pε = f,

div uε = 0

(1)

and the Euler equation 
∂u

∂t
+ (u · ∇)u+∇p = f,

div u = 0,

(2)

for incompressible fluids, where x ∈ Ω and t ∈ R+ and where εk, ε > 0 and k constant, is
the magnitude of the viscosity. For small values of εk (high Reynolds number) it is well
known that the fluid velocity uε in (1) has a tendency to develop turbulent behaviour.
Therefore the study of the behaviour of the solution (uε, pε) to (1) as ε→ 0 is of fundamen-
tal importance. A first guess would be that the solution converges to the solution (u, p) to
(2). In [8] DiPerna and Majda study this problem for k = 1 and no scaling in space and
time. They use concentrated compactness (defect measure) methods to show that (uε, pε)
convergens to (u, p) as a vanishing viscosity limit. In his monograph [9], dedicated to the
memory of DiPerna, Evans discusses the same problem and present a somewhat simpler
proof. In [2] Bethuel and Ghidaglia consider a sequence of regularized Euler equations
and prove compactness, this time by geometric measure theoretic methods (the coarea
formula by Federer and Fleming). Note that the regularization in [2] is essential since
there is no smoothing heat operator to rely on. The lack of strong convergence for the
non-linear inertial term presumably hides many of the mysteries in turbulence, see further
comments below. In [3] we employ the technique of Nguetsengs two-scale convergence,
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see [12], and prove that by choosing k = 3/2 and by scaling u 7→ ε−1/2uε, x 7→ ε−1x = y
and t 7→ ε−1/2t = τ , a passage to the limit, sending ε→ 0, in (1) yields a viscid two-scales
limit with two pressures:

∂u0

∂τ
+ (u0 · ∇y)u0 −∆yu0 +∇yp1 = f −∇p0,

divy u0 = 0, div(

∫
Tn
u0dy) = 0,

(3)

where x ∈ Ω, y ∈ T n and τ ∈ R+. Here y is the local spatial variable and τ is the
scaled fast time variable. T n, the unit torus in y, is what is referred to as the unit cell
in the terminology of homogenization. Moreover subindex y denotes differentiation w.r.t.
y. In (3) we have: u0 = u0(x, y, τ), p0 = p0(x, τ) and p1 = p1(x, y, τ) where u0 and p1 are
T n-periodic in y if the test functions are chosen to be periodic, but this can be relaxed, see
[3] or [5]. The existence theory for (3) is found in [4]. Our compactness proof combines
two-scale compactness with the classical compensated compactness argument. One can
also apply two-scale compactness with a time-dependent coarea argument, this is work in
progress, see [5]. If the periodicity is relaxed, an averaging of (3) in y over the unit torus
(denoted bar) results in the mean field

∂u0

∂τ
+ (u0 · ∇)u0 +∇p0 = f,

div u0 = 0,

(4)

i.e. the Euler equation. Here we have also used the fast decay of the heat kernel. The
irregular behaviour of the mean field is also observed in experiments with Rayleigh-Benard
convection in thin layers, see [1]. This has served as a strong motivation for our study.
The method we use in [3] works for oscillatory fluids.

The significant convection rolls that develop in Rayleigh-Benard convection enjoy this
behaviour, which allows us to prove a Poincare type inequality with constant of order ε,
c.f. [16]. This inequality plays a crucial role in the homogenization process. The scaling
above, which allows the two-scale convergence to work, is nothing but the Kolmogorov
scaling and therefore as a benefit our convergence result justifies this scaling in this case.
Details can be found in [5]. We consider again the Navier-Stokes equation with a small
viscosity. 

∂uε
∂t

+ (uε · ∇)uε − ε3/2∆uε +∇pε = f,

div uε = 0.

x ∈ Ω, t ∈ R+. (5)

We now assume highly oscillatory data. We also assume a large number of (well separated)
spatial scales. A formal expansion

uε(x, t) = ε1/2
∞∑
i=0

εiui(x,
x

ε
,
x

ε2
, . . . ,

x

εn
, t,

t

ε1/2
),
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pε(x, t) =
∞∑
i=0

εipi(x,
x

ε
,
x

ε2
, . . . ,

x

εn
, t,

t

ε1/2
),

together with the chain rule yield a very interesting leading order system

∂u0

∂τ
+

n∑
j=1

[(uj−1 ·
n∑
k=j

∇yk)uk−j]−∆y1u0 +
n∑
k=1

∇ykpk = f −∇xp0,

divyn u0 = 0,

divyk
(

∫
T 3
k+1

· · ·
∫
T 3
n

u0dyk+1 · · ·dun) = 0,

divx(

∫
T 3

1

· · ·
∫
T 3
n

u0dy1 · · ·dun) = 0.

where x ∈ Ω, y ∈ T n and τ ∈ R+. Here yk = x/εk are the local spatial scales and
τ = t/

√
ε is the scaled fast time variable. Moreover, T 3

k denotes the unit torus in yk. By
using methods developed by Allaire and Briane we can prove the existence of the cascade
of pressure gradients but the existence theory for the complicated inertial part is widely
open. The chain of separated scales corresponds to the cascade of eddies at various scales
in turbulent regimes. Similar approaches are now being developed by numerical analysts,
see for instance the recent paper [10] on subgrid modeling by my colleagues Johnson and
Hoffman at Chalmers Finite Element Center. As we see from the formal expansion, also
the leading order inertial term is very complicated and seems to involve all higher order
fluid velocities.

In 1973 Black and Scholes [6] came up with an explicit formula for the pricing of European
options, the celebrated Black and Scholes model. This model introduces the concept of
arbitrage. An accurate pricing mechanism must be arbitrage free in the loosely spoken
sense ”no profits without risk”. In mathematical terms: The correct pricing of an asset say
X can not be the expectation E{X}, since this opens an arbitrage opportunity. Instead
diffusion enters the scene and the asset price X is defined as the solution to a stochastic
diffusion equation

dXt = µXtdt+ σ(t,Xt)dBt, (6)

where the first term is called the drift term, the second is called the noise and where Bt

represents a Brownian motion. The function σ is called the volatility and it has to be
estimated from market data. If the volatility is a deterministic function of the asset price
Xt, then the function C(t, x), which gives the no-arbitrage price of a European derivative
at time t when Xt = x, satisfies the Black-Scholes (BS) partial differential equation

∂C

∂t
+

1

2
σ2(t, x)x2∂

2C

∂x2
+ r(x

∂C

∂x
− C) = 0, (7)
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where r is the constant risk free interest rate. One of the key difficulties in the business
is the estimation and understanding of the volatility σ. Estimation, from market data,
leads to a constant volatility while the intuitive sense of wild swings of the prices indicate
that the volatility is random. Models with Xt modelled as a stochastic diffusion driven
by a random volatility Ito process were introduced in 1987 by e.g. Hull and White [11].
Stochastic volatility also arises as the continuous limit of discrete models such as ARCH. In
[13] Papanicolaou and Sircar take an important step and introduce two time scales in this
model, one for the volatility and one for the option price itself, based on the assumptions
that they fluctuate on different time scales. They develop an asymptotic analysis for
high-frequency oscillating volatility with log σ being a mean-reverting Ornstein-Uhlenbeck
process. Under ergodicity assumptions on the processes they derive homogenized limits,
which are again BS, where the fluctuations are averaged out. A short description of their
approach goes as follows: Suppose the diffusion Yt = log σt satisfies

dYt = α(m− Yt)dt+ βdZt,

for constants α, β and m and a Brownian motion Bt. Then, for ”small” ε > 0, log Y ε
t is

described by

dY ε
t =

α

ε
(m− Y ε

t )dt+
β√
ε
dZt. (8)

Here the typical time scale of the lifetime of the contract (typically one year) is of order 1.
If (8) is inserted in (6) we get the stochastic differential equation, with random oscillating
volatility, for the asset price

dXε
t = µXε

tdt+ eY
ε
t Xε

t dBt. (9)

In order to take the skew effects into account we write

Zt = ρBt +
√

1− ρ2Wt,

where the Brownian motions Bt and Wt are independent. Standard no-arbitrage argu-
ments now yield that the European derivative price Cε(t, x, y) satisfies the two scales
partial differential equation

∂Cε

∂t
+
e2yx2

2

∂2Cε

∂x2
+
ρβeyx√

ε

∂2Cε

∂x∂y
+
β2

2ε

∂2Cε

∂y2
+

r(x
∂Cε

∂x
− Cε) +

(
α

ε
(m− y)− λβ√

ε

)
∂Cε

∂y
= 0 (10)

Cε(T, x, y) = (x−K)+.

Here λ is called the market price of volatility risk. By the Ito formula one can also
write Cε(t,Xε

t , Y
ε
t ) as a diffusion driven by the Brownian motions above. The averaging
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procedure is now standard multiple scales homogenization, see e.g. Persson et. al. [14],
where the starting point is the ansatz:

Cε(t, x, y) = C0(t, x, y) +
√
εC1(t, x, y) + εC2(t, x, y) + ...

and a separation of the differential operators in (9). Formal computations yield the leading
order BS equation

∂C0

∂t
+

1

2
σ2(t, x)x2∂

2C0

∂x2
+ r(x

∂C0

∂x
− C0) = 0, (11)

where C0 = C0(t, x) and log σ2 is the expectation with respect to the invariant measure
of the Ornstein-Uhlenbeck process. The second term in the expansion gives a correction
to the BS model. This is carried out in some special cases in [13]. The limit analysis in
(9), as ε→ 0, and its implications is crucial here. In [15] we develop a general stochastic
two-scale convergence theory, c.f. [7], for fast mean-reverting stochastic volatility models
where we also hope for a better theoretical understanding of e.g. smile curves and volatility
clustering for high-frequency data.
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