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Abstract

The asymptotic theory of estimators obtained from estimating functions is re-
viewed and some new results on the multivariate parameter case are presented.
Specifically, results about existence of consistent estimators and about asymptotic
normality of these are given. First a very general stochastic process setting is
considered. Then it is demonstrated how more specific conditions for existence of√
n-consistent and asymptotically normal estimators can be given for martingale

estimating functions in the case of observations of a Markov process.
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1 Introduction

Estimating functions provide a general framework for finding estimators and studying
their properties in many different kinds of statistical models, including stochastic process
models. An estimating function is a function of the data as well as of the parameter.
An estimator is obtained by equating the estimating function to zero and solving the
resulting equation with respect to the parameter. The estimating function approach has
for example turned out to be very useful in obtaining estimators for discretely observed
diffusion models, where the likelihood function is usually not explicitly known; see Bibby
and Sørensen (1995, 1996, 1997 and 1998), Kessler and Sørensen (1998), and Sørensen
(1997b). Also maximum likelihood estimators are obviously covered by the theory as they
are obtained when the score function is used as estimating function.

In Section 2, we give results about existence of consistent estimators and about asymp-
totic normality of these in a very general stochastic process setting. In Section 3, we
consider the special case of ergodic Markov processes and estimating functions that are
martingales for a certain parameter value. Under these restrictions, simpler and more
specific conditions can be given for existence of

√
n-consistent and asymptotically normal

estimators.
Before the general theory is presented, let us give some examples of estimating func-

tions.

Example 1.1 Quasi likelihood for independent observations. Consider n independent
observations X1, . . . , Xn with p-dimensional explanatory covariates t1, . . . , tn. Suppose
we only want to specify the variance function V (µ), and that the mean value of Xi,
µi, is related to the covariates by an invertible link function g in the following way:
g(µi) =

∑p
j=1 βjtij , where the βj’s are unknown parameters about which we want to draw

inference, and where tij denotes the jth coordinate of ti. In this situation it was proposed
by Wedderburn (1974) to use the estimating function Gn(β) with the kth coordinate given
by

Gn(β)k =
n∑
i=1

tik
V (µi(β))g′(µi(β))

[Xi − µi(β)]. (1.1)

Here µi(β) = g−1(
∑p
j=1 βjtij). An estimator of β is obtained by solving the equation

Gn(β) = 0. This is, in fact, the maximum likelihood estimator for the corresponding
generalized linear model. The estimating function (1.1) is optimal among all estimating
functions of the form

∑n
i=1 ai(β)[Xi − µi(β)] in the sense of Godambe and Heyde (1987).

Obviously, Gn(β) is a martingale with respect to the natural filtration provided that
µi(β) is the true mean value of Xi for all i = 1, . . .. The natural filtration (Fn) is given by
Fn = σ(X1, . . . , Xn). Thus the estimating function (1.1) satisfies Condition 3.3 in Section
3.

2
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Example 1.2 Next consider the autoregression of order one defined by

Xi = θXi−1 + εi, X0 = x0,

where the εi’s are independent, identically distributed random variables with E(εi) = 0.
We will not specify the model further, except that we will assume that the second moment
of εi exists. Let us assume that we have the data X1, X2, . . . , Xn. Since

Eθ(Xi |Xi−1 = x) = θx,

it seems natural to find an estimator for θ by minimizing

Kn(θ) =
n∑
i=1

(Xi − θXi−1)2.

This least squares estimator can be found by using the estimating function

Gn(θ) =
n∑
i=1

Xi−1(Xi − θXi−1).

The resulting estimator is

θ̂n =

∑n
i=1Xi−1Xi∑n
i=1X

2
i−1

.

This is the maximum likelihood estimator when the εi’s are Gaussian. Again it is not
difficult to see that Gn(θ) is a martingale with respect to the natural filtration, provided
that θ is the true parameter value.

2

Example 1.3 Consider a Galton-Watson branching process, where Xi denotes the size of
the ith generation. The model is defined as follows. The initial population size X0 = x0

is assumed to be given. The size of the ith population is given by

Xi =
Xi−1∑
j=1

Yij,

where the Yij ’s are independent, identically distributed random variables. Thus, Yij is
the number of offspring that the jth individual in the ith generation gets. We will not
specify the distribution of Yij (the offspring distribution) completely, but only denote its
mean value by θ, and suppose that it has finite variance.

Suppose we wish to draw inference about θ on the basis of the generation size data
X1, . . . , Xn. Then a possible estimating function is

Gn(θ) =
n∑
i=1

(Xi − θXi−1),

which is a martingale if θ is the true mean value of the offspring distribution. The
corresponding estimator

θ̂n =

∑n
i=1Xi∑n
i=1Xi−1

is the maximum likelihood estimator when the offspring distribution is assumed to belong
to an exponential family, see e.g. Küchler and Sørensen (1997, p.23).

2
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Example 1.4 Discrete time observations from Markov processes. Consider statistical
inference for a class of Markov processes (possibly with continuous time). We denote the
observed process by X, and suppose that the distribution of X depends on an unknown
p-dimensional parameter θ that varies in the set Θ ⊆ IRp. For simplicity, we let the
initial value be fixed: X0 = x0. It is, moreover, assumed that the distribution of Xt given
Xs = x, t > s, has a strictly positive density with respect to a dominating measure on
the state space E. We denote the density by

y 7→ p(t− s, x, y; θ) > 0, y ∈ E, θ ∈ Θ.

Suppose we have data of the form Xt1 , Xt2 , . . . , Xtn, where 0 < t1 < . . . < tn.
Ideally, we would base the statistical inference on the likelihood function. Since we

have assumed that the observed process X is a Markov process, the likelihood function is

Ln(θ) =
n∏
i=1

p(∆i, Xti−1 , Xti ; θ),

where ∆i = ti − ti−1 (with t0 = 0). Unfortunately, the transition density p is not known
explicitly for many Markovian continuous time models. This is an important motivation
for the study of the theory of estimating function that provides an alternative inference
method. In fact, inference based on optimal estimating function can be thought of as an
approximation to likelihood inference.

The score function is

Un(θ) = ∂θ logLn(θ) =
n∑
i=1

∂θ log p(∆i, Xti−1 , Xtiθ).

We use the notation ∂θf(θ) for the column vector of partial derivatives of a function
f . The estimating function Un(θ) is of the form studied in Section 3, and standard
arguments show, under regularity conditions allowing the interchange of differentiation
and integration, that Un(θ) is a martingale with respect to the natural filtration when θ is
the true parameter value; see e.g. Barndorff-Nielsen and Sørensen (1994). Thus Condition
3.3 is usually satisfied for likelihood inference.

2

2 A general theory of asymptotics for estimating func-

tions

In this section we consider a general set-up with a probability space on which a parametrized
family of probability measures is given:

(Ω,F , {Pθ : θ ∈ Θ}) , Θ ⊆ IRp.

The data X1, X2, . . . , Xn are just assumed to be observations from some stochastic process
defined on (Ω,F , P0). Note that the true probability measure P0 under which the data
have been generated might not be included in the parametric statistical model {Pθ : θ ∈
Θ}.
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An estimating function is a p-dimensional function of the parameter θ and the data:

Gn(θ) = Gn(θ;X1, X2, . . . , Xn).

Usually we suppress the dependence on the observations in the notation. We get an
estimator by solving Gn(θ) = 0. There might be more than one solution or no solution
at all. We shall give conditions under which an estimator exists and is consistent and
asymptotically normal.

We will use the following notation. For a d× d-matrix A = {aij}, we use the norm

‖A‖2 =
d∑

i,j=1

a2
i,j = tr (AAT ).

If A is positive semi-definite, we denote by A
1
2 the positive semi-definite square root of

A. For a vector a, the Euclidean norm of a is denoted by ‖a‖. The reader is reminded
that a class R of random variables is called stochastically bounded if for every ε > 0 there
exists a Kε > 0 such that

sup
X∈R

P ( ‖X‖ > Kε) < ε.

If {Xn} converges in distribution as n→∞, then it is stochastically bounded.

Condition 2.1 Gn(θ) is continuously differentiable with respect to θ.

Under this condition we can define the p× p-matrix

Jn(θ) = ∂θTGn(θ). (2.1)

By this expression we mean that the ith row of the matrix consists of the partial derivatives
with respect to θ of the ith coordinate of Gn, i.e. the ith row equals (∂θGn(θ)i)

T . We
denote transposition of a vector or a matrix by T . For θ(i) ∈ Θ, i = 1, . . . , p, we define a
second p× p-matrix by

J(θ(1), . . . , θ(p)) =


∂θTG(θ(1))1

...
∂θTG(θ(p))p

 . (2.2)

Condition 2.2 Suppose that there exists a parameter value θ̄ ∈ int Θ such that

sup
θ(i)∈M(α)

n (θ̄)

‖Kn(θ̄)TJn(θ(1), . . . , θ(p))Kn(θ̄)−W (θ̄)‖ → 0 (2.3)

in P0-probability on
C(θ̄) = {det (W (θ̄)) > 0}

for all α > 0 as n → ∞. Here {Kn(θ̄) : n ∈ IN} is a sequence of non-random invertible
p× p-matrices satisfying

Kn(θ̄)→ 0 as n→∞,
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W (θ̄) is a (possibly) random symmetric positive semi-definite matrix, and

M (α)
n (θ̄) = {θ ∈ Θ : ‖Kn(θ̄)−1(θ − θ̄)‖ ≤ α}.

Assume, moreover, that the class of random variables

{Kn(θ̄)TGn(θ̄) : n ∈ IN}

is stochastically bounded.

Theorem 2.3 Suppose the Conditions 2.1 and 2.2 hold. Then for every n, an estimator
θ̂n exists on C(θ̄) that solves the estimating equation Gn(θ̂n) = 0 with a probability tending
to P0(C(θ̄)) as n→∞. Moreover,

θ̂n
p−→ θ̄

on C(θ̄) as n→∞, and

Kn(θ̄)TJn(a(1)
n , . . . , a(p)

n )Kn(θ̄)
p−→ W (θ̄) (2.4)

on C(θ̄), where for each n, a(i)
n is a convex combination of θ̄ and θ̂n (i = 1, . . . , p).

Remark: The last result in the theorem is a technicality needed later in order to prove
asymptotic normality of the estimator. The following proof is inspired by a proof in
Sweeting (1980), see also Barndorff-Nielsen and Sørensen (1994).

Proof: First note that (2.3) implies that

sup
θ(i)∈S(α)

n (θ̄)

‖Kn(θ̄)TJn(θ(1), . . . , θ(p))Kn(θ̄)−W (θ̄)‖ p−→ 0 (2.5)

on C(θ̄) as n→∞ for all α > 0 (under the true probability measure P0, of course). Here

S(α)
n = {θ ∈ Θ : ‖W (θ̄)

1
2Kn(θ̄)−1(θ − θ̄)‖ ≤ α}.

If no solution of Gn(θ) = 0 exists, we set θ̂n = ∞. Otherwise, choose a solution in the
smallest S(m)

n , m = 1, . . ., in which there is a solution.
Fix ε > 0. Since the class of random variables {Kn(θ̄)TGn(θ̄) : n ∈ IN} is stochastically

bounded, so is {W (θ̄)−
1
2Kn(θ̄)TGn(θ̄)1C(θ̄) : n ∈ IN}. Hence, we can find a constant K > 0

such that for all n ∈ IN, the event

An = {‖W (θ̄)−
1
2Kn(θ̄)TGn(θ̄)‖ ≤ K} ∩ C(θ̄)

has P0-probability larger than P0(C(θ̄))− ε.
Next, fix δ > 0, and choose c > 0 large enough that c2 −Kc − δ > 0. Consider the

Taylor expansion

Gn(θ) = Gn(θ̄) + Jn(θ(1), . . . , θ(p))(θ − θ̄),
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where for each i, θ(i) is a convex combination of θ and θ̄. We will consider this expansion
only when θ ∈ bdS(c)

n , i.e. when ‖W (θ̄)
1
2Kn(θ̄)−1(θ − θ̄)‖ = c. This implies that θ(i) ∈

S(c)
n , i = 1, . . . , p. It follows from the expansion that for θ ∈ bdS(c)

n we have that on C(θ̄)

(θ − θ̄)TGn(θ)

= (θ − θ̄)T (Kn(θ̄)−1)TW (θ̄)
1
2W (θ̄)−

1
2Kn(θ̄)TGn(θ̄)

+ (θ − θ̄)T (Kn(θ̄)−1)TW (θ̄)Kn(θ̄)−1(θ − θ̄)︸ ︷︷ ︸
=c2

+Vn(θ),

where

Vn(θ) =

(θ − θ̄)T (Kn(θ̄)−1)T [Kn(θ̄)TJn(θ(1), . . . , θ(p))Kn(θ̄)−W (θ̄)]Kn(θ̄)−1(θ − θ̄).

Now define
Un = max

θ∈bdS(c)
n

|Vn(θ)|

and
Bn = {Un < δ} ∩ C(θ̄),

where the value of δ was fixed earlier. By (2.5) we can find N ∈ IN such that

P0(Bn) ≥ P0(C(θ̄))− ε

for n ≥ N . On An ∩Bn,

(θ − θ̄)TGn(θ) ≥ c2 −Kc− δ > 0

for all θ ∈ bdS(c)
n , and since Gn(θ) is a continuous function of θ, the equation Gn(θ) = 0

has a least one solution in S(c)
n . This follows from Brouwer’s fixed point theorem (see

e.g. Aitchison and Silvey, 1958, Lemma 2, where also a related application to a statistical
problem is given). In conclusion,

An ∩Bn ⊆ {θ̂n ∈ S(c)
n },

and since
P0(An ∩Bn) ≥ P0(C(θ̄))− 2ε

for n ≥ N , we have proved that

P0({Gn(θ̂n) = 0} ∩ C(θ̄))→ P0(C(θ̄))

as n → ∞. Since θ̂n ∈ S(c)
n on An ∩ Bn, and because S(c)

n shrinks towards θ̄ as n → ∞,
it follows that θ̂n

p−→ θ̄ on C(θ̄) under P0 as n → ∞. Moreover, the result (2.4) follows
from (2.5) by the same arguments.

2

For a class of ergodic Markov processes we can usually choose Kn(θ̄) = Ip/
√
n, where

Ip denotes the p× p identity matrix, and the matrix W (θ̄) is non-random. Therefore, the
assumptions made in Theorem 2.3 can be considerably simplified as formulated in the
following condition and corollary.
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Condition 2.4 Suppose that there exists a θ̄ ∈ int Θ and a non-random symmetric posi-
tive definite matrix W (θ̄) such that

sup
θ(i)∈M(α)

n (θ̄)

∥∥∥∥1

n
Jn(θ(1), . . . , θ(p))−W (θ̄)

∥∥∥∥→ 0

in probability as n→∞ for all α > 0, where

M (α)
n (θ̄) = {θ ∈ Θ : ‖θ − θ̄‖ ≤ α/

√
n}. (2.6)

Assume, moreover, that the class of random variables

{Gn(θ̄)/
√
n : n ∈ IN}

is stochastically bounded.

Corollary 2.5 Suppose the Conditions 2.1 and 2.4 hold. Then for every n an estimator
θ̂n exists that solves the estimating equation Gn(θ̂n) = 0 with a probability tending to one
as n→∞. Moreover,

θ̂n → θ̄

in probability as n→∞, and

1

n
Jn(a(1)

n , . . . , a(p)
n )→ W (θ̄) (2.7)

in probability as n → ∞, where for each n, a(i)
n is a convex combination of θ̄ and θ̂n

(i = 1, . . . , p).

For a one-dimensional parameter the condition that the matrix W (θ̄) is positive semi-
definite just means that it is non-negative, which it can always be arranged to be. In
the case of a multi-dimensional parameter, the condition is sometimes too strong. For
estimating functions obtained from pseudo-likelihood functions or contrast functions by
differentiation, the matrix W (θ̄) is positive semi-definite, and for optimal estimating func-
tions this is often the case too; but otherwise W (θ̄) is rarely positive semi-definite. There
are, however, ways around this problem.

Suppose the estimating function Gn satisfies Conditions 2.1 and 2.4 except that the
matrix W (θ̄) is only assumed to be invertible (and not necessarily positive definite), and
assume moreover that for every θ ∈ Θ there exists a non-random, invertible matrix W (θ)

such that ∂θTGn(θ)/n
p−→ W (θ). Then it is easy to see that the estimating function

G̃n(θ) = W (θ)−1Gn(θ) has the same roots as Gn(θ) and that ∂θT G̃n(θ̄)/n
p−→ Ip, where

Ip denotes the p×p identity matrix. However, extra conditions are needed on the original
estimating function Gn to ensure that G̃n satisfies Conditions 2.1 and 2.4. These extra
conditions must, for instance, ensure that W (θ) is continuously differentiable and that
Gn(θ)/n converges uniformly to zero on the shrinking balls M (α)

n (θ̄). We will go a slightly
different way, which has the advantage that it can be generalized to the case of a random
matrix W (θ). To simplify matters, we will only give a result that is relevant to ergodic
processes. We impose the following condition.
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Condition 2.6
(i) The mapping θ 7→ Gn(θ) is twice continuously differentiable.

(ii) There exist a θ̄ ∈ int Θ and an invertible non-random p× p-matrix A(θ̄) such that

sup
θ(i)∈M(α)

n (θ̄)

∥∥∥∥1

n
Jn(θ(1), . . . , θ(p))−A(θ̄)

∥∥∥∥→ 0

in probability as n→∞ for all α > 0, where M (α)
n (θ̄) is given by (2.6).

(iii) There exist p non-random p× p-matrices Bi(θ̄), i = 1, . . . , p, such that

sup
θ(i)∈M(α)

n (θ̄)

∥∥∥∥1

n
Q(i)
n (θ(1), . . . , θ(p))−Bi(θ̄)

∥∥∥∥→ 0

in probability as n→∞ for all α > 0 and all i = 1, . . . , p, where

Q(i)
n (θ) = ∂2

θGn(θ)i.

(iv) {Gn(θ̄)/
√
n : n ∈ IN} is stochastically bounded.

(v) sup
θ∈M(α)

n (θ̄)
‖Gn(θ)/n‖ → 0 in probability as n→∞ for all α > 0.

Remark: By ∂2
θGn(θ)i is meant the p×p-matrix of second order derivatives of the function

Gn(θ)i.

Corollary 2.7 Suppose Condition 2.6 is satisfied. Then the conclusions of Corollary 2.5
hold with W (θ̄) replaced by A(θ̄) in (2.7).

Proof: The contrast function

Hn(θ) = Gn(θ)TGn(θ)

takes its minimal value if Gn(θ) = 0. Consider the estimating function

Rn(θ) =
1

2n
∂θHn(θ) =

1

n
∂θGn(θ)TGn(θ).

We will check that Rn(θ) satisfies Condition 2.4 with W (θ̄) = A(θ̄)TA(θ̄), which is positive
definite. Then we can apply Corollary 2.5 to Rn(θ).

First note that {Rn(θ̄)/
√
n : n ∈ IN} is stochastically bounded because {Gn(θ̄)/

√
n :

n ∈ IN} is so and 1
n
∂θGn(θ̄)T → AT . Then consider the equation

1

n
∂θTRn(θ)− ATA =

1

n
∂θGn(θ)T

1

n
∂θTGn(θ)− ATA+

p∑
k=1

1

n
Q(k)
n (θ)

1

n
Gn(θ)k.

Simple evaluations show that

sup
θ(i)∈M(α)

n (θ̄)

∥∥∥∥1

n
∂θTRn(θ(1), . . . , θ(p))− ATA

∥∥∥∥ ≤ [Y (1)
n + 2‖A‖]Y (1)

n + Y (3)
n

[
Y (2)
n +

p∑
k=1

‖Bk‖
]
,

9



where

Y (1)
n = sup

θ(i)∈M(α)
n (θ̄)

∥∥∥∥1

n
Jn(θ(1), . . . , θ(p))−A(θ̄)

∥∥∥∥
Y (2)
n = max

i
sup

θ(i)∈M(α)
n (θ̄)

∥∥∥∥1

n
Q(i)
n (θ(1), . . . , θ(p))−Bi(θ̄)

∥∥∥∥
Y (3)
n = sup

θ∈M(α)
n (θ̄)

‖Gn(θ)/n‖ .

Hence, Corollary 2.5 ensures the existence of a sequence {θ̂n} such that θ̂n → θ̄ in proba-
bility as n→∞, for which

P0(An)→ 1 as n→∞,
where

An = {Rn(θ̂n) = 0}.
Finally, define the set

Bn = {∂θTGn(θ̂n) is invertible}.
Since ∂θTGn(θ̂n)/n→ A in P0-probability as n→∞, and A is invertible, it follows that

P0(Bn)→ 1 as n→∞.
Remember that Rn(θ) = 1

n
∂θGn(θ)TGn(θ). Therefore, Gn(θ̂n) = 0 on An ∩ Bn, and

Corollary 2.7 follows because

P0(An ∩Bn)→ 1 as n→∞.
2

We complete this section by giving a result on asymptotic normality of estimators
obtained from estimating functions.

Theorem 2.8 Suppose either that Conditions 2.1 and 2.4 hold or that Condition 2.6
holds. Assume, moreover, that

1√
n
Gn(θ̄)

D−→ N(0, V0) (2.8)

as n→∞. Then √
n(θ̂n − θ̄) D−→ N(0, A(θ̄)−1V0(A(θ̄)−1)T )

as n→∞. Under Condition 2.4, A(θ̄) should be replaced by W (θ̄).

Proof: Consider again

Gn(θ̂n) = Gn(θ̄) + Jn(α(1)
n , . . . , α(p)

n )(θ̂n − θ̄),
where each α(i)

n is a convex combination of θ̂n and θ̄. By rearranging the terms, we get

[Jn(α(1)
n , . . . , α(p)

n )/n]
√
n(θ̂n − θ̄) = −Gn(θ̄)/

√
n+Gn(θ̂n)/

√
n,

and the theorem follows because of (2.7), (2.8), and

Gn(θ̂n)/
√
n

p−→ 0.

2
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3 Discretely observed Markov processes

In this section, we use the general results proved in the previous section to give results for
the case of observations from a Markov process. The basic setup is as in Section 2, but here
we assume that we observe a stochastic process X which is Markovian with state space
E under every Pθ, θ ∈ Θ, as well as under the true probability measure P0. It does not
matter whether the process has discrete time or continuous time, but the continuous time
case is the more interesting, as there the likelihood functions is often not explicitly known
so that it is difficult or impossible to apply inferential methods based on the likelihood
function. In the case of a continuous time process, we assume that the observations are
made at equidistant time points, i.e. that they are of the form X∆, X2∆, . . . , Xn∆. We can
denote the observations in the same way in the discrete time case, since we can take the
time to be IN and put ∆ = 1. For simplicity we suppose that X0 = x0 is fixed.

Let y 7→ p0(∆, x, y) be the true transition density of the observed process X, i.e. the
conditional density under P0 of X∆ given X0 = x with respect to a dominating measure
ν on the state space E. We impose the following condition on the process X.

Condition 3.1 Under P0, the process X has a unique invariant measure which has the
density µ0(x) with respect to the measure ν on E. The transition distribution (i.e. the
conditional distribution of X∆ given X0 = x) is, under P0, absolutely continuous with
respect to the invariant measure for all values of x.

If X0 ∼ µ0, then X is stationary, and Xt ∼ µ0 for all t > 0. Moreover,

(Xt, Xt+∆) ∼ Q∆
0

for all t > 0 and all ∆ > 0, where Q∆
0 is the measure on E2 with density

Q∆
0 (x, y) = µ0(x)p0(∆, x, y)

with respect to ν2. For a function f : E2 7→ IR we use the notation

Q∆
0 (f) =

∫
E2
f(x, y)p0(∆, x, y)µ0(x)ν(dy)ν(dx)

(provided, of course, that this makes sense). We shall need the following ergodic theorem
(law of large numbers) and central limit theorem (for martingales).

Theorem 3.2 Suppose Condition 3.1 holds, and that f : E2 7→ IR satisfies that Q∆
0 (|f |) <

∞. Then
1

n

n∑
i=1

f(X(i−1)∆, Xi∆)
a.s.−→ Q∆

0 (f)

as n→∞ under P0. Suppose further that Q∆
0 (f 2) <∞, and that∫

E
f(x, y)p0(∆, x, y)ν(dy) = 0 for all x ∈ E.

Then
1√
n

n∑
i=1

f(X(i−1)∆, Xi∆)
D−→ N(0, Q∆

0 (f 2))

as n→∞ under P0.
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The first part of the theorem can be found in Billingsley (1961a), while the second
part was proved in Billingsley (1961b). Note that the condition in the second part of
the theorem implies that the sum

∑n
i=1 f(X(i−1)∆

, Xi∆) is a square integrable martingale
under P0.

In the rest of this section, we will consider the asymptotic properties of estimators
based on estimating functions of the form

Gn(θ) =
n∑
i=1

g(∆, X(i−1)∆, Xi∆; θ), (3.1)

where g is p-dimensional. We will not assume that Gn is a martingale estimating function,
but rather the following weaker condition, which is useful when considering misspecified
models.

Condition 3.3 There exists a parameter value θ̄ ∈ int Θ such that∫
E
g(∆, x, y, θ̄)p0(∆, x, y)ν(dy) = 0

for all x ∈ E.

This condition states that there exists a parameter value θ̄ such that Gn(θ̄) is a martin-
gale under the true probability measure P0. In the case of a model that is not misspecified,
i.e. if there exists a θ0 ∈ Θ such that Pθ0 = P0, Theorem 3.6 below ensures the existence
of a

√
n-consistent estimator provided that Condition 3.3 is satisfied with θ̄ = θ0. This

simply amounts to assuming that Gn is a martingale estimating function.
We will formulate two sets of further conditions. The main difference is that the first

set includes conditions on the second order derivatives with respect to θ, while the second
set involves only the first order derivatives, but includes the stronger assumption that the
mean value of the matrix of these derivatives is strictly positive definite. This stronger
condition is usually only satisfied for optimal estimating functions or for estimating func-
tions obtained by maximizing a contrast function.

Condition 3.4
(1) The function g is twice continuously differentiable with respect to θ for all x, y.

(2) The functions
(x, y) 7→ gi(∆, x, y; θ), i = 1, . . . , p,

(x, y) 7→ ∂θjgi(∆, x, y; θ), i, j = 1, . . . , p,

and
(x, y) 7→ ∂θi∂θjgk(∆, x, y; θ), i, j, k = 1, . . . , p,

are all locally dominated integrable w.r.t. Q∆
0 . Moreover, the functions (x, y) 7→ gi(∆, x, y; θ),

i = 1, . . . , p, are in L2(Q∆
0 ) for all θ ∈ Θ.

(3) The p× p matrix

A(θ̄) =
{
Q∆

0

(
∂θjgi(∆; θ̄)

)}
(3.2)

is invertible.

12



Condition 3.5
(1) The function g is continuously differentiable with respect to θ for all x, y.

(2) The functions (x, y) 7→ gi(∆, x, y; θ), i = 1, . . . , p, are in L2(Q∆
0 ) for all θ ∈ Θ.

(3) The functions
(x, y) 7→ ∂θjgi(∆, x, y; θ), i, j = 1, . . . , p,

are all locally dominated integrable with respect to Q∆
0 .

(4) The p× p matrix A(θ̄) given by (3.2) is positive definite.

Theorem 3.6 Suppose Conditions 3.1 and 3.3 are satisfied. Assume further that either
Condition 3.4 or Condition 3.5 holds. Then for every n, an estimator θ̂n exists that
solves the estimating equation Gn(θ̂n) = 0 with a probability tending to one as n → ∞.
Moreover,

θ̂n
p−→ θ̄

as n→∞, and √
n(θ̂n − θ̄) D−→ N(0, A(θ̄)−1V0(θ̄)(A(θ̄)−1)T ),

where
V0(θ̄) = Q∆

0 (g(∆, θ̄)g(∆, θ̄)T ).

Remark: If Pθ̄ = P0, then Gn(θ) is an unbiased martingale estimating function, and θ̂n
converges in probability to the true parameter value as n→∞.

Proof: Under Condition 3.3, it follows from Theorem 3.2 that

1√
n
xTGn(θ̄)

D−→ N
(
0, xTV0(θ̄)x

)
as n→∞ for every x ∈ IRp\{0}. Hence

1√
n
Gn(θ̄)

D−→ N(0, V0(θ̄))

as n → ∞. Here we use the so-called Cramér-Wold device (consider characteristic func-
tions).

Under Condition 3.4, the theorem follows from Corollary 2.7 and Theorem 2.8 if we
can prove for all α > 0 that as n→∞

sup
θ∈M(α)

n (θ̄)

|Gn(θ)i/n|
p−→ 0

for i = 1, . . . , p,
sup

θ∈M(α)
n (θ̄)

|n−1∂θjGn(θ)i − A(θ̄)ij|
p−→ 0

13



for i, j = 1, . . . , p, and

sup
θ∈M(α)

n (θ̄)

|n−1∂θi∂θjGn(θ)k −B(k)(θ̄)ij|
p−→ 0

for i, j, k = 1, . . . , p, where M (α)
n (θ̄) is given by (2.6), and

B(k)(θ̄)ij = Q∆
0

(
∂θi∂θjgk(∆; θ̄)

)
.

Under Condition 3.5, we need only prove the second of these convergence result in order
to deduce the theorem from Corollary 2.5 and Theorem 2.8.

The three convergence results are proved in exactly the same way, so we prove only
the second. We will, in fact, prove almost sure convergence. Note that

sup
θ∈M(α)

n (θ̄)

|n−1∂θjGn(θ)i −A(θ̄)ij|

≤ sup
θ∈M(α)

1 (θ̄)

|n−1∂θjGn(θ)i −A(θ)ij|+ sup
θ∈M(α)

n (θ̄)

|A(θ)ij −A(θ̄)ij|,

where
A(θ)ij = Q∆

0

(
∂θjgi(∆; θ)

)
.

That each of the two terms on the right hand side tends to zero as n → ∞ follows from
the next lemma.

Lemma 3.7
a) A(θ) is continuous,

b) For every compact subset K ⊆ Θ

sup
θ∈K
|n−1∂θjGn(θ)i − A(θ)ij| a.s.−→ 0

under P0 as n→∞.

Proof: Define

k(θ, δ; x, y) = sup
‖θ̃−θ‖≤δ

∑
i,j

|∂θjgi(∆, x, y; θ̃)− ∂θjgi(∆, x, y; θ)|.

By the dominated convergence theorem (using the local integrability of ∂θjgi with respect
to Q∆

0 )
lim
δ→0

Q∆
0 (k(θ, δ)) = Q∆

0 (lim
δ→0

k(θ, δ)) = 0.

Suppose θn → θ. Then

‖A(θn)− A(θ)‖ =
∥∥∥{Q∆

0 (∂θjgi(∆; θn))−Q∆
0 (∂θjgi(∆; θ))}

∥∥∥
≤ const

∑
ij

Q∆
0 (|∂θjgi(∆; θn)− ∂θjgi(∆; θ)|)

≤ const Q∆
0 (k(θ, δn))→ 0,
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where δn = ‖θn − θ‖. Thus A(θ) is continuous.
Since ∂θjgi(∆, x, y; θ) is locally dominated integrable with respect to Q∆

0 , we can for
every θ ∈ Θ find a δθ > 0 such that

k(θ, δ; x, y) ∈ L1(Q∆
0 ) for 0 < δ < δθ.

Fix ε > 0. The function A(θ) is continuous, so for every θ ∈ Θ, we can find a λθ ∈ (0, δθ]
such that

‖θ̃ − θ‖ < λθ ⇒ |A(θ̃)ij − A(θ)ij| < 1
2ε

and
Q∆

0 (k(θ, λθ)) <
1
2ε.

Let K be a compact subset of Θ. Then there exists a finite covering

K ⊆
r⋃
j=1

B(θj , λθj),

where B(θ, λ) is the open ball B(θ, λ) = {θ̃ : ‖θ− θ̃‖ < λ}, and where θ1, . . . , θr ∈ K. For
every θ ∈ K, we can therefore choose θ` (` ∈ {1, . . . , r}) such that

‖θ − θ`‖ < λθ`.

Then for θ ∈ K,

|n−1∂θjGn(θ)i − A(θ)ij|

≤ |n−1∂θjGn(θ)i − n−1∂θjGn(θ`)i|

+ |n−1∂θjGn(θ`)i −A(θ`)ij|+ |A(θ`)ij − A(θ)ij|︸ ︷︷ ︸
≤ 1

2
ε

≤ 1

n

n∑
ν=1

|∂θjgi(∆, X∆(ν−1), X∆ν ; θ)− ∂θjgi(∆, X∆(ν−1), X∆ν ; θ`)|

+ |n−1∂θjGn(θ`)i −A(θ`)ij|+ ε/2

≤ 1

n

n∑
ν=1

k(θ`, λθ`;X∆(ν−1), X∆ν) + |n−1∂θjGn(θ`)i −A(θ`)ij|+ ε/2

≤
∣∣∣∣∣1n

n∑
ν=1

k(θ`, λθ`;X∆(ν−1), X∆ν)−Q∆
0 (k(θ`, λθ`))

∣∣∣∣∣
+ |Q∆

0 (k(θ`, λθ`))|︸ ︷︷ ︸
≤ε/2

+|n−1∂θjGn(θ`)i −A(θ`)ij|+ ε/2.
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Hence,

sup
θ∈K
|n−1∂θjGn(θ)i −A(θ)ij|

≤ max
1≤`≤r

∣∣∣∣∣1n
n∑
ν=1

k(θ`, λθ`;X∆(ν−1), X∆ν)−Q∆
0 (k(θ`, λθ`))

∣∣∣∣∣
+ max

1≤`≤r
|n−1∂θjGn(θ`)i − A(θ`)ij|+ ε,

so by the ergodic theorem (Theorem 3.2),

lim
n→∞

sup
θ∈K
|n−1∂θjGn(θ)i − A(θ)ij| ≤ ε

almost surely for all ε > 0.
2

Note the importance of Condition 3.3 (or rather of the following weaker condition
which it implies). If

g̃θ = Q∆
0 (g(∆; θ)) =

∫
E
g(∆, x, y; θ)p0(∆, x, y)µ0(x)ν(dy)ν(dx) 6= 0,

then Gn(θ)/
√
n cannot be stochastically bounded under P0 because by the ergodic theo-

rem
1

n
Gn(θ) =

1

n

n∑
i=1

g(∆;X(i−1)∆, Xi∆; θ)
a.s.−→ g̃θ

under P0. We can therefore only hope for convergence of θ̂n to a parameter value θ̄
satisfying that g̃θ̄ = 0.

When Gn(θ̄) is not a martingale under P0 (that is when Condition 3.3 is not satisfied),
it is in many cases still possible to prove a result like Theorem 3.6 under the weaker
condition that there exists a parameter value θ̄ such that g̃θ̄ = 0, provided that stronger
regularity conditions are imposed on the process X. What is needed are conditions ensur-
ing that the so-called potential of the Markov process is well-defined. The potential can
be used to construct a martingale from Gn(θ̄) to which a martingale central limit theorem
can be applied, see Florens-Zmirou (1984), Kessler (1996), and Jacobsen (1998). Unfor-
tunately, the expression for the asymptotic variance becomes very difficult to calculate,
but it can in many cases be estimated from the data; see Sørensen (1997a).
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