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Abstract

We consider the inverse conductivity problem of how to reconstruct
an isotropic electric conductivity distribution in a conductive body
from static electric measurements on the boundary of the body. An
exact algorithm for the reconstruction of a conductivity in a planer
domain from the associated Dirichlet-to-Neumann map is given. We
assume that the conductivity has essentially one derivative, and hence
we improve earlier reconstruction results. The method relies on a
reduction of the conductivity equation to a first order system, to which
the ∂-method of inverse scattering theory can be applied.

1 Introduction

The inverse conductivity problem is the mathematical problem behind a
new method for medical imaging called Electrical Impedance Tomography
(EIT). In EIT one has a conductive body with unknown conductivity, and
from static electric measurements on the boundary, i.e. by applying a volt-
age potential on the boundary and measuring the current flux through the
boundary, one would like to image the interior conductivity. Since muscle
tissue, fat tissue, bones, inner organs, lungs etc. have different conductive
properties (see [3]), an image of the conductivity distribution inside a body
may be used for medical diagnostics. We refer to [15] and [10] for a review
of the mathematical methods and applications of EIT.
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To pose the mathematical problem we let Ω ⊂ Rn be a bounded and
smooth domain and assume that the conductivity γ ∈ L∞(Ω) satisfies 0 <
c ≤ γ for some constant c. The application of a voltage potential f on the
boundary ∂Ω induces a voltage potential u inside Ω given as the unique
solution to

∇ · γ∇u = 0, in Ω,

u = f, on ∂Ω.
(1)

When f ∈ H1/2(∂Ω) the solution u ∈ H1(Ω). Moreover, u has a well de-
fined normal derivative at the boundary defined coherently as an element in
H−1/2(∂Ω) by

〈γ(∂νu)|∂Ω, g〉 =

∫
Ω

γ∇u · ∇vdx,

where ν is the outer unit normal defined in a neighborhood of ∂Ω, v ∈ H1(Ω)
is any function with v|∂Ω = g, and 〈·, ·〉 is the dual pairing of H1/2(∂Ω) and
H−1/2(∂Ω). The distribution γ(∂νu)|∂Ω is the current flux through the bound-
ary, and it is the natural Neumann data for the equation (1). Thus we can de-
fine the Dirichlet-to-Neumann (or voltage-to-current) map Λγ : H1/2(∂Ω) →
H−1/2(∂Ω) by

Λγf = γ(∂νu)|∂Ω. (2)

This map encodes all possible boundary measurements which can in principle
be considered for EIT. The inverse conductivity problem, as it was posed by
Calderón [14], concerns the inversion of the map γ 7→ Λγ. There are different
aspects of the problem; here we are mainly interested in the question of
reconstruction, i.e. finding an algorithm for the computation of γ from Λγ.

There is a huge literature on the inverse conductivity problem. For a
recent review on the history and developments we refer to [42]. We will
outline only the main results:

Calderón [14] solved the linearized problem and gave an approximate
method for the reconstruction of conductivities close to constant. The first
global result was by Kohn and Vogelius [21], who showed that when γ ∈
C∞(Ω) then Λγ determines γ|∂Ω and all derivatives on ∂Ω. This solved the
uniqueness question for real-analytic conductivities. Later the result was
extended to include piecewise real-analytic conductivities [22].

In dimension n ≥ 3 global uniqueness was proved by Sylvester and
Uhlmann [40] for conductivities γ ∈ C∞(Ω). The assumption on γ for unique-
ness to hold has since been relaxed by a number of people ([2, 26, 29, 11, 31]);
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the most general global uniqueness result so far is due to Brown and Torres
[12] for γ ∈W 3/2,p(Ω), p > 2n. Also for the higher dimensional problem Nach-
man [26] and Novikov [30] gave a reconstruction algorithm and Alessandrini
[2] showed conditional stability.

In dimension n = 2, local uniqueness for γ ∈ W 3,∞(Ω) close to con-
stant was proved by Sylvester and Uhlmann [39], but the general question
remained open until 1996, when Nachman [28] gave a uniqueness proof and
a reconstruction algorithm for γ ∈W 2,p(Ω), p > 1. Nachman’s method relies
on the reduction of the conductivity equation to a Schrödinger equation, a
reduction that requires essentially two derivatives on the conductivity. For
this equation the ∂-method of inverse scattering can be adapted and give a
reconstruction algorithm. The algorithm has been tried out numerically by
Siltanen, Mueller and Isaacson [32, 33, 34, 24]. In 1997 Brown and Uhlmann
[13] improved the uniqueness result to cover γ ∈W 1,p(Ω), p > 2. The method
of proof relies on a reduction of the conductivity equation to a first order sys-
tem for which only one derivative on the conductivity is required. For this
system the ∂-method is again applicable. Also in two dimensions there are
conditional stability results due to Liu [23] and Barceló, Barceló and Ruiz
[4].

In this paper we will show how the uniqueness proof in [13] for the two-
dimensional inverse conductivity problem can be turned into a reconstruction
method. The main result is the following:

Theorem 1.1. Let Ω ⊂ R2 be a bounded and smooth domain. Let 2 < p, 0 <
ε < 1 and assume γ ∈ W 1+ε,p(Ω) satisfies 0 < c ≤ γ for some constant c.
Then γ can be reconstructed from Λγ .

We note that the assumption γ ∈ W 1+ε,p(Ω) is slightly more restrictive
than what is sufficient for uniqueness to hold. However, Theorem 1.1 is a
sharp improvement of the reconstruction result due to Nachman [28].

Generally we assume that γ satisfies the hypothesis in Theorem 1.1 and
that γ = 1 near ∂Ω. It was proved by Nachman [28] that for γ ∈W 2,p(Ω), p >
1, this assumption is not restrictive; we will show in section 5 that this is
also true in our case.

The reconstruction algorithm is based on the reduction of the conductivity
equation to a first order system. Let p > 2 and define β = 1− 1/p. Then the
Sobolev embedding theorem implies that W 1,p(Ω) ⊂ Cβ(Ω), and hence it is
well known [17, Theorem 8.34] that for f ∈ C1+β(∂Ω), the solution u to (1)
is in C1+β(Ω). Define the vector-valued function (v, w) by(

v
w

)
= γ1/2

(
∂u

∂u

)
∈ Cβ(Ω)× Cβ(Ω) (3)
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with ∂ = (∂x − i∂y)/2 and ∂ = (∂x + i∂y)/2. Using (1) it is straightforward
to verify that

∂̄v = qw

∂w = qv,
(4)

where

q = −γ−1/2∂γ1/2. (5)

The system (4) is interesting in its own right. An inverse problem for the
system is whether the Cauchy data defined by

Cq = {(v|∂Ω, w|∂Ω) : (v, w) ∈ Cβ(Ω)× Cβ(Ω) solves (4)}
determines the potential q. We will answer this question affirmatively:

Theorem 1.2. Let q1, q2 ∈W ε,p(Ω), p > 2. Then Cq1 = Cq2 implies q1 = q2.

The proofs of the Theorem 1.1 and Theorem 1.2 go through a certain
intermediate function S, the so-called non-physical scattering transform of
the potential. To define this function we introduce the vector-valued function
m = (m1, m2), which is defined uniquely by the properties

Ψ(z, k) = m(z, k)eizk solves (4) in R
2 with q = 0 in C \ Ω,

m ∼ (1, 0), i.e. lim
|z|→∞

m(z, k) = (1, 0), (6)

where we have identified z = x + iy ∈ C and (x, y) ∈ R2. We call the
solution Ψ an exponentially growing solution or a complex geometrical optics
solution (see section 2 for the exact construction and properties of this special
solution). The non-physical scattering transform of the potential q is then
defined by

S(k) = − i

π

∫
R2

e(z, k)q(z)m1(z, k)dµ(z), k ∈ C, (7)

where e(z, k) = exp(izk + izk) and µ denotes the Lebesgue measure in the
plane.

The method of proof can now be decomposed into the two steps

Λγ/ Cq
1−→ S

2−→ γ/ q.

Concerning the first step in the reconstruction procedure, it was shown in
[13] that Λγ determines S uniquely. The innovation here is that we give an
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explicit method for the computation of S in terms of Λγ. Concerning the
second step it was shown in [13] that S determines q uniquely and then using
(5) that q determines γ. We will combine these results with a result from [4]
and give a direct method for the computation of γ from S. Note that this
second step is where the extra smoothness for our algorithm is required.

We emphasize that the proposed algorithm can be implemented numer-
ically (see [19, 20]), and hence it might be of use in practical EIT. Note
that the stability analysis in [4] shows that the first step of computing the
scattering transform from the Dirichlet-to-Neumann map has logarithmic
conditional stability while the second step of computing the conductivity
from the scattering transform has linear conditional stability. Hence the first
step carries the ill-posedness of the problem, and in practice this step has to
be regularized in an appropriate way.

The paper is organized as follows. In section 2 we review the scattering
theory for (4) based on the construction and properties of the function m,
and we give a few new results, which fit our regularity assumptions. Then in
section 3 we show how to compute the scattering transform from the bound-
ary data, and finally in section 4 we show how to compute the conductivity
directly from the scattering transform. The paper concludes with section 5,
where the reduction to the case γ = 1 near ∂Ω is considered.

2 Direct and inverse scattering for the first

order system

The direct and inverse scattering theory for (4) due to Beals and Coifman
[7, 8] is an application of the so-called ∂-method. This method was initially
introduced in the study of some one-dimensional non-linear evolution equa-
tions [5, 6], which could be linearized by the scattering transform, and the
method was later developed and extended to higher dimensional problems
by a number of people. For a general introduction to the ∂-method we refer
to the review papers [7, 9]. The scattering theory for (4) has been considered
in various contexts by a number of authors [8, 36, 37, 38, 13, 4], however,
since we have reduced the notation and also need to improve a few estimates
slightly, we will be explicit about the constructions.

Consider the equation (4) for an arbitrary q ∈ W ε,p
c (R2), the subset of

W ε,p(R2) consisting of functions with compact support. Note that when
γ ∈ W 1,p+ε(Ω) equals one near ∂Ω, then it can be extended beyond Ω by
γ = 1, and hence the potential q defined by (5) satisfies q ∈ W ε,p

c (R2). The
basic idea is to look for an exponentially growing solution Ψ = (Ψ1,Ψ2) to
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(4) of the form (6). A simple calculation shows that m must satisfy

∂m1(z, k) = q(z)m2(z, k),

(∂ + ik)m2(z, k) = q(z)m1(z, k).
(8)

Note that the differential operators ∂ and ∂ act with respect to z and z
respectively; we will later consider the derivatives of m with respect to the
parameter k.

To proceed we define the solid Cauchy integral operators ∂−1, ∂
−1

by

(∂−1f)(z) =
1

π

∫
R2

f(ζ)

z − ζ
dµ(ζ), (∂

−1
f)(z) =

1

π

∫
R2

f(ζ)

z − ζ
dµ(ζ), (9)

where µ is the Lebesgue measure in the plane. The mapping properties of
these operators are described next.

Proposition 2.1. Let T be either ∂−1 or ∂
−1
. Let s ≥ 0, let 1 < p < 2 and

define 1/p̃ = 1/p− 1/2. Then

T ∈ B(W s,p(R2),W s,p̃(R2)). (10)

Furthermore, if r > 2 and f ∈W s,r
c (R2), then Tf ∈W 1+s,r(R2) and

‖Tf‖W 1+s,r(R2) ≤ C‖f‖W s,r(R2), (11)

where the constant C depends on the support of f. For 1 < p1 < 2 < p2 <∞
and α = 1− 1/p2, we have

T ∈ B(Lp1(R2) ∩ Lp2(R2), Cα(R2)). (12)

Finally, the operator (∂ + ik)−1 = e(z,−k)∂−1(e(z, k)·) satisfies

‖(∂ + ik)−1f‖W s−δ,p̃(R2) ≤ C

|k|δ ‖f‖W s,p(R2) (13)

for k ∈ C \ {0} and 0 ≤ δ ≤ s.

Proof. We will only consider the case T = ∂−1; for ∂
−1

the results follows by
complex conjugation.

From the Hardy-Littlewood-Sobolev theorem of fractional integration [35,
p. 119] it follows that T ∈ B(Lp(R2), Lp̃(R2)), and since T commutes with
differential operators we deduce that T ∈ B(W 1,p(R2),W 1,p̃(R2)). The prop-
erty (10) then follows for 0 < s < 1 by interpolation.
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To prove (11) we note thatW s,r
c (R2) ⊂W s,p(R2) for 1 < p < 2. Hence f ∈

W s,r
c (R2) implies by (10) that g = Tf ∈ W s,p̃(R2), 2 < p̃ <∞. In particular

g ∈ W s,r(R2). By taking derivatives we find that ∂g = f ∈ W s,r(R2), and
that ∂g = ∂Tf = ∂∂−1 ∈ W s,r(R2) due to the boundedness of the Beurling
transform ∂∂−1 on W s,r(R2), 1 < r < ∞, s ≥ 0 (see for instance [27]). This
shows that g ∈W 1+s,r(R2) satisfies (11).

For a proof of the Hölder property (12) we refer to [43, Theorem 1.21].
To prove (13) we use the estimate

‖(∂ + ik)−1f‖Lp̃(R2) ≤ C

|k|‖f‖W 1,p(R2) (14)

from [28, Lemma 2.1]. Since |e(z, k)| = 1 it follows from (10) that

‖(∂ + ik)−1f‖Lp̃(R2) ≤ C1‖f‖Lp(R2), (15)

and by using that also (∂ + ik) commutes with differential operators we get

‖(∂ + ik)−1f‖W s,p̃(R2) ≤ C2‖f‖W s,p(R2) (16)

for s ≥ 0, p > 2. Note that both C1 and C2 are independent of k. Interpo-
lating (15) and (14) with interpolation parameter s shows that

‖(∂ + ik)−1f‖Lp̃(R2) ≤ C

|k|s‖f‖W s,p(R2), (17)

and interpolating (16) and (17) with interpolation parameter δ/s gives the
result.

In the sequel we will need the following result concerning solvability of a
certain ∂-equation.

Proposition 2.2. Let 1 < p < 2 and assume that a ∈ Lp(R2)∩L2(R2). Then
the equation

∂m = am (18)

has a unique solution m with m− 1 ∈ Lp̃(R2).

Proof. The equation for m− 1 is

∂(m− 1) = a(m− 1) + a

or equivalently

(I − ∂
−1

(aC)(m− 1) = ∂
−1
a, (19)
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where the operator aC is defined by aC : f 7→ af. Note that a ∈ Lp(R2)

implies ∂
−1
a ∈ Lp̃(R2) by (10), and note further that when a ∈ L2(R2), it

follows from the Hölder inequality and (10) that the operator ∂
−1

(aC) is
real-linear and bounded in Lr(R2), r > 2. Hence it makes sense to consider
(19) in Lp̃(R2).

Since the operator ∂
−1

(aC) is compact in Lp̃(R2) by [27, Lemma 4.2],

invertibility of (I−∂−1
(aC)) in Lp̃(R2) is by the Fredholm alternative a con-

sequence of uniqueness of a solution to the homogeneous equation. However,
a solution h ∈ Lp̃(R2) to the homogeneous equation would satisfy ∂h = ah,
and hence h = 0 by the generalized Liouville theorem (see for instance [13]).
This proves the result.

Given our assumptions on q we have now the following result concerning
existence and uniqueness of exponentially growing solutions.

Proposition 2.3. Let q ∈ W ε,p
c (R2), p > 2, ε > 0. Then for k ∈ C there is

a unique solution m(z, k) to (8) with (m1(·, k) − 1), m2(·, k) ∈ W ε,r(R2) ∩
Cβ(R2), r > 2, β = 1− 1/p.

Proof. Consider the linear combinations

m±(z, k) = m1(z, k)± e(z,−k)m2(z, k).

and note that (8) and the asymptotic condition in (6) implies

∂m±(z, k) = ±q(z)e(z,−k)m±(z, k), m± ∼ 1. (20)

By Proposition 2.2 this equation is uniquely solvable in Lr(R2) for any r > 2.
The additional Sobolev and Hölder regularity follows from (10) and (12).

Proposition 2.3 shows that m ∼ (1, 0) for |z| → ∞. The next result shows
that a similar asymptotic condition holds when |k| → ∞.

Proposition 2.4. Let k ∈ C \ {0}. Then for 2 < r < ∞ and 0 ≤ δ ≤ ε we
have the estimates

‖m(·, k)− (1, 0)‖W ε−δ,r(R2) ≤
C

〈k〉δ , (21)

‖m1(·, k)− 1‖W 1+ε−δ,r(R2) ≤
C

〈k〉δ . (22)

where 〈k〉 = (1 + |k|2)1/2.
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Proof. Note first that the map k 7→ m(·, k) is continuous, so it suffices to

consider |k| ≥ 1. Note further that ∂
−1

(e(·,−k)q) = e(·,−k)(∂ − ik)−1(q).
Since |e(z, k)| = 1, (13) implies

‖∂−1
(e(·,−k)q)‖W ε−δ,r(R2) ≤

C

〈k〉δ ‖q‖W ε,p(R2).

Hence (21) follows from the integral equation

(m±(·, k)− 1)∓ ∂
−1

(qe(·,−k)(m±(·, k)− 1)) = ±∂−1
(qe(·,−k)) (23)

inversion of (23), since the operator φ 7→ ∂
−1

(e(·,−k)qφ) ∈ B(W ε−δ,r(R2)) is
uniformly bounded in k.

To prove (22) we use (8) to write (m1 − 1) = ∂
−1

(qm2), and then the
result follows from (21) and (11).

The estimates (21) and (22) replace the similar Hölder estimates in [4,
Lemma 2.8], which are due to Brown and Uhlmann. This allows us to go
beyond the class of Hölder continuous conductivities treated in [4]. Note
further that for δ < ε and p > 2/(ε−δ), the Sobolev embedding W ε−δ,p(R2) ⊂
Cα(R2), α = ε− δ − 2/p, implies by (21) the pointwise estimate

|m(z, k)− (1, 0)| ≤ C

〈k〉δ

for almost every z ∈ C.
Consider now the non-physical scattering transform S of the potential q

defined by (7). The map q 7→ S can be seen as a non-linear Fourier transform.
The non-linearity of the transform is caused by the non-linear dependency
of the integrand in (7) on q, and the relation to the Fourier transform comes
from the fact that the asymptotic behavior m1 ∼ 1 implies the asymptotics
S ∼ −q̂(−2k1, 2k2). Moreover, there is a Parseval identity, i.e. q ∈ S(R2)
implies S ∈ S(R2) with the norm equality ‖q‖L2(R2) = ‖S‖L2(R2), see [8].

The inverse scattering problem concerns the inversion of the map q 7→
S. The fundamental idea is that for fixed z ∈ C the map k 7→ m(z, k) is
differentiable. Denote by ∂k = ∂/∂k the operator taking derivative with
respect to the complex variable k. Then we have

Lemma 2.5. For any z ∈ C

∂km1(z, k) = S(k)e(z,−k)m2(z, k),

∂km2(z, k) = S(k)e(z,−k)m1(z, k).
(24)
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Proof. The proof of this result relies on the fact that the map k 7→ (∂+ik)−1 is
Frechét differentiable on C in the strong operator topology of B(Lp

α(R2), Lp̃
β(R2))

for α > 2/p′, β > 2/p̃, and has

∂k(∂ + ik)−1f = −2e(z,−k)(Ff)(−2k1, 2k2),

see [28, Lemma 2.2].

When comparing (24) and (8) we see that in some sense S plays the same
role for the inverse problem as q does for the direct problem.

To solve (24) (constructively) a certain amount of decay in the scattering
transform S is needed. In [13] it was proved that for compactly supported
q ∈ Lp(R2), p > 2, the scattering transform S ∈ L2(R2). We will need the
fact that further smoothness in q implies faster decay of S :

Lemma 2.6. Let q ∈ W ε,p
c (R2), 2 < p, ε > 0. Then S ∈ Ls(R2) for any

s > 2/(ε+ 1).

Proof. We follow the ideas in the proof of [4, Proposition 3.3]: write

S(k) = −2iF(q)(−2k1, 2k2) + T (k),

where

T (k) = − i

π

∫
R2

e(z, k)q(z)(m1(z, k)− 1)dµ(z).

The fact that F(q)(−2k1, 2k2) ∈ Ls(R2) for any s > 2/(1 + ε) follows since
q ∈W ε,r(R2) for r, 1 ≤ r ≤ 2.

To treat the second term we consider for 0 < δ < ε the pseudodifferential
operator

Mg(k) = − i

π

∫
R2

e2i Re(zk)〈k〉δ(m1(z, k)− 1)φ(z)g(z)dµ(z),

where φ is a smooth cut-off function with φ = 1 on supp(q). A result due
to Coifman and Meyer [16, p. 14] concerning the mapping property of a
pseudodifferential operator with non-smooth symbol implies together with
the estimate (22) that M is bounded on L2(R2), and hence

‖T‖Ls(R2) = ‖〈k〉−δMq‖Ls(R2) ≤ C‖〈k〉−δ‖L(1/s−1/2)−1
(R2)‖q‖L2(R2) < C‖q‖L2(R2)

for δ(1/s− 1/2)−1 > 2 or equivalently s > 2/(δ + 1) > 2/(ε+ 1).

The unique solvability of (24) is a direct consequence of Lemma (2.6).
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Lemma 2.7. The function m(z, ·) can be found as the unique solution to
(24) with m1(z, ·)− 1, m2(z, ·) ∈ Lr(R2) ∩ Cα(R2) for r > 2/ε, α < 1/2.

Proof. Let z ∈ C be fixed and introduce

m±(z, k) = m1(z, k)±m2(z, k). (25)

Then for fixed z ∈ C, (24) implies that

∂km
±(z, k) = ±S(k)e(z,−k)m±(z, k), m± ∼ 1. (26)

Since S ∈ Ls(R2) for s > 2/(ε+1) by Lemma 2.6, it follows by Proposition 2.2
that (26) has a unique solution in Lr(R2) for r > 2/ε. The Hölder continuity
is a consequence of (12).

Finally to reconstruct q we can for any fixed r > 0 use the formula

q(z) = lim
|k0|→∞

1

µ(Br(0))

∫
{k : |k−k0|<r}

(∂ + ik)m2(z, k)dµ(k). (27)

This formula follows from (8) and (21); for a complete proof we refer to [13,
Theorem 5.2]. This shows the invertibility of the map q 7→ S.

3 From boundary data to scattering data

Using that Ψ solves (4) and the fact that q is supported in Ω, an integration
by parts in (7) shows that

S(k) = − i

2π

∫
∂Ω

eizkν(z)Ψ2(z, k)dσ(z), k ∈ C, (28)

where dσ(z) is the surface measure on the boundary. This shows that to com-
pute the scattering transform from the boundary data, we have to compute
the trace on ∂Ω of the exponentially growing solutions.

In this section we give a complete characterization of Ψ|∂Ω in terms of
the boundary data. The characterization is given by two neccesary condi-
tions. The first observation is that when the potential q is defined from a
conductivity by (5) then the Cauchy data Cq for (4) can be described by a
certain equation on the boundary involving the Dirichlet-to-Neumann map.
The second condition concerns the asymptotic behavior and gives again an
equation on the boundary in terms of certain single layer potentials. We
emphasize that the characterization is given by a set of equations on ∂Ω and
is thus in essence constructive.

11



3.1 A boundary relation - characterization of the Cauchy
data

In this section we give an explicit characterization of the Cauchy data for
the first order system (4), in case the potential q comes from a conductivity.

Assume u ∈ C1+β(Ω) solves (1) for some f ∈ C1+β(∂Ω). Then (v, w)
defined by (3) solves (4), and on the boundary one easily finds the relation(

v
w

)∣∣∣∣
∂Ω

=
1

2

(
ν −iν
ν iν

) (
Λγf
∂τf

)
, (29)

where ∂τ denotes the tangential derivative along ∂Ω, and ν is the complex
normal at the boundary, i.e., if (ν1(z), ν2(z)) denotes the outer unit normal
at z ∈ ∂Ω, then ν(z) = ν1(z) + iν2(z) and ν = ν1(z)− iν2(z). Inverting (29)
gives (

Λγf
∂τf

)
=

(
ν ν
iν −iν

) (
v
w

)∣∣∣∣
∂Ω

. (30)

Let Cβ
0 (∂Ω) = {φ ∈ Cβ(∂Ω):

∫
∂Ω
φdσ = 0} and let s : [0, |∂Ω]| → ∂Ω be

an arclength parameterization of ∂Ω. Then define ∂−1
τ : Cβ

0 (∂Ω) → C1+β(∂Ω)
by

(∂−1
τ h)(z) =

∫ t0

0

φ(s(t))dt

where z = s(t0). With this definition we note that informally

∂τ∂
−1
τ φ = φ, ∂−1

τ ∂τf = f − f(s(0)).

Now since f ∈ C1+β(∂Ω) implies that ∂τf = (νv − νw) ∈ Cβ
0 (∂Ω), it

follows from (30) by eliminating f that

iHγ(νv|∂Ω − νw|∂Ω) = (νv|∂Ω + νw|∂Ω),

where Hγ = Λγ∂
−1
τ . This relation motivates the definition of the set

BR = {(h1, h2) ∈ Cβ(∂Ω)× Cβ(∂Ω): (νh1 − νh2) ∈ Cβ
0 (∂Ω)

iHγ(νh1 − νh2) = νh1 + νh2}.
(31)

A pair of functions (h1, h2) ∈ BR is said to satisfy the boundary relation.
We just found that solutions to (4), defined through (3), satisfy the

boundary relation, but as the following theorem shows, (31) is in fact a
complete characterization of Cq :

12



Lemma 3.1. If q ∈W ε,p(Ω) is given by (5), then Cq = BR.
Proof. First we show that BR ⊂ Cq. Let (h1, h2) ∈ BR and let u ∈ C1+β(Ω)
be the unique solution to the Dirichlet problem{

∇ · γ∇u = 0, in Ω,

u = i∂−1
τ (νh1 − νh2), on ∂Ω.

Define a solution (v, w) to (4) by the relation (3) with u from above. Then
(v, w)|∂Ω = (h1, h2) by (29) and (31), i.e. (h1, h2) ∈ Cq.

Next we see that Cq ⊂ BR. Let (h1, h2) ∈ Cq and let (v, w) ∈ Cβ(Ω) ×
Cβ(Ω) be a solution to (4) with Cauchy data (h1, h2). Since q is of the form
(5), we have the compatibility relation

∂(γ−1/2v) = ∂(γ−1/2w),

which ensures the existence of a u ∈ C1+β(Ω) such that

γ−1/2

(
v
w

)
=

(
∂u

∂u

)
.

It is easy to check that u is a solution of the conductivity equation in the
form 2∂u∂γ + 2∂u∂γ + 4γ∂∂u = 0. Now relation (29) with f = u|∂Ω shows
that (h1, h2) ∈ BR.

3.2 Boundary characterization of asymptotic behavior

Consider the exponentially growing solution Ψ = (Ψ1,Ψ2). Notice that the
first element is analytic outside Ω, while the second element is anti-analytic
outside Ω. Moreover, they have a prescribed behavior at infinity. We will
see that these properties are completely described by an integral equation on
∂Ω.

In the proof we will need a few tools from complex analysis. Let D ⊂ C

be an open bounded domain with C1 boundary, and let f ∈ C1(D). Define

Φ(z) =
1

2πi

∫
∂D

φ(ζ)

ζ − z
dζ, z 6∈ ∂D.

Here and in the sequel the integral on the boundary ∂D is understood as a
path integral taken on a positively oriented path describing ∂D. For z ∈ ∂D
the expression is not well-defined since the integral kernel is singular, but

13



it is well known that Φ does have a continuous extension to ∂D from both
inside and outside. To be more exact we introduce the operator

Sf(z) =
1

2πi
p.v.

∫
∂D

f(ζ)

ζ − z
dζ, z ∈ ∂D,

which is known to be bounded in Cα(∂D), 0 < α < 1. The behavior of Φ(z)
when z tends to ∂D is now described by the Sokhotski-Plemelj formula

lim
z±→∂Ω

Φ(z) = ∓1

2
f(z) + Sf(z), z ∈ ∂D. (32)

We refer to [25] for the proofs.
The following lemma gives a necessary condition for a pair of functions

defined in C \ Ω = C \ Ω to be analytic and anti-analytic respectively and
have a special exponential decay at infinity. Introduce for z ∈ C \ {0}

gk(z) =
1

π

e−ikz

z
,

a Green’s kernel for ∂, which takes into account exponential growth at infinity.
Let z ∈ ∂Ω and define the single layer potentials Sk, Sk ∈ B(Cα(∂Ω)) by

Skf(z) = p.v.

∫
∂Ω

f(ζ)gk(ζ − z)dζ, Skf(z) = p.v.

∫
∂Ω

f(ζ)gk(ζ − z)dζ.

The result is then:

Lemma 3.2. Let v be analytic and w be anti-analytic in C \ Ω and assume
that v|∂Ω, w|∂Ω ∈ Cα(∂Ω) and that (ve−izk − 1) ∈ Lr(C \ Ω) and we−izk ∈
Lr(C \ Ω) for some r, α satisfying 0 < α < 1, 1 ≤ r < ∞. Then the trace
(h1, h2) = (v, w)|∂Ω satisfies

(I − iSk)h1 = 2eizk

(I + iSk)h2 = 0.
(33)

Proof. Let BR = B(0, R) be the ball centered at zero with radius R and
assume that Ω ⊂ BR. Since v is analytic in C \ Ω, the Cauchy integral
formula implies that

v(z)e−ikz − 1 =
1

2πi

∫
∂BR

v(ζ)e−ikζ − 1

ζ − z
dζ − 1

2πi

∫
∂Ω

v(ζ)e−ikζ − 1

ζ − z
dζ

14



for z ∈ BR\Ω. Now, since ve−izk−1 ∈ Lr(R2), The integral on ∂BR converges
to zero as R→∞ at least on a sequence of increasing radii. Moreover, since
z ∈ C \ Ω, Cauchy’s formula gives

1

2πi

∫
∂Ω

1

ζ − z
dζ = 0.

Therefore

v(z) +
1

2i

∫
∂Ω

v(ζ)gk(ζ − z)dζ = eizk, z ∈ C \ Ω. (34)

Now let z ∈ C \ Ω approach some point on the boundary and apply (32) to
get the equation for v.

To prove the result for w, we note that w is analytic in C \ Ω and
we−izke(z, k) ∈ Lr(R2) implies that we−izk ∈ Lr(R2). As above we then
get

w(z) +
1

2i

∫
∂Ω

w(ζ)gk(ζ − z)dζ = 0, z ∈ C \ Ω, (35)

and the result again follows by invoking (32) and then taking complex con-
jugate.

3.3 Complete characterization of Ψ|∂Ω

We know that the exponentially growing solution (Ψ1(·, k),Ψ2(·, k))|∂Ω ∈ Cq

must satisfy (33). The following result shows that this condition is a complete
characterization.

Theorem 3.3. Let q ∈W ε,p(Ω). Then the (33) has in Cq the unique solution
Φ = (Ψ1,Ψ2)|∂Ω.

Proof. Since (Ψ1,Ψ2)|∂Ω ∈ Cq and satisfies the assumptions of Lemma 3.2, it
is a solution to (33).

Let h ∈ Cq be another solution to (33). Extend h inside Ω to a solution
(v, w) to the system (4), and guided by (34) and (35) extend h in C \ Ω to
(v, w) by

v(z) = − 1

2i

∫
∂Ω

h1(ζ)gk(ζ − z)dζ + eizk,

w(z) = − 1

2i

∫
∂Ω

h2(ζ)gk(ζ − z)dζ.
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We will prove that defined this way, (v, w) is a solution to (4) in R2 and
that ve−izk − 1, we−izk ∈ Lr(R2), r > 2. Then the result follows from the
uniqueness in Proposition 2.3.

By construction (v, w) solves (4) in Ω and in C\Ω, so we have to show that
the equation holds as we cross ∂Ω. Since the support of q is strictly inside Ω,
v is analytic and w is anti-analytic in a neighborhood of the boundary. Hence
for the equation to hold it suffices to have continuity across the boundary
and then invoke Morera’s theorem (see for instance [1, p. 98]). We will show
the continuity of v, for w similar reasoning works. Let z approach some point
z0 ∈ ∂Ω from outside. Then using (32) we get

lim
z+→z0

v(z) = −
(
−h1(z0)

2
+

1

2i
Skh1(z0)

)
+ eiz0k.

Now use (33) to conclude limz→z0 v(z) = h1(z0). The continuity of v from
inside follows by the construction.

That ve−izk − 1 ∈ Lr(R2), r > 2, follows since

v(z)e−izk − 1 = − 1

2πi

∫
∂Ω

h1(ζ)e
−ikζ

ζ − z
dζ = O

(
1

|z|
)
, as |z| → ∞.

Again a similar argument shows we−izk ∈ Lr(R2). This proves the theorem.

This theorem shows by (28) that the non-physical scattering transform S
is uniquely determined by the Cauchy-data Cq. When the potential is defined
from a conductivity by (5) we have by Lemma 3.1 an explicit description
of Cq given by the boundary relation. Hence on ∂Ω we have the system of
equations  (I − iSk) 0

0 (I + iSk)
(iHγ − I)ν −(iHγ + I)ν

 (
Ψ1

Ψ2

)
=

2eizk

0
0

 ,

from which Ψ|∂Ω can be found. This gives by (28) a constructive way of
obtaining S from Λγ.

4 From S to γ

In this section we will prove how to reconstruct γ from S(k). This could be
done by computing q from S by solving (24) and applying (27), and then
finding γ by solving (5) with the asymptotic condition γ1/2 ∼ 1. Since this
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approach requires taking the parameter k to infinity and solving a differential
equation, we will take a different route. As observed by Barceló, Barceló and
Ruiz, γ can be reconstructed directly from m at k = 0. More precisely let m̃
be the unique solution given by Proposition 2.3 to (4) with q substituted by
q̃ = −q. Then as a direct consequence of the definition (5) and the uniqueness
in Proposition 2.2, we derive the formula ([4, Proposition 4.2])

γ(z)1/2 = m̃1(z, 0) + m̃2(z, 0). (36)

We will prove a result concerning the relation between the scattering trans-
form of q and q̃. Such a result was given by Beals and Coifman in [8] (see
also [4, Proposition 4.3]). Inspired by their brief argument we can show the
following result.

Lemma 4.1. Let S̃ be the scattering transform of q̃ = −q. Then

S̃(k) = S(−k) (37)

Proof. From (8) it follows that

∂̄(m1 − 1) = qm2

= q(∂ + ik)−1(qm1)

= qe(·,−k)∂−1(e(·, k)qm1),

and hence

(m1 − 1) = ∂̄−1qe(·,−k)∂−1(e(·, k)qm1). (38)

Applying the operator ρΩ of restriction to Ω gives the equation

(I − Aq,kAq,k)ρΩm1 = ρΩ1

for ρΩm1 ∈ L2(Ω), where Aq,k ∈ B(L2(Ω)) is defined by

Aq,kφ = ρΩ∂
−1(e(·, k)qφ).

Using an argument similar to the arguments in the proofs of Proposition 2.2
and Proposition 2.3 shows that (I−Aq,kAq,k) is invertible in L2(Ω) and hence

m1(·, k) = (I − Aq,kAq,k)
−1(1). (39)

Moreover, multiplying by qe(·, k) in (38) we find the equation

qe(·, k)m1(·, k) = (I − (A−q,−k)
∗(A−q,−k)

∗)−1(qe(·, k)), (40)
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where A∗
q,k = −qe(·,−k)∂−1

is the adjoint with respect to the usual inner

product
(·, ·) in L2(Ω). Hence by using (40) and (39) we now find that

S(k) = − i

π

(
1, qe(·, k)m1(·, k)

)
= − i

π

(
1, (I − (A−q,−k)

∗(A−q,−k)
∗)−1(qe(·, k)))

= − i

π

(
(I − A−q,−kA−q,−k)

−1(1), qe(·, k))
= − i

π

(
m̃1(·,−k), qe(·, k)

)
= − i

π

(
1,−qe(·,−k)m̃1(·,−k)

)
= S̃(−k).

From (26) and (37) it follows that the ∂k-equation for m̃ is

∂km̃
+(z, k) = S(−k)e(z,−k)m̃+(z, k),

which together with the asymptotic condition m̃+ ∼ 1 allows the computa-
tion of m̃+.

Since γ is real, we can rewrite the formula (36) using (25)

γ1/2(z) = m̃1(z, 0) + m̃2(z, 0)

= Re m̃1(z, 0) + Re m̃2(z, 0)

= Re m̃+(z, 0).

This ends the reconstruction.

5 Reduction to the case γ = 1 near ∂Ω

It is well known that for sufficiently regular conductivities, the boundary
value of the conductivity as well as the normal derivatives at the boundary
can be computed from the Dirichlet-to-Neumann map. In this section we will
show that by knowing only the trace of the conductivity, it can be extended
outside the domain in a way such that the regularity is preserved and the
extended conductivity is constant outside some larger compact set. Moreover,
we will see that the Dirichlet-to-Neumann map corresponding to the extended
conductivity can be computed. Results along this line are well known for
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sufficiently regular conductivities [28], but care has to been taking when we
work with less regular conductivities.

When γ ∈ W 1+ε,p(Ω), p > 2, ε > 0, a method for the reconstruction of
γ|∂Ω is given in [28]. We would like to use this trace to construct a function
γe in Rn, which is known explicitly in Rn \ Ω and has the properties that
γe|Ω = γ and (γe − 1) ∈ W 1+ε,p(R2) is compactly supported inside a larger
domain Ωe ⊃ Ω. For this extension to preserve regularity we will have to
assume that 0 < ε < 1/p.

The construction of an extension relies on the following lemma:

Lemma 5.1. Assume 1 ≤ p and 1/p− 1 < s < 1/p. Let f ∈W 1+s,p(Ω) and
g ∈W 1+s,p(Rn \ Ω) with f |∂Ω = g|∂Ω. Then the function

h =

{
f in Ω,

g in Rn \ Ω

satisfies h ∈W 1+s,p(Rn).

Proof. Since ∂Ω is smooth we can without loss of generality assume that
Ω = Rn

+ = {(x′, xn) ∈ Rn | xn > 0} and hence Rn \ Ω = Rn
−. Let E± denote

operators extending functions defined on Rn
± to Rn. It is well known that

such operators exist and that E± ∈ B(W r,p(Rn
±),W r,p(Rn)), r ∈ R (see for

instance [41, section 2.9]). Then h = E−g+χxn>0(E+f −E−g), where χxn>0

is the characteristic function of Rn
+.

It is clear that h ∈ Lp(Rn) and ∂xj
h ∈ W s,p(Rn) for j = 1, 2, · · · , n − 1,

so to prove the result we need to show that ∂xnh ∈W s,p(Rn) or equivalently
χxn>0(E+f −E−g) ∈W s,p(Rn). Since (E+f −E−g)|xn=0 = 0 by assumption,
it follows that ∂xnχxn>0(E+f − E−g) = χxn>0∂xn(E+f − E−g). We then
reach the conclusion by using the fact that multiplication by a characteristic
function is a bounded operator in W s,p(Rn) for 1/p − 1 < s < 1/p ([41,
section 2.8.7]) and that ∂xn(E+f − E−g) ∈W s,p(Rn).

Let now γ|∂Ω ∈ W 1+ε−1/p,p(∂Ω) be given and define γ̃ = E(γ|∂Ω) ∈
W 1+ε,p(Rn), where the extension operatorE ∈ B(W 1+ε−1/p,p(∂Ω),W 1+ε,p(Rn))
is any right inverse of the trace operator [41, section 2.7.2]. Since γ|∂Ω ≥ c > 0
it follows that γ̃ ≥ c̃ > 0 in a neighborhood of ∂Ω, and hence by adding and
multiplying smooth functions, we can construct a new strictly positive ex-
tension γ′ of γ|∂Ω such that γ′−1 ∈W 1+ε,p(Rn) is compactly supported. The
function

γe =

{
γ on Ω

γ′ on Rn \ Ω
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is by the Lemma 5.1 in W 1+ε,p(Rn) for 0 < ε < 1/p and hence a suitable
extension.

Introduce the extended domain Ωe ⊂ R
2, which is smooth, bounded and

satisfies supp(γe − 1) ⊂ Ωe. We will see next that the Dirichlet-to-Neumann
map corresponding to γe on ∂Ωe can be calculated from the Dirichlet-to-
Neumann map for the domain Ω given the known value of the conductivity
in Ωe \ Ω:

Lemma 5.2. Let Ωe,Ω ⊂ Rn be smooth and bounded domains such that
Ω ⊂ Ωe. Let γe ∈ L∞(Ωe), let Λγ be the Dirichlet-to-Neumann map on ∂Ω
corresponding to γe|Ω and let Λγe be the Dirichlet-to-Neumann map on ∂Ωe

corresponding to γe. Then Λγe can be recovered from Λγ and γe|Ωe\Ω.

Proof. From the definition of the Dirichlet-to-Neumann map we have for any
f, g ∈ H1/2(∂Ωe), that

〈Λγef, g〉 =

∫
Ωe

γ∇u · ∇v

=

∫
Ωe\Ω

γe∇u · ∇v + 〈Λγ(u|∂Ω), v|∂Ω〉,

where u ∈ H1(Ωe) denotes the unique solution to

∇ · γe∇u = 0 in Ωe,

u = f, on ∂Ωe,
(41)

and v ∈ H1(Ωe) is any function with v|∂Ωe = g. Hence we see that Λγe can
be found from γe|Ωe\Ω and Λγ without explicit knowledge of γ in Ω provided

that the solution u to (41) can be found in Ωe \ Ω.
We claim that u in Ωe\Ω can be found as the unique solution to boundary

value problem

∇ · γe∇u = 0 in Ωe \ Ω,

u = f on ∂Ωe,

γe(∂νu)|∂Ω = Λγ(u|∂Ω) on ∂Ω.

(42)

Here γe(∂νu)|∂Ω ∈ H−1/2(∂Ω) is the normal derivative on ∂Ω defined in the
weak sense for g ∈ H1/2(∂Ω) as

〈γe(∂νu)|∂Ω, g〉 =

∫
Ω\Ω

γe∇u · ∇v, (43)

with v ∈ H1(Ω \ Ω), v|∂Ω = g, v|∂Ωe = 0.
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That u|Ωe\Ω solves (42) is trivial. For the uniqueness we assume that

u0 ∈ H1(Ωe \ Ω) solves (42) with f = 0. Extend u0 into Ω as the solution to

∇ · γe∇u = 0 in Ω, u = u0 on ∂Ω.

Since the extended u0 is in H1(Ωe) and solves (41) with f = 0, we conclude
that u0 = 0 in Ωe.

We emphasize that the solution to (42) can be constructed explicitly using
for instance pseudodifferential calculus, see [18].
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Polytech.

21



[7] Richard Beals and Ronald R. Coifman. Multidimensional inverse scat-
terings and nonlinear partial differential equations. In Pseudodifferen-
tial operators and applications (Notre Dame, Ind., 1984), pages 45–70.
Amer. Math. Soc., Providence, RI, 1985.

[8] Richard Beals and Ronald R. Coifman. The spectral problem for the
Davey-Stewartson and Ishimori hierarchies. In Nonlinear evolution equa-
tions: Integrability and spectral methods, pages 15–23. Manchester Uni-
versity Press, Manchester, 1988.

[9] Richard Beals and Ronald R. Coifman. Linear spectral problems, non-
linear equations and the ∂-method. Inverse Problems, 5(2):87–130, 1989.

[10] Liliana Borcea. Topical review: Electrical impedance tomography. In-
verse Problems, 18(6):R99–R136, 2002.

[11] Russell M. Brown. Global uniqueness in the impedance-imaging problem
for less regular conductivities. SIAM J. Math. Anal., 27(4):1049–1056,
1996.

[12] Russell M. Brown and Rodolfo H. Torres. Uniqueness in the inverse
conductivity problem for conductivities with 3/2 derivatives in Lp, p >
2n. Preprint, 2002.

[13] Russell M. Brown and Gunther A. Uhlmann. Uniqueness in the inverse
conductivity problem for nonsmooth conductivities in two dimensions.
Comm. Partial Differential Equations, 22(5-6):1009–1027, 1997.

[14] Alberto-P. Calderón. On an inverse boundary value problem. In Seminar
on Numerical Analysis and its Applications to Continuum Physics (Rio
de Janeiro, 1980), pages 65–73. Soc. Brasil. Mat., Rio de Janeiro, 1980.

[15] Margaret Cheney, David Isaacson, and Jonathan C. Newell. Electrical
impedance tomography. SIAM Rev., 41(1):85–101 (electronic), 1999.

[16] Ronald R. Coifman and Yves Meyer. Au delà des opérateurs pseudo-
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