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Abstract

A closed-form expression is obtained for the conditional probability distribution of∫ t

0
R2

s ds given Rt, where (Rs, s ≥ 0) is a Bessel process of dimension δ > 0 started from
0, in terms of parabolic cylinder functions. This is done by inverting the following Laplace
transform also known as the generalized Lévy’s stochastic area formula:
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=
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)

We also examine the joint distribution of (R2
t ,

∫ t

0
R2

s ds).
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1. Introduction

1.1. If (Ru, u ≥ 0) is a Bessel process of dimension δ > 0 started at 0, then the following
formula is known to be valid (see e.g. [14]):

(1.1) E

[
exp

(
− λ2

2

∫ t

0

R2
s ds

)
|Rt = a

]
=

( λ t

sinh(λ t)

)δ/2

exp
(
− a2

2t
(λ t coth(λ t)− 1)

)
.

If δ = 1 and a = 0, then (1.1) leads to the distribution of the Brownian bridge (bs, s ≥ 0)
in the L2 norm which is identical to Smirnov’s distribution for his ω2-test. We recall below
the relation between the integral of the square of the Brownian bridge and the supremum
of the absolute value (see e.g. [3]):

(1.2)

∫ 1

0

b2
s ds +

∫ 1

0

b̃2
s ds

law
=

4

π2
sup
0≤s≤1

|bs|2

where (b̃s, 0 ≤ s ≤ 1) is an independent copy of (bs, 0 ≤ s ≤ 1).
If δ = 2, then (1.1) is the Lévy’s stochastic area formula. Indeed, Lévy [10] showed that

if (X(t), Y (t)) is an R
2-valued Brownian motion, starting from (0, 0), then for any ξ ∈ R

and (x, y) ∈ R
2,

E

[
exp

(
i ξ

∫ t

0

(X(u)dY (u)− Y (u)dX(u))
)
|X(t) = x, Y (t) = y

]
(1.3)

= E

[
exp

(
− ξ2

2

∫ t

0

R2(u) du
)
|R(t) = r

]
(1.4)

=
( ξ t

sinh(ξ t)

)
exp

(
− r2

2t
(ξ t coth(ξ t)− 1)

)
(1.5)

where R2 = X2 + Y 2 and r2 = x2 + y2.
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Lévy’s area formula arises naturally in some problems in analysis (explicit formula for
the heat kernel corresponding to the Kohn-Laplacian of the Heisenberg group, see [7]),
geometry (a probabilistic proof of the well-known index theorems of Atiyah and Singer
due to J. M. Bismut, see [4, 5]) and statistical inference (parameter estimation and testing
of statistical hypotheses for diffusion-type processes, see chapter 17 in [11]). We also note
the close connection between the distributions of subordinated perpetuities and generalized
Lévy’s formula for the stochastic area of planar Brownian motion (see [16] for details). For
a historical account of Lévy’s area formula, we refer the interested reader to [9] and [13].

1.2. Equivalently, we can write the generalized Lévy’s stochastic area formula (1.1) as
follows:

(1.6) E

[
exp

(
− u R2

t − v

∫ t

0

R2
s ds

)]
=

[
cosh(

√
2 v t) +

2u√
2 v

sinh(
√

2 v t)
]−δ/2

.

In the Brownian case (i.e. δ = 1), the Laplace inversion of (1.6) has been undertaken
by Abadir [1, 2] in 1995 who derived the joint density and distribution functions of the
following two Brownian functionals:

(1.7)
1

2
(B2

1 − 1) =

∫ 1

0

Bs dBs and

∫ 1

0

B2
s ds

where Bs, 0 ≤ s ≤ 1 is a standard one-dimensional Brownian motion started at 0. These
two functionals play an important role in unit root statistics (see [13]).

1.3. The paper is organized as follows. In Section 2 we derive explicitly the density
of

∫ t

0
R2

s ds given Rt in terms of parabolic cylinder functions. In Section 3 we derive the

joint density of (R2
t ,

∫ t

0
R2

s ds).

2. The density associated with the generalized Lévy’s
area formula

The following theorem offers a method to invert (1.1); the result may be expressed in terms
of parabolic cylinder functions.

Theorem 2.1 The density fa, t of
∫ t

0
R2

s ds given Rt = a is given by

(2.1) fa, t(x) =
2

δ
2 tδ/2

√
2π

e
a2
2t

∞∑
j=0

(−1)j

j!
a2j

∞∑
k=0

(j + δ/2)k

k!
x−β−1 e

−α2

4x D2β+1(
α√
x

)

where α = 2 k t + a2

2
+ 2 j t + δ

2
t, β = j

2
+ δ

4
, Dν(ξ) is a parabolic cylinder function and

(ν)k ≡ ν(ν + 1). . .(ν + k − 1) = Γ(ν + k)/Γ(ν) is the Pochhammer’s symbol.

Proof: First, according to [10; p. 259], we have

(2.2) pνe−a
√

p .
= 2−ν− 1

2 π−
1
2 t−ν−1 exp(− a2

8 t
) D2ν+1(

a√
2t

)

Using the relation coth(x) = 1 + 2(exp(2x)− 1)−1, then expanding the exponential:

( √
2λ t

sinh(
√

2λ t)

)δ/2

exp
(
− a2

2t
(
√

2λ t coth(
√

2λ t)− 1)
)

(2.3)

= 23δ/4 tδ/2 e
a2
2t

∞∑
j=0

(−√2a2)j

j!
λ

1
2 {j+δ/2} e−

√
λ{√2 a2

2 +2
√

2jt+
√

2
2 δt}

(1− e−2
√

2
√

λt)j+ δ
2

(2.4)

= 23δ/4tδ/2ea2/2t
∞∑

j=0

(−1)j

j!
a2j2j/2

∞∑
k=0

(j + δ/2)k

k!
λ

1
2 {j+δ/2}e−α

√
2 λ(2.5)

the termwise inversion of the series in (2.5) is readily justifiable by elementary estimates. �
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Corollary 2.1 The density f0, t of
∫ t

0
R2

s ds given Rt = 0 is given by

(2.6) f0, t(x) =
2

δ
2 tδ/2

√
2π

x−
δ
4−1

∞∑
k=0

( δ
2
)k

k!
e
−

(k + δ/4)2t2

x D δ
2 +1

(2kt + t δ/2√
x

)

where Dν(ξ) is a parabolic cylinder function and (ν)k ≡ ν(ν+1). . .(ν+k−1) = Γ(ν+k)/Γ(ν)
is the Pochhammer’s symbol.

Remark:
L. Tolmatz [15] determined the density (2.6) in the particular case for δ = 1.

3. The joint density of (R2
t ,

∫ t

0 R2
s ds)

Theorem 3.1 The joint distribution gt of (R2
t ,

∫ t

0
R2

s ds) is given by

gt(x, y) =
1√

2π Γ( δ
2
)

∞∑
j=0

(−1)j

j!
xj+ δ

2−1 y−
j
2− δ

4−1
∞∑

k=0

(j + δ
2
)k

k!

e
− 1

4y
{2 (k+j+ δ

4 ) t+ x
2 }2 D δ

2 +j+1

(2(k + j + δ
4
)t + x

2√
y

)(3.1)

where Dν(ξ) is a parabolic cylinder function and (ν)k ≡ ν(ν+1). . .(ν+k−1) = Γ(ν+k)/Γ(ν)
is the Pochhammer’s symbol.

Proof: Two methods lead to the same result (3.1). The first method follows from
Theorem 2.1 by integrating the conditional density fa2,t with respect to the law of R2

t

P (R2
t ∈ dx) = (2t)−δ/2 1

Γ( δ
2
)
xδ/2−1e−x/2t dx .

This leads immediately to (3.1) and the details will be omitted. The second method is
based on inverting the Laplace transform (1.6) and this can be done as follows.

Set X = R2
t and Y =

∫ t

0
R2

s ds. Using formula (1.6), the joint density of X and Y is
found to be given by

gt(x, y) = − 1

4π2

∫ β+i∞

β−i∞

∫ γ+i∞

γ−i∞
exu+yv

[
cosh(

√
2 v t) +

2u√
2 v

sinh(
√

2 v t)
]−δ/2

dudv .

We note that
[
cosh(

√
2 v t) +

2u√
2 v

sinh(
√

2 v t)
]−δ/2

=

∞∑
k=0

( δ
2
)k

k!
2δ/2

(√
2v

)δ/2

e−
√

2v(2kt+ δ
2 t) (2u−√2v)k

(2u +
√

2v)k+ δ
2

.

(3.2)

Then, according to [10; p. 239], we have

(3.3) (p− a)ν(p + a)−µ .
=

1

Γ(µ− ν)
tµ−ν−1e−at

1F1(−ν;µ− ν; 2at) for R(µ− ν) > 0

so it follows that
[
cosh(

√
2 v t) +

2u√
2 v

sinh(
√

2 v t)
]−δ/2

=

∫ ∞

0

dx e−xu
∞∑

k=0

( δ
2
)k

k!

1

Γ( δ
2
)

(√
2v

)δ/2

e−
√

2v(2kt+ δ
2 t+ x

2 )xδ/2−1
1F1

(
− k;

δ

2
; x
√

2v
)
.

(3.4)

By expanding Kummer’s function:

(3.5) 1F1

(
− k;

δ

2
; x
√

2v
)

=
∞∑

j=0

(−k)j

( δ
2
)j

xj

j!

(√
2 v

)j
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we conclude as in the proof of Theorem 2.1:

gt(x, y) =
1√

2π Γ( δ
2
)

∞∑
j=0

1

( δ
2
)j

1

j!
xj+ δ

2−1 y−
j
2− δ

4−1
∞∑

i=0

( δ
2
)i

i!
(−i)j

e−
1
4y
{2 (i+ δ

4 ) t+ x
2 }2 D δ

2 +j+1

(2 (i + δ
4
) t + x

2√
y

)
.

(3.6)

To show the equivalence between (3.6) and (3.1), let us compare the coefficients of
these expressions. Since (−i)j = 0 for i < j we see that the second summation in (3.6)
takes place only over i ≥ j, so that by setting k = i − j the coefficients in (3.1) and (3.6)
respectively become:

C(j, k) =
(−1)j

j!

(j + δ
2
)k

k!

D(j, k) =
1

( δ
2
)j

1

j!

( δ
2
)j+k

(j + k)!

(− (j + k)j

)
.

It is easily verified that:

C(j, k) =
( δ
2

+ j + k)

Γ( δ
2

+ j)

(−1)j

k!
= D(j, k) .

�
Remarks:

1. A. Borodin kindly informed us that a similar expression for gt appears in the new
edition of [6] (see 1.9.8 p. 378).

2. Abadir [1] has derived the joint density of (
√

2
∫ 1

0
Bs dBs, 2

∫ 1

0
B2

s ds) = (
√

2
2

(B2
1 −

1), 2
∫ 1

0
B2

s ds) which correspond to the case δ = 1.

Acknowledgments

It is a pleasure to thank Goran Peskir for his kind invitation to Aarhus university and
many fruitful discussions. The author thanks the anonymous referee for a careful reading
of the manuscript and helpful suggestions.

References

[1] Abadir, K. M. (1995). The joint density of two functionals of Brownian motion. Math.
Methods of Statist. 4 (449-462).

[2] Abadir, K. M. (1996). Correction: “The joint density of two functionals of a Brownian
motion”. Math. Methods of Statist. 5 (124).

[3] Biane, Ph., Pitman, J. and Yor, M. (2001). Probability laws related to the Jacobi theta
and Riemann zeta functions, and Brownian excursions. Bull. Amer. Math. Soc. (N.S.)
38 (435-465).

[4] Bismut, J. M. (1984). The Atiyah-Singer theorems: a probabilistic approach. I. The
index theorem. J. Funct. Anal. 57 (56-99).

[5] Bismut, J. M. (1984). The Atiyah-Singer theorems: a probabilistic approach. II. The
Lefschetz fixed point formulas. J. Funct. Anal. 57 (329-348).

[6] Borodin, A.N., Salminen, P. (2002). Handbook of Brownian motion-facts and formulae
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