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Abstract

A closed-form expression is obtained for the conditional probability distribution of
fot R?ds given Ry, where (Rs,s > 0) is a Bessel process of dimension § > 0 started from
0, in terms of parabolic cylinder functions. This is done by inverting the following Laplace
transform also known as the generalized Lévy’s stochastic area formula:

E[exp<f %Q/Othds> | R: = a] = (sin}l\i(t)\t))éﬂ exp<f ;_i(/\t coth(At) — 1))

We also examine the joint distribution of (R?, fot R2ds).
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1. Introduction

1.1. If (Ry,u > 0) is a Bessel process of dimension ¢ > 0 started at 0, then the following
formula is known to be valid (see e.g. [14]):

(1.1) E[exp (7%2 /Ot R?ds) | Ry :a] = (sinﬁﬁ)ém exp<f %j(/\t coth(/\t)fl)).

If 6 = 1 and a = 0, then (1.1) leads to the distribution of the Brownian bridge (bs, s > 0)
in the L? norm which is identical to Smirnov’s distribution for his w?-test. We recall below
the relation between the integral of the square of the Brownian bridge and the supremum
of the absolute value (see e.g. [3]):

1 1 law 4
(1.2) / b2 ds+/ b2ds = — sup |b,|?
0 0

T2 0<s<1

where (Bs, 0 < s <1) is an independent copy of (bs, 0 < s <1).

If § = 2, then (1.1) is the Lévy’s stochastic area formula. Indeed, Lévy [10] showed that
if (X(t),Y(t)) is an R*-valued Brownian motion, starting from (0, 0), then for any & € R
and (z,y) € R?

(1.3) E[exp (ig/ot(X(u)dY(u) - Y(u)dX(u))) | X(t) = 2,Y(t) = y]
(1.4) :E[exp(f%/;RQ(u)duMR(t):r]
(1.5) = (Smflﬁ) exp ( - ;—i(ft coth(§t) — 1))

where R? = X% 4+ Y? and r? = 2% + ¢%
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Lévy’s area formula arises naturally in some problems in analysis (explicit formula for
the heat kernel corresponding to the Kohn-Laplacian of the Heisenberg group, see [7]),
geometry (a probabilistic proof of the well-known index theorems of Atiyah and Singer
due to J. M. Bismut, see [4, 5]) and statistical inference (parameter estimation and testing
of statistical hypotheses for diffusion-type processes, see chapter 17 in [11]). We also note
the close connection between the distributions of subordinated perpetuities and generalized
Lévy’s formula for the stochastic area of planar Brownian motion (see [16] for details). For
a historical account of Lévy’s area formula, we refer the interested reader to [9] and [13].

1.2. Equivalently, we can write the generalized Lévy’s stochastic area formula (1.1) as
follows:

(1.6) ]E[exp (—uRf —v /Ot R? ds)} = [cosh(\/ﬁt) +

2u -5/
sinh(vV2vt }
7o Smh(v2ut)
In the Brownian case (i.e. § = 1), the Laplace inversion of (1.6) has been undertaken
by Abadir [1, 2] in 1995 who derived the joint density and distribution functions of the
following two Brownian functionals:

1 9 1 1 9
. = 1 — = s s s
(1.7) S8 - 1) / B.dB.,  and / B ds
0 0

where Bs,0 < s < 1 is a standard one-dimensional Brownian motion started at 0. These
two functionals play an important role in unit root statistics (see [13]).

1.3. The paper is organized as follows. In Section 2 we derive explicitly the density
of fot R2ds given R in terms of parabolic cylinder functions. In Section 3 we derive the

joint density of (RZ, fg R2ds).

2. The density associated with the generalized Lévy’s
area formula

The following theorem offers a method to invert (1.1); the result may be expressed in terms
of parabolic cylinder functions.

Theorem 2.1 The density fa,+ of fot R2ds given Ry = a is given by
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whereaszt—l—%—&—?jt—&—gt, 8=
Wk=vv+1)...(v+k-1)=Tv+k

Proof: First, according to [10; p. 259], we have

s,

L+ 2, D, () is a parabolic cylinder function and
/T (v) is the Pochhammer’s symbol.
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Using the relation coth(z) = 14 2(exp(2x) — 1)™', then expanding the exponential:

(2.3) (sin}\l/Q_i/\\/%t))éﬂ exp ( - ;—i(\/ﬁt coth(V2XAt) — 1))

(2.2) ple VP = 9V gz exp(—

)

oo _ a2 a2
(2.4) 936/4 43/2 g— Z /\%{j+6/2}e VI{V2 L 12yt Y2 st}
= (1 —e—2V2VAt)its
oo 1 oo
5/4,6/2 a? (1) 25,5 (J4+90/2)k \Lij+6/2} —avEX
(2.5) — 930/446/2 a /2tz I a2721/22 o A2 l+6/2} j—av2
j=0 k=0

the termwise inversion of the series in (2.5) is readily justifiable by elementary estimates. O



Corollary 2.1 The density fo,+ of fot R2ds given Ry = 0 is given by

- (k+ 6/4)%¢
22t5/2 e ) — 1 2kt +1t6/2
(26)  foelz) = i 12 1.'“ v D%+1<7ﬁ / )

where D, (€) is a parabolic cylinder function and (v)r = v(v+1)...(v+k—1) = T'(v+k)/T(v)
is the Pochhammer’s symbol.

Remark:
L. Tolmatz [15] determined the density (2.6) in the particular case for 6 = 1.

3. The joint density of (R? fo R%ds)

Theorem 3.1 The joint distribution g; of (R%, fot R2ds) is given by

1 N (1) g dsie (G Bk
ge(w,y) = D e kA D D T
o) VERT) 2 =
) . ) T
o~ 2kt +5) Ayt a)ts
E S+it+1 NG

where D, (&) is a parabolic cylinder function and (v)r = v(v+1)...(v+k—1) = T'(v+k)/T(v)
is the Pochhammer’s symbol.

Proof: Two methods lead to the same result (3.1). The first method follows from
Theorem 2.1 by integrating the conditional density f,2 , with respect to the law of R}

P(R} € dz) = (2t)76/2%x6/271671/2t dz .
ING))
This leads immediately to (3.1) and the details will be omitted. The second method is
based on inverting the Laplace transform (1.6) and this can be done as follows.

Set X = R? and Y = fot R?ds. Using formula (1.6), the joint density of X and Y is
found to be given by

Brtico —8/2
zu+yv u .
Cosh 2ut sinh(v2vt dudv .
we) =g [ [ (VEDt) + ZE sinh(VEv1)
We note that
2u —é/
[cosh( 2vt) + sinh( QUt)]
vV Non vV
3.2 oo
(3:2) Z %)k26/2( v)é/Qe—\/ﬂ(%H%t) (2u — V2v)*
- K (2u+ V20)**3
Then, according to [10; p. 239], we have
v — - 1 —v—1 —at
_ no I e — e _
(33) (p—a)’(p+a) F(u—y)t e ““1Fi(—v;p—v;2at) for R(p—v)>0
so it follows that
[cosh(\/Z vt) + \/2_ sinh(v2v t)]

it _ 5 1 5/2 sy Syiz _ é
:/ dre MZ ?dk 5 (\/21}) e~ V2u(2kt+ 5t 5) 5/2 11F1(—k;§;m\/2v).
0 = k()
By expanding Kummer’s function:

(3.5) 1F1(7k: ) i o ]"( 20)”

j=0 2




we conclude as in the proof of Theorem 2.1:
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To show the equivalence between (3.6) and (3.1), let us compare the coefficients of
these expressions. Since (—i); =0 for ¢ < j we see that the second summation in (3.6)
takes place only over i > j, so that by setting k& = ¢ — j the coefficients in (3.1) and (3.6)
respectively become:

. 11 (3)jgx .
D(j, k) = — 2 -(G+Ek
Gk = 5,51 G 4 (G +E)
It is easily verified that:
6 .
. S+ j+k)(—1) :
C(5,k) GAith (D) D(j, k)

d
Remarks:
1. A. Borodin kindly informed us that a similar expression for g, appears in the new
edition of [6] (see 1.9.8 p. 378).

2. Abadir [1] has derived the joint density of (v/2 fol B; dBS,Qfol B?ds) = (@(B% -
1), 2]01 B2 ds) which correspond to the case § = 1.
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