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Abstract. The relations between additive processes and independently scattered
random measures are studied. In particular we derive a Lévy-Ito decomposition of
independently scattered random measures on R

k.

1. Introduction

Independently scattered random measures were introduced by Urbanik and Woy-

czynski (1969) and Rajput and Rosinski (1989). Sato (2002) proved that if {Λ(A) : A ∈
Bb(R+)} is an atomless independently scattered random measure on R+, then the

process defined by Xt = Λ([0, t]) is a so-called natural additive process in law, and

conversely that any natural additive process in law induces uniquely a continuous

independently scattered random measure. Here Bb(R+) denotes the bounded Borel

sets in R+. Sato did not apply the Lévy-Ito decomposition of {Xt : t > 0}, but a

proof of his result can be based on this decomposition in the following way. Let

Xt =

∫
[0,t]

∫
Rd

y1{|y|61}(y) d(j− ν)(s, y)+

∫
[0,t]

∫
Rd

y1{|y|>1}(y) dj(s, y)+

∫
[0,t]

dXg
t + pt,

where j is the jump measure induced by X, ν the corresponding intensity measure,

Xg the Gaussian component of X and pt ∈ R
d. Then it is readily seen that the

independently scattered random measure induced by {Xt : t ∈ R+} is

(1.1)

Λ(A) =

∫
A

∫
Rd

y1{|y|61}(y) d(j−ν)(s, y)+

∫
A

∫
Rd

y1{|y|>1}(y) dj(s, y)+

∫
A

dXg
t +

∫
A

dpt.

We shall refer to (1.1) as the Lévy-Ito decomposition of {Λ(A) : A ∈ Bb(R+)}.
In this note we consider a generalization to the case where R+ is replaced by

R
k
+ or R

k. We recall in the next section a few properties of independently scattered
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random measures, while Section 3 discusses additive processes on R
k
+. Section 4

contains the main results. We show that a natural additive process on R
k
+ generates an

independently scattered random measure and vice versa. Further we we show that any

independently scattered random measure on R
k satisfying a continuity assumption

has a Lévy-Ito decomposition similar to (1.1).

Notation. Let d and k denote positive integers. For x = (x1, . . . , xd) and

y = (y1, . . . , yd) in R
d let 〈x, y〉 denote their inner product and |x| be the corre-

sponding norm. Let D = {x ∈ R
d : |x| 6 1}. Let B0(R

d) be the class of Borel

sets B in R
d with infx∈B |x| > 0. Let L(X) denote the law of a random vector X.

For a set M and two families {Xt : t ∈ M} and {Yt : t ∈ M} of random vectors

with Xt and Yt in R
d write {Xt : t ∈ M} d

= {Yt : t ∈ M} if the finite-dimensional

marginals are the same. We say that {Xt : t ∈ M} is a modification of {Yt : t ∈ M} if

(Xt1 , . . . , Xtn) = (Yt1 , . . . , Ytn) a.s. for all n > 1 and t1, . . . , tn ∈ M . For probability

measures µn and µ on B(Rd) write µn → µ if µn converges weakly to µ. Let µ̂ denote

the characteristic function of µ, µ̂(z) =
∫

Rd ei〈z,x〉µ(dx) for z ∈ R
d. Let δx denote

the point measure at x ∈ R
d. Let ID(Rd) denote the class of infinitely divisible

distributions. That is, a distribution µ on B(Rd) is in ID(Rd) if and only if µ̂ is

given by µ̂(z) = exp
[−1

2
zΣz> + i〈γ, z〉+

∫
Rd g(z, x) ν(dx)

]
, z ∈ R

d, where > denotes

the transpose, g(z, x) = ei〈z,x〉 − 1 − i〈z, x〉1D(x) and (Σ, ν, γ) is the characteristic

triplet of µ, that is, Σ is a d× d nonnegative definite matrix, ν is a Lévy measure on

B(Rd) and γ ∈ R
d. Denote the entries of Σ by Σij and the coordinates of γ by γj for

i, j = 1, . . . , d. The following is an application of Sato (1999, Theorem 8.7).

Lemma 1.1. For n = 1, 2, . . . let µn ∈ ID(Rd) have characteristic triplet (Σn, νn, γn).

The following statements (i) and (ii) are equivalent.

(i) µn → δ0;

(ii) γj
n → 0 and Σij

n → 0 for all i, j = 1, . . . d, and
∫

Rd(1 ∧ |x|2) νn(dx) → 0.

If there exists a Lévy measure ν̃ on B(Rd) such that νn(B) 6 ν̃(B) for all B ∈
B(Rd) and n ∈ N then (i) is equivalent to the following condition:

(iii) γj
n → 0 and Σij

n → 0 for all i, j = 1, . . . d, and νn(B) → 0 for all B ∈ B0(R
d).

2. Independently scattered random measures

For S ∈ B(Rk) let Bb(S) denote the set of bounded Borel sets in S. As in Rajput

and Rosinski (1989) and Urbanik and Woyczynski (1969) (in the case d = 1) and

Sato (2002) (in the case S = R+) we need the following.
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Definition 2.1. Let S ∈ B(Rk) and {Λ(A) : A ∈ Bb(S)} denote a family of random

vectors in R
d. We call this family an R

d-valued independently scattered random mea-

sure on S if the following three conditions are satisfied: (i) L(Λ(A)) ∈ ID(Rd) for all

A ∈ Bb(S); (ii) Λ(A1), . . . , Λ(An) are independent whenever A1, . . . , An ∈ Bb(S) are

disjoint; (iii) Λ(∪∞n=1An) =
∑∞

n=1 Λ(An) a.s. whenever A1, A2, . . . ∈ Bb(S) are disjoint

with ∪∞n=1An ∈ Bb(S). Here the series converges almost surely.

This definition will be used with S = R
k
+ or S = R

k. Let {Λ(A) : A ∈ Bb(S)}
denote an R

d-valued independently scattered random measure (isrm for short) on S.

Let µ(A) = L(Λ(A)) and (ΣA, νA, γA) denote the characteristic triplet of µ(A) for

A ∈ Bb(S). As in Rajput and Rosinski (1989) one shows that A → γj
A is a signed

measure for j = 1, . . . , d, and A → Σij
A is a measure for i = j and a signed measure

for i 6= j. (Notice that Bb(S) is not a σ-algebra. Hence when writing that A → Σij
A is

a signed measure we mean that it is a signed measure on B(S ∩B(0, r)) for all r > 0,

where B(0, r) denotes the ball with center 0 ∈ R
k and radius r in R

k.) Similarly

A → νA(B) is a measure for B ∈ B(Rd). Hence there exists a unique measure λ on

B(S) satisfying

λ(A) = trace(ΣA) + varγA +

∫
Rd

(1 ∧ |x|2) νA(dx), A ∈ Bb(S),

where varγA =
∑d

j=1 varγj
A and varγj denotes the total variation of the signed measure

A → γj
A. Call λ the control measure of {µ(A) : A ∈ Bb(S)} and of {Λ(A) : A ∈ Bb(S)}.

Remark 2.2. By a standard extension result there is a unique σ-finite measure ν on

B(S ×R
d) satisfying ν(A×B) = νA(B) for A ∈ Bb(S) and B ∈ B(Rd).

3. Additive processes on R
k
+

For t = (t1, . . . , tk) ∈ R
k
+, a = (a1, . . . , ak) ∈ R

k
+ and b = (b1, . . . , bk) ∈ R

k
+ write

a 6 b if aj 6 bj for all j and a < b if aj < bj for all j, and define the half-open interval

]a, b] as ]a, b] = {t ∈ R
k
+ : a < t 6 b}. Let [a, b] = {t ∈ R

k
+ : a 6 t 6 b}.

For F = {Ft : t ∈ R
k
+} with Ft ∈ R

d and a 6 b define the increment of F over

]a, b], ∆b
aF , as

∆b
aF =

1∑
ε1=0

· · ·
1∑

εk=0

(−1)ε1+···+εkF(c1(ε1),...,ck(εk)),

where cj(0) = bj and cj(1) = aj . For example, if k = 1 we have ∆b
aF = Fb − Fa and

when k = 2 then ∆b
aF = F(b1,b2) + F(a1,a2)−F(a1,b2)−F(b1,a2). Notice that if a 6 b and

a 6< b then ∆b
aF = 0.

3



Let A = {t ∈ R
k
+ : tj = 0 for some j}. For R = (R1, . . . , Rk) where Rj is either

6 or > write aRb if ajRjb
j for all j.

We say that F = {Ft : t ∈ R
k
+} is lamp if the following three conditions are

satisfied: (i) for t ∈ R
k
+ the limit F (t,R) := limu→t,tRu Fu exists for each of the 2k

relations R = (R1, . . . , Rk) where Rj is either 6 or >; (let F (t,R) := Ft if there is

no u with tRu); (ii) Ft = F (t,R) for R = (6, . . . , 6); (iii) Ft = 0 for t ∈ A.

Here lamp stands for limits along monotone paths. See Adler et al. (1984) for

references to the literature on lamp trajectories. When F is lamp and t ∈ R
k
+ \ A

define ∆tF := limn→∞ ∆t
tnF where tn is a sequence with tn → t and tn < t. If F is

continuous at the point t then ∆tF = 0 but the converse is not true, that is, we can

have ∆tF = 0 without F being continuous at t.

Definition 3.1. Let {Xt : t ∈ R
k
+} be a family of random vectors in R

d. We say

that {Xt : t ∈ R
k
+} is an R

d-valued additive process in law on R
k
+ if the following

three conditions are satisfied: (i) Xt = 0 a.s. for t ∈ A; (ii) ∆b1
a1

X, . . . , ∆bn
an

X are

independent whenever n > 2 and ]a1, b1], . . . , ]an, bn] are disjoint; (iii) {Xt : t ∈ R
k
+}

is continuous in probability. If, in addition, almost all sample paths of {Xt : t ∈ R
k
+}

are lamp, then {Xt : t ∈ R
k
+} is called an R

d-valued additive process on R
k
+.

This is heavily inspired by the definition given in Adler et al. (1984), p. 5. (Al-

though an additive process would be called a Lévy process by these authors.) For

example, the Brownian sheet is an additive process and in the case k = 1 the definition

above yields usual additive processes, see Sato (1999), Definition 1.6. To describe the

characteristic triplets of additive processes we introduce the concept of admissibility.

Definition 3.2. For t ∈ R
k
+ let (Gt, Ht, pt) denote the characteristic triplet of a

distribution on B(Rd), that is, Gt is a d× d nonnegative definite matrix, Ht is a Lévy

measure on B(Rd) and pt ∈ R
d. We say that {(Gt, Ht, pt) : t ∈ R

k
+} is admissible if

(i) (Gt, Ht, pt) = (0, 0, 0) for all t ∈ A; (ii) t → Gt and t → pt are continuous and

t → Ht(B) is continuous for all B ∈ B0(R
d); (iii) (∆b

aG, ∆b
aH, ∆b

ap) is a characteristic

triplet for all a 6 b. We say that {(Gt, Ht, pt) : t ∈ R
k
+} is natural if it is admissible

and there exist (uniquely) d signed measures γ1, . . . , γd on Bb(R
k
+) such that γj

[0,t] = pj
t

for all t and j = 1, . . . , d.

Naturalness was introduced by Sato (2002) in the case k = 1.

Remark 3.3. Let {(Gt, Ht, pt) : t ∈ R
k
+} be admissible.
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(i) There exists uniquely a σ-finite measure ν on B(Rk
+ ×R

d) satisfying ν([0, t]×
B) = Ht(B) for all t ∈ R

k
+ and B ∈ B(Rd). This ν satisfies in addition ν(]a, b]×B) =

∆b
aH(B) for all a 6 b and B ∈ B(Rd) and ν(A×R

d) = ν(Rk
+×{0}) = 0. The existence

of ν follows from the fact that ∆b
aH(B) > 0 for all a 6 b and the continuity of Ht. For

A ∈ Bb(R
k
+) define the measure νA on B(Rd) by νA(B) = ν(A × B) for B ∈ B(Rd).

Choosing t such that A ⊆ [0, t] it follows that νA(B) 6 ν[0,t](B) = Ht(B). Thus

νA is a Lévy measure. Similarly, there exists uniquely a family {ΣA : A ∈ Bb(R
k
+)}

of nonnegative definite d × d matrices satisfying Σ[0,t] = Gt for all t ∈ R
k
+ and that

A → Σij
A is a signed measure on Bb(R

k
+) for i, j = 1, . . . , d.

(ii) {(Gt, Ht, pt) : t ∈ R
k
+} can be admissible without being natural. For example,

when k = 1 we have naturalness if and only if t → pj
t is of bounded variation for

j = 1, . . . , d.

Remark 3.4. (i) Let {Xt : t ∈ R
k
+} be an additive process in law. Then, obviously,

Xt = ∆t
0X a.s for t ∈ R

k
+. Moreover, by Adler et al. (1984), Theorem 3.1, L(∆b

aX) ∈
ID(Rd) for all a 6 b. Let (Gt, Ht, pt) denote the characteristic triplet of L(Xt) =

L(∆t
0X). It is then easily seen that for a 6 b, (∆b

aG, ∆b
aH, ∆b

ap) is the characteristic

triplet of L(∆b
aX) and that L(Xb − Xa) has characteristic triplet (Gb − Ga, Hb −

Ha, pb − pa). Further, {(Gt, Ht, pt) : t ∈ R
k
+} is admissible. Indeed, we just have to

verify Definition 3.2 (ii). Let tn → t and define tn ∧ t = (t1n ∧ t1, . . . , tkn ∧ tk). Then

L(Xtn −Xtn∧t) has characteristic triplet (Gtn −Gtn∧t, Htn −Htn∧t, ptn − ptn∧t). Since

L(Xtn − Xtn∧t) → δ0 by continuity in probability, it follows from Lemma 1.1 that

Gtn −Gtn∧t → 0, ptn − ptn∧t → 0 and (Htn −Htn∧t)(B) → 0 for all B ∈ B0(R
d). One

shows similarly Gt − Gtn∧t → 0, pt − ptn∧t → 0 and (Ht − Htn∧t)(B) → 0. Hence

Gt −Gtn → 0, pt − ptn → 0 and (Ht −Htn)(B) → 0 for all B ∈ B0(R
d).

(ii) Let {(Gt, Ht, pt) : t ∈ R
k
+} be admissible. We say that an additive process in

law {Xt : t ∈ R
k
+} is associated with {(Gt, Ht, pt) : t ∈ R

k
+} if L(Xt) has characteristic

triplet (Gt, Ht, pt) for all t. If {(Gt, Ht, pt) : t ∈ R
k
+} is natural then we say that an

additive process in law associated with it is natural.

(iii) Let {(Gt, Ht, pt) : t ∈ R
k
+} be admissible. Let {Xt : t ∈ R

k
+} be a family of

random vectors which satisfies (ii) of Definition 3.1 and that L(Xt) has characteristic

triplet (Gt, Ht, pt) for all t ∈ R
k
+. Then {Xt : t ∈ R

k
+} is an additive process in law

associated with {(Gt, Ht, pt) : t ∈ R
k
+}. Indeed, we just have to prove that {Xt : t ∈

R
k
+} is continuous in probability. This follows by reverting the argument in the last

part of (i).
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Remark 3.5. Assume that {(Gt, Ht, pt) : t ∈ R
k
+} is of the form (Gt, Ht, pt) =

(G̃, H̃, p̃)Leb([0, t]), where Leb is the Lebesgue measure on R
k and (G̃, H̃, p̃) is the

characteristic triplet of a distribution on B(Rd). We then have that (∆b
aG, ∆b

aH, ∆b
ap) =

(G̃, H̃, p̃)Leb(]a, b]) and {(Gt, Ht, pt) : t ∈ R
k
+} is admissible. Let {Xt : t ∈ R

k
+} be an

additive process (resp. additive process in law) associated with {(Gt, Ht, pt) : t ∈ R
k
+}.

We say that {Xt : t ∈ R
k
+} is an R

d-valued Lévy process on R
k
+ (resp. Lévy process in

law on R
k
+). Obviously a Lévy process in law is natural.

Whenever {(Gt, Ht, pt) : t ∈ R
k
+} is admissible there exists an additive process

associated with it. Indeed, the existence of an additive process in law associated with

it follows from Kolmogorov’s consistency theorem and the existence of an appropriate

modification follows from Adler et al. (1984), Proposition 4.1. In fact, when Ht = 0

for all t, then an additive process associated with {(Gt, 0, pt) : t ∈ R
k
+} has continuous

trajectories almost surely, see Adler et al. (1984), Theorem 3.2.

Theorem 3.6. Let {Xt : t ∈ R
k
+} be an additive process associated with {(Gt, Ht, pt) :

t ∈ R
k
+}. Let

j(C) = #{(t, ∆tX) : t ∈ R
k
+ \ A, (t, ∆tX) ∈ C and ∆tX 6= 0} for C ∈ B(Rk

+ ×R
d).

(i) {j(C) : C ∈ B(Rk
+×R

d)} is a Poisson random measure with intensity measure

ν, where ν is constructed in Remark 3.3 (i).

(ii) Let H1
t (B) = Ht(B ∩D) and H2

t (B) = Ht(B ∩Dc) for B ∈ B(Rd). Define

X1
t =

∫
[0,t]

∫
Rd

y1D(y) d(j − ν)(s, y), X2
t =

∫
[0,t]

∫
Rd

y1Dc(y) dj(s, y).(3.1)

We then have that Xt = X1
t + X2

t + Xg
t + pt, where {Xg

t : t ∈ R
k
+}, {X1

t : t ∈ R
k
+}

and {X2
t : t ∈ R

k
+} are independent, {Xg

t : t ∈ R
k
+} is an additive process associated

with {(Gt, 0, 0) : t ∈ R
k
+} and {X i

t : t ∈ R
k
+} is an additive process associated with

{(0, H i
t , 0) : t ∈ R

k
+} for i = 1, 2.

This result is related to Adler et al. (1984), Theorem 4.6. The only difference is

that j above is a Poisson random measure on R
k
+×R

d while Theorem 4.6 is formulated

in terms of Poisson random measures on R
d. The proofs are essentially the same.

We shall call the process {Xg
t : t ∈ R

k
+} above the Gaussian part of {Xt : t ∈ R

k
+}

and the measure {j(C) : C ∈ B(Rk
+ × R

d)} the jump measure of {Xt : t ∈ R
k
+}.

Remark 3.7. Let {(Gt, Ht, pt) : t ∈ R
k
+} be natural in the sense of Definition 3.2 and

γ = (γ1, . . . , γd) be the signed measures satisfying γj
[0,t] = pj

t for all j.
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Let {Xt : t ∈ R
k
+} be an additive process associated with {(Gt, Ht, pt) : t ∈ R

k
+}.

Let Hg be the class of measurable functions f : R
k
+ → R satisfying

∫
(f(t))2 dGjj

t < ∞
for all j, where dGij

t denotes integration with respect to the signed measure Σij

induced by Gij in Remark 3.3 (i). For f ∈ Hg we can define the integral
∫

f(t)dXg
t

(a random vector in R
d) using a well known route: first one defines the integral

when f is simple, that is f(t) =
∑n

i=1 ui1]ai,bi](t) where ui ∈ R and the half-open

intervals are disjoint. For such f we have
∫

f(t)dXg
t =

∑n
i=1 ui∆

bi
ai

Xg. Then by

approximating with simple functions one defines the integral for f ∈ Hg. We have

L(
∫

f(t) dXg
t ) = Nd(0, Σ(f)), where Σij(f) =

∫
(f(t))2 dGij

t . Moreover, there is a

version of the Dominated Convergence Theorem: if {fn}n>1 is a sequence in Hg with

fn(t) → f(t) for all t and there exists a function h ∈ Hg such that |fn(t)| 6 |h(t)|
then

∫
fn(t) dXg

t → ∫
f(t) dXg

t in probability. For A ∈ Bb(R
k
+) write

∫
A

dXg
t for∫

1A(t) dXg
t . Also define

∫
A

dpt : = (γ1
A, . . . , γd

A).

4. Relations between additive processes and independently

scattered random measures

The first part of the following theorem was given by Sato (2002) in the case k = 1.

Theorem 4.1. Let {Xt : t ∈ R
k
+} be a natural additive process associated with {(Gt, Ht, pt) :

t ∈ R
k
+}.

(i) There exists one and up to modification only one isrm {Λ(A) : A ∈ Bb(R
k
+)}

satisfying Λ([0, t]) = Xt a.s. for t ∈ R
k
+.

(ii) Let {j(C) : C ∈ B(Rk
+ × R

d)} and {Xg
t : t ∈ R

k
+} be, respectively, the jump

measure and the Gaussian part of {Xt : t ∈ R
k
+}, and ν denote the measure constructed

in Remark 3.3 (i). Then {Λ(A) : A ∈ Bb(R
k
+)} is given by

(4.1)

Λ(A) =

∫
A

∫
Rd

y1D(y) d(j− ν)(t, y) +

∫
A

∫
Rd

y1Dc(y) dj(t, y) +

∫
A

dXg
t +

∫
A

dpt a.s.

(iii) Let µ(A) = L(Λ(A)). Then µ(A) has characteristic triplet (ΣA, νA, γA),

where ΣA and νA are defined in Remark 3.3 and γA = (γ1
A, . . . , γd

A) in Definition 3.2.

Proof. Uniqueness follows from Dynkin’s lemma. Let Λ(A) be defined by (4.1) for all

A ∈ Bb(R
k
+). By Theorem 3.6 it is immediate that Λ([0, t]) = Xt for t ∈ R

k
+. It is

easily verified that the law of
∫

A

∫
Rd y1D(y) d(j− ν)(t, y) +

∫
A

∫
Rd y1Dc(y) dj(t, y) has

characteristic triplet (0, νA, 0) and from Remark 3.7 follows that the law of
∫

A
dXg

t

has characteristic triplet (ΣA, 0, 0) for A ∈ Bb(R
k
+). Hence L(Λ(A)) has characteristic
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triplet (ΣA, νA, γA). Let us verify that {Λ(A) : A ∈ Bb(R
k
+)} is an isrm. Condition

(i) in Definition 3.1 is satisfied and condition (ii) follows from the fact that integrals

over disjoint sets are independent. Let A1, A2, . . . ∈ Bb(R
k
+) be disjoint such that

∪∞n=1An ∈ Bb(R
k
+). By the Dominated Convergence Theorem in Remark 3.7 and

similar results for integration with respect to (compensated) Poisson random measures

we have Λ(∪∞n=1An) =
∑∞

n=1 Λ(An) a.s., where the sum on the right-hand side exists

in probability and hence by independence of the terms also almost surely. This gives

condition (iii) in Definition 3.1. �

We call {Λ(A) : A ∈ Bb(R
k
+)} the isrm induced by {Xt : t ∈ R

k
+}.

For i = 1, . . . , k and c ∈ R let L(i, c) = {t = (t1, . . . , tk) ∈ R
k : ti = c}. Notice

that A = ∪k
i=1L(i, 0) ∩ R

k
+. We show that an isrm which does not have mass on the

sets L(i, c) induces an additive process in law.

Proposition 4.2. Let {Λ(A) : A ∈ Bb(R
k
+)} be an independently scattered random

measure with control measure λ. Let X̃t = Λ([0, t]) and (Gt, Ht, pt) be the character-

istic triplet of L(X̃t) for t ∈ R
k
+.

(i) For a 6 b, ∆b
aX̃ = Λ(]a, b]) a.s. and the characteristic triplet of L(∆b

aX̃) is

(∆b
aG, ∆b

aH, ∆b
ap).

(ii) The following statements (a)–(d) are equivalent.

(a) {(Gt, Ht, pt) : t ∈ R
k
+} is admissible;

(b) {X̃t : t ∈ R
k
+} is an additive process in law;

(c) λ(L(i, c) ∩ R
k
+) = 0 for all i = 1, . . . , k and c > 0.

(d) Λ(A) = 0 a.s. for all A ∈ Bb(L(i, c) ∩R
k
+), i = 1, . . . , k and c > 0.

(iii) Assume (a)–(d) are satisfied. Then {X̃t : t ∈ R
k
+} is natural. Let {Xt : t ∈

R
k
+} be a natural additive process which is a modification of {X̃t : t ∈ R

k
+}. Then for

A ∈ Bb(R
k
+) Λ(A) is given by (4.1) where j and Xg denote the jump measure and the

Gaussian part of {Xt : t ∈ R
k
+}, respectively.

Proof. (i) It is readily seen that ∆b
aX̃ = Λ(]a, b]) a.s. and that L(∆b

aX̃) has character-

istic triplet (∆b
aG, ∆b

aH, ∆b
ap). Using Definition 2.1 (ii) it follows that {X̃t : t ∈ R

k
+}

satisfies Definition 3.1 (ii).

(ii) Let (ΣA, νA, γA) denote the characteristic triplet of L(Λ(A)). If (c) is satisfied

then (ΣA, νA, γA) = (0, 0, 0) for all A ∈ Bb(L(i, c)∩R
k
+). This implies (d). Conversely,

if (d) is satisfied then (ΣA, νA, γA) = (0, 0, 0) for all A ∈ Bb(L(i, c) ∩ R
k
+). Hence
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λ(L(i, c) ∩ R
k
+) = 0 by definition of λ. It follows from Remark 3.4 that (a) and (b)

are equivalent.

(c) implies (b). It suffices to verify Definition 3.1 (i) and (iii). Since [0, t] ⊆
∪k

i=1L(i, 0) for t ∈ A it follows from (d) that X̃t = Λ([0, t]) = 0 a.s. for all t ∈ A, which

is Definition 3.1 (i). For tn, t ∈ R
k
+ with tn → t notice that lim sup ([0, t] \ [0, tn ∧ t]) ⊆

∪k
i=1L(i, ti). Hence lim sup λ ([0, t] \ [0, tn ∧ t]) 6 λ

(∪k
i=1L(i, ti)

)
= 0. Let (Σn, νn, γn)

denote the characteristic triplet of L(Λ([0, t] \ [0, tn ∧ t]). Then by definition of λ,

condition (ii) in Lemma 1.1 is satisfied. Thus X̃t − X̃tn∧t = Λ ([0, t] \ [0, tn ∧ t]) → 0

in probability. Similarly X̃tn − X̃t∧tn → 0 in probability and hence X̃tn → X̃t in

probability, which is Definition 3.1 (iii).

(b) implies (c). It suffices to prove that for i = 1, . . . , k and c > 0 we have

(ΣA, νA, γA) = (0, 0, 0) for all A given by A = {t ∈ R
k
+ : ti = c and tj 6 uj for i 6= j}

where uj > 0. When c = 0 this follows from the fact that (Gt, Ht, pt) = (0, 0, 0) for

t ∈ A. So assume c > 0. Define sn, s ∈ R
k
+ by

sj =

{
c if i = j,
uj if i 6= j,

sj
n =

{
c− 1/n if i = j
uj if i 6= j.

Let An = [0, s] \ [0, sn] and notice that An = {t ∈ R
k
+ : ti ∈]c − 1/n, c] and tj 6

uj for i 6= j}. By continuity in probability of {X̃t : t ∈ R
k
+} follows that X̃s − X̃sn =

Λ(An) → 0 in probability. Since An ↓ A it follows that Λ(A) = 0 a.s., which yields

the result.

(iii) follows from Theorem 4.1. �

Remark 4.3. Let k = 1. Then L(1, c) is simply the one-point set {c}. Hence (d)

above is the condition that Λ({t}) = 0 a.s. for all t ∈ R+. In this case an analogue

to the preceding proposition was given in Sato (2002), Theorem 3.2.

Remark 4.4. Let {Λ(A) : A ∈ Bb(R
k
+)} be the isrm induced by a Lévy process

{Xt : t ∈ R
k
+} associated with {(Gt, Ht, pt) : t ∈ R

k
+} where (Gt, Ht, pt) = (G̃, H̃, p̃)Leb([0, t])

and (G̃, H̃, p̃) is the characteristic triplet of a distribution on R
d. The characteris-

tic triplet of L(Λ(A)) is (ΣA, νA, γA) = (G̃, H̃, p̃)Leb(A). In particular we see that

{Λ(A) : A ∈ Bb(R
k
+} is homogeneous in the sense that L(Λ(A)) = L(Λ(a + A)) for

all a ∈ R
k
+ and all A ∈ Bb(R

k
+). The control measure of {Λ(A) : A ∈ Bb(R

k
+)} is

proportional to the Lebesgue measure.

In the next result we give a Lévy-Ito decomposition of an isrm.
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Theorem 4.5. Let {Λ(A) : A ∈ Bb(R
k)} be an isrm on R

k with control measure λ.

Assume that λ is continuous, i.e. λ({t}) = 0 for all t ∈ R
k. Let µ(A) = L(Λ(A)) and

(ΣA, νA, γA) be the characteristic triplet of µ(A) for A ∈ Bb(R
k). Then up to modifi-

cation {Λ(A) : A ∈ Bb(R
k)} is uniquely decomposed as Λ(A) = Λg(A) + Λng(A) + γA

a.s. where {Λg(A) : A ∈ Bb(R
k)} and {Λng(A) : A ∈ Bb(R

k)} are independent isrms

such that L(Λg(A)) has characteristic triplet (ΣA, 0, 0) and L(Λng(A)) has charac-

teristic triplet (0, νA, 0). Moreover, let ν be the measure constructed in Remark 2.2.

Then there exists a Poisson random measure {j(C) : C ∈ B(Rk ×R
d)} with intensity

measure ν such that

Λng(A) =

∫
A

∫
Rd

y1D(y) d(j − ν)(t, y) +

∫
A

∫
Rd

y1Dc(y) dj(t, y).

Proof. Step 1. First we prove this result assuming in addition

λ(L(i, c)) = 0 for i = 1, . . . , k and c ∈ R.(4.2)

To avoid too much notation let us further give the proof in the case k = 2 only.

The idea is to use the preceding results on each of the four quadrants of R
2. Hence

define the four quadrants Qαβ ⊆ R
2 for α, β = +,− in the following way: Q++ =

[0,∞[×[0,∞[, Q+− = [0,∞[×]−∞, 0], Q−+ =]−∞, 0]× [0,∞[, Q−− =]−∞, 0]×]−
∞, 0]. Define an isrm {Λαβ(A) : A ∈ Bb(R

2)} by Λαβ(A) = Λ(A∩Qαβ) for α, β = +,−.

Notice that Λαβ(A) = 0 a.s. for A ∈ Bb(R
2 \ Qαβ) and if (α, β) 6= (α′, β ′) then

Λαβ(A) = Λα′β′
(A) = 0 a.s. for all A ∈ Bb(Q

αβ ∩ Qα′β′
) by (4.2). In particular the

four processes {Λαβ(A) : A ∈ Bb(R
2)}, α, β = +,−, are independent with Λ(A) =∑

α,β=+,− Λαβ(A) a.s. and it suffices to prove the theorem for {Λαβ(A) : A ∈ Bb(R
2)}

in place of {Λ(A) : A ∈ Bb(R
2)}. But, since we can identify {Λαβ(A) : A ∈ Bb(R

2)}
with an isrm on Qαβ satisfying an analogue to condition (c) in Proposition 4.2, the

theorem follows from this result.

Step 2. Let us prove the result in the general case by induction in k. For

k = 1 we have λ(L(1, c)) = 0 for all c ∈ R as noticed in Remark 4.3 and we can

thus apply Step 1. So, assume that the result is true for any isrm on R
k−1 with a

continuous control measure and let {Λ(A) : A ∈ Bb(R
k)} be an isrm on R

k having a

continuous control measure λ. There is a countable family {(il, cl) : l = 1, 2, . . .} with

il ∈ {1, . . . , k} and cl ∈ R such that λ(L(i, c)) = 0 for (i, c) 6∈ {(il, cl) : l = 1, 2, . . .}.
Decompose Λ(A) as Λ(A) = Λ1(A)+Λ2(A) where Λ1(A) = Λ(A∩(∪∞l=1L(il, cl))

c) and

Λ2(A) = Λ(A ∩ (∪∞l=1L(il, cl))). Notice that {Λ1(A) : A ∈ Bb(R
k)} and {Λ2(A) : A ∈
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Bb(R
k)} are independent and each of them is an isrm. It suffices to establish the

theorem for each of these processes separately.

The control measure λ1 of {Λ1(A) : A ∈ Bb(R
k)} satisfies λ1(L(i, c)) = 0 for all

(i, c). The result for {Λ1(A) : A ∈ Bb(R
k)} thus follows from Step 1.

To prove the theorem for {Λ2(A) : A ∈ B(Rk)} it suffices to prove it for {Λ(A ∩
L(il, cl)) : A ∈ Bb(R

k)} for fixed l = 1, 2, . . . . Since L(il, cl) is a (k − 1)-dimensional

affine subspace we can identify {Λ(A ∩ L(il, cl)) : A ∈ Bb(R
k)} with an isrm on R

k−1

with a continuous control measure. Then apply the induction hypothesis. �
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