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Abstract

Let V7 : S ! — R be a Morse function and define Vy(z) = Vi(z/|z|). We
consider the scattering theory of the Hamiltonian H = —1A + V(z) in L*(R"),
n > 2, where V is a short-range perturbation of V. We introduce two types
of wave operators for channels corresponding to local minima of V; and prove
completeness of these wave operators in the appropriate energy ranges.
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1 Introduction

Consider the classical Hamiltonian on (R \ {0}) x R" given by
1

where A,V € C®°(R" \ {0}) are homogeneous of degree zero. For a scattering orbit
(defined by 7(t) = |x(t)| — oo with ¢ — +00), introduce the variables

w = E, n=rw, h=H(z¢),
r

and a new time T:

dr _ 1
dt

For t large we find

d (w
2 (2) = s (1)
This is an autonomous, non-Hamiltonian system in a 2(n— 1) dimensional phase space.
The fact that (1.1) is autonomous stems from the homogeneity of V' and A. Since
the system is non-Hamiltonian, there is a variety of phenomena which can and do
occur but which are prohibited in Hamiltonian dynamics. For example if n = 2 and
V' = 0 and if the magnetic field B = curl A has constant sign, the system (1.1) has a
globally attracting periodic orbit at high energy. Interestingly, this can also be proved
in quantum mechanics [CHS]. Thus from the geometric and dynamical systems point
of view, such quantum systems have a rich structure.
In this paper we set A=0 and consider the operator

1
in L?(R"), n > 2, where in this introduction we assume for simplicity that V is smooth,
real, and homogeneous of degree zero outside the open unit ball. In addition, we

assume here that V[S™" ! has a finite number of non-degenerate critical points, C, =
{wi,...,wn}. For e € C,, let P, be the orthogonal projection onto

(- e o)

PW¢P(Uj :5ijpwi, [PwlaH] =0.

{w € L*(R*) : lim ‘

t—o0

It follows immediately that

Combining results of [He] and [ACH], it follows that

prj = cont(H)a
J

1



where P (H) is the orthogonal projection onto the continuous spectral subspace of
H. In [HS1], it is shown that if V/[S"~! has a local maximum at w;, then P, = 0.
We believe that unless V|S"! has a local minimum at w;, then P,; = 0. We proved
this under an additional technical assumption in [HS1]; another proof avoiding this
assumption is in progress, [HS2].

It is the purpose of this paper to examine more carefully the asymptotic behavior
of e ™ P,1) where e is the location of a local minimum of V|S"!. We are able to
accomplish this to a satisfactory degree in two regions of the continuous spectrum of
H|(Range P.). These energy regions are given with reference to the corresponding
classical system (1.1). The point (e, 0) is a stable fixed point of this system but the
character of this fixed point changes with the energy E: Below a certain energy Fj the
fixed point is a spiral sink. All eigenvalues of the linearized system have negative real
part and nonzero imaginary part. We have

z(t)
|z (t)]

as t — oo. Above a certain energy Es, the fixed point is a nodal sink. All eigenvalues
of the linearized system are negative. There is in general an intermediate region, Ey <
E < FE,, where some of the eigenvalues are real and negative while the remainder have
negative real part and nonzero imaginary part. In the region Ey < E we have

- 6‘ = O(ti%)a

(1) —el = —u(E)
2(0) ‘ o),

with p(E) monotonically decreasing from 5
energy E; > Fy below which we have u(E) >
and those above E5 will be called “high”.

We obtain a detailed enough description of the asymptotic behavior of e~**#1) in the
high and low energy regions to prove asymptotic completeness results in these regimes.
Let p = —iV and suppose for definiteness that e = e; = (1,0,...,0). We normalize V/
so that V(e;) = 0. The result in the low energy region is easiest to describe: Define a
comparison dynamics by giving the time-dependent Hamiltonian

o zero as £ — oco. We single out the
. Energies below E; will be called “low”

Holt) = 29 + (&), V(€)' ) (tp)?.

2 2
Here V@ (e;) is the Hessian of V|S"~! at e; and 2/, = (0,29,...,7,). We put v, =
(x9,...,2,) and p; = (pa2,...,pn). The second term in the Hamiltonian Hy(t) is ob-
tained by expanding V' (1,%-) (= V(z) for z; large and positive) in a power series
in %, keeping only the first non-vanishing term which is quadratic in %, and then
replacing x; by ¢p;. Notice that p; commutes with Hy () and that after fixing p; at &,
Hy(t) is quadratic in p, and z,. A simple transformation shows that the propagator

Uy (t) satistying i0,Uy(t) = Ho(t)Uy(t) can be related to that of a harmonic oscillator if



62—% < Ey. If % > Fy the term in the resulting Hamiltonian quadratic in z is no longer
positive. In fact, we have explicitly

ila:J_\z itp% . A
— —i(Int)Hs
e i ez e UnY Uy,

and . ) .

Hy = ipi + B <$IL, (p1_2V(2) (e1) — ZI) $l> .
For simplicity we take Up(1) = I. Asymptotic completeness takes the following form in
the energy range 0 < F < E;. (A more general result is given in Theorem 3.1.)

2
1

Theorem 1.1 Let x be the indicator function of {51 16 >0, % < El}. Define

Hi = x(p1)L*(R"), Hz = P, Eg((0, £1)) L*(R"),

where Ey (F) is the spectral projection for H in the Borel set F C R. Then the strong
limit .
Q = lim "7 Uy (1)

t—o0

exists on Hi and defines a unitary operator
O H T8 H,.

The simple approximation used to obtain Hy(¢) from H has much in common with
Dollard’s idea for constructing wave operators to describe Coulomb scattering. The
wave operators we construct in the high energy regime are similar to those introduced
by Yafaev [Yaf] to describe long-range scattering (see [Yaf] for existence and [DG1] for
completeness). For this purpose we need a suitable solution S(¢,z) to the Hamilton-
Jacobi equation

1
~0i8(t7) = 5| VaS(t, z)> + V(). (1.2)
We are able to construct such a solution in a region of the form

x—L‘ small, ¢ large} ,

T I
t t— > /2Fy, — ¢ R
{( ,.’,E) n 25 n ¢ ) n




where R is a discrete set of “resonances” (see Section 2 for a precise definition of S and
its domain). Our propagator Uy(t) solves a first-order PDE:

0,0 () = (H - vase x))z) (1)

and, in fact, is given explicitly by the formula

(Uo(t) f)(2) = €SB (I (t,2))2 f(k(t,2), w(t, x)),

Where k(t,z) (> 0) is related to the energy of the classical orbit z(s) satisfying d‘fj—gs) =
+5(s,2(s)), which goes through the point z at time ¢. Explicitly

(k(t, z))*

’ 1 2
5 §|Vm5(t, x)|* + V().

The quantity w(t,z) € R*™! is an observable associated with the asymptotics of this
orbit which will be described in Section 2. (For a somewhat different interpretation see
the remark after Theorem 3.2.) J(t,z) is the Jacobian which makes Up(t) isometric.
The formula above involving Us (t) must be properly interpreted because the domain of
definition of S(¢,z) is somewhat complicated.

Asymptotic completeness in the high energy regime takes the form (a more general
result is given in Theorem 3.2):

Theorem 1.2 Let
Hy = L*((\/2E3, 00) x R*™') and Hy = P, Ex((Es, 00))L*(R™).
For each f € C°((V/2FE,,00) \ R x R*™') the limit
Qf = tllglo Mo (1) f

erists and extends by continuity to a unitary operator

927:[1 mﬁg.

Remarks. (1) One might expect that a wave operator similar to that used in
“long-range” scattering theory would be possible to construct. However, if

lim ethe W (t,p) f ’(/J’
t—00

exists and lies in Range P,, for some real function W (t,£), then according to Lemma
3.5 if € > 0 and x. is the indicator function of {£ : |£,| > €},

hm Xe( Je “uHy, —

which implies x.(p)f = 0. Thus f = 0.



(2) One might expect that the resonances for our solution S to (1.2) are not excep-
tional points at all so that, more precisely, S may be extended to a smooth solution
across those points. However this is not the case, in fact the occurrence of resonances
is an intrinsic property of the Hamilton-Jacobi equation (and hence not a deficiency
of our method of construction of a solution which is based on the Sternberg lineariza-
tion scheme): For a generic homogeneous of degree zero potential resonances occur for
any solution to (1.2) with a certain homogeneity property and a relevant second order
expansion, see (2.21) and (5.60). Presumably they accumulate at infinity.

In the next section some details will be given about the structure of classical orbits
which have the property that t~'z (¢) and p, (¢) — 0. In particular, the nature of the
different energy regimes will be described more fully. It follows easily from this analysis
that if V(?)(e;) is a multiple of the identity, then, in fact, Ey = E, so that we have a
complete description over the full energy range for scattering into direction e; (this is
the case for n = 2). More generally, although we have called (0, Fy) the low energy
region and (Es,00) the high energy region, it may happen that E; > FE,, in which
case we again have a complete description of scattering into direction e;. We remark
that in this case (Q* — UQ*)Eg((Es, E1)) = 0 for an “explicit” operator U. In fact for
an appropriate set of vectors, Uf = lim,_,o Up(t)"1Uy(t) f may be computed applying
Mehler’s formula and a stationary phase argument.

In general, there is an energy range, F; < E' < E5, where we have not constructed
wave operators.

Our results overlap those of Hassell, Melrose, and Vasy [HMV1, HMV2, Ha] who
consider homogeneous potential scattering in dimension n = 2 from a somewhat differ-
ent point of view. (See [GS] and [Fi].) Additional related work can be found in [Il] and
[Yaj).

One of us (I.H.) would like to acknowledge useful conversations with Chongchun
Zeng.

2 Classical motion and the Hamilton-Jacobi equa-

tion

In this section we assume V is homogeneous of degree zero, V|S""! is smooth, and
V has a non-degenerate local minimum at e; = (1,0,...,0). We normalize V' so that
V(e1) = 0. Consider a classical orbit, (z(t), p(t)), solving Newton’s equations

dx(t)

= t
7 p(t),
dp(t
% = —VV(2(t), (2.1)

for which as t — oo, z1(t) — oo, t 'z, (t) — 0, p1(¢) — 0. It follows that the energy
of the orbit, F, is non-negative. We set £ = /2F and assume k£ > 0. Rather than
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projecting down onto S™~! using the variable % as in [He], we find it more convenient

to introduce the variable u = % Introducing a new “time” 7 = In x;, we obtain

du 1

% = —U+p1 b,
o =k~ —2V(Lu). (2.2)
- = PV (L),

The fact that (2.2) is autonomous is a special property of the system which derives
from the homogeneity of V. For various global properties of the system (2.1), see [He].
Here we are interested in motion near the fixed point © = p; = 0. We assume that
the Hessian of V(1,u) at u = 0 has only positive eigenvalues Ao, ..., A, and we choose
a coordinate system so that the Hessian is given by a diagonal matrix, A. Then the
linearized system is

du(®

ZT = —u(o)—i-k_lp(f),

(0)

dZL = k. (2.3)
-

Let 3(k) and §(k) be the diagonal matrices given by

B(k) = —% + %\/1 —4\/K2, B(k) = —% - %\/1 —4\/K2. (2.4)

If §; (k) is complex, we choose for definiteness

and B](k') its complex conjugate. Then the solutions of (2.3) can be parametrized by
vectors w and w:

p(f)-i-kﬂ(k)u(o) = BTy,
p(f)—i-kﬁ(k)u(o) = PRy, (2.5)

Notice that if we set By = 2Amin, By = 2Amax, where Apin = I (3, A},
max

then if ’“2—2 < Ey all the eigenvalues 8 and B have a nonzero imaginary part and the
orbits of the linearized equations spiral into the center while if ’“2—2 > F5, B and ,B are
negative and there are no spirals. In this case, it will be important to realize that
B;(k) > By(k) for all j and £. We define the energy E, discussed in the Introduction by

setting Bmax(k) = —% + % 1 —4Mpin/k? = —%. This gives E; = —9)‘?“.



We introduce a symplectic form on the 2(n — 1)-dimensional phase space of the
system (2.2), given by

du Ndp, = Zduj A dpj,
j=2
and note that if ¢, is the flow for the system (2.2),

¢y p(dundpy) =e "duAdp,. (2.6)

Thus, clearly ¢, is not symplectic but it does preserve Lagrangian manifolds, and this
will be important for us when we construct a solution of the Hamilton-Jacobi equation.
Eqn. (2.6) can be verified by differentiating the left side and solving the resulting simple
differential equation.

Let 3(k) be the diagonal matrix

(ﬂ(k) 0)
0 Bk’

According to the Sternberg linearization theorem [S1], [S2], [N], the flow ¢, is conju-

gate to the linear flow QSS?,)C of (2.3) via a (local) diffeomorphism v, if &k is non-resonant
in the sense that there is no relation of the form

Be(k) = Z aij (k)

for any ¢ and multi-index of non-negative integers o with || > 2. We denote the set
of all k£ € (0,00) for which there is such a relation by R and remark that some simple
considerations show that R is a discrete set in (0, 00).

Let ky = /4 pax- If k > ko, B(k) is real and we will only be interested in this region
in the following. We choose to work in a coordinate system where the linear system is
diagonal. Let

29 = pO 4 KBk,

y© = p(f)-l-kﬁ(k)u(o);

Then (2.3) becomes

-~J



and with the same change of variable (2.2) becomes
d —
o = Bk)z + G(k,2), (2.8)

where for k in any interval with compact closure C (kg, 00), G(k, z) is C* in all variables
for z in a sufficiently small ball, with |G (k, 2)| < c|z|%. Let @g?,)c be the flow associated
with (2.7) and @, the (local) flow associated with (2.8). The Sternberg linearization
theorem (generalized slightly to include the parameter k) provides us for each non-
resonant kg € (kg,00) an open interval I 3 ko, I C (k2,00)\ R, an open ball B centered
at 0 in R*™~Y and a one-parameter family of diffeomorphisms

U, : B8 W (B), kel,
so that on B for 7 > 0,
(I)T,k: @) \I’k = \I!k: @) (I)T(,)l)c = \Ifk <€Tﬁ(k) ) .

Uy (2) is smooth in all variables including £ and satisfies W;(0) = 0, ¥, (0) = [. In
fact, in the Appendix we show how to construct a single C* function W(k, z) = Wy(2)

defined on an open subset of R x R2™~1) of the form
U Oy X By,
m=1

where {B,,}%°_, is a sequence of open balls centered at 0 in R?"~Y) and O,), is a sequence
of open subsets of (kg, 00)\R with O,,, C O,,41, O, compact, Oy, 1 (k2,00)\R. ¥.| B,
is a diffeomorphism for each k£ € O,, satisfying the intertwining relation above. See the
Appendix for details.

In the new coordinates z, the symplectic form can be written du A dp, = dz N J dz
where

J = 04 - A= (2k)"YB(k) — B(k))"
—(_A 0>, = (2k)7(B(k) — B(k)) ™"

Theorem 2.1 For k € O, let My, = {U,(z@,0) : (z,0) € B,}. M, is a La-
grangian submanifold of the 2(n — 1)-dimensional phase space.

Remark. Notice we have chosen the Lagrangian subspace p(f) + kﬁ(lﬁ)u(o) =0 so

that our Lagrangian manifold is made up of orbits of ¢, which converge as slowly as
possible to the fixed point (see (2.5) and note again that 3;(k) > f,(k) for all j and ¢).

Proof. Consider the Taylor expansion of ¥y (z,0),

Ve(w,0) ~ Y calk)a®,  calk) € RO,

8



The coefficients c, (k) are rational functions of the 8;(k) and k (B;(k) = —1 — B;(k))
determined by iteration (see [N], [A] or Appendix). Suppose we know that for some
N>1,

Y dlcar®) Add(cyz™) = Y {ca, Jey)d(z®) Ad(2?) =0, (2.9)
o]+ |7 <N+1 o+ |v|<N+1
for a particular k. Let 29 = Wy (z,0). Then F(z) := ®, 4(20) = U (e™®z,0) and
F*(dz A Jdz) = dUg(e™z,0) A Jd¥,(e™x,0)

= Y (Car Jey)e@TFENA(z) A d(27)

la|+[v|<N+1

+Z“ (e7P®) )T Bsk)+0; (k) g A dz;. (2.10)

It is easy to see that (2.9) implies that for fixed index p with |u| < N +1,
>~ (cay Je,)d(a*) Ad(a?) =0,
aty=p

and thus the first term in (2.10) vanishes. Then using (2.6), (2.10) and the chain rule,
we have

dzg AN Jdzy = € F*(dz A Jdz)

= ¢ Za” Tﬂ ﬂz(k)+ﬁ;(k))dx A dz;.

The coefficient (for fixed z) of dz; A dx; is
O (7 V+DBmas 011

3

50 if 1+ (N + 2)Bmax(k) < 0, we obtain

If N =1, (2.9) is trivial, and so we obtain (2.11) if Bnax(k) < —3. Expanding zo =
Uk (z,0) in a Taylor series and using (2.11), we see that (2.9) holds for any N > 1 as
long as Bmax(k) < —3. But since the ¢, (k) are rational functions of the components of
B(k) and k, (2.9) must hold for all non-resonant £ and any N. Repeating the above
argument we obtain (2.11) for all £ € O,,. O

If we let
Y = A(k) ™' o Wy, 0 A(K),
for k € O, ¥y is a diffeomorphism of A(k)~!B,, onto its image, satisfying

Grp © Y = g © ¢(T?;)c,
and A(k)~' My = M, is Lagrangian with respect to the symplectic form du A dp; .

9



Proposition 2.2 If the radii of the B,, are chosen small enough, the manifolds M,
can be parametrized by an equation of the form

b= Vuf(ka U’)a

where f is defined and smooth on an open set U of R" containing ((k2,00) \ R) x {0}.
We set f(k,0) = k. With this normalization

Flkyu) = k=, BkYu) + O(fuf?), (212)

and the function
S(k, x) —x1f< xL) ,
x1
defined on {(k,z) : x1 > 0, (k,z, /x1) € U}, satisfies the Eikonal equation

LSk )+ V() = 2

Proof. Tracing through the change of variables we find that
(ups) € Mo = (1) = na®, ~kARO),
L

with [v/k2 — 4Au®| < r,,, where r,, is the radius of B,,. Writing
u = Wlwk(u(o), —kB(k)u(O)) = gk(u(o)),
pr = mp(u®, —kB(k)u"), (2.13)

with 7, and 7, the obvious projections, we see that g, (0) = I so that if r,, is small
enough gy, is a diffeomorphism for all k£ € O,,. Thus putting u(”) = g, ' (u) in the second
equation of (2.13) and using the fact that M, is Lagrangian and the domain of g; ' is
a diffeomorphic image of a ball, we obtain the characterization of M) as the graph of

(0)
Vuf(k,u), ie., p. = Vif(k,u). From the fact that 1 (u(® p&)) = (Z(o)) + higher
1

order terms, we obtain V, f(k,u) = —k3(k)u plus higher order terms, and thus with
the normalization f(k,0) = k, (2.12) follows.

To show that the Eikonal equation is satisfied, note that M is invariant under ¢,
(1 > 0), so differentiating p, (7) = (V. f)(k, u(7)) using (2.2) gives

—V.V(1,u)

. = f@(k,u)(—u+p; 'py), (2.14)
1

with p; =V, f(k,u), and

= k2 — (Vof (k,u)2 — 2V (1, u). (2.15)

10



Differentiating p? using (2.15) and (2.14) results in
Vulpr +u-Vyf(k,u) — f(k,u)) = 0.
With the normalization f(k,0) = k, it follows that
p = flk,u)—u-Vy,f(k,u). (2.16)
Using the definition of S we find with u = 2, /x4,
O S(kyw) = f(k,u) —u-Vuf(k,u),
Vo, S(k,z) = Vuf(k,u), (2.17)
and the Eikonal equation follows from (2.15), (2.16), and (2.17). O
Proposition 2.3 Suppose U is as in Proposition 2.2 and (k,uy) € U. Set p,(0) =

Vu.f(k'a U’O): U(O) = Ug SO that (U’(O)apJ_(O)) € Mk' Then (U(T)’pJ_(T)) = ¢T,k(u(0)7pJ_(0))
satisfies (for > 0)

po(7) = Vuf(k, u(r)),
and if (u® (T),p(f) (1)) =9, ' (u(r),pL(T)), we have

P (r) + kB(R)uO(r) = "W,
p(7) + kB(R)uO(r) = 0.

If we set x1 = €” and define t = () up to an additive constant by 9 = e /p,, where
p= k2 —pi(1)2 =2V (1,u(7)), then with z, (t) = z,(t)u(r), we have

dz(l) &
0 = VS(k,z(t)).

Conversely, suppose xz1(0) > 0, (k, Zf(((())))> € U. Then, given the initial condi-

tion (0) = (z1(0),2.(0)) the equation dgfi—gt) = V,S(k,x(t)) can be solved for all

t > 0. We have z1(t) > 0 for all t > 0. Set 7 = logz:(t), u(r) = z,.(t)/z:1(t),
pi(r) = Vy S(k,z(t)). Then (u(1),p.L(r)) € My for all T > 179 = logz1(0) and
Gr—ro.k(u(70), PL(70)) = (u(7), pL(T)).

Proof. The proof is straightforward and is omitted.

We now construct a solution of the time dependent Hamilton-Jacobi equation

_0,8(t x) = %msu, 2P+ V() (2.18)

11



from S(k,z) using a Legendre transformation. First decrease the radii of the B, if
necessary to make sure that the map

kt
wt(kau) = of (1,”), (kau) € U: (219)
ﬁ(k’ U’)
is a diffeomorphism. We define .
U= wl(U)

_ k2
S(t,z) = S(k,z) — 5 t, (2.20)
where _
1 0S8
t=— —(k
k k ( ’x)7
or what is the same thing
T kt u T
1= s = —.
o (k,u) 1

Note that (k,u) = w; ' (z) = wi ' (z/t) glves k = k(z/t) as a smooth function on U and
that the domain of S'is {(t,z) : ¢t >0, € U}. S is a smooth function on its domain
satisfying
T
S(t,z) = tS (1, E) , (2.21)

and

in addition to (2.18).

Proposition 2.4 Suppose that for s > so, Z(s) is a solution to dfl(:) = V,S(k,Z(s))

with T1(so) > 0 and (k “(SO)) € U. Then

H(s) = % g (k,7(s)) = s+ ¢, (2.22)
for some constant c. If we define x(s) = T(s — c¢), then
d(s)
Fr = V.S(s,2(s)). (2.23)

Conversely, suppose ty > 0, ( o)

€ U, and z(t) is a solution to

dx(t)
dt

= V,S(t, z(t)), (2.24)

12



for t in some open interval around ty. Then x(t) extends to a solution of (2.24) for all
t € [ty,0), and if we define k with k > 0 and

%2 = %WmS(to,x(to))\Q + V(x(to)),

we have (k,z1(ty)/z1(to)) € U and dfi(tt) = V.S(k,z(t)).

Proof. Differentiating

1o = 9 k?
5| VaS(k,2(s))I" + V(a(s)) = 7
with respect to k gives
oS dx(s)
Vz%(kax(s)) ) ds k,
while differentiating B
kis) = 22 (k. 2(s))
“ ok
with respect to s gives
oS dz(s)  dt(s)
Vegr k(o) =g =k g

and thus (2.22) follows. (2.23) then follows from the definition of Legendre transfor-
mation which gives V,5(t,z) = V.S (k (%) ,z).

From the definition of U we have k = k (%P) > 0, and from Newton’s equation

which follows from (2.24) we have

2

k
e = V.50 202+ V (a0,
so k is constant. Again, from the definition of Legendre transformation

V.St x(t)) = ViS(k, z(t))-

It follows that dfi(tt) = V,S(k,z(t)) and the initial conditions guarantee that x(¢) can

be extended to [tg, 00) as a solution to the latter equation. O

In quantum mechanics, the wave function in L*(R") must be a function of n
commuting observables. To describe the asymptotic motion in the energy regime
k > ko = v/4Amax, We choose these observables to be the energy or more specifically k,
and a quantum version of the vector w € R*! which occurs in (2.5). As noted previ-
ously, the vector w is of less importance in that it describes higher order asymptotics:
B;(k) < Be(k) for all j and £. In our construction of the Lagrangian manifold necessary

13



to build our solution to the Hamilton-Jacobi equation, we set w = 0. Although not
necessary, this was convenient.

Given (t,z) € R**" with ¢ > 0 and z/t € U, define w(t,z) by solving (2.5), using
w = 0. We obtain

wit,z) = e OR(B(k) - B(k)u”

= 2"k 4+ 28(k)m; (u, Vi f (k,u)),

where k = k(z/t), u =z, /z1. w(t,x) is the vector w describing the asymptotics of an
orbit z(s) solving =7 da( 5) = V.,S(s,z(s)) which goes through z at time ¢t. We can write

w(t,z) = t7P*E) g (%) :
We need to be able to invert the map
(t,z) = (k, w)
for fixed t. We have

(k)
k
v=9 (%) - (wg;w) k(I + 268(k)my  (u, Vo f (k, u)).

For small u, we have

y = kPO +28(k))u + O(?).
Hence, by decreasing the radii r,, if necessary, we can assume this map is invertible
and we obtain

= h(k,y)

o) = (5 (2) ).

then ¢, is a diffeomorphism mapping tU onto W; = ¢,(tU). We have
¢; ' (k,w) =z,

z ( k kh(k, t7®)w) )
t 2Lk, h(k, t0®)w))" SL(k, h(k, tP®w)) |
We define an isometric operator Uy(t) on L2(W,) as
(Oo®))(@) = D) f (k () wit,2), (2.25)
where J(t, ) is the Jacobian detd,(z). Note that
Up(t) : L*(Wy) 283 L2(tU)

is unitary. The following lemma will be useful when we construct a wave operator using

U()(t)l

with h smooth. If we write

with

14



Lemma 2.5 If K; is a compact subset of (kg,00) \ R, let kyax = max K. There are
open balls By and By centered at 0 € R"~! such that

U > K, x By, (2.26)

and with eg = % <1 - \/1 - 4)\min/kr2nax>;
Wt D) K1 X tEOBQ. (227)
Proof. We have w;(U) = U where w; is a diffeomorphism with wy(k,0) = (k,0).

(2.26) follows by a simple compactness argument.
We have W; = ¢,(tU) = ¢(w;(U)) and ¢; o wy(k, u) = (k, w) where

—B(k)
w = t7P%) ( k ) k(I +28(k)mibe (u, Vi f (k, u).

By a simple compactness argument,
prowi(U) D Ky X By,
for some open ball By centered at 0. By the explicit form of ¢; o w;, we have
drow(U) D {(k,w): ke Ky, wetPPB,}.
The result then follows by the definition of . O

In some sense, although ffo(t) is not globally defined, it has a generator: If f €
Ce°((kg,0) \ R x R" we calculate for large enough ¢ (see 2.27),

D001(@) = (H = 30— V50,0 ) Gl o), (2.29)

where, of course, H = %pQ + V(z). Note that the generator is first order which derives
from the fact that ¢,(z) is constant along the orbit z(¢) satisfying % = VS(t, z).

Generally, we will think of Uy(t)f as belonging to L2(R") by defining it to be zero
outside tU.

3 The main theorems

In this section we state our principal results, discuss the Mourre estimate and other
estimates from previous work and perform a simple reduction.
We will formulate our theorems for a potential somewhat more general than dis-
cussed in the Introduction. Let V4 and Vi be real functions on R* with V5 € C*(R")
1

satisfying - VVy(z) = 0 for |z| > 5 and V) Laplacian bounded with bound < 1

satisfying, in addition, for some § > 0 and as |z| — oo,

15



(a) Vi(z) = O(l2[~'~);
(b) 92Vi(z) = O(|z|7?), o =2.

We think of V] as a short-range perturbation of V. Let V =V, 4+ Vi, and let H be
the self-adjoint operator in L*(R"), n > 2, given by

1

Let
Cr={we s Vip(w) =0}

Note that by Sard’s theorem, V;(C,) has Lebesgue measure zero. We will assume the
global condition
Vo(C;) is at most countable.

To avoid a great deal of cumbersome notation, we formulate our results concerning a
single critical point of V4|S™~!, which we assume is e; = (1,0,...,0). We assume that
e; is a non-degenerate critical point of V;|S™™!, which is in fact a local minimum. As
in the introduction we denote the corresponding projection by P., (defined in terms of
H). We normalize Vj so that V,(e;) = 0 and choose coordinates so that the Hessian of
the map u +— Vy(1,u) at u = 0 is the diagonal matrix

A2 0
A: T.. , )\]>0-
0 An

Our first theorem is for low energy.

Theorem 3.1 Let Hy(t) = 5p* + 3{(z1, Az1)/(tp)? and suppose Uy(t) is the unitary
propagator satisfying

i0Uo(t) = Ho(t)Uo (1), Up(1) = 1.

Let
Bmax(k) = ! + ! 1 — 4\ min/k?
max - 2 2 min )
Amin = min{Xg, ..., A\, },
and define ki by the equation Bpax(ki1) = — %, so that k, = %/\min- Let x be the

indicator function of [0, k1], and

H, = X(pl)LQ(Rn)a

Hy = P, Ey (<O,§>>L2(R”).

16



Then the strong limit .
Q = lim " Uy(t)

t—00

ezrists and defines a unitary operator

Q:H 28 H,,

satisfying the intertwining relation

) itp]
O =Qe .

For high energy we have

Theorem 3.2 Let S(t,x) be the solution to the Hamilton-Jacobi equation

—0,S(t,x) = %\VIS(t, 7)|? + Vo < ° )

Ja]
constructed in Section 2, and define
Uo(t) : L*(Wy) &3 LA(tU),
as in Eqn. (2.24). Let ko = /4 max and
Hi = L*((ks,00) x R" 1),

H, = P, Ey ((%g,oo»L?(R").

For each f € C° ((k2,0) \ R x R*™) (in the variables (k,w)) the limit
N £ Vi SHT
Qf_tlg?oe Us(t) f

ezrists and extends by continuity to a unitary operator

Q . 7‘21 ito) 7‘22,
satisfying the intertwining relation
citH () — Qez‘tk2/2_

Remark. With a proper interpretation of the limit on the right hand side an
immediate consequence of Theorem 3.2 is
(kT ,wh) == Q(k,w)Q* = lim e (k(t,z),w(t,z))e X, (3.1)

t—+o00
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where the sandwiched vector operators are thought of as vectors of multiplication op-
erators. By the intertwining relation, k* = v/2H. We shall elaborate on the right hand
side of (3.1) under an additional condition on the Hessian of V' at e;. The asymptotic
velocity, P* = (pf,---,pl) = (pf,pl), would be defined as the vector of commuting
self-adjoint operators on Hs, by

. itH L1
pi|- =5 — Coo — lim 6th_6 th,
t—+o00
. ; B:(¢+—1 _3 .
p‘j =S — COO — tl}_lg]_oo eZthﬁJ(t a“l)xje ZtH; ] o 2’ SR n’

cf. [DG2, Theorem 4.4.1]. The existence of those operators follows from Theorem 3.2
and the constructions of Section 2 under the additional condition Apax < %)\min. (More
generally pi™ always exists and p exists for j > 2 if \; < 2 Amin, for example.) For the
completely analogous classical asymptotic velocity see [He, Proposition 2.7]; it exhibits
the leading asymptotics of scattering orbits nearby e;. The property called asymptotic
absolute continuity in [DG2], which here means the absolute continuity of the above
P*, follows readily from the formula

(k*,wt) = (of, (1) PO (I + 26(p}))p 7).

In the case of small energies, Theorem 3.1 provides the existence of p", and also of any
other component pj restricted to the energy interval where the corresponding 3,(v2F)
is real-valued, cf. the formulas (4.3) and (4.1) stated below.

A fundamental result in scattering theory, needed in the proof of Theorems 3.1 and
3.2, is a form of the Mourre estimate which we proceed to describe.
Let g be a real function with 1 — g € C§°(R") and g = 0 in a large enough neigh-

borhood of the origin so that the bounds in assumptions (a) through (c) above hold in
the support of g. Define the vector field

1
1(0) = ¥ (Gl = mi(a)) )
and the self-adjoint operator

A= S 2(@) +1(@) )

A is the generator of the group

where



Note that v is C'*° and satisfies a global Lipschitz condition so that ; is a global flow:
wt © 1/13 = wt—ks-

Choosing 1 small and positive, we have

Lemma 3.3 [ACH] for any X ¢ Vo(C,) there is an open interval I > X\, a compact
operator K, and a positive number ¢y so that

We omit the proof which involves only slight changes from that of [ACH] to acco-
modate the possibly singular V;.

The general theory of [M] and [PSS], and the explicit form of A then give (with
(@) = 1+ [2[)"?)

Lemma 3.4 The point spectrum of H in R\ Vo(C,) is a discrete set consisting of
ergenvalues of finite multiplicity. H has no singular continuous spectrum. If I is a
compact interval disjoint from Vo(C,) and o > 3, then

/_Oo )~ ™ By (I)y||” dt < C||v|P%, (3.2)

for all ¢ € Ran Peon(H).

Remarks. (1) We have used the assumption that V5(C;) is at most countable to
rule out singular continuous spectrum. If V' is purely homogeneous of degree zero, this
is not necessary [He].

(2) We have made a small improvement to the usual statement of local smoothness
of (z)~* by allowing the interval I to contain eigenvalues of H. This can be achieved
by using the usual Mourre theory for H + P rather than H, where P is the orthogonal
projection onto eigenvectors of H with eigenvalue in a neighborhood of a point A € I.
The Mourre theory applies because the appropriate bounds on the commutators [P, A]
and [[P, A], A] follow from the fact that the eigenvectors in question belong to the
domain of multiplication by (z)?, which in turn easily follows by the method of [FH].

We will use the following results from [He]:

z
Bl

Lemma 3.5 If I is a compact interval disjoint from Vo(C,), then with w =

/00 H<x>_§|V%(w)|e_”HEH(I)¢H2dt < [P

-0

/Oo H<x>_%(p—w(w,p))e‘“HEH(I)w "t < eyl

—0o0

for all ¢ € Ran P.on(H). In addition, for these 1,
lim VVo(w)le ™ Ey(I)y =
—0Q

=

lim (p — w(w, p))e™™ Ex(I)¢ = 0.
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In proving Lemma 3.5, we use (3.2) and the estimate Vi(z) = O(|z|7*7?) to acco-
modate V;. Otherwise, the proof is essentially the same as in [He] and need not be
repeated.

In our further considerations we would like to treat only V; rather than V; + V.
That we can do this without loss of generality follows from

Lemma 3.6 Let Hy = —%A—H/b, H= —%A—H/, V =Vo+Vi. Then the wave operator

W = s — lim ¢"foe~ " P (H)

t—00

exists and is a unitary operator from Ran Peons(H) onto Ran Peon (Hp). In addition,
W : Ran P/ % Ran PHo (3.3)

ey ?
where Pefl[ 15 the orthogonal projection onto
ol ) -0).
t—o00 |$|

Proof. The proof of the existence and unitarity of W is standard given (3.2) and the
fact that (Hyp +14) ' — (H +1) ! is compact [RS]. Eqn. (3.3) follows immediately from
the definitions. O

and similarly for PHo.

From this point on we set V; = 0 so that H = —%A—I—VO. In our proof of completeness
of the wave operators, we will use another simplifying reduction. We will modify V4 to
produce another potential V5 € C*°(R"™) with the following properties:

(i) Vp is homogeneous of degree zero for |z| > i;
(i) Vo|S™ ! = V{|S™ ! in a neighborhood of e;;
(iii) —0;Vo(x) > 0 on S* 1\ {er, —e1};

() ¥ (2) > itz < L

[z] ||
(v) Va(z) > 0.

Here L is any preassigned number which will be chosen larger than the maximum energy

of the range we are working in. We have chosen the cone {x : ﬁ > %} arbitrarily.

To produce Vp, choose § > 0 small so that for 1 > 2 >1—0, —01Vo(w) > 0 where
w=2 7=z Let x € C®°[R) with0 < x <1, x(t)=1if1>2 >1-2 y(¢)=0
if L <1—4. Let y € C®(R) with y(t) = 0if t > 1 -2, 9/(t) <0, and /(¢) < —1 if
t<1-— %. For large p, let

Vo(w) = x () Volw) + w7 (Z)
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and extend Vj to R" so that it is smooth, non-negative, and homogeneous of degree
zero for |z| > % If § is chosen small enough and p large enough, it is easy to verify
(i)-(iv). Since Vy(e1) = 0, clearly V;|S™~1 > 0. Tt is easy to extend V, to R so that
(v) is true.

The reason Vj can be replaced by V; is the existence and unitarity of the relevant
wave operator:

Lemma 3.7 Suppose Vy and Vy are as above. Let H = —%A+% and H = —%A+f/0.
Then the wave operator

W = s — lim et e~iH
t—o0

ezrists on Ran Pf and defines a unitary map

= 77 ont
W : Ran PgE)Ran Pg.

Proof. As for Lemma 3.6, the proof is standard once it is realized that for bounded
continuous f, (f(H) — f(H))e “# — 0 strongly on Ran P¥ and similarly with H and
H reversed. O

4 Existence of wave operators

In this section all the assumptions made in Section 3 are in force, but because of Lemma
3.6 we drop V; from consideration and write H = —%A + V.

Theorem 4.1 Let Hy(t) = %pQ + %@f‘gé), and suppose Uy(t) is the unitary propagator
satisfying

U, (t
i aot():HO(t)Uo(t), Up(1) = 1.
Let
1 1
= —— — — . 2
ﬁmax(k) 2 + 2 ]- 4)\mln/k

Amin = min{Ag, ..., A},

and define ki > 0 by the equation Bmax(k1) = —% (i.e., k1 = ,/%)\min). Let x be the

indicator function of [0, k] and Hy = x(p1)L*(R"). Then the strong limit

Q = lim " Uy(t)

t—00
exists on Hi. We have the intertwining relation

, itp%
Q= Qe .

21



Proof. We prove convergence on a dense subset of H;, namely for those f € H;,
whose Fourier transform, f, isin C$°((0, k1)\EXR*™!) with € = {21/ A2, 2/ A3, ..., 2v/ A }-
We define

i (t) = Up(t) 'z Us(t);
pi(t) = Uo(t)"'prUs(t);
z1(t) = Us(t)rzUs(t);
ult) = xi()/t.

Using the simple linear differential equations satisfied by these operators we obtain

u(t) = (1- %) ($0w — 5005 (4.1)
i) = (1—p2) 7 (Bp)P"5 — fp)Pew) (4.2)
nt) = ot (= o= [ pals) Mo, (43

where 3 and f3 are defined in Section 2 and

w=p,+B(p)rL, W=pi+0B(p)T).

Note that the operators in (4.1)-(4.3) are well defined even when p; € £ (using a
limiting procedure).

In order to prove existence of 2 we will need to see where Uy(t)f is localized for
large .

Lemma 4.2 Suppose x € CP(R) and x = 1 in a neighborhood of 0. Suppose o and 7y
are multi-indices. Then for any non-negative integers m and N and some § > 0,

H(au)“ (1 - X (pl - %)) Uo(t)fH < Oyt N (4.4)
H (p1 - %)m (pr)” (%)a Uo(t)fH < Ot~ HOlalthly—5m (4.5)

Proof of Lemma 4.2. The estimate (4.5) follows directly from (4.1)-(4.3). Notice
that factors of z;/t originating from the right side of (4.3) are harmless. They lead to
differentiation in the p; variable which in turn gives at most harmless powers of Int.
The extra § in (4.5) arises from the fact that f has compact support in (0, k;) x R* 1.
To prove (4.4) we estimate |1 — x(s)| < ¢;|s|™, and then use (4.5). O

In the following we use O(t~*°) to mean O(¢t~") for any N.
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Lemma 4.3 Suppose x; € C*(R) with x; € C°(R) and supp x; C (0,00), j =1,2,3.
In addition, suppose €; € R with
€ + €3 > €.

Then fort > 0:

Proof of Lemma 4.3. By [Fo, Corollary 2.19] the Weyl symbol of the operator
X2 (& —p1— €2) is x2 (% — €1 — €) and thus all three operators have symbols in the
class S(1,g) with g = (¢ } 2dz? 4+ d€?. In addition the product of three symbols or of
their derivatives vanishes so the bound follows from the calculus [H6, Theorems 18.5.4
and 18.6.3]. O

X1 (61 - %) X2 (% — D1 — 62) X3 (p1 — 63)H =0@t™).

We are now ready to complete the proof of Theorem 4.1. We use Cook’s method
and therefore we need to show

\(vo(x) ey Uo(t)fH ~ (i

(tp1)?

is integrable on [1,00).
For some €3 > 0, supp f(&1, -) C (2€3,00). We choose x+ € C*°(R) with supp x4 C
(1,00) and supp (1 — x4) C (—00,2). Let x— =1 — x;. We have x_ (f—;) Up(t)f =0,

and
(Voto) - 22250 UO(t)fH

< o (G0 (- 5 e (5) oo+
ol () e (2)] 2 oo

4z, \ (1, Az,)
| — ) —— 4.
X < €3t ) 12 UO fH ( 6)

o (2 ) vt fH

+ c

Consider the last term. We have for x € C§°(R) with supp x C (=1,1), and x =1 in

(=2:3);
4 A
v (G) e o]
63t t

() (M) (2) e v

IN




+

¢ @Lt#ﬁ (1 —x (4(%67_]’1)» UO(t)fH . (4.7)

According to Lemma 4.3 and Eqn. (4.5) of Lemma 4.2, the first term of (4.7) is O(t~>°)
and according to Lemma 4.2, Eqn. (4.4) the same is true for the second term.
The second term on the right side of (4.6) is also O(t °°) by the same argument.

The commutator in the third term has operator norm = O(¢!) so that according to
Lemma 4.2 this term is O (t_l_%), hence integrable.

For the first term on the right of (4.6) we write

Volz) — (o, Azy) (vo (1$_L> B M) N ((ru,/\m) B m,Am)_ (4.8)

2(tp1)? x1 222 222 2(p1t)?

3
The first term in (4.8) can be bounded by ¢ (‘wt—”) in the support of x, (4ﬂ> and

est
thus using Lemma 4.2, Eqn. (4.5), this gives an integrable term. Note that this is the
only place we use the full force of the cut-off at &.
For the second term of (4.8) we write

e () (2 - ) e (2)

_ 4x, £\ (2 z1)2) 1 p1) (ZLAzl)
=X+ \at )\ p1—(7) X+ ) e

2 551)2_ ( $1> l‘l( 961) 1
—(2) = — )+ (g - 2) -t
21 (t P1\ D1 r + p P1 r

and Lemma 4.2, Eqn. (4.5), we see that this term contributes O (t_%). Thus existence

of the wave operator is proved.
To prove the intertwining property we write

Using

Uy (t) = ePit=D2g (1)

and compute

Uo(t)'Up(t+3s)=1— i/OSUO(t)_l (% + %) Uy(t + 0)do,

which gives

e *TQf = lim (e"Uy(t)) Us(t) "Uo(t + 5)f

t—00

= Qe P2 Tim (U (1)) 7P/

t—00

P (P (L) ) &
./OUO(t) (7+72p%(t+9)2> Uo(t + ) f do.
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The last term is zero by Lemma 4.2. O
We now turn to the high energy regime.

Theorem 4.4 Let Hy = L?*((ky,00) x R* 1) and define Uy(t) as in (2.25). Then the
limat } o
Qf = lim e Uy(t) f
t—o00

exists for f € C°((ka,00)\RxR""1) and extends by continuity to an isometric operator
on Hi. We have

~itk2

QO =Qe> . (4.9)

Proof. Using (2.28) we calculate for large ¢,
. p——| 1 x
-0 itH — itH 1S~ 5 -
10" Up(t) f(z) = €""e 2A$ (J2(t,x)f (k(t> ,w(t,x))) ,

where we have used Lemma 2.5 to conclude that f € L2(W,;) for large t. Using Cook’s
method, it suffices to show

/oo
To

Let 71 (supp f) be the projection of supp f onto the first factor of Rx R*~!  and define

‘AIJ%(t, x)f <k (%) ,wit, :L')) H dt < oo. (4.10)

kmin = min 1 (Supp f)a
kmax = maxm (SUPP f)a
~ 1 1\/
max — 5 & 1_4)\mxk2'-
ﬁ a; 2 2 a. / min

We must estimate the quantities

Oy, J AgJ
j] ) A$¢t($)a N

a:tj ¢t(x)’

for ¢;(x) € supp f. We have

k(@) <o o (3)] <ot
As in Section 2, we can write

w(t,z) =t g (%) ,

where

. P —B(k)
g (_) = (@) k(I + 28(k)may " (u, Vo f (k,w)),

ok
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We have
Oryw(t, 7) = ==L B/(k) Intw(t,2) + PP (3,9) (3)
so that

0z, w(t,x)| < ctPmas,

since w(t, z) is bounded in supp f.

Similarly,
Int\ ;
Ayw(t, z)] < (‘%) s,
so that .
(Vad(z)] < ctPmax [Azgi(z)| < ¢ . {Pmax

J(t, ) = det ¢}(x), but
(¢¢ o we)(k,u) = (k,w),

where w is given by

—B(k)
w =B (ri u) ) k(I +28(k))m; (u, Va(f (K, w).
ok

It follows that
det(¢y 0 wy) (k, u) =t F®) ok, u),
for some smooth function «, while

det wi(k,u) = t" a(k,u),

where @(k,u) is smooth and bounded away from zero for ¢; o w;(k,u) € supp f. Thus
J(t,z) =t "t " F® ok, u)/é(k,u). Differentiation gives (for ¢(z) € supp f)

Int
IV, InJ(t,z) < C:,
clnt
A J(ta) < =

Putting the estimates together gives

& (s (k (5) uit )

where the largest term comes from

S Ctzémax ,
L2

2

S° |7 2100 (61(2) Vou(a)e - Voula)s
k.l
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Since 20max < —1, (4.10) is valid proving existence of . By the definition of Uy (t) and
the strong convergence, ||Q1f|| = ||f||, and thus Q extends by continuity to an isometry
on H; (into L*(R™)).
To prove (4.9), note
eSHQOf = lim e Uy (t — s)f,
t—00

and for f € C°((k2,0) \ R x R*1),
U (t — 5)f () = €T3 (t — 5,2) f(1-s()).

We have

oS
ot

= s+t () 2o

S(z,t—s) = S(z,t)—s—=(z,t)+ 0@ ")

from the Hamilton-Jacobi equation. From the functional form of J2 (¢, z) f(d(z)) we

have V- V.S(t V.S(t \%
(8t+( T T (ax);— T (as)' x

)) 7 e =o

and using the previous estimates we obtain for fixed s,

1T2(t — 5,2) f(drs(2)) — T2 (t,2) f(e() ]| 2 < ctPmo,

Thus ,
-~ ~ isk 3
|Gt = )7 = Tot) (¥ £)]|| , < ct™,
which gives (4.9). O
5 Localization of e 1)
In this section, H = — % A + V where V, was defined in Section 3 depending on a

large energy L, at our disposal. We will make sure that all our energy localizations are
carried out with f(H) such that f € C§°((—o0, L)). The notation xg is used to signify
the characteristic function of a set S.

Proposition 5.1 Suppose f € C§°((—o0, L)). Then for any Ny and Na, the operator

@%x () 26

18 bounded.
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Proof. Since Vp(w) > L if szvll < \}5, we can choose x; € C§° ((%,oo)) and

non-negative so that

Volw) + x1 <ﬂ) > L

for all z. We choose x3 € C*°(R") and x> € C§°(R™) with 1 — x5 € C°(R™), x3, x2 > 0,
and x3 = 0 in a neighborhood of 0 so that for all x € R",

Va(z) = ‘70(90) + X1 (%) x3(x) + xao(z) > L.

Let Hy = — % A+ V,. Then f(H,) =0. If f is an almost analytic extension of f (see
[DG2, Appendix C], for example), then

fHEH)=7" [ 8f(2)(H —2)" = (Hz — 2) )d’z,
so that with k(z) = x; (%) x3(x),

fH) = W_l/gf(z)(ﬂ' ) k() (Hy — )%

+ 7t /gf(z)fjl — 2) " 'xa(z) (Hy — 2) " d?2. (5.1)

In the first term of (5.1) we repeatedly move k(z) to the left using

and note that

X[ 1] (ﬂ> ad’ (k(z)) = 0. (5.2)

V) \|7]

adgrl(k(x))z Z pk

o <£+1
where k, € C®(R") with 0%k, (z) = O(|z|71#=*-1) and p = —iV. A simple induction
gives for any integer m,

1(p* + 1)(2) ™™ (H — 2) 7)™ || < em[Im 2|~ (5.3)

We calculate

for some N. (5.3) and similar estimates, along with (5.2), gives for any integers ¢;, £,
with Ej 2 0, 61 +£2 == 6,

@y (D) [ ORI - 2 Kt = )7 (o)
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A similar but easier argument works for the second term in (5.1). Thus taking ¢ =
N1 + Ny, {1 = Ny, £ = Ny we obtain the desired result. O

In what follows we take ¢ € S(R"), and write ¢, = e‘itﬁf([:I)qS.

Proposition 5.2 Suppose f € CF((0, L) \ 0,p(H)). Then there is a Ay > 0 so that

T
HX[O,AO] (%) (0

Proof. 1t is easy to see that if § > 0 and

= O(t™). (5.4)

T1p1 + P17 o
:M_i__(l‘.p_i_p.m)’

A
! 9 2

then for any A € (0,L) \ 0,,(H) we have a Mourre estimate:
g(H)[iH, Ailg(H) > cog(H)?, (5-5)
if g € C§°(R) has support in a small enough interval around A. To see (5.5) we compute
[iH, Ai] = p? 4 6|p|> — 210,V (z) — 0z - VV(2),
and note that we can choose &; € (0,26) so that if z; > 3,
—z101 V() > 6, V().

Since Vy(z) > L in the region {z : z; < 3, || > 1}, the region where —210, V() <
6,Vy(z) contributes a compact term to the left side of (5.5) if the support of g is small
enough, cf. Proposition 5.1. The remainder of the argument to obtain (5.5) is standard.

One may now invoke either the proof of (5.4) in [Sk, Examples 1 and 2] or the
one in [DG2, p. 193-197]. Only small modifications are needed in the proof, which in
both cases originates from [SS]. Note that 24, is the Heisenberg derivative of (z,z)s =
z2(1 + 6) + |z, |*5. (A different conjugate operator yielding a proof of (5.4) along the
same line, although a slightly more complicated one, would be the A of Lemma 3.3.)
O

Proposition 5.3 Suppose f € C§° ((—oo, %)) where % < L. Then for any Ay > |b|
and any N > 0,

2\ |z]
<7> X[Ao,00) (T) Wy

Proof. We mimic either [Sk, Example 3] or [DG2, p. 190-192]. O

= Ot™). (5.6)

Proposition 5.4 Suppose f € C§° ((0, %) \app(ﬁ)) where % < L. Then there is an
R > 0 so that for all ]l € NUO and all bounded functions g with g(§) =0 for |£| < R,

() g(p)ibe|| = O).
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Proof. Assume first that [ = 0. According to [DG2, Proposition D.11.4], if fe
Cye ((0, %)) and h € C*(R), supp h C (% + ||‘7()||,oo) and h(s) = 1 for |s| large,

then h (%2) f(H)(z)"N is bounded for any N. We choose such f and h with f =1 on

supp f and h <¥) =1 for £ € supp ¢ (this requires R > 1/b2 + 2||V5||). Then for any
N
2

oy = |aton (% ) FEnGa

< enll (=)™l

and the result follows from Proposition 5.2. .
For the general case we use the result for [ = 0, the fact that with f given as above
(p)'g(p) f(H) is bounded and various commutations. O

Remark. The proof in [DG2] shows that since 7, > 0 we can take R = b.
In the following we choose a positive function g € C*(R) with ¢' > 0, ¢" > 0,
g(t)=tift > 2, and g constant for ¢t < 7. We set p(z) = g(|z]), @ = Vp(z), and

1 S
D) = i(p-w—i—w-p).

We will use the notation

0 +i[H, -].

Dza

Proposition 5.5 Suppose f € C((0,L) \ opp(H)), 6 < 0, and 1 is a non-negative
integer. Then

l
<P|| - @) X(~o0.0) (Pn - @) || = O™). (5.7)
Proof. We introduce
Ay= BiAB,, A=ty — pla), B, = x,(12) 1y (),

where with fo = f, f;(s) = 1 on a neighborhood of the support of f;_; for j = 1,2, and
similarly with Xo = X[, X;j(5) = 1 on a neighborhood of the support of x;_;. Here
Ao and Ag are chosen in agreement with Propositions 5.2 and 5.3, and the functions fi,
f2, x1 and xs are smooth and compactly supported.

Clearly the localization operator in (5.7) is a (time-dependent) function of A. First

we prove the bound with A replaced by A,. Note that since i [‘70, A} =0,
DA, = B;(p, tp'¥ (2)p) B, + Bjtk(z)B, + (B ADB, + h.c.),
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where k € C®°(R"?) and 8%k(z) = O(|z|=3~1e]) for all a. Clearly the first term on the
right hand side is non-negative. To invoke [Sk, Corollary 2.6] it suffices to show that
] Ay

for any I,m € N
e smace

where X' is bounded and x'x; = 0, and (£)¥g(s) = O((s)' *) for all k € N.
To show (5.8) we notice that for any m € N and any semi-norm on S(R")

' ||

e
cf. Propositions 5.2 — 5.4. Next we write g;(s) = ¢g_1(s)(s — i)™ and pick an almost
analytic extension g of g i satisfying

= O™, (5.8)

P — X1 (

Je|| =O™), (5.9)

Y

103(2)| < en(Re 2)"2 N|Im 2|¥, N >0,

supp § C {7z :Im z| < ¢(Re 2)},

cf. for example [DG2, Appendix C].
Using (5.9) it suffices to bound

‘X/ ‘x| Ab

T)f2(H)9—1(7
and for this we first substitute the representation of g_;(4s) in terms of the above
extension, cf. the proof of Proposition 5.1. Then we move all of the m factors of X1(| )
one by one to the left. In each step we pick up the bound ¢~! from all appearing
commutations. Since x'x; = 0 all terms produced in each step involve a commutator.
Since other conditions of [Sk, Corollary 2.6 are readily verified, (5.7) with A replaced
by Ay follows from the conclusion of [Sk, Corollary 2.6].

We complete the proof of (5.7) by removing the localization factors Bs in the bound
obtained for A,. Factorizing again ¢;(s) = g_1(s)(s — 7)) and writing the resulting
difference of products g¢;(A) — ¢;(A4p) as a telescoping sum yields together with (5.9)
(with x; replaced by Bj) that it suffices to show that

(2

( 2 (T = o),

|7 A — i)k By || = 0™,
where either
T = tTHA) —g- 1( oy
_ / B3(2) (1A — 2) 1 (Ay — A)(E Ay — 2) V),

or T =t"1(A— A,). Noticing for both cases that [|[(A — A4;)B;|| = O(t~*°) we may now
proceed as above moving each of the factors of B; one by one to the left; in each step
we pick up the bound ¢7!. O

31



Proposition 5.6 Suppose f € C2((0, L)\ opp(H)). Then there is an € > 0 so that for

all multi-indices « N
Xy
H () »

Proof. We consider the observable

+(p) el = O ). (5.10)

Tp- V(@) + V(@) - p),

Q=5 ) + Tiola) +

where @ = Vp(z) (= w if |z| > 2). We will choose n > 0 and small so that for some
small positive p and e roughly

2 o, |Tif?
QZM(p _p+W>’

and 9
o €
DQ = Z[HaQ] < TQ
This will lead to (5.10).
Let .
pw + wpj

T — pu—
b,=D»p 9

On vectors supported in |z| > 1 and for any v > 0, we have
+(p- V(@) + VVo(@)-p) = £(0] - VV(w) + VV(w) - pT)
= —(p0)* =7 V(W)
+ (V7PS £V V(W) (5.11)
Again on vectors supported in |z| > 1,
Pt = p* —pf,

and thus setting v = (27) ! in (5.11) we obtain

@ = TP i) - VTP + A VTR, (1)
Q = J07 — 1) + V() +PIVTh) P — LAt — Vo TV Ta)?, (5.13)

on vectors supported in |z| > 1. For some ¢ > 0,

1 (@ng( ), [VVo(w )IQSC<@)2’

]
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so that if » > 0 and small enough

Vo(w) = IV (w)* > p (%)2

for all u < y; independent of n. Taking u € (0, Min (i, ,ul)) we consequently obtain

from (5.12) .
Q>p (p2 —pi+ (%) ) : (5.14)

as quadratic forms on vectors supported in |z| > 1.
Again on vectors supported in |z| > 1 we calculate

) ) V(W)
DQ = —<er_§,p”7'_§Mp>_m
i My, ~ ~ M
+3 Re> p; (kaMVo(e?(w) + %(J?g(w)%po + g1(z),
Jik L

where r = |z,
Mpe = bpe — wrwy;

Voo () = 90,V (@),

and g; is a symbol of order —3, i.e., |02g:1(z)| < co{x)~3~1%! for all a. We continue the

calculation using
(W) = Vi ()M = (w, - )VVp(w),

which follows from the homogeneity of V; (for |z| > 1), obtaining

DQ = —(pMrz, (p —nV (w))r~7 Mp)
— n Re (pMr~2w - p,r "2 VV(w))

VP

with g a symbol of order —3. Using
—2Re A*B=—-(A+B)"(A+ B)+ A*A+ B*B,

we obtain

_1 ~ 1 _1
DQ = —<pM7“ 2,(p||—77%(2)(w)—§77\p-w|2>7" 2Mp>



where we are using the notation |B|? = B*B. Note for later use that |p- w|> =
lw-p|? + "T—Ql All calculations are valid on vectors with support in |z| > 1.
Let

x .
2% =zt et -zi‘Z’”, Zj = pj or é,
where we always take i1,...,7; > 2. Assume inductively that for some m > 1 and all
la] <m —1 that
12%%]| = O(t), (5.16)
where € will be given later. We calculate
m—1
z/Jt, Q™) =Y (¢, @"DQQ™ Ty, . (5.17)
k=0

Because of Propositions 5.2 and 5.4 we can replace v; by x; where x(z) = 0 for
lz] <1,0< x <1, and 1 — x € C§°(R"), making an error of O(¢t=*°) in (5.28). If m is
odd, we can then commute D) through as many factors of ) as necessary to obtain

d m—1 m—1
Z (W Q) = m (X, QT DQQ"T k)
+ commutator terms + O(t~°). (5.18)

The commutator terms can be written

Y. (xvn Q1adg (DQ) Q% Xxtr) covtaty, (5.19)

l1+l2+£€3=m—1

where the coefficients cy,¢,¢, are combinatoric factors. We can arrange things so that
Cot0; = 0 unless |[¢; — f3] < 1 and ¢y > 2. The latter can be seen from reality
considerations. We now use the fact that each commutator introduces another factor
of r~! which in conjunction with Propositions 5.2 and 5.4 implies that (5.19) can be
bounded by

¢ S lennnlTENQ x| - 1Q% x| + ). (5.20)

b +la+L43=m—1

On vectors supported in |z| > 1, we have

(P = % [(m + 1)) (1 - %) + (1 — —) (p1 +p||)} % (% pL+pL- %) , (5.21)

and for j > 2,
(1) =pj — (Pn (%) + (%) Pn) /2- (5.22)

Since if ¢g, 0,0, 7 0, 201 < m—1 and 2¢3 < m—1, we can use the induction hypothesis
along with the definition of @, the first equality of (5.11), the equality |p®|?> = p* — pﬁ
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previously mentioned, and (5.21) and (5.22) along with Propositions 5.2 and 5.4 to
conclude that

IQ%xthll = O(t™*4), j=1,3.
Thus (5.20) can be bounded by

CI Z |C£1£2£3 ‘t—26(l1+Z2+€3+1)t—(£2+1)(1—26). (523)
l1+la+l3=m—1

We demand (¢, +1)(1—2¢) > 1. Since we know £, > 2, this means we must take € < 3,
in which case (5.23) is bounded by

Cllt72emtflf(5

for some 6 > 0.
We now consider the first term on the right side of (5.18) and use (5.15). In bounding

this term from above, according to Proposition 5.4, we can replace |[p-w[* with A? + 251

for large enough A up to an error of O(t ). The operator p; can be written

P = Pn—@Jr@

t t

= (Pn - @ +9> Xo (Pn - @)

+ p_@+9 1_5(91)_@ +@—9. (5.24)
(=5 0) (15 (=57 )

t t

Here 8 > 0, xg € C*™(R) satisfies 0 < xg < 1, xo(s) = 1, if s < —60, and x4(s) = 0
if s > —£. The second term on the right side of (5.24) is non-negative, and we claim
that the first term contributes O(t °°) to (5.18). To see this, let F'(s) = (s + 0)xq(5),
B(t) =p| — @, A= (r 2Mp);Q™ x, and ¢ a large positive integer. For a suitable
almost analytic extension F' of F we easily derive

)2
FBW)A = Y ady, (AF(B()

Jj=0

+ (G0N OF(2)(B(t) — z)*ladﬁl) (A)(B(t) — 2) “Vd%2.  (5.25)

T B(t

The sum on the right side of (5.25) contributes O(¢t~*°) to (5.18) because of Proposi-
tion 5.5, while the last term contributes O(t~+3/2)). Since ¢ is arbitrarily large, this
establishes our claim. We thus obtain

%(wt: Qi) < —m Q" xt, ({pM,r~ (2] = 0 = gV () - 2n%) Mp)

+ g\foo(w)\Z) QmT_lxwt) + Ot M0, (5.26)
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Let Xag,a € C®(R) with 0 < Xapa0 < 1, Xaoae(s) =0, if s < Ag or s > Ag and

Xaoro(8) = 1, if Ao + 01 < s < Ay — §; for some small §; > 0. We insert Y, ., (U) in

front of (t‘1|x\ — 0 — VP (W) — 1 ) Jr and |VVy(w)[?/r. If Ao is sufficiently small

(but > 0), §; = 271\ and A, sufficiently large, the error from this contributes O(t=°°)
to the right side of (5.26) because of Propositions 5.2 and 5.3. If n and 6 are chosen
small enough we obtain

d Ao m—1
G < = (@ b (500, M) + V) ) Q7F

+ O(t2m=179),

We use (p, Mp) = |p%|> + &% and the fact that Volw) < | VVo(w)|? if 4 >0, in
conjunction with Proposmon 5.1 to deal with the region Z* < 0, and we obtain

i(d)n@"‘dk) < —? (Qm;lwt, <2A—/{)0(p2—pﬁ)

+ ok ey b)) + n|vvo<w>|2>) Q“T”xwt)

+ Ot 2mg179),

Using (5.13) we see that if n > 0 is small enough

Wtan%) < —QTm ( 3 Az 62) (Oxthr, @ xthr) + Ot 4717),

so if, in addition, we make sure that < %, we can define

8Ac

__n
8A002 ’

Then another application of Proposition 5.2 gives

d 2 —2ZME4—
oW QM) < — = (1, QM) + O ), (5.27)
which upon integration implies

(%1, Q" pr) = O(t7™). (5.28)

We now use the Morse lemma and (5.12) to write @@ as a sum of squares of self-
adjoint operators (on vectors with support in |z| > 1). This is already almost the case
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in (5.12) since (p})* = 7, (p})7, but the quantity Vo(w) — n?|VVs(w)[? needs some
work. For small 7 fixed, we write

Vo(w) =P IVVa (@) =) o
j=2

in a neighborhood of e; where u; is C* in this neighborhood and has an expression

n

uj=y au(w) 2

r
k=2

(see [Mil]) with aj; also C. Since for small 7, Vi(w) — o?|VV,(w)[? is positive away
from ey, it has a C* square root, u;. Thus using a partition of unity, x?(w)+x3(w) =1,
for S™!, with x;(w) = 1 in a small neighborhood of e; and zero outside a slightly larger
neighborhood, we obtain

n

Vo(w) = | VVo(@) P = Y 0 (w)wy)® + (xa(w)uy)*.

=2
Notice that |x2(w)u;| < clgcr—LI except in a small neighborhood of —e;. We will later use
Proposition 5.1 to bound contributions from this neighborhood. We write

J
Q=2 4
k=1

and thus

m!
m P— _— al “ e aJ aJ--- al
XQ"x = E al'---aJ!XAl ATTAT AT

bOY Al AV

7 +1B]<2m—2

Here C, 3 is a linear combination of products of multiple commutators of the A;’s. We
can arrange || < m—1, |y| < m—1in this sum. C,s involves k = 2m — (|y|+|f]) 4,’s
which in a worst-case scenario contribute O(t=*/2) to (s, xQ™x;). Using the induction
hypothesis and removing x from the left side, we obtain

m!
m > AaJ .. Aa1 2
(djtaQ wt) - |(IZ:m al'ag'aJ'H J 1 qu]t”
-~ 3 s—e(+18) 4% (5.29)
[v]+18|<2m—2
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Using (5.28), (5.29) implies
|AF -+ AP x| = O™™), (5.30)

as long as € < % (but we have already required € < %) Using the induction hypothesis
and Proposition 5.1, we obtain

|AG" - AT x| = O, (5.31)

for all |a| < m. We now write each %, j > 2, as a linear combination of the A;’s with
coefficients which are symbols of order zero:

X

7j = Z hjr(w)x1(w)ug + hjr(w)xe(w)us,

and similarly for p;, j > 2 (see (5.22)). Using this and (5.31), we obtain (5.16) for

|a| < m. This completes the induction when m is odd.
If m is even, (5.18) is not correct. We obtain instead (for m > 2),

%(1/%, Q™) = mRe (Q%_lx%; (DRQ) Q%_l)(lbt)

+ Y'er Re (QF x4y, ad¥ (DQ) Q" xaby)
+ O(t™™). (5.32)

In the sum above, £ +/+1 =% and £ > 1. Using Q = Z]- A? as above, we obtain

1 1
5 (@DQ+DQQ) =) ADQA; + 5 [4;,[4;, DA, (5.33)
J J
and estimate as before. At a later stage we need to put the A;’s in their rightful place.
The term 9
€
- 404
J
is encountered and is replaced by
2e €
- @+ 4504500 (5.34)

J

using an identity similar to (5.33). The commutator terms in (5.33) and (5.34) are easy
to estimate as above leading to

(%1, QM) = O(72™).

The remainder of the proof goes through without change from the case m = odd. 0O
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Proposition 5.7 Suppose f € C((0,L) \ 0,,(H))
for all o and some €y > 0. Then if ¢, < Min{2¢, 1},

(o= 3)"

(#) | = 06

— O™ (5.35)

for allm > 0.
Proof. Let Bi(t) = p1 — %' and compute
DB, (t) = —t7 1By (t) — 0, Vo ().
Thus

DB, (1) = ——Bl() — mB™ Y (0,VyBy(t) + By ()0, Vy) By (t)™ !

—ReZc]Bl ((30,)*0, V) By (¢)2m—Gtk+1), (5.36)

where in (5.36) the ¢; are integers, 2m — (j+k+1)=j+1, k=2(m—j—-1) > 2. We
make the induction hypothesis

|B1(t) ]| = O(t ), (5.37)

for all £ < m — 1. It follows from the hypothesis that for any 6 € (0, ¢),

x
HX[l,oo) (t“’ d L') o H (5.38)
and since for |z| > 2, W Vo(z) = — iaﬁ - V. Vo(z), we have for 77 in a neighborhood
of eq,
ko 17 e ’ k—1
601)401To(o)] < e (21 e+ (5.39

Combining (5.38), (5.39), Propositions 5.1, 5.2, 5.3, 5.4 and the induction hypothesis
(5.37), we obtain

Re (1/% Bl(t)j[(ial)k(al%)]Bl(t)ijt) = Ot~ Bty 0=k
- 0 (t—(Zm—(k—I—l))el—(k+1)—2(60—0)) (540)
Since k > 2, and ¢ < Min{2¢, 1}, we have

Cm—(k+1)er+k+14+2(eg—0) > (2m+ 1)e; + (260 — 1 — 260).
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We choose 6 € (0,%%<), and let § = 26 — €, — 26. Then (5.40) is O(t=2m1¢='=7).
Thus

%(wt,Bl(t)zmwt) = —2mt™ ¢y, Bi(t)"" 1)
— 2m Re(Bi ()™ 4, 01 Vo B1 (£) B ()™ '4br)
+ Ot 2mea=170), (5.41)

We have ) y )
—2 Re[(01V0)B1(t)] < ?31(75)2 + v (01 V)2,

so that estimating the term involving (8,V;)? as before, we have

Sioasm) = 1) s
+ O(t_2m€1t_1_6). (542)

If we choose 7 suitably small, integrating (5.42) gives
(%6, Bi(t)"™) = O(t™*™). O

Proposition 5.8 Suppose f € C((0,L) \ o,p(H)) and suppose h € C®(R) with
h' € C$°(R) and {S s> 0,2 € supp f} Nsupp h = 0. Then

Hh( vl =

Proof. Since supp f is compact we can find k£ € C§°((0,00)) such that k(s) =1 in
a neighborhood of {s s>0,% e supp f} but supp kN supp h = (. We will show

= O(t™). (5.43)

Hh(%) Epa)ie]| = 0 ™), (5.44)

and

(1 = E(p))oe|| = O ). (5.45)
For each s € supp k there is an open interval I, containing s with I, Nsupp h = (). By
compactness there is a finite number of the I say, Iy, ..., I,, which cover supp k. We
find a partition of unity subordinate to this cover, xi,..., xm with x; € C§°. For each
7 we can find xﬁ, X?; with supp Xﬁ to the right of I; and supp X}é to the left of I;

such that Xﬁ I, X?;I € C°(R) and (ka1 + Xj';)h = h. Then
x x
h( ) ZX]k( 1) < 1) X;(p1)k(p1).
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By treating each term in the sum individually we can assume in proving (5.44) that
either supp A is to the left or to the right of supp k. Consider the case where supp A
is to the right of supp k. Then we can write h (£) = x3 (& — €3) with x5 € C5°(R)
with supp x3 C (0,00) and with €3 just to the left of supp h. Similarly we can write
k(p1) = x2(—p1 — €2) where xo € C§°((0,00)) and —e, is just to the right of supp k. We
can thus arrange €3 +¢, > 0. We choose x; with x| € C§°(R) and supp x1 C (0,00). In
fact, we choose 0 < €1 < €2+ €3 and x1(s) = 0if s < ¢, x1(s) =1 if s > $. Referring
to Lemma 4.3 and performing the unitary transformatlon U = S-1F1ei/? with F
the Fourier transform and S;-1 the unitary scale transformation r; — % we obtain
after taking the adjoint that

) X1 (61 - ﬂ) X2 (ﬂ — P = 62) x3(p1 — 63)H

t t
HX3 (— - 63) X2(=p1 — €)x1 (61 +p1— %) H . (5.46)
Thus
I (22) ko (a1 - 2)] -0
while

H (1 - X1 (61 +p1— %)) Y| = O™),

by Propositions 5.6 and 5.7. If supp A is to the left of supp £ a similar argument after
applying the unitary reflection z; — —z; gives the same result. This proves (5.44).

We oW prove (5.45) where k£ € C§°((0,00)) and k(s) =1 in a neighborhood of {s :
s> 0,% € supp f}. We first claim that we can replace 1 —k(p;) by 1— (k(p1)+k(—p1))
in (5. 45) only making an error of O(¢t~°°). This follows by the same reasoning as above,
for if €3 is an arbitrarily small positive number and y3 € C* with supp x3 C (0, 00),
Xs € C5°,

X3(—p1 — €)1 = x3(—p1 — €3)xz (x? - 62) P+ O(7%),

if xo and e > 0 are chosen suitably with supp x2 C (0,00), x5 € C§°(R). This follows
by Propositions 5.1 and 5.2. Then a suitable choice of ¢; with 0 < €; < €3 + €3 and x;
with supp x; C (0, 00) gives

HX3(—pl — €3)X2 (% - 62) X1 (61 +p1— —) H =0(t™™), (5.47)

T
H (1 — X1 (61 +p1— %)) || = O(t™),
by Propositions 5.6 and 5.7. (5.47) follows from Lemma 4.3 after performing another
unitary transformation implementing x; — tp;, p1 — —%- followed by the anti-unitary
complex conjugation. The equation k(p1) +k(—p1) = k1 ( ) defines k; € C§°(R) with
ki1 =1 in a neighborhood of supp f.

while
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Let ¢ = 1 — k; and choose G smooth and = 1 in a neighborhood of supp g, but
Gf =0. Thus 1 — G € C§°(R). Let 6 > 0 and choose x € C§°(R") with x(z) = 1 if
lz| <1 and x(z) = 0if |z| > 2. Define x4(z) = x (£). Then clearly,

Ws = gloal o) + oo (T4 ) x(22)

satisfies
lim | W5|| = 0.
610

Choose § > 0 so that dist(supp g,supp(l — G)) > ||W;s||- Then according to [DG2,

Proposition D.11.4],
2
() (-6 (5 rm)) o] <

for any N. From Proposition 5.2, it follows that

o(B) (- (2 +w)) o] o0 s
But since Gf = 0, (5.48) implies
Hg (p;) vl < |9 (p;) G (pg + W6> Y| + O@™)

+O(t™).

= o (2) (6 (% +m) -aum) v

Let G'; be an almost analytic extension of 1 — g. Then

(G (p21 + W) (ff)> Py
= %/5(3’1(,2) ((ﬁ —2)7 — (pé + Ws — Z) _1> thd’z
- _wlféGl(z) ( ) [‘MZ (1 - xs(pL))

+ Th(a) [1—X5< ) ” — ) W, (5.49)

Notice that 1 —xs(p1) = (1—xs(pL))(1— X1 (p1))" and that according to Proposition
5.6 (1= x15(p1))ty = O(t™>). Thus

[3610a) (B wi- ) B 2D st - )70
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2 ~
%(1 — xs(pL))(— 1)Nad¥1 o) (H — 2) 1 pd’z

= /501(2) <p;+W5—z>

+0),

and this term is easily seen to be O(¢t V). A similar treatment gives the same result
for the remaining term in (5.49). Since N is arbitrary,

b (2)o] o

This gives (5.45) and completes the proof of the proposition. O

Proposition 5.9 Suppose f € C§° ((0, g—%) \ ({2A1,...,22,} U a,,,,(]?[))), where ky =
v/ 9A\min/2 and L > % Then for some § > 0,

Izl = 0 (19G+9) ol <3, (5.50)
where z; = (%) (p1)j, or p1 — 5.

Remark. Clearly a more complete result of this type is true, but we will only need
(5.50).

Proof. We only sketch the proof because it is similar to that of Proposition 5.6 but
much simpler. Let & € C§°((0, k1) \ {2V 2, .-, 2v/A.}) with h(s) = 1 if & € supp f.

Let
0 = (s (2) 20 (%)
0 = (e 5(2) %) (%).
=300+ 550+ (2) (- 2)'n(2).

We compute for large t,

Dyt = (- Vulo(a)+ PO (7L

o (7 () (- 2)+ (o 2) () ()0 ()
e (3)(3)) P (3)

— 8 (%) V() + &, (5.51)

and
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£ = ( ) / 1 -0V, 0u) (2) do
07 (7 (F) (m=3) + @r—)<%ﬂﬁﬂﬂ%)
* (“*ﬂ(T) (5))on (), (5.52)

where u =z, /z; and

Va2 (@, a)p®); = 3 (0;0600V0) (1, a)bebe;  j > 2

k,£>2
=0 j=1
Also,
N D( —ﬂ):—t—l( —ﬂ)—af/(x) (5.53)
b1 m yai n 1VolT), .
and for z; > %,
9 f/ -1 t 3 ! T ~(2) T
—oVo(z) =t [ = <—,V0 (1,0u)—> do. (5.54)
x1 0 t 1

We can also compute

%= (-0 () () -16) -
= (=n () ()5 (()30-3(2)0)

(5.55)

where it must be remembered that both y(t) and %(¢) contain a factor of A (%-) which

is zero if (ﬂ (””t—l) T (%)) is not invertible. Thus (5.55) makes sense if properly

interpreted.
We calculate

Lirm = 3 (s [2 Re g (%) v+ 52 Re 3y (2) 5] )

J:

I GUSICE IO

+ Error terms

< ( + 35) t~' (4, [(t)1);) + Error terms.
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Here we use 2 Re f3; (‘”t—l) < - (% + 35) in the support of h (“‘t—l) for some small § > 0.
We choose § small enough so that 2 + 3§ < 2. We have used (5.51) and a similar

formula for Dv(t) as well as (5.53). All terms which involve &,, £, and —, V() have
been put into the “Error terms”. In treating these terms we note

(i) all terms involving Dh (L), &' (%), or (1 — h (%)) contribute O(t™>) because
of Proposition 5.8;

(ii) from (5.52) and (5.54) we see that the remaining error terms are cubic in the com-
ponents of z and contain a factor of ¢~'. Thus using (i), (5. 55) and Proposition
5.6, these terms can be estimated up to an error O(t~*°) by (wt, (t)1y).

This gives

G0uT@w) < - (3+20) T+ 0)

and (v, D)) = o(t—<%+25>). (5.56)

Using (5.55) again we obtain (5.50) for |a| = 1.
Next consider

%(%,r(t)wt) = 2 Re (¢, '(t)DI(t)1y)

= 2mef (4 [3 (3500r ), + 35 0DTC)5(0)

n(3) (=3 =) ()
+ [pre.a(3) (m-3)]
+Z ([Pr@.7®]w® + [Dre,5; o] u) |u) -

From (5.50) for |a| = 1, (5.51), and (5.52) we see that the commutator terms contribute
O (t’Qt*(%”‘s)). We now estimate DI'(¢) as above, and then restore the original order

of the operators incurring another O (t_Qt_(%”&)) error. We obtain
d 2 2 -1 2
%(wt, L)) < —2 3 +20 | 7 (¢, (T(2))"21)

+ (9( 24 +2‘”) .
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Upon integration this gives

(U, D(t)) = O (757 (5.57)

if we demand % +26 < 1.
The operator I'(¢) is essentially a sum of squares of self-adjoint operators. A short
calculation gives

0 = o () (=) o (R ) s () )
() (=) (), 539

The last term is not the square of a simple self-adjoint operator but because of Propo-
sition 5.8, this causes no problems. We now use the method of proof of Proposition

5.6 (see Eqn. (5.29)) to show that (5.57) implies (5.50) for |a| = 2. This again requires
% +0< % Finally we calculate

%(% L)) = 3 (e, TO)DT(OT (t)¢r) + (v, [T(2), [T(2), DL ()] %) -

The commutator term is seen to contribute O (t_?’t_(%“‘s)) which again leads to

(Y, T(1)3(t)) = O (t—ﬁ(%H)) '

Using the sum of squares argument from the proof of Proposition 5.6 once more, we
obtain (5.50) for |a| = 3. O

Proposition 5.10 Suppose f € C§° ((%,L) \E) where B = opp(I:I) U {% 1S € R},
and ky = 24/ Amax. Let hy € C§°((ka, 00) \R) with hy(s) =1 if% € supp f and let hy €

C§°(Bs), Bs ={y € R*! : |y| < 8}, with hy =1 on B5. Set h(t,x) = hy (ZL) hy (4).
Then for small enough § > 0, there is a 8 > 0 so that
H|p — h(t,z)V,S(t, x)\jd)tH =0 (t*(”")jﬂ) , Jj=12 (5.59)
Proof. As an easy consequence of Propositions 5.6 and 5.8,
1L = Al + (07 Rl = OF™)
for any multi-index o with |a| > 1. We compute for small 6,

) @ @)
D(p — hV,S) = — DhV,S — VVi(z) — h {vmats + %} ,
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where S®)(t,z);; = 0,,0,,5(t, ). Using the Hamilton-Jacobi equation,

(V25)?

—8,55 = 9

+ Vo(z),

which holds in supp A if ¢ is small enough, we obtain (assuming 0 is small enough and
t large enough so that h(VVy — V) = 0)

D(p — hV;S) = —DhV,S + (h— 1)V — h(S®P(p — V,9) + (p — V,5)S5? /2.

We thus compute
d 2
%(wta (p - hvzs) 1/11:)

= Re(¢r, —h(SP(p — hV,S) + (p — hV,S)SP, p — hV,S)h;) + O(t)

_ (wt [<p — hV,S, hSD(p — hV,S)) - ZAiS} wt) LO@).

Using (2.12) and the fact that S(¢,2) = ¢S (1,2) has Taylor series in Z- with coefficients

depending on Z' we obtain

s = () -3 ) o ((5)))  em

near % = 0. Thus

1 0
SO (¢, 21,0) =171 ( i} ) :
0 -5 (%)

and by the homogeneity property of S,
hAZS = O(t™®).

We recall that

~ —1— /1 —4)\/k?

Bk) = =
and thus since h; has compact support in (ky, 00), there is a # > 0 so that for § small
enough

SOt z) > (2t) 11 +0)1
in supp h. It follows that

1+0

00 0= 19.57) < = (F52) (0= h9.8)%%) + O(™),

and thus (5.59) follows for j = 1.
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Now we consider
d
2 (W [(p = hVLS)"0)
= 2 Re (¢, [D(p — hV.S)?] (p — hVLS)* )

= —4Re (wt, {<p — hV3S, hS® (p — hV,S)) — %AiS] (p— hW)%) +O(t™).

Let v;(t) = (p — hV;S);. Then using (for self-adjoint L),

1
Re Lo(p — hV.S)* = 7iLov; + 3 > s [is Lolls
j j

with Ly = (p — hV,S, hS®(p — hV,S)) — %AiS and the fact that ; and -y, commute
up to terms involving derivatives of h, we obtain

d h
J

2(1 +6)
=t

> Wy i) + O )

J

2(1+0 4
= 2O ) + 07,
where we have used |[A2S| + [A,S®| = O(t3) and |A3S| = O(t~®) in supp h and
(5.59) for j = 1. Integration gives (5.59) for j = 2. 0

6 Completeness of the wave operators

In this section we prove the completeness parts of Theorem 3.1 and 3.2. The existence
parts of these theorems have already been given by combining Theorems 4.1 and 4.2
with Lemma 3.6. Theorems 4.1 and 4.2 also prove the intertwining property of the
wave operators.

Completion of the proof of Theorem 3.1. We first introduce a more convenient
notation. We choose some L > % and denote by V7, the potential constructed in Section
3, which we have been calling 170. We write H;, = %pZ—I—VL and denote the wave operator,
W, of Theorem 3.7 by Wp.
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It follows easily from the proof of Theorem 4.1 that
QL = lim eitHL U() (t)
t—o00
on Hy = Xjo,5,](p1)L?(R™) and satisfies the intertwining relation

. itp%
€ZtHLQL = QLG 2.

(6.1)

The proof of Theorem 4.1 needs only to be supplemented by the remark that for f as

in the proof of that theorem
[(Ve(z) = Vo(x))Uo(t) f|| = O().

This follows from Lemmas 4.2 and 4.3. It also follows from Theorem 3.7 that

WLQL = Qa

and that

E2\Y on
Wi Ran P01 By, ((0.5) ) 3

Ran P/ 1 Ex( (0, %%)) =7,

We thus need to show that

onto k'2
QL : Hl —t) HQ’L = Ran PeIIIL ﬂEHL((O, é))
From (6.1) and the definition of Qy, it easily follows that
Ran QL C H27L'

We will show that considered as a map from #,; into Hyr, ker Q}
Ran 0, = Ran Qf = Ha 1. Suppose ¢ = f(Hp)¢ where

2
fecy ((o %) V2V, -, 2v/A} U a,,,,(HL)>
and ¢ € S(R™). If g € H4,
(9, %) = lim (Us(t)g, e ""*¢))

_ 3 -1 _—itHy
= Jlim (g, Up(t)™ e~ 4).

(6.2)

(6.3)

= {0} so that

(6.4)

Using Lemma 4.3 in conjunction with Propositions 5.1, 5.2, we know that if 0 < y <1,
X € C*(R), supp x C (1,00) and x(s) = 1 if s > 2, then for small enough ¢ > 0,

(1 - X (%)) Yo = Ot™);

(1= (%)) = o0

49



and similarly for any derivative of x. Here vy = e "L f(H)$. We thus have
Us() ™ e = Uo(t) x5 ) v+ O(™).

We use Cook’s method to prove the convergence of Uy ()™ <p—1>wt:

L S (oot (B) w)

I e VR CARPY TS ) D
- /T ( 2(tpy)? X(a) X((s)VL(“‘) v
As in the proof of Theorem 4.1 we write

(z1, ) 1 21\ {1, Az )
2(tp1)? X<%>¢t N X(E) 2(tp1)?

dt

(2w + 0()

- (@) (),

GE) () =) l5)

1

+ Ot™).
We have

(B (L) (7 (2)) Ex(By) e
= (2 (L) (o ) () b
(5 () (m=5) () s

)
) el s
where we have used p? — <%)2 =p (p1 - %) + wt—1<p - ""‘71) — it L. But

H (p1 _ g) (1, 7))

3
|

(1, Az1)
t3

/ 2 Pr|| + (4

= Ot ")+ Ot 3¥),
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So the contribution of (6.6) to (6.5) is finite. Thus we must show

H ( = ?:m x(5) - x(%)VL(x)) o

is integrable on [T, 00). We write

(B )Vileps = x (5 ) Vil (5; ) v+ 06),

and use the commutator expansion (5.25) to obtain

(6.7)

X

e N (O

Thus up to an error of O(t~>°), (6.7) can be written

() (22222 vi)a (%)

H au,)l\au) VL(l _))%

() (P - ()

and thus from Proposition 5.9, (6.8) is integrable. It follows that for some g; € L?(R"),

+O@). (6.8)

Clearly,

T 3
<C ‘—
- i

s — tlim Us(t)Le ™ ryp = g. (6.9)
—00

We now need to show that g; € H;, and for this we need some version of the intertwining
property for the inverse wave operator.
We first show that

—isp%

. -1 e
s tli,I?oUO(t) Up(t+s) =e 2

(6.10)

As in the proof of Theorem 4.1 we choose f; from the dense subset of L?(R"),
{fi: /i € CF((0,00)\ E x R}
and write Ug(t) = e®1(*=D/2{jy(t). Then
Up(t) "Up(t + s) = e "®125T (1) 1Tyt + s).

We obtain

2

To(t)"Tolt + 8)fr = fr — 1/0 To(t)"! (% + %) Tt + 0) frdd,  (6.11)
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and from (4.1) and (4.2), the second term on the right side of (6.11) has limit zero as
t — 00. This proves (6.10).
From (6.9) and (6.10) we obtain

. _ 4 s 4 2
s — lim Uy(t) te e isHiyy — g=ispi/2g
t—00

and a simple approximation argument gives
s — Tim Up(t)"te~ "1 h(H, )b = h(—l) a1,
t—o0 2

for example, for h € C(‘)’o((g, oo)) This shows X[k,,00)(|P1])91 = 0.
But we also know that

= X(%)wt +0(t™™),

and Uy(t)™! commutes with X(%) so that

X(Zﬂ)g =9
5 )9 = o
Thus g; € H1, and it follows that
QLY = a1
But from (6.9), ||¢g1|| = ||#||, and since ¢ was chosen from a dense subset of H, 1, we
see that €} is isometric so that ker Q] = {0}.
This completes the proof. O

Completion of the proof of Theorem 3.2. The proof of the existence of Q
(Theorem 4.2) also yields the existence of 7, : Hy = L?((kq,00) x R*™') — L?(R"),
first defined on f € C§°((ko,00) \ R x R*™!) as

lim ™ 2Ty (t) £,

t—o0

and then extended by continuity to an isometric operator on ;. The proof is exactly
the same because the term involving Vy(x) — Vi (z) is actually zero for large ¢t. We also
have the intertwining relation

ety = Qe 2, (6.12)

The support properties of Uy(t) f show that

o= Uo(t)fH = O(t™%) for some § > 0 which

shows

Ran Q@ C Ran Pf;
Ran Q; C Ran PMr. (6.13)
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Combined with (6.12) we obtain

~ k‘2
Qr : L?((k2, V2L) x ") — Pt Ey, ((f L)) L*(R™). (6.14)
From Lemma 3.7 and the obvious intertwining property of W, = s — limeitHe itHr
defined on Ran Pe}lIL, we find that Wy, is a unitary operator
Wy, : PHLE,, ((%L)) L2(R") °%
(6.15)

PiE ((%,1)) L®").

In addition, it easily follows that

Thus to show Ran Q D P;{EH((g, L))LZ(R"), it is enough to show that Qj, consid-
ered as a map as in (6.14) has ker Q% = {0}. The set

{f(HL)¢ :pes®). fecp((5.L)\£) .

2

(6.16)
E=oy(H)U{%: seR}

is dense in P/ By, ((% L))LZ(R”) since Vi,(—e) > L implies

P, ((2.2)) = Pa(B1)En, ((2.12)).

Thus choose 1 = f(HL)¢ as in (6.16) and hq, he, h, and § as in Proposition 5.10.
Let g € C3°((k2, V2L) \ R x R*!). Then

(QLg7 1/]) = (g, QEQ/)) = tli}glo([jo(t)g, €_itHL1/])
= tlif?o(ﬁo (t)g, hiy), (6.17)
where ¢, = e "*Hz4). The insertion of h in (6.12) is justified because from Propositions

5.6 and 5.8, (1 — h)y; = O(t>°). If § is chosen small enough, according to Lemma 2.5,
hab; is in the domain of Uy(t)™!, and we can differentiate Uy(t) ™' hefy:

0 (Uo(t) "L haty)

) {50~ Vaste. 97— [5.0) - Dr b,

_ %Uo(t)‘lh(p — hVLS(t, )%, + O(t™). (6.18)
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According to Proposition 5.10, (6.18) has an integrable norm so that Cook’s method
gives the existence of the strong limit

s — lim Us(t) T hay = 1.
From (6.17) we have

(9,9239) = (9, 91)- (6.19)

We need to show g; € L?((kq,v2L) x R*~'). Note first that g, € L?((0,00) x R*!)
since Up(t) *hy, is in the domain of Uy(t) which is contained in L?((0,00) x R*1).
Consider the limit

lim Uy (t) " he™"HLqp,. (6.20)

t—o0

For large ¢ and small 4,

A (6—isHL _ e—z’s(\VmS(t,z)|2/2+VL(m))) by

- <§>/mf“ﬂ““““””””“Wﬁ—wvuﬂamﬁw4ﬂﬁwm:
? 0

where we have used Vy(z) = Vi(x) in supp h if ¢ is large and ¢ small. According to
Propositions 5.10 and 5.8,

||h(p2 _ |VES(t, $)|2)671’THL1[J75|| — O(t7(1+0)/2)’

for each 7 (note f(&)e™"¢ is another C{° function with the right support properties)
and thus by the dominated convergence theorem

lim / h(D? = [VaS(t, 2)[2)e My || dr = 0.
t—o0 0

By the definition of k(%), it follows that

. . 2
lim Uy(t) " he "), = ey,

t—o0

and by an approximation argument, for n € C§°(R),

TRV k?
ti Oa(t) (1) = () o1

This gives g; € L?((ks, v/2L) x R*~!) and thus from (6.19), Q31 = ¢;. Finally, we have
||Q}§¢|| = ||g1]] = limy_y00 ||h¥0¢]| = ||#0|]. Since such ¢ are dense in PeIfLEHL ((?, L))LQ(R”),
it follows that ker Q% = {0}. m
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Appendix: Sternberg linearization with parameters

Suppose X € C®°(U;R") where U C R* x R” is an open set containing {0} x Us, Us
open in R". We suppose X (0,k) = 0 for all £ € U,. We think of X(-,k) as a vector
field depending on the parameter k € U,. Let X'(z,k) = D, X(x, k) and denote the
eigenvalues of X'(0, k) by \;i(k), k =1,...,n. We suppose that for all £ € Uy,

Aj(k) = " agh(k) # 0, all j and all o with [o| > 2; (A.1)
=1

Re \;(k) <0, all j. (A.2)
Here a = (ay,...,q,) with ap € {0,1,2,...} all and |a| =y + -+ - + .

Theorem A.1 Suppose X is as above. Then there exists an open set V C R* x R”
containing {0} x Uy and a C* diffeomorphism VU : V — U(V) =V with V C U and ¥
of the form ¥ (z, k) = (Y(x, k), k) with ¢(0,k) =0, ¥'(0,k) = I such that

V' (z, k) X' (0, k) = X (Y(x, k), k). (A.3)

Remarks. (1) It follows that for fixed k, ¥(-,k) is a diffcomorphism from its
domain onto its image.

(2) Let ¢ = qﬁf("k) be the local flow generated by the vector field X (-, k). Fix &k
and let B be the domain of ¢( -, k). Then it is not hard to show that (A.3) is equivalent
to the statement,

Y(eX' Ok g k) = ¢,((x,k)) for all (¢,z) such that
e*X'(Ok) € B for s in an interval containing 0 and ¢.

(It thus follows from (A.3) that the local flow ¢ is defined on 9 (z, k) for s in this
interval.)

Our proof of Theorem A.1 follows Nelson’s proof of (the easy part of) the Sternberg
linearization theorem [N]. We will need the following lemmas.

Lemma A.2 Suppose a, € C*°(Us) for each multi-index o = (ou, ..., ay). Then there
exists a function f € C®(R" x Uy) such that

(%) F(@,k)|smo = alaa(k), k€U, (A.4)

Proof. We follow the proof of a standard result in pseudo-differential operators, cf.
[H6, Proposition 18.1.3]. Let {0, }2, be a sequence of open sets with O, C O,11, O,
compact, and |J~; O, = Us. Choose § € C§°(R"*) with § = 1 in a neighborhood of 0
and 0(z) = 0 if |x| > 1. Choose ¢y = 1 and define ¢, € (0,1] for £ > 1 so that

> () () [ ()]

|a|=¢

<27%or |B| <l—1, |y|<t—1, ke O,
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This is possible because if |a| = £ and |y| < ¢,

AN € 2=y | —Ir2l
(@) [ ()] < o 3 wrme

Y1+y2="Y

() o) Gl

S Céﬁ@,

. _ 1 .
since |z|©M < ;2] if |2 < 1. We can thus set

Flz,k) = za: o (k)20 <i> .

€lal

If k€ Oy and |5, |y| < N -1,

o\’ (oY z >
— — Bz [ = )| <) 274
> |Gr) () [0 (%ﬂ <2
alzN (=N
Thus f € C®°(R" x Uy) and clearly satisfies (A.4). O

Proposition A.3 Let X(z,k) be as in Theorem A.1. Then there is a vector field
Xo(z, k) with Xo € C*(0), O open, {0} x Uy C O, satisfying

(%) Kola, k) = X(z,R)l|_ =0, alla, alikel (A5)

and a C*® diffeomorphism Uy : O — O, where Yy(z, k) = (o(x, k), k), {0} x Uy C O,
and Py(0, k) = 0, (0, k) = I, such that

oz, k) X'(0, k) = Xo(vo(z, k), k). (A.6)
Proof. We first show that we can solve

where 150 is a formal power series in x with k-dependent coefficients which are C* in
Us. In addition, we demand v0(0,k) = 0, ¢4(0,k) = I. Suppose we have found a
polynomial .1 of degree ¢ of the form

W+1(33; k) =T+ Z ca(k)maa

2<a<l
with ¢, € C®(Uy) (if I > 2) so that

Yyt (2, ) X0, k) = X (i1 (z, k), k) + O(|z]"). (A.8)
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Let
Yepa (T, k) = Yo (T, k) + D calk)z®,

|a|=€+1
where ¢, (k) for |a| = £+ 1 is to be determined. We have
wé—k?(mv k)XI(07 k)x - X(wé-ﬂ(xv k)v k) = ¢é+1($7 k)XI(Ov k)x - X(d’é—i—l (.T, k)7 k)

!

+ | D calk)z® | X'(0,k)x

al=t+1
— X'(0,k) Y calk)z® +O(|a|*?).
o =£+1
From (A.8) we have
Yo (@, K) X (0, k) — X (s (2, k), k) = D da(k)az® + O(|z[F?),
o =£+1

where d, € C*(Us,). Thus we must solve

X'0,k) D calb)z®— | D calk)z® ) X'(0,k)= ) da(k)x

|a|=0+1 |a|=0+1 |a|=0+1

Clearly the map T'(k) given by
!

Yo afarr XN0k) Y afa—| D 2o | X'(0,k)z

laj=0+1 |a|=t+1 laj=0+1

is a linear map on the finite-dimensional space of R"-valued homogeneous polynomials
of degree ¢ + 1 whose matrix elements (in a k-independent basis) are linear functions
of the matrix elements of X'(0, k). The spectrum of 7T'(k) is the set of numbers (see [A]
or [N], for example),

{ ZOJ@)\@ Cal=04+1, j=1,. },

which by assumption does not contain 0 if k¥ € U,. Thus the inverse of T'(k) is C* on
U, and the induction is complete.

It follows that (A.7) can be solved at the level of formal power series.

From Lemma A.2 we can find a function ¢, € C®(R" x U,) such that

(6333)‘“%(33 k)

57

= alcy (k).
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Let O, be a sequence of open subsets of U, with O, C Op1, O, compact, and
Us2, O, = Us. If k € O, we can choose a small open ball B,, centered at 0, independent

of k, such that 1@0( -, k)| By, is a diffeomorphism onto its image. Let 1y be the restriction
of Yy to O = |, Bn x Oy, and define Wo(z,k) = (Yo(z,k), k). Tt follows that ¥, €
C*>*(0) and ¥y : O — ¥((O) = O is a diffeomorphism. Let

Y(z,k) = y(z, k) X'(0, k)z.

Then from (A.7) it follows that Y (x, k) — X (¥o(z, k)) has a Taylor series at z = 0 (for
fixed k € Us,), which is identically zero. We define

Xo(z, k) = Y (U5 (2, k)).
It is easy to see that (A.5) and (A.6) are satisfied. O

We now construct two vector fields by changing X and X, outside a small neighbor-
hood of {0} x Us to insure they are defined and well behaved for large z. Let {On}72,
be a sequence of open subsets of U, such that O,, is compact and

On COp COpp1, | JOn=1h

n=1

We can find a sequence of open balls B, (0) centered at 0 in R” with decreasing radii
r, such that

U B..(0)x0, conu.

n=1
We construct a positive function g € C*(U,) which satisfies
Tn_,-}l-l < g(k) <t + Tr:—il—l + Tn_,-Il-Q k € Ony1\ On;
it < oglk) < rit4rgt k € O;.

This can be done by smoothing out the function

9o(k) = %oy (k) + D ratiXo,n\0. (K).
n=1
Choose 0 € C°(R") with 8(z) =1 if |z| < £, 6(z) = 0 if |z| > 2, and let
w(z, k) = 0(g(k)z) X (z, k) + (1 - 0(g(k)z)) X' (0, k).

It is not hard to see that for £ € O,y 1\ Oy,

Cn

o'z, ) = X'(0, )] < s

< TrpiiCn, allz € R,
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where ¢, is independent of the r,’s. Thus by choosing the r,,’s sufficiently small we can
make sure that for & € O,

6P (@) < dwe el £20, 70> 0. (A.9)
Here ¢}’ is the global flow generated by w. Similarly, defining
v(z, k) = 0(g(k)z)Xo(z, k) + (1 — 0(g(k)2)) X'(0, k)z,

we Can assume
60 ()] < dpe ™z, >0, > 0. (A.10)

Proposition A.4 Let v(z,k) and w(x, k) be as above. There exists a C* map  :
R" x Uy — R™ such that (-, k) is a diffeomorphism Q(-,k) : R* = R for each k
and

Q0,k) =0, Q(0,k)=1;

Q(z, k)v(z, k) = w(Q(z, k), k).
Proof. We follow Nelson [N] and use wave operators to construct 2. For brevity we

omit the explicit dependence on k and, for example, write v(z, k) = v(x), etc. We use
the linear operator e given by

" f(z) = f(4}(2)).

It follows that £e™ = ve™ = e™v and thus by integrating the derivative
t
e =11 +/ e’(v —w)e *Vds. (A.11)
0

Applying (A.11) to the function f(z) = x we obtain

80 6i0) =2+ [ (6 (6:a)=(63(0)ds, (A.12)

where 2(z) = v(z) — w(x). Suppose k € O, so that
6 (0)] < deal,  16(2)] < deal, (A13
W(@) < @) < x. (A19

All our estimates will be uniform for £ € O,,. We omit the n-dependence of constants
like d, 7y, k. Using the differential equation of the flow ¢}’, we obtain for ¢ > 0,

(8)(z) = Telow' (62 @)ds,
(") (x) = Te o (92, (e))ds
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where T indicates the time-ordered product integral (see [N] for example). Thus, for
t>0,
1(¢™)' ()] < e™.

v(xz)—w(x) has compact support and vanishes to infinite order at z = 0. Thus, choosing
m so that my > k we estimate

/fm|(¢wsr(¢zcx»z<¢:cx»\ds < J{a°d“<de—7ﬁ"4mvnds

= d"(my— /@)_l\x\me_(’m_“)t.

It follows that
tliglo 92y 0 ¢} (z) = Qu ()

exists uniformly on compacts of R* x U, and thus defines a continuous function. Sim-
ilarly, we find Q,,, € C(R" x U,). It is not difficult to show that for fixed &,

Qw,v o Qv,w - Qv,w o Qw,v - I;
Quoody = ¢ 0Qyy. (A.15)

Thus, €, is a homeomorphism of R” onto R* which is jointly continuous in (z, k).
We let Q = ,,,. From (A.15) we obtain

Q(z) = ¢, (2o} (2)))-

It follows that any order of differentiability of Q in (x, k) for small z implies the same
for large x.

To prove differentiability in k&, let Dy = a - Vi, for some a € R* and consider the
flow ®? on R* x R™ generated by the vector field

(z,8) = (v(z), Dyo(z) + ' (2)E).

(0.0) — v'(0) 0
TOO={ b0 w0

has the same spectrum as v'(0) (with higher multiplicity), and that if

Note that

w(z, &) = (w(z), Dyw(x) + w'(z)E), (A.16)

0 and @ have the same Taylor series around (z,£) = (0,0). The vector field v arises
when we look at the evolution of Dy¢¥(x), which satisfies the differential equation

d

2 Dig(2) = Dyo(6(2)) + ¢/ (84(2)) Dy ().
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Evidently,
®}(z,0) = (¢} (z), Did} (z))- (A.17)
We claim
@7 0 07 (x,0) = (8% 0 ¢} (), Dr(4”, © ¢} (2))). (A.18)
To prove (A.18), let (z(s),y(s)) = ®P, o ®?(x,0). Clearly, z(s) = ¢*, o ¢?(zo). We
have (see (A.16) and (A.17))

W) _ (Dyw(e(s) + WD) v0) = Desi(ao). (A19)
On the other hand,
d d
2 () = Dyt a(s) = ~Diwia(s)

= —((Drw)(z(s)) + w'(z(5)) Drz(s)), Dpx(0) = Digy(x0)-) (A.20)

Comparing (A.19) and (A.20) we have y(s) = Dyz(s) which gives (A.18). We claim
that ®?, o ®Y(z, &) converges uniformly for (z,£) small and k in a compact set. To see
this we use the same procedure as previously. We modify the vector fields w and
outside a neighborhood of (z,£) = (0,0) and estimate the analog of (A.12) as before.
We claim that the limit we obtain after modification is equal to lim; o, ®%, 0 ®Y(z, &)
for (z,&) sufficiently small. Thus consider (A.12) for z small. The argument of z can
be made as small as desired for all s € [0,00) by taking x sufficiently small and thus
z(¢?(z)) does not change if x is sufficiently small. We have

(6",) (¢"(x)) = Te Jo v/ (@2 (93 @N)dr

Thus we must show that ¢¥, o ¢7(z) can be made as small as desired for all s,¢ with
0 < s <t by taking z sufficiently small. Estimating (A.12) we obtain

|67, 0 ¢} (z) — x| < d™(ym — k)~ a|™, (A.21)

while [¢¥ , 0 ¢?(z)| < ce™ %™, 0 ¢¥(z)|, for s € [0, ], which proves our claim. It follows
that Dy(Q2) is continuous in all variables. A similar argument (see [N]) applies to
D,¢%,0¢}?(x). An induction argument then shows that = Q,,, is C* in all variables.
A similar argument also applies to Q™' = Q,,,. Thus Q(-, %) is a diffeomorphism for
each k, and the rest of the Proposition follows from (A.15) and (A.21). O

Proof of Theorem A.1. We restrict the domain of (z, k) to a small enough open
set U containing {0} x U, but contained in O so that the restriction Q = Q|U; satisfies

Q' (z, k) Xo(z, k) = X (Qz, k), k).
In combination with Proposition A.3 it follows that

Q(¢O('a k)’ k),X,(O’ ]C).?I = Q,(?O('xa k)’ k)Xo(%(»’U, k)’ k)
X(Q(wo(% k)’ k)a k):
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or if 9 (2, k) = (o (@, k), k),

¢I(x, k)XI(Oa k).’E = X(w(% k)’ k)a

which is (A.3). If we let I'(z,k) = (QUz, k), k), Yoz, k) = (¢o(x, k), k), and define
U =T oWy, then ¥(z,k) = (¥(x,k), k). The domain of ¥ is V = U;(U;). The fact
that (0, k) = 0 and ¢'(0,k) = I is clear. O
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