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1 Introduction

In this article we consider a family of d-dimensional diffusion processes defined by the
following stochastic differential equations

dXt = b(Xt,Oé)dt‘i‘c‘:O'(Xt,ﬁ)dwt, te [O, 1], €€ (0, 1], (1)
Xo = o,

where (a, 3) € O, x O3 with ©, and ©4 being open bounded convex subsets of R”
and RY, respectively. Further, zy and € are known constants, b is an R%valued function
defined on R? x ©,, o is an R? ® R"-valued function defined on R? x O3, and w is an
r-dimensional standard Wiener process. We assume that the drift b and the diffusion
coefficient o are known apart from the parameters o and 3. The type of data considered
in this paper is discrete observations of X at n regularly spaced time points ¢, = k/n
on the fixed interval [0, 1], that is, (X}, )o<k<n. We are interested in estimating o and
based on these observations. The type of asymptotics considered is when ¢ goes to 0 and
n goes to oo simultaneously.

In case the whole path X = {X; ; t € [0,1]} is observed, parametric inference for
diffusion type processes with small noises is well developed. The first order asymptotic
statistical theory has been studied mainly by Kutoyants [21, 22]. As for higher order
asymptotics, Yoshida [33] showed the validity of asymptotic expansions for statistical es-
timators by means of Malliavin calculus with truncation; see also Yoshida [36, 37, 38|,
Dermoune and Kutoyants [5], Sakamoto and Yoshida [24], and Uchida and Yoshida [29].
In recent years, also the more realistic case of parametric estimation for discretely ob-
served diffusion processes has been studied by many researchers, see Dacunha-Castelle
and Florens-Zmirou [4], Florens-Zmirou [6], Yoshida [35], Genon-Catalot and Jacod [8],
Bibby and Sgrensen [2, 3], Hansen and Scheinkman [12], Kessler [16, 17], Sgrensen [26],
Kessler and Sgrensen [18], Jacobsen [15] and H. Sgrensen [25].

Although small diffusion asymptotics have many applications, (for applications in
mathematical finance, see Yoshida [34], Kim and Kunitomo [19], Takahashi [28], Kunitomo
and Takahashi [20], Uchida and Yoshida [30]), there is very little work about small noise
asymptotics for estimation for diffusion processes from discrete time observations. Genon-
Catalot [7] and Laredo [23] studied the efficient estimation of drift parameters of a diffusion
process with small noise from discrete observations under the assumptions that diffusion
coefficients are known and the asymptotics is when ¢ — 0 and n — oo. Serensen [27]
presented martingale estimation function for discretely observed diffusion processes with
small noise, and he showed consistency and asymptotic normality of the estimators of
drift and diffusion coefficient parameters when ¢ — 0 and n is fixed. Taking account
of the above three papers, our goal is to obtain a consistent, asymptotically normal and
asymptotically efficient estimator of («, ) in our setting.

This article is organized as follows. In section 2, we introduce a contrast function
based on a Gaussian approximation to the transition density and state several preliminary
lemmas. Section 3 presents our main result about the consistency, asymptotic normality
and asymptotic efficiency of the minimum contrast estimator obtained from the contrast
function constructed in Section 2. Section 4 is devoted to proving the results stated in
the previous sections.



2 The contrast function and preliminary lemmas

We first describe the notation and assumptions used in this article.

Suppose that the parameter and the parameter space can be decomposed as follows:
f = (a,f) and © = O, x Og. Let ap, fy and 0y denote the true values of «, 5 and 0,
respectively. Let X} be the solution of the ordinary differential equation corresponding
to e = 0, i.e. dX? = b(X?, ap)dt, X) = xy. For a matrix A, |A]> = tr(AA*), where
“*” indicates the transpose. We denote by C’?o(Rd x ©; R™) the space of all functions f
satisfying the following two conditions: (i) f(z,) is an R™-valued function on R%x © that
is smooth in (z,0), (ii) for |n| > 0, |v| > 0 there exists C' > 0 such that supycg [070™ ] <
C(1 + |z|)¢ for all z. Here n = (ng,---,ng) and v = (vy,---,y;) are multi-indices,
| = dim(®), In| = ny + - +ng, V| = vy +---+y, O = -4, 9; = 9/0x,
i=1,---,d, 6" =0y"---8", 6 = 0/067, j = 1,---,1. Note that v and § depend on O.
For example, v = (11, -,1,), §; = 0/0a’ for O,.

In this article, we make the following assumptions.

[A1] Equation (1) has a non-exploding strong solution on [0, 1].

[A2] For all m > 0, sup, E[|X¢|"] < oc.

[A3] b(z, ) € C°(R% x O4; RY), 0(, ) € C°(R* x ORI QR).
[A4] inf, g det[oo*](z, B) > 0, [o0*] ! (z, B) € C°(R? x O5; R @ RY).

[A5] o # g = D(X}, @) # b(XY, o), B # Bo = 00" (X7, B) # 00" (X7, o).

Remark 1 For [A1], there are several well-known types of sufficient conditions for the
existence and uniqueness of a solution of the equation (1). For more details, see Ikeda

and Watanabe [14] Chapter IV.

Moreover, we consider the following assumptions for £ and n.
[B2] lim. 0,5 y00(6/1) ™ < 00.
Let Py be the law of the solution of (1), and L, the infinitesimal generator of the
diffusion (1):
d 1 ) d o
Lgf(a?) = Z bz(ib', Oé)azf(l‘) + 55 Z [O'O'*]Z’j(a?, ﬂ)ala]f(l')

i=1 ij=1

In order to construct the contrast function, it is natural to consider a Gaussian approx-
imation to the transition density in the same way as in Kessler [16]. Using Lemma 1 in
Florens-Zmirou [6], we obtain the following contrast function.

Uen(0) = En:{l()g det Zp, 1 (8) + e *nPy (a)Ee1(8) " Prla)},
k=1



1
where Py () = X3, — Xy, _, ——b(Xy,_,, @), Zk(B) = [00*](X},, B). Let R denote a function
n

(0,1] x R? — R for which there exists a constant C such that R(a,z) < a(l1 + |z])°
for all a,z. We define G = o(wss < tx), Bi(a, ) = 0(X,,,a0) — (X, @), and
B(z, ap, ) = b(x, ap) — b(x, ). Moreover, in order to formulate the preliminary lemmas
given later, we prepare several functions and notation as follows. For Lemma 4, we define

Uilavan8) = [ B (X200, a)l00"] (X0 H)BXE a, 0)ds,
Usla 5,50) = [ logdetloo™) X7, 9)ds

+ [ [l o) oo (XD, )] ds

e /OIB (X0, a0, @) [o0"] " (X°, B) B(X?, a, ),

where M = lim. 0 ,00(2y/n) . Note that U, is only well-defined under assumption
[B2]. For Lemma 5, let

2 32 1 82
C (90)( # (i) gy 5 (WUE’”(GO))1<i<ml<J‘<q)

1 9? 1 9?
“Vm (35 ey Uein (90))1§z‘§q,1§j§p n (35i3ﬁj UE’”(HO))lgi,qu

o) — ( (5700)) o e, 0 ) |

0 ([ﬁ’j(eo))gz‘,qu

where

0 = [ (000 foo 000 (bXEc) )
) = 5 [ | (o)) oo T (o0 oo 00, )

For Lemma 6, define

Lemma 1 Suppose that [A1]-[A3] hold true. Then
(i)

En[Pie)\Gi) = ~Bii(a0.0)+ R (. X,,).
(it)
71 12 n 52'—\i1i2 1 i1 12
Ej, [Pk (a)Pk (a)|gk—1] = ﬁ:kq(ﬁo) + _kalkal(aﬂa )

62
+R <E,thl> +R< X, ) .
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2

i i i n € i i —i1i i
Ey, [Pkl (a)sz(a)Pk3(a)|gk—l] = 2 Sk} (50)3193—1(@0, a) + =5 (50)Bk2—1(a0a a)

+E2% (Bo) By (ao, ) }
]' ) g )
+$Bkl—1Bk2—lBk3—1(a0v @)

gt g2 1
FR( 5%, )+ R (50X, +R(F,thl>.

B | L1 PV ()16 | = = {SRAER(B0) + EXIER () + EHEER (Bo) )
j=1
62 =112 i3 In =113 i n
5 {ZE (B0 BE 1 By (a0, ) + E5 (B) B 1 By (aw, 0)

+E118(B0) By By (o, @) + Z225 (Bo) By By (o, @)
+EI (B0) BiLy Bt (a0, ) + E2% (6o0) By By (0, ) }

1 . . . .
B B B Byl (o, )

4 2 1
+R< X, ) +R< X ) +R< X, )
Lemma 2 Let f € C°(R? x ©;R). Assume [A1]-[A3]. Then, under Py,
() . 1
S F(X 0 [
n = 0
as € — 0 and n — oo, uniformly in 6 € ©, and
(ii)
Z f(th—N Q)Pli(a()) —0
k=1
as € — 0 and n — oo, uniformly in 0 € O.
Lemma 3 Let f € C°(R? x ©;R). Assume [A1]-[A3] and [B1]. Then, under Py,,
(i)
n o 1 .
Y F(Xy OPP o) = [ FXE0)[o0 (XD, G)ds
k=1

as e — 0 and n — oo, uniformly in € ©. Moreover, if [B2] holds true, then, under Py,,
(ii)
n L 1 .
Y F(Xo ORI [ F(XD0)lo0" Y (X, Gu)ds
k=1

1 .
Ve / F(X,0)B'BI (X0, ap, )ds
0

5



as e — 0 and n — oo, uniformly in 0 € ©, where M = lim,_o, 00(ey/n) L.

Lemma 4 Assume [A1]-[A4]. Then, under Py,, ase — 0 and n — oo,
(i)
Sll[_) ‘52{U5,n(a7 ﬁ) - Us,n(aﬂa 6)} - Ul(aa Qp, ﬁ)‘ — 0.
fcoO

(i) Moreover, suppose that [B2] holds true. Then, under Py,, as e — 0 and n — oo,

%Us,n(aa ﬂ) - U2 (Oé, 67 50)

sup — 0.

0coO

Lemma 5 Assume [A1]-[A4] and [B2]. Then, under Py,, as ¢ — 0 and n — oo,
(i)
C'E’n(ﬁg) — 2[(90),
(ii)
sup |Cen(Bp +0) — C.n(6p)| — 0,

101<ne,n

where 1., — 0.

Lemma 6 Assume [A1]-[A4] and [B2]. Then
Ae,n — N (07 41(90))

in distribution, under Py,, as ¢ — 0 and n — oo.

3 The main result

Let 9;7” = (G, BM) be a minimum contrast estimator defined by

U. n(0-,) = inf U, ,(6). (2)

fcO

Our main theorem is as follows.

Theorem 1 Assume [A1]-[A5] and [B2]. Then,
éa,n — 90

in Py, -probability as e — 0 and n — oo. Moreover, if 6y € © and I1(6y) is positive definite,

(i

in distribution, under Py,, as ¢ — 0 and n — oo.

) — N (0,1(60) ")



Remark 2 (i) Let PP be the restriction of Pag to F, = o(X;, : 0 < k < n). In
the same way as in Gobet [9, 10], under reqularity conditions, we can obtain the Local
Asymptotic Normality for the likelihoods as follows: For every u € R? and v € RY, under

Py,,
apteu,Bo+—=
P, v N1\ .
log T poode (Xt )o<kzn)) = <U> N — 5(@) [(90)<U>

in distribution as € — 0 and n — oo, where N is a centered Gaussian variable with
covariance matriz I1(60y). For details, see Uchida [31]. If 1(0y) is non-singular, it follows
from minimaz theorems that I(0y)™" gives the lower bound for the asymptotic variance of
regular estimators. This together with Theorem 1 shows that the estimator given by (2)
is asymptotically efficient.

(11) It is worth mentioning that the estimators of the drift and diffusion coefficient
parameters in Theorem 1 are asymptotically independent.

(iii) Note also that when (s4/n)~' — 0 the rate of convergence is different for drift
and diffusion coefficient parameters. The estimator of the diffusion coefficient parame-
ter converges more quickly than the estimator of the drift parameter because it utilizes
information about the diffusion coefficient in the fine-structure of the continuous sample
path.

When o(z, 3) = o(x), Theorem 1 holds under slightly weaken conditions. Let C2*(R% R'®
R") be the set of all functions f of class C°(R% R?®@R") such that f and all of its deriva-
tives have polynomial growth. Instead of assumptions [A3]-[A5], we suppose the following
assumptions.

[A3] b(z, a) € CP(R? x ©4;RY), 0(2) € C°(RGRYQRT).
[A4] inf, det[oo*](z) > 0, [00*]7'(z) € C*(RE; R @ RY).
[A5’] @ # g = b(X?, &) # b(X?, ).

Set I (cg) = (ig’j(ao))mm and I, (a0) = Jo (Fb(X?, a0)) [0 (X0) (F2b(X0, a0)) ds.
We consider the following contrast function:

(o) = nz P (@)oo’ (X ) Pula),

and let &, be a minimum contrast estimator defined by

ﬁgyn(dg,n) = inf (wa(a).
CMEGQ
Corollary 1 Suppose o(z,) = o(x), and assume [A1], [A2], [A3’]-[A5’] and [B1].
Then,
OAéE,n — Q)

in P,,-probability as € — 0 and n — oo. Moreover, if ay € O, and fb(ag) 18 positive
definite, )
5_1(6‘5,n - aO) - N (07 [b(aﬂ)_l)

in distribution, under Py,, as ¢ — 0 and n — oo.



4 Proofs

Proof of Lemma 1. In the same way as Lemma 7 in Kessler [16], we prove Lemma 1.
Let ¢;(z,y) = ] (gt — 2.
(i)
1
L, [d)l(th—l’th”gl?—l] = ¢1(th 1o Xty 1) + _L00¢1(th—1ath—1)
+/ / L90¢1 th 17th 1+u2)|gk 1]du2dul

= Ebll (th—l’ ) +R ( th 1> :
Thus, one has

. 1.
E00 [Pzil(a”gﬁq] = E90 [¢1 (th—l’th)|gI?fl] - ﬁb“ (th'—17 a)

1. 1
= ﬁBklfl(a(b Oé) + R (ﬁ,thl> .

(i

1
E9o[¢2(th717th)|ng—1] = ¢2(thf17th71)+_L90¢2(th717th71)
1
2 2

n Ul u n
+// / Ego[ L, ¢2( Xt > Xty us)|GE 1 dugdusduy

Lgod)Q(th 17 th 1)

2

= :2”21(50) zb“biz(th,laOéo)

£ 1
4R (ﬁ’XtH) R (E th_l> .

Thus, if ¢*(z,y) = (y* — z*), one has

Eg, [P PE()IGR] = Egylda(Xy,_,, X4, 1GH]

_E90[¢I(th717thc)|gk—l]ﬁb2(th717a)

_E00[¢Z2(th—17th)|glyclfl]gb“(th—1va)

1. .

b (X, )

2 o 2 1
=SS g (Ko 4 B (S X ) R (X))

1, i

_{ﬁbl(th—la )+R< » Xt 1>}552(th_1704)

8



1. 1 1
- {Eb 2(th—17 aO) +R <ﬁ7 th—1> } ﬁb I(th'—17 a)
1 017,02
+ﬁb b (th,UOé)
62,—7:12'2 ]' il i2
= E:kfl(ﬂO) + ﬁququ(aOa o)
2

€ 1
R (ﬁ’XtH) 4R (E’th—l> .
1
(iif)

3
n 1
E9o[¢3(th717th)|gk71] = Z Ll90¢3(th717thf1)

Int
—n

% w1 pu2 LUl
+/0 /0 /0 /0 Ego [ Lgy§3( Xty > Xty 4us) |G Jduadusduyduy

62

T o2 (B3 (Bo)b™ (X, ) + Z475 (Bo)b (X, )
E?igl (ﬁo)b“ (th_la aO)}

+$b“ b2 b* (thil, Oé[))

gt g2 1
+R (55X )+ R (50X +R<H,th_l>.

If ¢“(z,y) = (y* — 2°)(y’ — 27), one has
Pl PEPE(a) = ¢3(Xy, ,, Xy,)
(X, th)%b” (X, ., )
(X X)W (Yo, )
+¢™(Xy,_,, th)%bilb” (Xi,_,, )
—P'PP(a) %bif* (Xi, > ).
Thus,

Eg, [Py PR PP (0)|GEL] = Egy[d3(Xe_y, X, ) |G
2

€% il i Lo i
—ﬁ:k_ﬁ(ﬁo)b (X @) — ﬁb 1% (X, )b ( Xy, )
e? —ini3 i1 1 i2 743 i1
—ﬁ:kq(ﬁo)b (th_pa)—ﬁb b ( Xy, )b (X4, ap)
Lo i 52~m'2 i
+$b 'h (th—l’ a)b 3(th—1v aO) - ﬁ:k—l(BO)b 3(th—1v a)

1 . . .
— BB (0, 00)b (X, )

9



g2 1

52

= S {E0) B (a0, ) + ZE (0 B2 (00,0)
:;92%31(50)319 1 (e, )}

1 . . .
+$BllcilBlZc2lellcafl(a07 04)

gt g2 1
() en( o)

(iv)
54 . .
Eoloa(Xo Xo)IGi ] = —5 {ZRAER(5) + ZEE (B) + S (B) }
+5 (B (B (X, a0)
FERE (Bo)b? b (X, CVO)
HER (o) (X,
:ﬁjﬁ(ﬁo)b“b“ (Xt _ys a0
FE (D (X0
+E (Bo)

+ﬁbi1bi2bi3 b ( Xy, 00)

gt g2 1
4R (E,Xt“) IR ( X, ) IR (ﬁ,xt,ﬂ) .

If gni2(z,y) = (y* — o) (y™ — 2™)(y" — 2™), one has
Fo [P PEPEPR@IGE L] = Fofoa(Xe, X016 ]

B¢ (X, X )G (X, 0)

B[ (X, X IGE] D (X, 0)

B[ (X, X, )| llibl (Xi,_1v0)
B¢ (Xy, X)) IGE ] 5bb (X, 0)
Egy[¢™ (Xo,_,, X, ) G 1] b“b”’(th Q)

+Eo [0 (X, , Xiy) |g}§71]ﬁb“bi2 (Xgys @)

B0 (Ko X G b B (X, )

10



i1 iz pi n 11
—Ey, [Pk Py Pk3(a)|gk71]ﬁb 4(th_1a a)

64

= B ) + SRS () + SRS ()
2

€ —%1%2 i i
55 {0 (B0 B (a0, )b (X, a0)
I (50) B (e, ) (X, )

(
+E3 (B k- 2 1 (v, )™ (X, o)
:2”31(50 (a07 )524(th71,04)
+E4 (B )b (Xy,_,, x)

Z 1 (aw,
—Z ()b (Xy,_,, 0
—i—:ﬁ;“ﬂﬁo b2 (th e
+E (Bo) By (o, )b (X, _,, cxp)

) By

) B

)

) b (th_l,ao)

)

) By )
= (50) Ly (o, )0 (X, 5 @)

) B )

)

)

)

)

)

)
)0 (X, )

+E124(B0) By (00, )b (X, _,, o)
—Z2 (Bo)b" (X, )b (X, 0)
+E2M (B (X, )b (X, |, @)
+EP (B0) B2 1 (a0, )b (X, o)
—ERM (Bo)b™ (X, )b (X, )
HEE (Bo)b™ (X, )b (X, 04)}
+% {Br 62050 (X, _,, )
—b" b (X, |, a0)b® (X, |, @)
=0 (X, )b (Xy,_,, @)
—b"2b"b" (X, _,, ao)b“(th Q)
+01 0 (X, ap)b?bB (X, |, )
+02b" (X, )b b3 (X, |, @)
bl?’bl4 (Xt |, ozo)b“bz2 (Xe, |, @)
)

Proof of Lemma 2. (i) In view of Theorem B in Genon-Catalot [7] (cf. Theorem 1.3
in Azencott [1]), sup,«; |f(X;,0) — f(X7,0)] = 0,(1) for all §. Thus, under Py,, as ¢ — 0
and n — o0, one has



Moreover, it follows from the assumption on f and [A2] that

(5 n0)

1 & _
Therefore, the family of distributions of = f(X,_,,+) on the Banach space C(0) with
=1
sup-norm is tight. 1

(ii) Let &.(0) = f(Xy, ,,0)Pi(ag). From Lemmas 1 and 2—(i), under Pp,, as ¢ — 0 and
n — oo, one has

< Q0.

sup Ey, lsup

192::1 [£(0)|Gr ] = ZR( Xy 1) 0,
AR EDS {R (%,Xt“> ~r(Lx, )} 0

k=1 k=1
It follows from Lemma 9 in Genon-Catalot and Jacod [8] that 7_, £L(6) — 0 in Py, -
probability as ¢ — 0 and n — oo. From now on, let C' be a generic positive constant
independent of £, n and other variables in some cases (see Yoshida [35] or Kessler [16]).
Moreover we may write (), if it depends on an integer m. In order to prove the tightness
of Y0, &L(+), it is enough to show the following inequalities (cf. Theorem 20 in Appendix
I of Ibragimov and Has'minskii [13] or Lemma 3.1 of Yoshida [32]):

(z s;(e))ﬂ: e 3

IN

Cl02 — 0 [*, (4)

n n 217
(Z HDEDY 5;(@))

k=1 k=1 ]
for 0,601,0, € ©, where [ > (p 4 ¢)/2. We define Aj (), A} ,(#) and Aj 5(6) by

&) = f( X, ,,0) /t:klbi(Xs,Ozo)ds

e f(Xig s / S 09 (X, fy)dued

kljl

_ﬁf(th—l’ e)bl(th—l’ aO)
= A2,1(9) + Afm(@) - AZ,?,(H)-

21 n . . 21
9) ] < n2l_1 ZEHO (/ k |f(th—179)bZ(Xsaa0)|dS> ]
k=1 tk-—l

n t ) 2% t 1*2% 2
> Eg, {(/ k |f(th_1,e)b’(Xs,ao)st) (/ " d5> } }
k=1 te—1 te_1

IN

12



= Xn:an [/ " |f(th_1,9)bi(Xs,a0)|21ds]
k=1

k—1

n Ly .
= X [ B [IF (X 0) By I (X a0) 1G]] ds
k=1"1k-1

1
< n-=-C,
n

where the last estimate is based on Lemma 6 of Kessler [16].

Ey,

> Apa(0)
k=1

9
] < Cyue?Ey,

(z [ 0o X ﬁo)d8> ]

n
21, 1-1
0216 n ZEHO
k=1

1 -1
02l62lnl71 (_)
n

33 J " lf (Xi_, 0 B oo (X, 30))1GE 1 )ds
k=1

lg—1

IN

( [ 0o X Bo)d8>l]

IN

S C?lgﬂoa

where the first estimate is based on the Burkholder-Davis-Gundy inequality.

Ey,

> Aps(®)
k=1

21
1 n .
] < ﬁ Z EHon(thfl: e)bz(thfu a0)|2l]
k=1
< C

Therefore, we deduce the inequality (3). For the inequality (4), we first obtain

Ey,

(kil{A;;,l(eQ) - A;;J(el)})%]

n [ t . 21
S n2l_1 Z an ( ' ' {f(th_la 92) - f(th._la 91)}bl(X87 O!O)dS) }
k=1 | \te1
- n [ th p+q .q a ) ) 2
< - I;EQO /t ]Zl/o a—gjf(thfl,Gl—l—u(HQ—91))du(92—91)] b (X, o) ds
) 2
1 20-1 n th p+a . 0 .
< 211(_> E I F(X 0y + u(fy — 6,))du(fy — 0]
=N N ];::1 0o /tk—l {;2:1/0 89jf( 1oy 01 + u(f2 1)) du(6y 1) }
x(bi(Xs,ao))Zlds}
n th P+aq .1 0 ‘ 2
< E — (X 0 0y — 0,))du(0y — 6,)’
> I;/tk_l 0o Jz:;/o 89jf( te_ys 01 + u(62 1)) du(6q 1)

13



<

<

X Eoy[(6 (X, 00)) |Gt ]] ds

1

nﬁC’ (pf(ag — 91)j>

J=1

p+q

C ((p +q) Y _[(02 — 91)j]2>

Jj=1

Clhy — 0, .

Next one has

IN

IN

IN

IN

IN

<

k=1 b1
. 1 -1 n tg 2 #1028
G n Vtkl{f(xtk1,92>—f(th1,91>}l([aa1 (Xs’ﬁo”ldsl

> /ttk gy [{ (Xt 02) = F(Xu s 00) Y oy (0071 (X, 80))' 1G5, ]] ds

k=171

n tk

Z Ey,

k=1"1k—1

bt \ 2
Z/o ﬁf(thfn 01 + U(92 - 91))du(92 - 91)]
J=1 J

X Eg,[([00"]" (X, 60))'Gii—1]] ds

=1

Finally, it follows that

IN

IN

<

S Bl (X 10— F(Xe 0(Xs, 00"

k=1
1 n p+q 1 a P 2
- ];Eeo (;/ﬂ a—gjf(thfla 01 + u(Bz — 01))du(bz — 01)70"(Xy, ,, )

21
1 p+q )
< - (Z(ez—el)f) ,

j=1

which completes the proof.

14



Proof of Lemma 3. (i) From Lemma 1, one has

ZEeo (X, 0) PPl (a)lGr ] = EZ (Xt s N)oo™ " (X4, ., Bo)

f
+kznj1{R <%,th ) +R< = th_l>},

7 ] n L ]_ 672
Z E90 th 179)2(Pkplg(a0))2|gk71] = Z {R (ﬁ’thl> + R < nd 7th 1)

From Lemma 2—(i) and [B1], under Py,, as ¢ — 0 and n — oo, one has

> Bl (X O PP 0IGE] = [ FX0 0000, s

k=1
> Egyle f (X, 0)* (PPl (00))*|GE_)] — 0.
k=1

Thus, it follows from Lemma 9 in Genon-Catalot and Jacod [8] that under Py, as ¢ — 0
and n — 00, one has

S J(Xay )PP o) = [ FOX 0019 (X0, s
=1

For tightness of the family of distributions of e =2 S7_, f(X,,_,,-)PiP](ap), we use that

|

n

a ) .
=7 o5 (X, O) PP (o)
k=1

sup Ejy, [sup
en 0

< s | o 3| (Y0 s [(Pe0))? + (o) 1]
0 k=1

1 0 1 y g

< §SUPE90 lZ sup agf(th_ug)‘ {ﬁ ([UU*]”(th_pﬂo) + [UU*]”(th_pﬁo))
—2
+R< K, ) + R (F’Xt“> H
1

< Cupy
< 00,

-1

where the last estimate is based on lim. o, 00(en) " = 0. This completes the proof.

(i) Noting that
y o 1 . . 1 . _
P,Pl(a) = Pﬁpﬁ(ao)+Epﬁ(ao)Biq(aoaa)+EP1§(040)B;171(@0,04)
1 ; .
+ﬁBk—1Bl]cfl(a07a)7

15



it follows from Lemmas 2 and 3-(i) and [B2] that under Pp,, as ¢ — 0 and n — oo,

=23 f(X,_,.0)PiPl(a)

k=1

1
= _2Zf th 1?9)Pkpj(a0) n2 QZf th 179)Bk lBk l(aﬂv )

k=1

+-— 6_2 Z f th 1 ) {Plg(&o)B]Z_l(ao, a) + Plg(aﬂ)Bli—l(aoa a)}
— / oo™ (X2, By)ds + M? /Ulf(Xf,H)B B (XY ap, a)ds

uniformly in 6 € ©, where M = lim. ¢, ,00(64/n) . This completes the proof. 1

Proof of Lemma 4. (i) A simple computation yields

n

e{Ucn(, B) = Usnlao, B)} = n Z:(Pk(a) — Pi(00))" =51 (8) (Pe() + Pi(ao))

= > (0(Xy_,, ) = b(Xy,_,, 0)) Bl (B)

k=1
1

X (2 {th — th71 — ﬁb(thc—N O{())}
1
= {b(Xe, s 0) = (Xe,s0)})
From Lemma 2, under F,, as ¢ — 0 and n — 0o, one has

2{Uan(a B) En(QOa )} — Ul(Oé, aO)ﬁ)

uniformly in § € ©. This completes the proof. 1
(ii)It follows from Lemmas 2—(i) and 3-(ii) that under P, as € — 0 and n — oo,

%Ua,n(aa ﬁ) — UQ(aa /87 50)

uniformly in § € ©. This completes the proof. 1

Proof of Lemma 5. We first consider the uniform convergence of C. ,(6). An easy
computation implies

82 n 82 * 1
2~ = — =-1 1

- da;0a; Uenl®) 21;2::1 <5ai8aj Xy a)) e1(8) (Pk(ao) + nB(Xt’“’“ a0, a))

1 o * o 9
+2ﬁ 162::1 (a zb(th 19 OZ)) ‘:‘k—ll(/B) (a—%b(th 19 a)) )
]_ 82 1 1 n a * a .
- - _ = (9 X Y (=
5\/58%8@ Uen(0) € n( )192::1 <8azb( tho1 a)) 3ﬁj( L(3)



X

(Pk(a()) BNy, 00,0) )

n 82
>

= \96;00;
* 82 ——1
Z <8/87,8/8] :‘k—l(ﬁ)> Pk(a)

2
1 0 U.n(0) — logdet5k1(5)>

ndpop; "

From Lemma 2, under F,, as ¢ — 0 and n — 0o, one has

0? «
2 _ *1—1 0 0
c aazaa] E n - 2 / (aalaa] O!)) [O-O- ] (XS ’ /B)B(Xs » @0, OZ)dS (5)

12 [ (b)) oo 000) (b0 ) s
g Ueal®) 2 [ (b)) (o] () ) BOS.an )
1 02 o

nagag 9 = aman
2
i) (o) () as

1 0?
+M2/0 tr lBB*(Xg,ag,a) ( oo™ _I(Xg,ﬁ)ﬂ ds

log det[oo*](X?, B)ds (7)

uniformly in 6 € ©.
Now (i) follows from (5), (6) and (7). Next, by the assumptions [A3] and [A4], the
limits of (5), (6) and (7) are continuous with respect to ¢, which completes the proof of

(ii). 1
Proof of Lemma 6. We set
d n :
v = —12(8% (X)) = P
* I
= o S () 5] P
k=1 l=1
= Zgli(go)v
k=1
1 0 1 & 0
—%a—ﬁjUa,n(go) = ——kz:la—ﬂjlogdetuk 1(5o)

—e*%ZPk(ao azj =21, (B0) Pila)

"1 8 =
_ Z 78— logdet =1 ()

17



I1ls
-y i > (5=t PPk
l1,l2=1
Zﬁi(go)-
k=1

In view of Theorems 3.2 and 3.4 of Hall and Heyde [11], it is sufficient to show that under
Py,, as ¢ — 0 and n — oo, one has

éEeo[ﬁk(f)o)lgk =0 (8)
S Enlr0)192-1] 0 o)
S B I ] — A1) (10)
S B o7 00 ) > 41200 (1)
kEn:lE [t (60)IGr_1] — (12)
> B [(6(00)"19E-1] =0 13
S En [((60)) 1G] — 0. (14

k=1

Proof of (8). It follows from Lemma 1-(i) that we obtain

1
ZEeO £ (00) |7 J—ZR(n X, ) 0

in Py,-probability as ¢ — 0 and n — oo. I
Proof of (9). By Lemma 1-(ii), one has

n : n d 1 d
L(00)IG1 1] = ~ L9 ogdets, — —tr |E- — =t
> Ealik(t0)Gi | Z{ o log et %) ﬁtr[kl(ﬁw (aﬁj k_l(m)]
-2
)
n 5—2
- E{e(ame) <2 (i)
— 0
in Py,-probability as ¢ — 0 and n — oo. 1

Proof of (10). From Lemma 1-(ii), we have
ZEeo e & (00)|G1 4]

18



s Z Ka 3 th_l,a0)>*E;i1(50)r Ka%hb(th_Nao))>*5,;_11(ﬁo)]lz

k=111,l>=1

X Egy [Py Py () |G

+Z{ ( , X, 1>+R<2—;,th_l>}

«Q )*51211(50) (th717a0)

Z2

— AT} (fy)

in Py,-probability as ¢ — 0 and n — oo. I
Proof of (11). Using Lemma 1-(ii) and (iv), one has

Z Egy[nln? (60)|Gp_1]

(1[0
= = 1 =
{2 (s o)

4e?

+e

log det = (60)>

0B;
) d l3l4
3 logdet Zx_1(Bo) Y <8 11 (Bo ) Eg, [Py Py (c0) |G
/8]1 I3,la=1
d 1l
log det = =L ( E, [Pl Pl n
55]2 ogaet =y 50 1122:1 <35y1 k— 1 ) 00[ k Lk (a0)|gk—1]

1l 9 lals
n Z Z ( =1 ﬁo)) <%E;§i1(ﬁo)> EQO[PI?PI?PJ?PI?(QO)|Q,?_1]}

l1,lo=113,l4=1

0

1 0
= - gl {tr lﬁjlak—l(ﬁﬂ)zk—ll(ﬁﬂ)] tr [%51%1(50)% 1(50)]

—tr

—tr

+tr

Ll

_leikq(
o _ L o _ L

P G ) P LA NERERNT)

(55-3e-s0m) = | 55200 =224 0)

S r |55z )
J2

[ Ce ) ESRC CLENER ERNER

o2 —4
+Z{ ( thc 1>+R< thc 1>+R<2—57th1>}
AT (f,)

in Py,-probability as ¢ — 0 and n — oo. 1
Proof of (12). By Lemma 1—(i) and (iii), we obtain

ZEQO §k77k (60)1G7 1]
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- _2_22[( thl,ao)yz;_amo)r 7 o8 det S (90} [P 20/ G

kll

SR> Kaiib(th-na>>*:;11(ﬁo)r (a%z,;_a(ﬁo))%

k=111,l2,l3=1
X Egy [Py By Py (00) |7

R )
S TR ER)

— 0

in Py,-probability as ¢ — 0 and n — oo. I
Proof of (13). Using Lemma 1-(iv), one has

ki Eun (€ (00))1G2]

_ 165_42n: zd: Kaiib(xtk_l,ao)>*E,;_ll(ﬁo)r l(aiaib(th_l,ao)>*E/§_11(5o)r

k=1 l17l27l3al4:1

a * I3 a % Iy
X l(aaib(th_u ao)) S 1(50)1 [(a—aib(th_l,ag)> Ek_ll(ﬁo)]
XEGo[PIiIPI?PIiSPI?(a )|Gr—i]

n 1 —2 6_4
= Z R <E7th—1> + R th 1 + R F’th—l
k=1

— 0

in Py,-probability as ¢ — 0 and n — oo. I
Proof of (14). We first obtain several estimates as follows:

(i (60))" < 2° {i (aiﬂ] logdet = _ 1(50))

+e'n?(2d)° Y [(a%fk 1(50)> N (Pzilpziz(ao))4]7

l1l2=1

Eg (P PR (a0)|Gr 1] < 3 { Eayl(6"0)* (Xo,_,, Xe)IGE ]

1
Jrﬁ(bl1 (Xtr 0)) By [(0")* (X, Xe)1GE]

(0 (Yo, 00)) Ea [P (00) 624}

n

In the same way as the proof of Lemma 1, we have
g® gb gt
Ey, [¢8(th717th)|ngchl] = R <F7th1> + R (ﬁ? thl) + R (ﬁ? thl) (15)
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g? 1
+R( X, +R<$,th_l>.

It then follows form (15) and Lemma 1-(iv) that
R 28 26 !
EQO[(PICIPICQ) (a0)|gl7czfl] = R (F:th1> +R (Eath1> +R (ﬁa thl)
g2 1
YR (W,Xm) 4R (ﬁ’ th_1> .

Thus, one has

n i n 1 —2 —4
> Euloin) 601 < Y {R (v + v (Sooxe ) er (S
k=1 n n

k=1 n*’
g~ g8
) o)
— 0
in Py,-probability as € — 0 and n — oco. This completes the proof. 1

Proof of Theorem 1. First of all, in order to prove consistency of ég,n, we note that
in view of the compactness of ©, there exists a subsequence (g, ) such that égk,nk goes
to a limit o = (o, Bs0) € O.

Next, it follows from Lemma 4-(i) and the continuity of U;(«, g, 3) with respect to
(e, ) that under Py, as ¢; — 0 and nj — 00, one has

giUEk,nk (&Ek:nk’ Bfk,nk) - giUfkank (a07 Bfk,nk) — U (Ozoo, Qo, 500) (16)

From the definition of the minimum contrast estimator 9;7” and oy € O,,

6iUEk:nk (dEk,nm ng;nk) - &%Ue;c,nk (a07 Bsk,nk) < 0. (17)

By (16), (17), [A4] and [A5], we obtain s = ap. We now have deduced that any
convergent subsequence of &, , goes to ap. Thus, we complete the proof of the consistency
of & p.

For the consistency of Bg,n, using Lemma 4-(ii) and the continuity of Us(«, 3, ) with
respect to («, ), under Pp,, one has

1 R ~
n_kUsk,nk (ask,nka 5519,“19) — U2 (a07 5007 50) (18)

as €, — 0 and ny — oo, where we note that a., ,, tends to o by the previous proof.

Moreover, in view of the definition of ég,n and f3) € O,

1 1

_Ufk,nk (&Ekynk’/éfkynk) < UEkank (&Ek,nkaﬁﬂ)' (19)
N N
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It follows from (18) and (19) that Us (v, foo, Bo) < Us(av, fo, 30). Moreover, by a version
of Lemma 17 in Genon-Catalot and Jacod [8], one has

log det[oo*|(X?, Bo) + d < logdet[oo*] (X}, B) + tr [[aa*](X,?, Bo)[oo*]7H(XY, Boo)]

with equality iff [00*](X?, Bc) = [007](X}, By). Hence Us(a, Boo, o) > Us(cvo, Bo, Bo)-
Thus [A5] together with the above inequalities for Us implies 3., = 5. Therefore, by not-
ing that any convergent subsequence of Bw tends to 3y, we finish proving the consistency
of Bg,n. |

Finally we prove the asymptotic normality of 8. ,. Let B(6y; p) = {0 : [0 — 6] < p}. It
follows from 6y € © that for sufficiently small p > 0, B(6y; p) C ©. By Taylor’s formula,
one has, if ég,n € B(0o; p),

Ds,nse,n - As,na

where Dg,n = fol Oe,n (90 + U(ég,n — 90)) du and Sg,n - (5_1(d5,n - aU)*a \/ﬁ(Bs,n - 50)*)*
It follows from the consistency of ég,n that for sufficiently small p > 0,

~

Pyy[0c € ©] > Py [|0c — 0] < p] = 1

as ¢ — 0 and n — oo. Moreover, by the consistency of 9;7”, there exists a sequence
{B(00; 1-,n)} such that n., — 0 and Py,[0:, € B(fo;n-n)] = 1 as € — 0 and n — oc.
Since we obtain

P[0 € ©°U B(0p; 0.1n)] < Pyol0-n € O + Pyy[0-.0 € B(Op;0.0)] — 0
as ¢ — 0 and n — oo, one has l{émeecuB(eo;nm)C} — 0 in Py, -probability as ¢ — 0 and
n — oo. By Lemma 5-(ii), letting R, = D, — C: (),

|R: | - L5 conBOnine )} = 963?;:}37”) Cen(0) — Cen(bo)| — 0

in Py,-probability as ¢ — 0 and n — co. Thus, under Py, as € = 0 and n — oo, one has
R., — 0. Using Lemma 5-(i), D., — 2I(f) in Py,-probability as ¢ — 0 and n — oc.

Let I'(#) be the limit of C. ,(f) as ¢ — 0 and n — oco. For details of I'(¢), see (5), (6)
and (7) in proof of Lemma 5. Note that I'(#) is continuous with respect to 6. Since I(f)
is positive definite, there exists a positive constant C' such that inf|—1 [1(6)z| > 2C'. For
such C' > 0, there exist N;(C) > 0 and Ny(C') > 0 such that for any ¢ < N;(C) (¢ > 0)
and n > Ny(C'), and for any § € [0,1], B(6o;n:-,) C © and |T'(6p + 0n.,,) — ['(6)| < C/2,
where 7., — 0 as ¢ — 0 and n — oo. For such C > 0, let C. ,, be the set defined by

c .
Ca,n = {Sup |Ca,n(9) - F(9)| <, ga,n € B(QO; na,n)} .
0coO 2

For any ¢ < Ny(C') (¢ > 0) and n > Ny(C), and for any |0| < 1, one has, on C,.,,
sup |(=Dp, +T'(0))x| < sup |[(=Dy, +T'(0p + 0mep))x| + sup |(I'(6o) — I'(0p + 0m:n)) x|

|z|=1 |z|=1 |z|=1
C
< sup |C.n(0) —T(0)] + =
1000/ <n-.n 2
< C.
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Hence, for any ¢ < N;(C) (¢ > 0) and n > N5(C), we obtain, on C.,,

inf |D. x| > |i1|17f1 IT'(6p)z| — sup |(=D.pn + T'(0)) x|

|lz|=1 |z|=1

> (.

Let D., = {D., is invertible}. It then follows that for any ¢ < N;(C) (¢ > 0) and
n > Ny(C), Ppy[D.n] > Py,[C:n]- Since it follows from (5), (6) and (7) that under [B2],
Py,[C..n] = 1 as e — 0 and n — oo, one has Py [D.,] - 1 as ¢ — 0 and n — oo.

Let &, = {égn €O}ND,,, and E.,, = D.,, on &, and E, , = Jp, on EF,, where

e,n?
Jp+q is the (p+q) x (p+¢) identity matrix. Note that Py [&. ] — 1 as e — 0 and n — oo.
Since |E., — 21(6y)|le., < |D-n —21(6y)| and 1g,, — 1 in Py -probability as e — 0 and
n — oo, one has E,., — 2I(fy) in Py, -probability as ¢ — 0 and n — oo. Noting that
Senle., = B pDenSenle., = EjAcple,, and by Lemma 6, S.,,1e, — N(0,1(fy) ") in

distribution as ¢ — 0 and n — co. And, again using the fact that under Pp,, as ¢ — 0
and n — oo, 1lg., — 1, we complete the proof. 1

Proof of Corollary 1. When o(z, 3) = o(x), it is easy to show that Lemmas 4-(i),
5, 6 hold under the assumptions [A1],[A2],[A3’],[A4’] and [B1]. In the same way as the
proof of Theorem 1, we deduce the result. 1
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