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Abstract

In the process of developing the theory of free probability and free entropy,
Voiculescu introduced in 1991 a random matrix model for a free semicircular sys-
tem. Since then, random matrices have played a key role in von Neumann algebra
theory (cf. [V8], [V9]). The main result of this paper is the following extension of

Voiculescu's random matrix result: Let (X
(n)
1 ; : : : ;X

(n)
r ) be a system of r stochas-

tically independent n� n Gaussian self-adjoint random matrices as in Voiculescu's
random matrix paper [V5], and let (x1; : : : ; xr) be a semi-circular system in a C�-
probability space. Then for every polynomial p in r non-commuting variables

lim
n!1


p

�
X

(n)
1 (!); : : : ;X(n)

r (!)
� = kp(x1; : : : ; xr)k;

for almost all ! in the underlying probability space. We use the result to show that
the Ext-invariant for the reduced C�-algebra of the free group on 2 generators is
not a group but only a semi-group. This problem has been open since Anderson in
1978 found the �rst example of a C�-algebra A for which Ext(A) is not a group.

1 Introduction.

A random matrix X is a matrix whose entries are real or complex random variables on
a probability space (
;F; P ). As in [T], we denote by SGRM(n; �2) the class of complex
self-adjoint n� n random matrices

X = (Xij)
n
i;j=1;

for which (Xii)i, (
p
2ReXij)i<j, (

p
2ImXij)i<j are n

2 independent identically distributed
(i.i.d.) Gaussian random variables with mean value 0 and variance �2. In the terminology
of Mehta's book [Me], X is a Gaussian unitary ensemble (GUE). In the following we put
�2 = 1

n
which is the normalization used in Voiculescu's random matrix paper [V5]. We

shall need the following basic de�nitions from free probability theory (cf. [V3]):
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a) A C�-probability space is a pair (B; �) consisting of a unital C�-algebra B and a
state � on B.

b) A family of elements (ai)i2I in a C�-probability space (B; �) is free if for all n 2 N

and all polynomials p1; : : : ; pn 2 C [X], one has

�(p1(ai1) � � �pn(ain)) = 0;

whenever i1 6= i2; i2 6= i3; : : : ; in�1 6= in and '(pk(aik)) = 0 for k = 1; : : : ; n.

c) A family (xi)i2I of elements in a C�-probability space (B; �) is a semicircular family,
if (xi)i2I is a free family, xi = x�i for all i 2 I and

�(xki ) =
1

2�

Z 2

�2
tk
p
4� t2 dt =

(
1

k=2+1

�
k
k=2

�
; if k is even;

0; if k is odd;

for all k 2 N and i 2 I.

We can now formulate Voiculescu's random matrix result from [V5]: Let, for each n 2 N ,

(X
(n)
i )i2I be a family of independent random matrices from the class SGRM(n; 1

n
), and

let (xi)i2I be a semicircular family in a C�-probability space (B; �). Then for all p 2 N

and all i1; : : : ; ip 2 I, we have

lim
n!1

E
�
trn
�
X

(n)
i1
� � �X(n)

ip

�	
= �(xi1 � � �xip); (1.1)

where trn is the normalized trace on Mn(C ), i.e., trn = 1
n
Trn, where Trn(A) is the sum

of the diagonal elements of A. Furthermore, E denotes expectation (or integration) w.r.t.
the probability measure P .

The special case jIj = 1 is Wigner's semi-circle law (cf. [Wi], [Me]). The strong law
corresponding to (1.1) also holds, i.e.,

lim
n!1

trn
�
X

(n)
i1

(!) � � �X(n)
ip (!)

�
= �(xi1 � � �xip); (1.2)

for almost all ! 2 
 (cf. [Ar] for the case jIj = 1 and [HP], [T, Cor. 3.9] for the general
case). Voiculescu's result is actually more general than the one quoted above. It also
involves sequences of non random diagonal matrices. We will, however, only consider the
case, where there are no diagonal matrices. The main result of this paper is that the
strong version (1.2) of Voiculescu's random matrix result also holds for the operator norm
in the following sense:

Theorem A. Let r 2 N and, for each n 2 N , let (X
(n)
1 ; : : : ; X

(n)
r ) be a set of r independent

random matrices from the class SGRM(n; 1
n
). Let further (x1; : : : ; xr) be a semicircular

system in a C�-probability space (B; �) with a faithful state � . Then there is a P -null set
N � 
 such that for all ! 2 
nN and all polynomials p in r non-commuting variables,
we have

lim
n!1

p�X(n)
1 (!); : : : ; X(n)

r (!)
� = kp(x1; : : : ; xr)k: (1.3)
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The proof of Theorem A is given in Section 7. The special case

lim
n!1

X(n)
1 (!)

 = kx1k = 2

is well known (cf. [BY], [Ba, Thm. 2.12] or [HT1, Thm. 3.1]).

From Theorem A above, it is not hard to obtain the following result (cf. section 8).

Theorem B. Let r 2 N [ f1g, r � 2, let Fr denote the free group on r generators,
and let � : Fr ! B(`2(Fr)) be the left regular representation of Fr. Then there exists a
sequence of unitary representations �n : Fr ! Mn(C ) such that for all h1; : : : ; hm 2 Fr
and c1; : : : ; cn 2 C :

lim
n!1

 mX
j=1

cj�n(hj)
 =  mX

j=1

cj�(hj)
:

The invariant Ext(A) for separable unital C�-algebras A was introduced by Brown, Dou-
glas and Fillmore in 1973 (cf. [BDF1], [BDF2]). Ext(A) is the set of equivalence classes
[�] of one-to-one �-homomorphisms � : A ! C(H), where C(H) = B(H)=K(H) is the
Calkin algebra for the Hilbert space H = `2(N). The equivalence relation is de�ned as
follows:

�1 � �2 () 9u 2 U(B(H)) 8a 2 A : �2(a) = �(u)�1(a)�(u)
�;

where U(B(H)) denotes the unitary group of B(H) and � : B(H)! C(H) is the quotient
map. Since H � H ' H, the map (�1; �2) ! �1 � �2 de�nes a natural semi-group
structure on Ext(A). By Choi and E�ros [CE], Ext(A) is a group for every separable
unital nuclear C�-algebra and by Voiculescu [V2], Ext(A) is a unital semi-group for all
separable unital C�-algebras A. Anderson [An] provided in 1978 the �rst example of
a unital C�-algebra A for which Ext(A) is not a group. The C�-algebra A in [An] is
generated by the reduced C�-algebra C�

red(F2) of the free group F2 on 2 generators and a
projection p 2 B(`2(F2)). Since then, it has been an open problem whether Ext(C�

red(F2))
is a group. In [V6, Sect. 5.14], Voiculescu shows that if one could prove Theorem B, then
it would follow that Ext(C�

red(Fr)) is not a group for any r � 2. Hence we have

Corollary 1. Let r 2 N [ f1g, r � 2. Then Ext(C�
red(Fr)) is not a group.

The problem of proving Corollary 1 has been considered by a number of mathematicians;
see [V6, Section 5.11] for a more detailed discussion.

In Section 9 we extend Theorem A (resp. Theorem B) to polynomials (resp. linear com-
binations) with coeÆcients in an arbitrary unital exact C�-algebra. The �rst of these two
results is used to provide new proofs of two key results from our previous paper [HT2]:
\Random matrices and K-theory for exact C�-algebras". Moreover, we use the second
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result to make an exact computation of the constants C(r), r 2 N , introduced by Junge
and Pisier [JP] in connection with their proof of

B(H) 

max

B(H) 6= B(H) 

min
B(H):

Speci�cally, we prove the following

Corollary 2. Let r 2 N , r � 2 and let C(r) be the in�mum of all real numbers C > 0
with the following property: There exists a sequence of natural numbers (n(m))m2N and

a sequence of r-tuples (u
(m)
1 ; : : : ; u

(m)
r )m2N of n(m)� n(m) unitary matrices, such that

 rX
i=1

u(m)
i 
 �u(m

0)
i

 � C;

whenever m;m0 2 N and m 6= m0. Then C(r) = 2
p
r � 1.

Pisier proved in [P3] that C(r) � 2
p
r � 1 and Valette proved subsequently in [V] that

C(r) = 2
p
r � 1, when r is of the form r = p+ 1 for an odd prime number p.

We end section 9 by using Theorem A to prove the following result on powers of \circular"
random matrices (cf. Section 9):

Corollary 3. Let Y be a random matrix in the class GRM(n; 1
n
), i.e., the entries of Y

are i.i.d. complex Gaussian random variables with density z 7! n
�
e�njzj

2

, z 2 C . Then for
every p 2 N and almost all ! 2 
,

lim
n!1

Y (!)p = �(p+ 1)p+1

pp

� 1

2

:

Note that for p = 1, Corollary 3 follows from Geman's result [Ge].

In the remainder of this introduction, we sketch the main steps in the proof of Theorem
A. Throughout the paper, we denote by Asa the real vector space of self-adjoint elements
in a C�-algebra A. In Section 2 we prove the following \linearization trick":

Let A;B be unital C�-algebras, and let x1; : : : ; xr and y1; : : : ; yr be operators in Asa and
Bsa, respectively. Assume that for all m 2 N and all matrices a0; : : : ; ar in Mm(C )sa , we
have

sp
�
a0 
 111B +

Pr
i=1 ai 
 yi

� � sp
�
a0 
 111A +

Pr
i=1 ai 
 xi

�
;

where sp(T ) denotes the spectrum of an operator T , and where 111A and 111B denote the
units of A and B, respectively. Then there exists a unital �-homomorphism

�: C�(x1; : : : ; xr;111A)! C�(y1; : : : ; yr;111B);

such that �(xi) = yi, i = 1; : : : ; r. In particular,

kp(y1; : : : ; yr)k � kp(x1; : : : ; xr)k;

4



for every polynomium p in r non-commuting variables.

The linearization trick allows us to conclude (see Section 7):

Lemma 1. In order to prove Theorem A, it is suÆcient to prove the following: With
(X

(n)
1 ; : : : ; X

(n)
r ) and (x1; : : : ; xr) as in Theorem A, one has for all m 2 N , all matrices

a0; : : : ; ar in Mm(C )sa and all " > 0 that

sp
�
a0 
 111n +

Pr
i=1 ai 
X

(n)
i (!)

� � sp(a0 
 111B +
Pr

i=1 ai 
 xi
�
+ ]� "; "[;

eventually as n!1, for almost all ! 2 
, and where 111n denotes the unit of Mn(C ).

In the rest of this section, (X
(n)
1 ; : : : ; X

(n)
r ) and (x1; : : : ; xr) are de�ned as in Theorem A.

Moreover we let a0; : : : ; ar 2Mm(C )sa and put

s = a0 
 111B +
rX

i=1

ai 
 xi

Sn = a0 
 111n +
rX

i=1

ai 
X
(n)
i ; n 2 N :

It was proved by Lehner in [Le] that Voiculescu's R-transform of s with amalgamation
over Mm(C ) is given by

Rs(z) = a0 +
rX

i=1

aizai; z 2Mm(C ): (1.4)

For � 2Mm(C ), we let Im� denote the self-adjoint matrix Im� = 1
2i
(�� ��), and we put

O =
�
� 2Mm(C ) j Im� is positive de�nite

	
:

From (1.4) one gets (cf. Section 6) that the matrix-valued Stieltjes transform of s,

G(�) = (idm 
 �)
�
(�
 111B � s)�1

� 2Mm(C );

is de�ned for all � 2 O, and satis�es the matrix equation

rX
i=1

aiG(�)aiG(�) + (a0 � �)G(�) + 111m = 0: (1.5)

For � 2 O, we let Hn(�) denote the Mm(C )-valued random variable

Hn(�) = (idm 
 trn)
�
(�
 111n � Sn)

�1�;
and we put

Gn(�) = E
�
Hn(�)

	 2Mm(C ):

Then the following analogy to (1.5) holds (cf. Section 3):

5



Lemma 2 (Master equation). For all � 2 O and n 2 N :

E
n rX

i=1

aiHn(�)aiHn(�) + (a0 � �)Hn(�) + 111m
o
= 0: (1.6)

The proof of (1.6) is completely di�erent from the proof of (1.5). It is based on the simple
observation that the density of the standard Gaussian distribution, '(x) = 1p

2�
e�x

2=2

satis�es the �rst order di�erential equation '0(x) + x'(x) = 0. In the special case of a
single SGRM(n; 1

n
) random matrix (i.e., r = m = 1 and a0 = 0; a1 = 1), equation (1.6)

occurs in a recent paper by Pastur (cf. [Pas, Formula (2.25)]). Next we use the so-called
\Gaussian Poincar�e inequality" (cf. Section 4) to estimate the norm of the di�erence

E
n rX

i=1

aiHn(�)aiHn(�)
o
�

rX
i=1

aiEfHn(�)gaiEfHn(�)g;

and we obtain thereby (cf. Section 4):

Lemma 3 (Master inequality). For all � 2 O and all n 2 N , we have

 rX
i=1

aiGn(�)aiGn(�)� (a0 � �)Gn(�) + 111m

 � C

n2
(Im�)�14; (1.7)

where C = m3
Pr

i=1 a
2
i

2.
In Section 5, we deduce from (1.5) and (1.7) that

kGn(�)�G(�)k � 4C

n2
�
K + k�k�2(Im�)�17; (1.8)

where C is as above and K = ka0k + 4
Pr

i=1 kaik. The estimate (1.8) implies that for
every ' 2 C1

c (R;R):

E
�
(trm 
 trn)'(Sn)

	
= (trm 
 �)('(s)) +O

�
1
n2

�
; (1.9)

for n ! 1 (cf. Section 6). Moreover, a second application of the Gaussian Poincar�e
inequality yields that

V
�
(trm 
 trn)'(Sn)

	 � 1

n2
E
�
(trm 
 trn)('

0(Sn)2)
	
; (1.10)

where V denotes the variance. Let now  be a C1-function with values in [0; 1], such
that  vanishes on a neighbourhood of the spectrum sp(s) of s, and such that  is 1 on
the complement of sp(s) + ]� "; "[.

By applying (1.9) and (1.10) to ' =  � 1, one gets

E
�
(trm 
 trn) (Sn)

	
= O(n�2);

V
�
(trm 
 trn) (Sn)

	
= O(n�4);
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and by a standard application of the Borel-Cantelli lemma, this implies that

(trm 
 trn) (Sn(!)) = O(n�4=3);

for almost all ! 2 
. But the number of eigenvalues of Sn(!) outside sp(s) + ] � "; "[ is
dominated by mn(trm 
 trn) (Sn(!)), which is O(n�1=3) for n ! 1. Being an integer,
this number must therefore vanish eventually as n!1, which shows that for almost all
! 2 
,

sp(Sn(!)) � sp(s) + ]� "; "[;

eventually as n!1, and Theorem A now follows from Lemma 1.

2 A linearization Trick.

Throughout this section we consider two unital C�-algebras A and B and self-adjoint
elements x1; : : : ; xr 2 A, y1; : : : ; yr 2 B. We put

A0 = C�(111A; x1; : : : ; xr) and B0 = C�(111B; y1; : : : ; yr):

Note that since x1; : : : ; xr and y1; : : : ; yr are self-adjoint, the complex linear spaces

E = spanC f111A; x1; : : : ; xr;
Pr

i=1 x
2
i g and F = spanC f111B; y1; : : : ; yr;

Pr
i=1 y

2
i g

are both operator systems.

2.1 Lemma. Assume that u0 : E ! F is a unital completely positive (linear) mapping,
such that

u0(xi) = yi; i = 1; 2; : : : ; r;

and

u0
�Pr

i=1 x
2
i

�
=
Pr

i=1 y
2
i :

Then there exists a surjective �-homomorphism u : A0 ! B0, such that

u0 = ujE:

Proof. The proof is inspired by Pisier's proof of [P2, Prop. 1.7]. We may assume that B is
a unital sub-algebra of B(H) for some Hilbert space H. Combining Stinespring's theorem
([Pau, Theorem 4.1]) with Arveson's extension theorem ([Pau, Corollary 6.6]), it follows
then that there exists a Hilbert space K containing H, and a unital �-homomorphism
� : A! B(K), such that

u0(x) = p�(x)p (x 2 E);
where p is the orthogonal projection of K onto H. Note, in particular, that
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(a) u0(111A) = p�(111A)p = p = 111B(H),

(b) yi = u0(xi) = p�(xi)p, i = 1; : : : ; r,

(c)
Pr

i=1 y
2
i = u0

�Pr
i=1 x

2
i

�
=
Pr

i=1 p�(xi)
2p.

From (b) and (c), it follows that p commutes with �(xi) for all i in f1; 2; : : : ; rg. Indeed,
using (b) and (c), we �nd that

rX
i=1

p�(xi)p�(xi)p =
rX

i=1

y2i =
rX

i=1

p�(xi)
2p;

so that
rX

i=1

p�(xi)
�
111B(K) � p

�
�(xi)p = 0:

Thus, putting bi = (111B(K) � p)�(xi)p, i = 1; : : : ; r, we have that
Pr

i=1 b
�
i bi = 0, so that

b1 = � � � = br = 0. Hence, for each i in f1; 2; : : : ; rg, we have
[p; �(xi)] = p�(xi)� �(xi)p = p�(xi)(111B(K) � p)� (111B(K) � p)�(xi)p = b�i � bi = 0;

as desired. Since � is a unital �-homomorphism, we may conclude, further, that p com-
mutes with all elements of the C�-algebra �(A0).

Now de�ne the mapping u : A0 ! B(H) by

u(a) = p�(a)p; (a 2 A0):

Clearly u(a�) = u(a)� for all a in A0, and, using (a) above, u(111A) = u0(111A) = 111B.
Furthermore, since p commutes with �(A0), we �nd for any a; b in A0 that

u(ab) = p�(ab)p = p�(a)�(b)p = p�(a)p�(b)p = u(a)u(b):

Thus, u : A0 ! B(H) is a unital �-homomorphism, which extends u0, and u(A0) is a
C�-sub-algebra of B(H). It remains to note that u(A0) is generated, as a C

�-algebra, by
the set u(f111A; x1; : : : ; xrg) = f111B; y1; : : : ; yrg, so that u(A0) = C�(111B; y1; : : : ; yr) = B0,
as desired. �

For any element c of a C�-algebra C, we denote by sp(c) the spectrum of c, i.e.,

sp(c) = f� 2 C j c� �111C is not invertibleg:
2.2 Theorem. Assume that the self-adjoint elements x1; : : : ; xr 2 A and y1; : : : ; yr 2 B
satisfy the property:

8m 2 N 8a0;a1; : : : ; ar 2Mm(C )sa :

sp
�
a0 
 111A +

Pr
i=1 ai 
 xi

� � sp
�
a0 
 111B +

Pr
i=1 ai 
 yi

�
:

(2.1)

Then there exists a unique surjective unital �-homomorphism ' : A0 ! B0, such that

'(xi) = yi; i = 1; 2; : : : ; r:
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Before the proof of Theorem 2.2, we make a few observations:

2.3 Remark. (1) In connection with condition (2.1) above, let V be a subspace of
Mm(C ) containing the unit 111m. Then the condition:

8a0;a1; : : : ; ar 2 V :

sp
�
a0 
 111A +

Pr
i=1 ai 
 xi

� � sp
�
a0 
 111B +

Pr
i=1 ai 
 yi

� (2.2)

is equivalent to the condition:

8a0;a1; : : : ; ar 2 V :

a0 
 111A +
Pr

i=1 ai 
 xi is invertible =) a0 
 111B +
Pr

i=1 ai 
 yi is invertible:
(2.3)

Indeed, it is clear that (2.2) implies (2.3), and the reverse implication follows by replacing,
for any complex number �, the matrix a0 2 V by a0 � �111m 2 V .
(2) Let H1 and H2 be Hilbert spaces and consider the Hilbert space direct sum H =
H1 �H2. Consider further the operator R in B(H) given in matrix form as

R =

�
x y
z 111B(H2);

�

where x 2 B(H1); y 2 B(H2;H1) and z 2 B(H1;H2). Then R is invertible in B(H) if
and only if x� yz is invertible in B(H1).

This follows immediately by writing�
x y
z 111B(H2)

�
=

�
111B(H1) y

0 111B(H2)

�
�
�
x� yz 0

0 111B(H2)

�
�
�
111B(H1) 0
z 111B(H2)

�
;

where the �rst and last matrix on the right hand side are invertible with inverses given
by:�
111B(H1) y

0 111B(H2)

��1
=

�
111B(H1) �y

0 111B(H2)

�
and

�
111B(H1) 0
z 111B(H2)

��1
=

�
111B(H1) 0
�z 111B(H2)

�
:

Proof of Theorem 2.2. By Lemma 2.1, our objective is to prove the existence of a unital
completely positive map u0 : E ! F , satisfying that u0(xi) = yi, i = 1; 2; : : : ; r and
u0(
Pr

i=1 x
2
i ) =

Pr
i=1 y

2
i .

Step I. We show �rst that the assumption (2.1) is equivalent to the seemingly stronger
condition:

8m 2 N 8a0;a1; : : : ; ar 2Mm(C ) :

sp
�
a0 
 111A +

Pr
i=1 ai 
 xi

� � sp
�
a0 
 111B +

Pr
i=1 ai 
 yi

�
:

(2.4)

Indeed, let a0; a1; : : : ; ar be arbitrary matrices inMm(C ) and consider then the self-adjoint
matrices ~a0; ~a1; : : : ; ~ar in M2m(C ) given by:

~ai =

�
0 a�i
ai 0

�
; i = 0; 1; : : : ; r:
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Note then that

~a0 
 111A +
rX

i=1

~ai 
 xi =

�
0 a�0 
 111A +

Pr
i=1 a

�
i 
 xi

a0 
 111A +
Pr

i=1 ai 
 xi 0

�

=

�
0 111A
111A 0

�
�
�
a0 
 111A +

Pr
i=1 ai 
 xi 0

0 a�0 
 111A +
Pr

i=1 a
�
i 
 xi

�
:

Therefore, ~a0
111A+
Pr

i=1 ~ai
xi is invertible inM2m(A) if and only if a0
111A+
Pr

i=1 ai
xi
is invertible in Mm(A), and similarly, of course, ~a0 
 111B +

Pr
i=1 ~ai 
 yi is invertible in

M2m(B) if and only if a0 
 111B +
Pr

i=1 ai 
 yi is invertible in Mm(B). It follows that

a0 
 111A +
rX

i=1

ai 
 xi is invertible () ~a0 
 111A +
rX

i=1

~ai 
 xi is invertible

=) ~a0 
 111B +
rX

i=1

~ai 
 yi is invertible

() a0 
 111B +
rX

i=1

ai 
 yi is invertible;

where the second implication follows from the assumption (2.1). Since the argument
above holds for arbitrary matrices a0; a1; : : : ; ar in Mm(C ), it follows from Remark 2.3(1)
that condition (2.4) is satis�ed.

Step II. We prove next that the assumption (2.1) implies the condition:

8m 2 N 8a0; a1; : : : ; ar; ar+1 2Mm(C ) :

sp
�
a0 
 111A+

Pr
i=1 ai 
 xi + ar+1 


Pr
i=1 x

2
i

�
� sp

�
a0 
 111B +

Pr
i=1 ai 
 yi + ar+1 


Pr
i=1 y

2
i

�
:

(2.5)

Using Remark 2.3(1), we have to show, given m in N and a0; a1; : : : ; ar+1 in Mm(C ), that
invertibility of a0 
 111A +

Pr
i=1 ai 
 xi + ar+1 


Pr
i=1 x

2
i in Mm(A) implies invertibility of

a0 
 111A +
Pr

i=1 ai 
 yi + ar+1 

Pr

i=1 y
2
i in Mm(B). For this, consider the matrices:

S =

0
BBBBB@

a0 
 111A �111m 
 x1 �111m 
 x2 � � � �111m 
 xr
a1 
 111A + ar+1 
 x1 111m 
 111A O
a2 
 111A + ar+1 
 x2 111m 
 111A

...
. . .

ar 
 111A + ar+1 
 xr O 111m 
 111A

1
CCCCCA 2 M(r+1)m(A)

and

T =

0
BBBBB@

a0 
 111B �111m 
 y1 �111m 
 y2 � � � �111m 
 yr
a1 
 111B + ar+1 
 y1 111m 
 111B O
a2 
 111B + ar+1 
 y2 111m 
 111B

...
. . .

ar 
 111B + ar+1 
 yr O 111m 
 111B

1
CCCCCA 2M(r+1)m(B):
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By Remark 2.3(2), invertibility of S in M(r+1)m(A) is equivalent to invertibility of

a0 
 111A +
Pr

i=1(111m 
 xi) � (ai 
 111A + ar+1 
 xi)

= a0 
 111A +
Pr

i=1 ai 
 xi + ar+1 

Pr

i=1 x
2
i

in Mm(A). Similarly, T is invertible in M(r+1)m(B) if and only if

a0 
 111B +
Pr

i=1 ai 
 yi + ar+1 

Pr

i=1 y
2
i

is invertible in Mm(B). It remains, thus, to show that invertibility of S implies that of T .
This, however, follows immediately from Step I, since we may write S and T in the form:

S = b0 
 111A +
rX

i=1

bi 
 xi and T = b0 
 111B +
rX

i=1

bi 
 yi;

for suitable matrices b0; b1; : : : ; br in M(r+1)m(C ); namely

b0 =

0
BBBBB@

a0 0 0 � � � 0
a1 111m O

a2 111m
...

. . .

ar O 111m

1
CCCCCA

and

bi =

0
BBBBBBBBBB@

0 � � � 0 �111m 0 � � � 0
...
0

ar+1 O
0
...
0

1
CCCCCCCCCCA
; i = 1; 2; : : : ; r:

For i in f1; 2; : : : ; rg, the (possible) non-zero entries in bi are at positions (1; i + 1) and
(i+ 1; 1). This concludes Step II.

Step III. We show, �nally, the existence of a unital completely positive mapping u0 : E !
F , satisfying that u0(xi) = yi, i = 1; 2; : : : ; r and u0(

Pr
i=1 x

2
i ) =

Pr
i=1 y

2
i .

Using Step II in the case m = 1, it follows that for any complex numbers a0; a1; : : : ; ar+1,
we have that

sp
�
a0111A +

Pr
i=1 aixi + ar+1

Pr
i=1 x

2
i

� � sp
�
a0111B +

Pr
i=1 aiyi + ar+1

Pr
i=1 y

2
i

�
: (2.6)

If a0; a1; : : : ; ar+1 are real numbers, then the operators

a0111A +
Pr

i=1 aixi + ar+1

Pr
i=1 x

2
i and a0111B +

Pr
i=1 aiyi + ar+1

Pr
i=1 y

2
i

11



are self-adjoint, since x1; : : : ; xr and y1; : : : ; yr are self-adjoint. Hence (2.6) implies that

8a0; : : : ; ar+1 2 R :a0111A +
Pr

i=1 aixi + ar+1

Pr
i=1 x

2
i

 � a0111B +
Pr

i=1 aiyi + ar+1

Pr
i=1 y

2
i

: (2.7)

Let E 0 and F 0 denote, respectively, the R-linear span of f111A; x1; : : : ; xr;
Pr

i=1 x
2
i g and

f111B; y1; : : : ; yr;
Pr

i=1 y
2
i g:

E 0 = spanRf111A; x1; : : : ; xr;
Pr

i=1 x
2
i g and F 0 = spanRf111B; y1; : : : ; yr;

Pr
i=1 y

2
i g:

It follows then from (2.7) that there is a (well-de�ned) R-linear mapping u00 : E
0 ! F 0

satisfying that u00(111A) = 111B, u
0
0(xi) = yi, i = 1; 2; : : : ; r and u00(

Pr
i=1 x

2
i ) =

Pr
i=1 y

2
i . For

an arbitrary element x in E, note that Re(x) = 1
2
(x+x�) 2 E 0 and Im(x) = 1

2i
(x�x�) 2 E 0.

Hence, we may de�ne a mapping u0 : E ! F by setting:

u0(x) = u00(Re(x)) + iu00(Im(x)); (x 2 E):

It is straightforward, then, to check that u0 is a C -linear mapping from E onto F , which
extends u00.

Finally, it follows immediately from Step II that for all m in N , the mapping idMm(C ) 
u0
preserves positivity. In other words, u0 is a completely positive mapping. This concludes
the proof. �

In Section 7, we shall need the following strengthening of Theorem 2.2:

2.4 Theorem. Assume that the self adjoint elements x1; : : : ; xr 2 A, y1; : : : ; yr 2 B

satisfy the property

8m 2 N 8a0; : : : ; ar 2Mm(Q + iQ)sa :
sp
�
a0 
 111A +

Pr
i=1 ai 
 xi

� � sp
�
a0 
 1B +

Pr
i=1 ai 
 yi

�
:

(2.8)

Then there exists a unique surjective unital �-homomorphism ' : A0 ! B0 such that
'(xi) = yi, i = 1; : : : ; r.

Proof. By Theorem 2.2, it suÆces to prove that condition (2.8) is equivalent to condition
(2.1) of that theorem. Clearly (2.1) ) (2.8). It remains to be proved that (2.8) ) (2.1).
Let dH(K;L) denote the Hausdor� distance between two subsets K, L of C :

dH(K;L) = max
n
sup
x2K

d(x; L); sup
y2L

d(y;K)
o
: (2.9)

For normal operators A;B in Mm(C ) or B(H) (H a Hilbert space) one has

dH(sp(A); sp(B)) � kA�Bk (2.10)

(cf. [Da, Prop. 2.1]). Assume now that (2.8) is satis�ed, let m 2 N , b0; : : : ; br 2 Mm(C )
and let " > 0.

12



Since Mm(Q + iQ)sa is dense in Mm(C )sa , we can choose a0; : : : ; ar 2Mm(Q + iQ)sa such
that

ka0 � b0k+
rX

i=1

kai � bikkxik < "

and

ka0 � b0k+
rX

i=1

kai � bikkyik < ":

Hence, by (2.10),

dH
�
sp
�
a0 
 1 +

Pr
i=1ai 
 xi

�
; sp
�
b0 
 1 +

Pr
i=1 bi 
 xi

��
< "

and

dH
�
sp
�
a0 
 1 +

Pr
i=1ai 
 yi

�
; sp
�
b0 
 1 +

Pr
i=1 bi 
 yi

��
< ":

By these two inequalities and (2.8) we get

sp
�
b0 
 1 +

Pr
i=1bi 
 yi

� � sp
�
a0 
 1 +

Pr
i=1ai 
 yi

�
+ ]� "; "[

� sp
�
a0 
 1 +

Pr
i=1ai 
 xi

�
+ ]� "; "[

� sp
�
b0 
 1 +

Pr
i=1bi 
 xi) + ]� 2"; 2"[:

Since sp(b0 
 1 +
Pr

i=1 bi 
 yi) is compact and " > 0 is arbitrary, it follows that

sp
�
b0 
 1 +

Pr
i=1bi 
 yi

� � sp
�
b0 
 1 +

Pr
i=1 bi 
 xi

�
;

for all m 2 N and all b0; : : : ; br 2 Mm(C )sa , i.e. (2.1) holds. This completes the proof of
Theorem 2.4. �

3 The master equation.

Let H be a Hilbert space. For T 2 B(H) we let ImT denote the self adjoint operator
ImT = 1

2i
(T � T �). We say that a matrix T in Mm(C )sa is positive de�nite if all its

eigenvalues are strictly positive, and we denote by �max(T ) and �min(T ) the largest and
smallest eigenvalues of T , respectively.

3.1 Lemma. (i) Let H be a Hilbert space and let T be an operator in B(H), such
that the imaginary part ImT satis�es one of the two conditions:

ImT � "111B(H) or ImT � �"111B(H);

for some " in ]0;1[. Then T is invertible and kT�1k � 1
"
.

13



(ii) Let T be a matrix in Mm(C ) and assume that ImT is positive de�nite. Then T is
invertible and kT�1k � k(ImT )�1k.

Proof. Note �rst that (ii) is a special case of (i). Indeed, since ImT is self-adjoint, we
have that ImT � �min(ImT )111m. Since ImT is positive de�nite, �min(ImT ) > 0, and hence
(i) applies. Thus, T is invertible and, furthermore,

kT�1k � 1

�min(ImT )
= �max

�
(ImT )�1

�
= k(ImT )�1k;

since (ImT )�1 is positive.

To prove (i), note �rst that by replacing, if necessary, T by �T , it suÆces to consider the
case where ImT � "111B(H). Let k � k and h�; �i denote, respectively, the norm and the inner
product on H. Then, for any unit vector � in H, we have

kT�k2 = kT�k2k�k2 � jhT�; �ij2 = ��hRe(T )�; �i+ ihImT�; �i��2 � hImT�; �i2 � "2k�k2;
where we used that hRe(T )�; �i; hImT�; �i 2 R. Note further, for any unit vector � in H,
that

kT ��k2 � jhT ��; �ij2 = jhT�; �ij2 � "2k�k2:
Altogether, we have veri�ed that kT�k � "k�k and that kT ��k � "k�k for any (unit) vector
� in H, and by [Pe, Prop. 3.2.6] this implies that T is invertible and that kT�1k � 1

"
.

�

3.2 Lemma. Let A be a unital C�-algebra and denote by GL(A) the group of invertible
elements of A. Let, further, A : I ! GL(A) be a mapping from an open interval I in R

into GL(A), and assume that A is di�erentiable, in the sense that

A0(t0) := lim
t!t0

1

t� t0

�
A(t)� A(t0)

�
exists in the operator norm, for any t0 in I. Then the mapping t 7! A(t)�1 is also
di�erentiable and

d

dt
A(t)�1 = �A(t)�1A0(t)A(t)�1; (t 2 I):

Proof. The lemma is well known. For the reader's convenience we include a proof. For
any t; t0 in I, we have

1

t� t0

�
A(t)�1 � A(t0)

�1� = 1

t� t0
A(t)�1

�
A(t0)� A(t)

�
A(t0)

�1

= �A(t)�1
� 1

t� t0

�
A(t)� A(t0)

��
A(t0)

�1

�!
t!t0

�A(t0)�1A0(t0)A(t0)�1;

where the limit is taken in the operator norm, and we use that the mapping B 7! B�1 is
a homeomorphism of GL(A) w.r.t. the operator norm. �
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3.3 Lemma. Let � be a positive number, let N be a positive integer and let 1; : : : ; N
be N independent identically distributed real valued random variables with distribution
N(0; �2), de�ned on the same probability space (
;F; P ). Consider, further, a �nite
dimensional vector space E and a C1-mapping:

(x1; : : : ; xN ) 7! F (x1; : : : ; xN ) : R
N ! E;

satisfying that F and all its �rst order partial derivatives @F
@x1
; : : : ; @F

@xN
are polynomially

bounded. For any j in f1; 2; : : : ; Ng, we then have

E
�
jF (1; : : : ; N)

	
= �2E

�
@F
@xj

(1; : : : ; N)
	
;

where E denotes expectation w.r.t. P .

Proof. Clearly it is suÆcient to treat the case E = C . The joint distribution of 1; : : : ; N
is given by the density function

'(x1; : : : ; xN) = (2��2)�
n
2 exp

�� 1
2�2

PN
i=1 x

2
i

�
; (x1; : : : ; xN) 2 RN :

Since

@'

@xj
(x1; : : : ; xN) = � 1

�2
xj'(x1; : : : ; xN);

we get by partial integration in the variable xj,

E
�
jF (1; : : : ; N)

	
=

Z
RN

F (x1; : : : ; xN)xj'(x1; : : : ; xN ) dx1; : : : ; dxN

= ��2
Z
RN

F (x1; : : : ; xN)
@'

@xj
(x1; : : : ; xN) dx1; : : : ; dxN

= �2
Z
RN

@F

@xj
(x1; : : : ; xN)'(x1; : : : ; xN ) dx1; : : : ; dxN

= �2E

�
@F

@xj
(1; : : : ; N)

�
: �

Let r and n be positive integers. In the following we denote by Er;n the real vector space
(Mn(C )sa)

r. Note that Er;n is a Euclidean space with inner product h�; �ie given by

h(A1; : : : ; Ar); (B1; : : : ; Br)ie = Trn

� rX
j=1

AjBj

�
; ((A1; : : : ; Ar); (B1; : : : ; Br) 2 Er;n);

and with norm given by

k(A1; : : : ; Ar)k2e = Trn

� rX
j=1

A2
j

�
=

rX
j=1

kAjk22;Trn ; ((A; : : : ; Ar) 2 Er;n):

Finally, we shall denote by S1(Er;n) the unit sphere of Er;n w.r.t. k � ke.
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3.4 Remark. Let r; n be positive integers, and consider the linear isomorphism 	0 be-
tween Mn(C )sa and Rn2 given by

	0((akl)1�k;l�n) =
�
(akk)1�k�n; (

p
2Re(akl))1�k<l�n; (

p
2Im(akl))1�k<l�n

�
; (3.1)

for (akl)1�k;l�n in Mn(C )sa . We denote, further, by 	 the natural extension of 	0 to a
linear isomorphism between Er;n and Rrn2 :

	(A1; : : : ; Ar) = (	0(A1); : : : ;	0(Ar)); (A1; : : : ; Ar 2Mn(C )sa):

We shall identify Er;n with R
rn2 via the isomorphism	. Note that under this identi�cation,

the norm k � ke on Er;n corresponds to the usual Euclidean norm on Rrn2 . In other words,
	 is an isometry.

Consider next independent random matrices X
(n)
1 ; : : : ; X

(n)
r from SGRM(n; 1

n
) as de�ned

in the introduction. Then X = (X(n)
1 ; : : : ; X(n)

r ) is a random variable taking values in
Er;n, so that Y = 	(X) is a random variable taking values in Rrn

2

. From the de�nition of

SGRM(n; 1
n
) and the fact that X

(n)
1 ; : : : ; X

(n)
r are independent, it is easily seen that the

distribution of Y on Rrn2 is the product measure � = � 
 � 
 � � � 
 � (rn2 terms), where
� is the Gaussian distribution with mean 0 and variance 1

n
.

In the following, we consider a given family a0; : : : ; ar of matrices in Mm(C )sa , and, for

each n in N , a family X
(n)
1 ; : : : ; X

(n)
r of independent random matrices in SGRM(n; 1

n
).

Furthermore, we consider the following random variable with values in Mm(C ) 
Mn(C ):

Sn = a0 
 111n +
rX

i=1

ai 
X
(n)
i : (3.2)

3.5 Lemma. For each n in N , let Sn be as above. For any matrix � in Mm(C ), for
which Im� is positive de�nite, we de�ne a random variable with values in Mm(C ) by (cf.
Lemma 3.1),

Hn(�) = (idm 
 trn)
�
(�
 111n � Sn)

�1�:
Then, for any j in f1; 2; : : : ; rg, we have

E
�
Hn(�)ajHn(�)

	
= E

�
(idm 
 trn)

�
(111m 
X

(n)
j ) � (�
 111n � Sn)

�1�	:
Proof. Let � be a �xed matrix inMm(C ), such that Im� is positive de�nite. Consider the
canonical isomorphism 	: Er;n ! Rrn2 , introduced in Remark 3.4, and then de�ne the
mappings ~F : Er;n !Mm(C )
Mn(C ) and F : Rrn

2 !Mm(C )
Mn(C ) by (cf. Lemma 3.1

~F (v1; : : : ; vr) =
�
�
 111n � a0 
 111n �

Pr
i=1 ai 
 vi

��1
; (v1; : : : ; vr 2Mn(C )sa);

and

F = ~F Æ	�1:
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Note then that �
�
 111n � Sn

��1
= F (	(X

(n)
1 ; : : : ; X(n)

r ));

where Y = 	(X
(n)
1 ; : : : ; X

(n)
r ) is a random variable taking values in Rrn2 , and the distri-

bution of Y equals that of a tuple (1; : : : ; rn2) of rn
2 independent identically N(0; 1

n
)-

distributed real-valued random variables.

Now, let j in f1; 2; : : : ; rg be �xed, and then de�ne

X
(n)
j;k;k = (X

(n)
j )kk; (1 � k � n);

Y
(n)
j;k;l =

p
2Re(X

(n)
j )k;l; (1 � k < l � n);

Z
(n)
j;kl =

p
2Im(X

(n)
j )k;l; (1 � k < l � n):

Note that
�
(X(n)

j;k;k)1�k�n; (Y
(n)
j;k;l)1�k<l�n; (Z

(n)
j;k;l)1�k<l�n

�
= 	0(X

(n)
j ), where 	0 is the map-

ping de�ned in (3.1) of Remark 3.4. Note also that the standard orthonormal basis for
Rn2 corresponds, via 	0, to the following orthonormal basis for Mn(C )sa :

e
(n)
k;k; (1 � k � n)

f
(n)
k;l = 1p

2

�
e
(n)
k;l + e

(n)
l;k

�
(1 � k < l � n);

g
(n)
k;l =

ip
2

�
e
(n)
k;l � e

(n)
l;k

�
(1 � k < l � n):

(3.3)

In other words,
�
(X(n)

j;k;k)1�k�n; (Y
(n)
j;k;l)1�k<l�n; (Z

(n)
j;k;l)1�k<l�n

�
are the coeÆcients of X(n)

j

w.r.t. the orthonormal basis set out in (3.3).

Combining, now, the above observations with Lemma 3.3, it follows that

1

n
E
n d

dt
��
t=0

�
�
 111n � Sn � taj 
 e

(n)
k;k

��1o
= E

�
X

(n)
j;k;k �

�
�
 111n � Sn

��1	
;

1

n
E
n d

dt
��
t=0

�
�
 111n � Sn � taj 
 f

(n)
k;l

��1o
= E

�
Y

(n)
j;k;l �

�
�
 111n � Sn

��1	
;

1

n
E
n d

dt
��
t=0

�
�
 111n � Sn � taj 
 g

(n)
k;l

��1o
= E

�
Z

(n)
j;k;l �

�
�
 111n � Sn

��1	
;

for all values of k; l in f1; 2; : : : ; ng such that k < l. On the other hand, it follows from
Lemma 3.2 that for any vector v in Mn(C )sa ,

d

dt
��
t=0

�
�
 111n � Sn � taj 
 v

��1
= (�
 111n � Sn)

�1(aj 
 v)(�
 111n � Sn)
�1;

and we obtain, thus, the identities:

E
�
X

(n)
j;k;k �

�
�
 111n � Sn

��1	
= 1

n
E
�
(�
 111n � Sn)

�1(aj 
 e
(n)
k;k)(�
 111n � Sn)

�1	 (3.4)
E
�
Y

(n)
j;k;l �

�
�
 111n � Sn

��1	
= 1

n
E
�
(�
 111n � Sn)

�1(aj 
 f
(n)
k;l )(�
 111n � Sn)

�1	 (3.5)

E
�
Z

(n)
j;k;l �

�
�
 111n � Sn

��1	
= 1

n
E
�
(�
 111n � Sn)

�1(aj 
 g
(n)
k;l )(�
 111n � Sn)

�1	 (3.6)
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for all relevant values of k; l, k < l. Note next that for k < l, we have

(X
(n)
j )k;l =

1p
2

�
Y

(n)
j;k;l + iZ

(n)
j;k;l

�
;

(X
(n)
j )l;k =

1p
2

�
Y

(n)
j;k;l � iZ

(n)
j;k;l

�
;

e
(n)
k;l =

1p
2

�
f
(n)
k;l � ig

(n)
k;l

�
;

e
(n)
l;k = 1p

2

�
f
(n)
k;l + ig

(n)
k;l

�
;

and combining this with (3.5)-(3.6), it follows that

E
�
(X

(n)
j )k;l �

�
�
 111n � Sn

��1	
=

1

n
E
�
(�
 111n � Sn)

�1(aj 
 e
(n)
l;k )(�
 111n � Sn)

�1	;
(3.7)

and that

E
�
(X(n)

j )l;k �
�
�
 111n � Sn

��1	
=

1

n
E
�
(�
 111n � Sn)

�1(aj 
 e(n)k;l )(�
 111n � Sn)
�1	;

(3.8)

for all k; l, k < l. Taking also (3.4) into account, it follows that (3.7) actually holds for
all k; l in f1; 2; : : : ; ng. By adding the equation (3.7) for all values of k; l and by recalling
that

X(n)
j =

X
1�k;l�n

(X(n)
j )k;le

(n)
k;l ;

we conclude that

E
�
(111m 
X

(n)
j )(�
 111n � Sn)

�1	
=

1

n

X
1�k;l�n

E
�
(111m 
 e

(n)
k;l )(�
 111n � Sn)

�1(aj 
 e
(n)
l;k )(�
 111n � Sn)

�1	:
(3.9)

To calculate the right hand side of (3.9), we write�
�
 111n � Sn

��1
=

X
1�u;v�n

Fu;v 
 eu;v;

where, for all u; v in f1; 2; : : : ; ng, Fu;v : 
!Mm(C ) is anMm(C )-valued random variable.
Recall, then, that for any k; l; u; v in f1; 2; : : : ; ng,

e
(n)
k;l � e(n)u;v =

(
ek;v; if l = u;

0; if l 6= u:

For any �xed u; v in f1; 2; : : : ; ng, it follows, thus, that
X

1�k;l�n
(111m 
 e

(n)
k;l )(Fu;v 
 e(n)u;v)(aj 
 e

(n)
l;k ) =

(
(Fu;u � aj)
 111n; if u = v;

0; if u 6= v:
(3.10)
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Adding the equation (3.10) for all values of u; v in f1; 2; : : : ; ng, it follows thatX
1�k;l�n

(111m 
 e
(n)
k;l )(�
 111n � Sn)

�1(aj 
 e
(n)
l;k ) =

�Pn
u=1 Fu;uaj

�
 111n:

Note here that
nX

u=1

Fu;u = n � idm 
 trn
�
(�
 111n � Sn)

�1� = n �Hn(�);

so that X
1�k;l�n

(111m 
 e
(n)
k;l )(�
 111n � Sn)

�1(aj 
 e
(n)
l;k ) = nHn(�)aj 
 111n:

Combining this with (3.9), we �nd that

E
�
(111m 
X

(n)
j )(�
 111n � Sn)

�1	 = E
�
(Hn(�)aj 
 111n)(�
 111n � Sn)

�1	: (3.11)

Applying, �nally, idm 
 trn to both sides of (3.11), we conclude that

E
�
idm 
 trn

�
(111m 
X

(n)
j )(�
 111n � Sn)

�1�	 = E
�
Hn(�)aj � idm 
 trn

�
(�
 111n � Sn)

�1�	
= E

�
Hn(�)ajHn(�)

	
;

which is the desired formula. �

3.6 Theorem. (Master equation) Let, for each n in N , Sn be the random matrix
introduced in (3.2), and let � be a matrix in Mm(C ) such that Im(�) is positive de�nite.
Then with

Hn(�) = (idm 
 trn)
�
(�
 111n � Sn)

�1�
(cf. Lemma 3.1), we have the formula

E
n rX

i=1

aiHn(�)aiHn(�) + (a0 � �)Hn(�) + 111m

o
= 0; (3.12)

as an Mm(C )-valued expectation.

Proof. By application of Lemma 3.5, we �nd that

E
n rX

j=1

ajHn(�)ajHn(�)
o
=

rX
j=1

ajE
�
Hn(�)ajHn(�)

	

=
rX

j=1

ajE
�
idm 
 trn

�
(111m 
X

(n)
j )(�
 111n � Sn)

�1�	

=
rX

j=1

E
�
idm 
 trn

�
(aj 
 111n)(111m 
X

(n)
j )(�
 111n � Sn)

�1�	

=
rX

j=1

E
�
idm 
 trn

�
(aj 
X

(n)
j )(�
 111n � Sn)

�1�	:
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Moreover,

Efa0Hn(�)g = Efa0(idm 
 trn)((�
 111n � Sn)
�1)g

= Ef(idm 
 trn)((a0 
 111n)(�
 111n � Sn)
�1g:

Hence,

E
n
a0Hn(�) +

rX
i=1

ajHn(�)ajHn(�)
o

= E
�
idm 
 trn

�
Sn(�
 111n � Sn)

�1�	
= E

�
idm 
 trn

��
�
 111n � (�
 111n � Sn)

�
(�
 111n � Sn)

�1�	
= E

�
idm 
 trn

�
(�
 111n)(�
 111n � Sn)

�1 � 111m 
 111n
�	

= E
�
�Hn(�)� 111m

	
;

from which (3.12) follows readily. �

4 Variance estimates.

Let K be a positive integer. Then we denote by k � k the usual Euclidean norm C K , i.e.,

k(�1; : : : ; �K)k =
�j�1j2 + � � �+ j�Kj2

�1=2
; (�1; : : : ; �K 2 C ):

Furthermore, we denote by k � k2;TrK the Hilbert-Schmidt norm on MK(C ), i.e.,

kTk2;TrK =
�
TrK(T

�T )
�1=2

; (T 2MK(C )):

We shall also, occasionally, consider the norm k � k2;trk given by:

kTk2;trK =
�
trK(T

�T )
�1=2

= K�1=2kTk2;TrK ; (T 2MK(C )):

4.1 Proposition. (Gaussian Poincar�e inequality) Let N be a positive integer and
equip RN with the probability measure � = � 
 � 
 � � � 
 � (N terms), where � is the
Gaussian distribution on R with mean 0 and variance 1. Let f : RN ! C be a C1-function,
such that Efjf j2g <1. Then with Vffg = Efjf � Effgj2g, we have

Vffg � E
�kgrad(f)k2	:

Proof. See [Cn, Theorem 2.1]. �

The Gaussian Poincar�e inequality is a folklore result which goes back to the 30's (cf. Beck-
ner [Be]). It was rediscovered by Cherno� [Cf] in 1981 in the case N = 1 and by Chen
[Cn] in 1982 for general N . The original proof as well as Cherno�'s proof is based on
an expansion of f in Hermite polynomials (or tensor products of Hermite polynomials in
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the case N � 2). Chen gives in [Cn] a self-contained proof which does not rely on Her-
mite polynomials. In a preliminary version of this paper, we proved the slightly weaker
inequality: Vffg � �2

8
Efkgradfk2g using the method of proof of [P1, Lemma 4.7]. We

wish to thank Gilles Pisier for bringing the papers by Bechner, Cherno� and Chen to our
attention.

4.2 Corollary. Let N 2 N , and let Z1; : : : ; ZN be N i.i.d. real Gaussian random variables
with mean zero and variance �2 and let f : RN ! C be a C1-function, such that f and
grad(f) are both polynomially bounded. Then

V
�
f(Z1; : : : ; ZN)

	 � �2E
�k(gradf)(Z1; : : : ; ZN)k2

	
:

Proof. In the case � = 1, this is an immediate consequence of Proposition 4.1. In the
general case, put Yj =

1
�
Zj, j = 1; : : : ; N , and de�ne g 2 C1(RN ) by

g(y) = f(�y); (y 2 RN ): (4.1)

Then

(gradg)(y) = �(gradf)(�y); (y 2 RN ): (4.2)

Since Y1; : : : ; YN are independent standard Gaussian distributed random variables, we
have from Proposition 4.1 that

V
�
g(Y1; : : : ; YN)

	 � E
�k(gradg)(Y1; : : : ; YN)k2	: (4.3)

Since Zj = �Yj, j = 1; : : : ; N , it follows from (4.1), (4.2), and (4.3) that

V
�
f(Z1; : : : ; ZN)

	 � �2E
�k(gradf)(Z1; : : : ; ZN)k2

	
: �

4.3 Remark. Consider the canonical isomorphism 	: Er;n ! Rrn2 introduced in Re-

mark 3.4. Consider, further, independent randommatricesX
(n)
1 ; : : : ; X

(n)
r from SGRM(n; 1

n
).

Then X = (X
(n)
1 ; : : : ; X

(n)
r ) is a random variable taking values in Er;n, so that Y = 	(X)

is a random variable taking values in Rrn2 . As mentioned in Remark 3.4, it is easily seen
that the distribution of Y on Rrn2 is the product measure � = �
�
� � �
� (rn2 terms),
where � is the Gaussian distribution with mean 0 and variance 1

n
. Now, let ~f : Rrn2 ! C

be a C1-function, such that ~f and grad ~f are both polynomially bounded, and consider,
further, the C1-function f : Er;n ! C given by f = ~f Æ	. T Since 	 is a linear isometry
(i.e., an orthogonal transformation), it follows from Corollary 4.2 that

V
�
f(X)

	 � 1

n
E
�gradf(X)2

e

	
: (4.4)

4.4 Lemma. Let m;n be positive integers, and assume that a1; : : : ; ar 2 Mm(C )sa and
w1; : : : ; wr 2Mn(C ). Then

 rX
i=1

ai 
 wi


2;Trm
Trn

� m1=2
 rX

i=1

a2i

1=2� rX
i=1

kwik22;Trn
�1=2
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Proof. We �nd thatPr
i=1 ai 
 wi


2;Trm
Trn �

Pr
i=1 kai 
 wik2;Trm
Trn

=
Pr

i=1 kaik2;Trm � kwik2;Trn
� �Pr

i=1 kaik22;Trm
�1=2�Pr

i=1 kwik22;Trn
�1=2

=
�
Trm

�Pr
i=1 a

2
i

��1=2 � �Pr
i=1 kwik22;Trn

�1=2
� m1=2

Pr
i=1 a

2
i

1=2 � �Pr
i=1 kwik22;Trn

�1=2
: �

Note, in particular, that if w1; : : : ; wr 2Mn(C )sa , then Lemma 4.4 provides the estimate:Pr
i=1 ai 
 wi


2;Trm
Trn � m1=2

�Pr
i=1kaik2

�1=2 � (w1; : : : ; wr)

e
:

4.5 Theorem. (Master inequality) Let � be a matrix in Mm(C ) such that Im(�) is
positive de�nite. Consider, further, the random matrix Hn(�) introduced in Theorem 3.6
and put

Gn(�) = E
�
Hn(�)

	 2Mm(C ):

Then  rX
i=1

aiGn(�)aiGn(�) + (a0 � �)Gn(�) + 111m

 � C

n2
(Im(�))�14;

where C = m3kPr
i=1 a

2
i k2.

Proof. We put

Kn(�) = Hn(�)�Gn(�) = Hn(�)� E
�
Hn(�)

	
:

Then, by Theorem 3.6, we have

E
n rX

i=1

aiKn(�)aiKn(�)
o

= E
n rX

i=1

ai
�
Hn(�)�Gn(�)

�
ai
�
Hn(�)�Gn(�)

�o

= E
n rX

i=1

aiHn(�)aiHn(�)
o
�

rX
i=1

aiGn(�)aiGn(�)

=
�
� (a0 � �)E

�
Hn(�)

	� 111m

�
�

rX
i=1

aiGn(�)aiGn(�)

= �
� rX

i=1

aiGn(�)aiGn(�) + (a0 � �)Gn(�) + 111m

�
:
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Hence, we can make the following estimates

 rX
i=1

aiGn(�)aiGn(�) + (a0 � �)Gn(�) + 111m

 = En rX
i=1

aiKn(�)aiKn(�)
o

� E
n rX

i=1

aiKn(�)aiKn(�)
o

� E
n rX

i=1

aiKn(�)ai

 � Kn(�)
o:

Note here that since a1; : : : ; ar are self-adjoint, the mapping v 7!Pr
i=1 aivai : Mm(C ) !

Mm(C ) is completely positive. Therefore, it attains its norm at the unit 111m, and the norm
is kPr

i=1 a
2
ik. Using this in the estimates above, we �nd that

 rX
i=1

aiGn(�)aiGn(�) + (a0 � �)Gn(�) + 111m

 �  rX
i=1

a2i

 � EnKn(�)
2o

�
 rX

i=1

a2i

 � EnKn(�)
2
2;Trm

o
;

(4.5)

where the last inequality uses that the operator norm of a matrix is always dominated
by the Hilbert-Schmidt norm. It remains to estimate EfkKn(�)k22;Trmg. For this, let
Hn;j;k(�), (1 � j; k � n) denote the entries of Hn(�), i.e.,

Hn(�) =
mX

j;k=1

Hn;j;k(�)e(m; j; k); (4.6)

where e(m; j; k), (1 � j; k � m) are the usual m�m matrix units. Let, correspondingly,
Kn;j;k(�) denote the entries of Kn(�). Then Kn;j;k(�) = Hn;j;k(�) � EfHn;j;k(�)g, for all
j; k, so that VfHn;j;k(�)g = EfjKn;j;k(�)j2g. It follows, thus, that

E
nKn(�)

2
2;Trm

o
= E

n mX
j;k=1

jKn;j;k(�)j2
o
=

mX
j;k=1

V
�
Hn;j;k(�)

	
: (4.7)

Note further that by (4.6)

Hn;j;k(�) = Trm
�
e(m; k; j)Hn(�)

�
= m � trm

�
e(m; k; j) � (idm 
 trn)

�
(�
 111n � Sn)

�1��
= m � trm 
 trn

�
(e(m; j; k)
 111n)(�
 111n � Sn)

�1�:
For any j; k in f1; 2; : : : ; mg, consider, next, the mapping fn;j;k : Er;n ! C given by:

fn;j;k(v1; : : : ; vr) = m � (trm 
 trn)
�
(e(m; k; j)
 111n)(�
 111n � a0 
 111n �

Pr
i=1 ai 
 vi)

�1�;
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for all v1; : : : ; vr in Mn(C )sa . Note then that

Hn;j;k(�) = fn;j;k(X
(n)
1 ; : : : ; X(n)

r );

for all j; k. Using now the \concentration estimate" (4.4) in Remark 4.3, it follows that
for all j; k,

V
�
Hn;j;k(�)

	 � 1

n
E
ngradfn;j;k(X(n)

1 ; : : : ; X(n)
r )
2
e

o
: (4.8)

For �xed j; k in f1; 2; : : : ; mg and v = (v1; : : : ; vr) in Er;n, note that gradfn;j;k(v) is the
vector in Er;n, characterized by the property that



gradfn;j;k(v); w

�
e
=

d

dt
��
t=0

fn;j;k(v + tw);

for any vector w = (w1; : : : ; wr) in Er;n. It follows, thus, that

gradfn;j;k(v)2e = max
w2S1(Er;n)

��
gradfn;j;k(v); w�e��2 = max
w2S1(Er;n)

��� d
dt
��
t=0

fn;j;k(v + tw)
���2:
(4.9)

Let v = (v1; : : : ; vn) be a �xed vector in Er;n, and put � = a0 
 111n +
Pr

i=1 ai 
 vi. Let,
further, w = (w1; : : : ; wn) be a �xed vector in S1(Er;n). It follows then by Lemma 3.2
that

d

dt
��
t=0

fn;j;k(v + tw)

=
d

dt
��
t=0

m � (trm 
 trn)
�
(e(m; k; j)
 111n)

�
�
 111n � a0 
 111n �

Pr
i=1 ai 
 (vi + twi)

��1�

= m � (trm 
 trn)
h
(e(m; k; j)
 111n)

d

dt
��
t=0

�
�
 111n � a0 
 111n �

Pr
i=1 ai 
 (vi + twi)

��1i

= m � (trm 
 trn)
�
(e(m; k; j)
 111n)

�
�
 111n � �

��1�Pr
i=1 ai 
 wi

��
�
 111n � �

��1�
:

(4.10)

Using next the Cauchy-Schwartz inequality for Trn 
 Trm, we �nd that

m2
��(trm 
 trn)

�
e(m; k; j)
 111n �

�
�
 111n � �

��1�Pr
i=1 ai 
 wi

��
�
 111n � �

��1���2
=

1

n2
��(Trm 
 Trn)

�
e(m; k; j)
 111n �

�
�
 111n � �

��1�Pr
i=1 ai 
 wi

��
�
 111n � �

��1���2
� 1

n2
e(m; j; k)
 111n

2
2;Trm
Trn �

��
 111n � �
��1�Pr

i=1 ai 
 wi

��
�
 111n � �

��12
2;Trm
Trn

=
1

n

��
 111n � �
��1�Pr

i=1 ai 
 wi

��
�
 111n � �

��12
2;Trm
Trn:

(4.11)
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Note here that��
 111n � �
��1�Pr

i=1 ai 
 wi

��
�
 111n � �

��12
2;Trm
Trn

� ��
 111n � �
��12 � Pr

i=1 ai 
 wi

2
2;Trm
Trn �

��
 111n � �
��12

� Pr
i=1 ai 
 wi

2
2;Trm
Trn �

�Im(�)��14;
where the last inequality uses Lemma 3.1 and the fact that � is self-adjoint:��
 111n � �

��1 � �Im(�
 111n � �
��1 = �Im(�
 111n)

��1 = �Im(�)��1:
Note further that by Lemma 4.4, kPr

i=1 ai 
 wik2;Trm
Trn � m1=2
Pr

i=1 a
2
i

1=2, since
w = (w1; : : : ; wr) 2 S1(Er;n). We conclude, thus, that��
 111n � �

��1�Pr
i=1 ai 
 wi

��
�
 111n � �

��12
2;Trm
Trn � m

Pr
i=1 a

2
i

 � �Im(�)
��14:
(4.12)

Combining now formulas (4.10)-(4.12), it follows that for any j; k in f1; 2; : : : ; mg, any
vector v = (v1; : : : ; vr) in Er;n and any unit vector w = (w1; : : : ; wr) in Er;n, we have that��� d

dt
��
t=0

fn;j;k(v + tw)
���2 � m

n

Pr
i=1 a

2
i

 � �Im(�)��14;
and hence, by (4.9), gradfn;j;k(v)2e � m

n

Pr
i=1 a

2
i

 � �Im(�)
��14:

Note that this estimate holds at any point v = (v1; : : : ; vr) in Er;n. Using this in conjunc-
tion with (4.8), we may, thus, conclude that

V
�
Hn;j;k(�)

	 � m

n2
Pr

i=1 a
2
i

 � �Im(�)
��14;

for any j; k in f1; 2 : : : ; mg, and hence, by (4.7)

E
nKn(�)

2
2;Trm

o
� m3

n2
Pr

i=1 a
2
i

 � �Im(�)��14: (4.13)

Inserting, �nally, (4.13) into (4.5), we �nd that

 rX
i=1

aiGn(�)aiGn(�) + (a0 � �)Gn(�) + 111m

 � m3

n2
Pr

i=1 a
2
i

2 � �Im(�)��14;
and this is the desired estimate �

4.6 Lemma. Let N be a positive integer, let I be an open interval in R, and let t 7!
a(t) : I !MN (C )sa be a C1-function. Consider further a function ' in C1(R). Then the
function t 7! trN ['(a(t))] is C

1-function on I, and

d

dt
trN
�
'(a(t))

�
= trN

�
'0(a(t)) � a0(t)�:

25



Proof. This is well known. For the reader's convenience we include a proof: Note �rst
that for any k in N ,

d

dt

�
a(t)k

�
=

k�1X
j=0

a(t)ja0(t)a(t)k�j�1:

Hence, by the trace property trN(xy) = trN (yx), we get

d

dt
(trN(a(t)

k) = trN (ka(t)
k�1a0(t)):

Therefore

d

dt
trN(p(a(t))) = trN (p

0(a(t))a0(t))

for all polynomials p 2 C [X]. The general case ' 2 C1(I) follows easily from this by
choosing a sequence of polynomials pn 2 C [X], such that pn ! ' and p0n ! '0 uniformly
on compact subsets of I, as n!1. �

4.7 Proposition. Let a0; a1; : : : ; ar be matrices in Mm(C )sa and put as in (3.1)

Sn = a0 
 111n +
rX

i=1

ai 
X
(n)
i :

Let, further, ' : R ! C be a C1-function with compact support, and consider the random
matrices '(Sn) and '

0(Sn) obtained by applying the spectral mapping associated to the
self-adjoint (random) matrix Sn. We then have:

V
�
(trm 
 trn)['(Sn)

�	 � 1

n2

 rX
i=1

a2i

2E�(trm 
 trn)
�j'0j2(Sn)�	:

Proof. Consider the mappings g : Er;n !Mnm(C )sa and f : Er;n ! C given by

g(v1; : : : ; vr) = a0 
 111n +
rX

i=1

ai 
 vi; (v1; : : : ; vr 2Mn(C )sa);

and

f(v1; : : : ; vr) = (trm 
 trn)
�
'(g(v1; : : : ; vr))

�
; (v1; : : : ; vr 2 Mm(C )sa);

Note then that Sn = g(X
(n)
1 ; : : : ; X

(n)
r ) and that (trm 
 trn)['(Sn)] = f(X

(n)
1 ; : : : ; X

(n)
r ).

Note also that f is a bounded function on Mn(C )sa , and, by Lemma 4.6, it has bounded
continuous partial derivatives. Hence, we obtain from (4.4) in Remark 4.3 that

V
�
(trm 
 trn)['(Sn)]

	 � 1

n
E
ngradf(X(n)

1 ; : : : ; X(n)
r )
2
e

o
: (4.14)
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Recall next that for any v in Er;n, gradf(v) is the vector in Er;n, characterized by the
property that



gradf(v); w

�
e
=

d

dt
��
t=0

f(v + tw);

for any vector w = (w1; : : : ; wr) in Er;n. It follows, thus, that

gradf(v)2
e
= max

w2S1(Er;n)

��
gradf(v); w�
e

��2 = max
w2S1(Er;n)

��� d
dt
��
t=0

f(v + tw)
���2; (4.15)

at any point v = (v1; : : : ; vr) of Er;n. Now, let v = (v1; : : : ; vr) be a �xed point in Er;n
and let w = (w1; : : : ; wr) be a �xed point in S1(Er;n). By Lemma 4.6, we have then that

d

dt
��
t=0

f(v + tw) =
d

dt
��
t=0

(trm 
 trn)
�
'(g(v + tw))

�

= (trm 
 trn)
h
'0(g(v)) � d

dt
��
t=0

g(v + tw)
i

= (trm 
 trn)
�
'0(g(v)) �Pr

i=1 ai 
 wi

�
:

Using then the Cauchy-Schwartz inequality for Trm 
 Trn, we �nd that��� d
dt
��
t=0

f(v + tw)
���2 = 1

m2n2

���(Trm 
 Trn)
�
'0(g(v)) �Pr

i=1 ai 
 wi

����2

=
1

n2m2

'0(g(v))2
2;Trm
Trn �

Pr
i=1 ai 
 wi

2
2;Trm
Trn :

Note here that'0(g(v))2
2;Trm
Trn = Trm 
 Trn

�j'0j2(g(v))� = mn � trm 
 trn
�j'0j2(g(v))�;

and that, by Lemma 4.4,Pr
i=1 ai 
 wi

2
2;Trm
Trn � m

Pr
i=1a

2
i

;
since w is a unit vector w.r.t. k � ke. We �nd, thus, that

��� d
dt
��
t=0

f(v + tw)
���2 � 1

n

Pr
i=1a

2
i

trm 
 trn
�j'0j2(g(v))�:

Since this estimate holds for any unit vector w in Er;n, we conclude, using (4.15), that

gradf(v)2
e
� 1

n

Pr
i=1a

2
i

trm 
 trn
�j'0j2(g(v))�;

for any point v in Er;n. Combining this with (4.14), we obtain the desired estimate. �
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5 Estimation of kGn(�)�G(�)k:

5.1 Lemma. For each n in N , let Xn be a random matrix in SGRM(n; 1
n
). Then

E
�kXnk

	 � 2 + 2

r
log(2n)

2n
; (n 2 N): (5.1)

In particular, it follows that

E
�kXnk

	 � 4; (5.2)

for all n in N .

Proof. In [HT1, Proof of Lemma 3.3] it was proved that for any n in N and any positive
number t, we have

E
�
Trn(exp(tXn))

	 � n exp
�
2t+ t2

2n

�
: (5.3)

Let �max(Xn) and �min(Xn) denote the largest and smallest eigenvalue of Xn as functions
of ! 2 
. Then

exp(tkXnk) = maxfexp(t�max(Xn)); exp(�t�min(Xn))g
� exp(t�max(Xn)) + exp(�t�min(Xn)) � Trn

�
exp(tXn) + exp(�tXn)

�
:

Using this in connection with Jensen's inequality, we �nd that

exp
�
tEfkXnkg

� � E
�
exp(tkXnk)

	 � E
�
Trn(exp(tXn))

	
+ E

�
Trn(exp(�tXn))

	
= 2E

�
Trn(exp(tXn))

	
;

(5.4)

where the last equality is due to the fact that �Xn 2 SGRM(n; 1
n
) too. Combining (5.3)

and (5.4) we obtain the estimate

exp
�
tEfkXnkg

� � 2n exp
�
2t+ t2

2n

�
;

and hence, after taking logarithms and dividing by t,

EfkXnkg � log(2n)

t
+ 2 +

t

2n
: (5.5)

This estimate holds for all positive numbers t. As a function of t, the right hand side
of (5.5) attains its minimal value at t0 =

p
2n log(2n) and the minimal value is 2 +

2
p
log(2n)=2n. Combining this with (5.5) we obtain (5.1). The estimate (5.2) follows,

subsequently, by noting that the function t 7! log(t)=t (t > 0) attains its maximal value
at t = e, and thus 2 + 2

p
log(t)=t � 2 + 2

p
1=e � 3:21 for all positive numbers t. �

In the following we consider a �xed positive integer m and �xed self-adjoint matrices
a0; : : : ; ar in Mm(C )sa . We consider further, for each positive integer n, independent

random matrices X
(n)
1 ; : : : ; X

(n)
r in SGRM(n; 1

n
). As in sections 3 and 4, we de�ne

Sn = a0 +
rX

i=1

ai 
X
(n)
i :
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and, for any matrix � in Mm(C ) such that Im(�) is positive de�nite, we put

Hn(�) = (idm 
 trn)
�
(�
 111n � Sn)

�1�;
and

Gn(�) = EfHn(�)g:

5.2 Proposition. Let � be a matrix inMm(C ) such that Im(�) is positive de�nite. Then
Gn(�) is invertible and Gn(�)

�1 � �k�k+K
�2(Im�)�1;

where K = ka0k+ 4
Pr

i=1 kaik.

Proof. We note �rst that

Im
�
(�
 111n � Sn)

�1�
=

1

2i

�
(�
 111n � Sn)

�1 � (�� 
 111n � Sn)
�1�

=
1

2i

�
(�
 111n � Sn)

�1�(�� 
 111n � Sn)� (�
 111n � Sn)
�
(�� 
 111n � Sn)

�1�
= �(�
 111n � Sn)

�1(Im(�)
 111n)(�
� 
 111n � Sn)

�1:

From this it follows that �Im((�
111n� Sn)
�1) is positive de�nite at any ! in 
, and the

inverse is given by�� Im((�
 111n � Sn)
�1)
��1

= (�� 
 111n � Sn)((Im�)
�1 
 111n)(�
 111n � Sn):

In particular, it follows that

0 � �� Im((�
 111n � Sn)
�1)
��1 � �
 111n � Sn

2(Im�)�1 � 111m 
 111n;

and this implies that

�Im�(�
 111n � Sn)
�1� � 1

k�
 111n � Snk2k(Im�)�1k � 1
11m 
 111n:

Since the slice map idm 
 trn is positive, we have, thus, established that

�ImHn(�) � 1

k�
 111n � Snk2k(Im�)�1k � 111m � 1

(k�k+ kSnk)2k(Im�)�1k � 111m:

so that

�ImGn(�) = Ef�ImHn(�)g � 1

k(Im�)�1kE
n 1

(k�k+ kSnk)2
o
111m:
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Note here that the function t 7! 1
(k�k+t)2 is convex, so applying Jensen's inequality to the

random variable kSnk, yields the estimate

E
n 1

(k�k+ kSnk)2
o
� 1

(k�k+ EfkSnkg)2 ;

where

EfkSnkg � E
n
ka0k+

rX
i=1

kaik � kX(n)
i k

o
= ka0k+

rX
i=1

kaik � E
�kX(n)

i k	 � ka0k+ 4
rX

i=1

kaik;

by application of Lemma 5.1. Putting K = 4
Pr

i=1 kaik, we may, thus, conclude that

�ImGn(�) � 1

k(Im�)�1k
1

(k�k+K)2
111m:

By Lemma 3.1, this implies that Gn(�) is invertible and thatGn(�)
�1 � (k�k+K)2 � (Im�)�1;

as desired. �

5.3 Corollary. Let � be a matrix in Mm(C ) such that Im� is positive de�nite. Then

a0 + rX
i=1

aiGn(�)ai +Gn(�)
�1 � �

 � C

n2
(K + k�k)2(Im�)�15; (5.6)

where, as before, C = m3kPr
i=1 a

2
i k2 and K = ka0k+ 4

Pr
i=1 kaik.

Proof. Note that

a0 +
rX

i=1

aiGn(�)ai +Gn(�)
�1 � � =

� rX
i=1

aiGn(�)aiGn(�) + (a0 � �)Gn(�) + 111m

�
Gn(�)

�1:

Hence, (5.6) follows by combining Theorem 4.5 with Proposition 5.2. �

In addition to the given matrices a0; : : : ; ar in Mm(C )sa , we consider next, as replace-

ment for the random matrices X
(n)
1 ; : : : ; X

(n)
r , free self-adjoint operators x1; : : : ; xr in

some C�-probability space (B; �). We assume that x1; : : : ; xr are identically semi-circular
distributed, such that �(xi) = 0 and �(x2i ) = 1 for all i. Then put

s = a0 
 111B +
rX

i=1

ai 
 xi 2Mm(C ) 
 B: (5.7)

Consider, further, the subset O of Mm(C ), given by

O = f� 2Mm(C ) j Im(�) is positive de�niteg = f� 2Mm(C ) j �min(Im�) > 0g (5.8)
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and for each positive number Æ, put

OÆ = f� 2 O j k(Im�)�1k < Æg = f� 2 O j �min(Im�) > Æ�1g: (5.9)

Note that O and OÆ are open subsets of Mm(C ).

If � 2 O, then it follows from Lemma 3.1 that �
111B�s is invertible, since s is self-adjoint.
Hence, for each � in O, we may de�ne

G(�) = idm 
 �
�
(�
 111B � s)�1

�
:

As in the proof of Lemma 5.2, it follows that G(�) is invertible for any � in O. Indeed,
for � in O, we have

Im
�
(�
 111B � s)�1

�
=

1

2i

�
(�
 111B � s)�1

�
(�� 
 111B � s)� (�
 111B � s)

�
(�� 
 111B � s)�1

�
= �(�
 111B � s)�1(Im(�)
 111B)(�

� 
 111B � s)�1;

which shows that �Im((�
 111B � s)�1) is positive de�nite and that

0 � �� Im((�
 111B � s)�1)
��1

= (�� 
 111B � s)((Im�)�1 
 111B)(�
 111B � s)

� �
 111B � s
2(Im�)�1 � 111m 
 111B:

Consequently,

�Im�(�
 111B � s)�1
� � 1

k�
 111B � sk2k(Im�)�1k � 111m 
 111B;

so that

�ImG(�) � 1

k�
 111B � sk2k(Im�)�1k � 111m:

By Lemma 3.1, this implies that G(�) is invertible and that

G(�)�1 � (�
 111B � s)
2(Im�)�1:

The following lemma shows that the estimate (5.6) in Corollary 5.3 becomes an exact
equation, when Gn(�) is replaced by G(�).

5.4 Lemma. With O and G(�) de�ned as above, we have that

a0 +
rX

i=1

aiG(�)ai +G(�)�1 = �;

for all � in O.
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Proof. We start by recalling the de�nition of the R-transform Rs of (the distribution of)
s with amalgamation over Mm(C ): It can be shown (cf. [V7]) that the expression

G(�) = idm 
 �
�
(�
 111B � s)�1

�
;

gives rise to a well-de�ned and bijective mapping on a region of the form

UÆ =
�
� 2Mm(C ) j � is invertible and k��1k < Æ

	
;

where Æ is a (suitably small) positive number. Denoting by Gh�1i the inverse of the
mapping � 7! G(�) (� 2 UÆ), the R-transform Rs of s with amalgamation over Mm(C ) is
de�ned as

Rs(�) = Gh�1i(�)� ��1; (� 2 G(UÆ)):

In [Le] it was proved that

Rs(�) = a0 +
rX

i=1

ai�ai;

so that

Gh�1i(�) = a0 +
rX

i=1

ai�ai + ��1; (� 2 G(UÆ));

and hence

a0 +
rX

i=1

aiG(�)ai +G(�)�1 = �; (� 2 UÆ): (5.10)

Note now that by Lemma 3.1, the set OÆ, de�ned in (5.9), is a subset of UÆ, and hence
(5.10) holds, in particular, for � in OÆ. Since OÆ is an open, non-empty subset of O
(de�ned in (5.8)) and since O is a non-empty connected (even convex) subset of Mm(C ),
it follows, then, from the principle of uniqueness of analytic continuation (for analytical
functions in m2 complex variables) that formula (5.10) actually holds for all � in O, as
desired. �

For n in N and � in the set O (de�ned in (5.8)), we introduce, further, the following
notation:

�n(�) = a0 +
rX

i=1

aiGn(�)ai +Gn(�)
�1; (5.11)

"(�) =
1

k(Im�)�1k = �min(Im�); (5.12)

O0n =
�
� 2 O �� C

n2
(K + k�k)2"(�)�6 < 1

2

	
; (5.13)

where, as before, C = �2

8
m3kPr

i=1 a
2
ik2 and K = ka0k+ 4

Pr
i=1 kaik. Note that O0n is an

open subset of Mm(C ), since the mapping � 7! "(�) is continuous on O. With the above
notation we have the following
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5.5 Lemma. For any positive integer n and any matrix � in O0n we have

Im�n(�) � "(�)

2
111m: (5.14)

In particular, �n(�) 2 O. Moreover

a0 +
rX

i=1

aiG(�n(�))ai +G(�n(�))
�1 = a0 +

rX
i=1

aiGn(�)ai +Gn(�)
�1; (5.15)

for any � in O0n.

Proof. Note that the right hand side of (5.15) is nothing else than �n(�). Therefore,
(5.15) follows from Lemma 5.4, once we have established that �n(�) 2 O for all � in O0n.
This, in turn, is an immediate consequence of (5.14). It suÆces, thus, to verify (5.14).
Note, �rst, that for any � in O, we have by Corollary 5.3 that

Im�n(�)� Im�
 � �n(�)� �

 = a0 + rX
i=1

aiGn(�)ai +Gn(�)
�1 � �


� C

n2
(K + k�k)2"(�)�5:

In particular, Im�n(�)� Im� � � C
n2
(K + k�k)2"(�)�5111m, and since, also, Im� � "(�)111m,

by de�nition of "(�), we conclude that

Im�n(�) = Im�+ (Im�n(�)� Im�) � �"(�)� C
n2
(K + k�k)2"(�)�5�111m; (5.16)

for any � in O. Assume now that � 2 O0n. Then C
n2
(K + k�k)2"(�)�5 < 1

2
"(�), and

inserting this in (5.16), we �nd that

Im�n(�) � 1
2
"(�)111m;

as desired. �

5.6 Proposition. Let n be a positive integer. Then with G, Gn and O
0
n as de�ned above,

we have that

G(�n(�)) = Gn(�);

for all � in O0n.

Proof. Note �rst that the functions � 7! Gn(�) and � 7! G(�n(�)) are both analytical
functions (of m2 complex variables) de�ned on O0n and taking values inMm(C ). Applying
the principle of uniqueness of analytic continuation, it suÆces, thus, to prove the following
two assertions:

(a) The set O0n is an open connected subset of Mm(C ).
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(b) The formula G(�n(�)) = Gn(�) holds for all � in some open, non-empty subset O00n
of O0n.

Proof of (a): We have already noted that O0n is open. Consider the subset In of R given
by:

In =
�
t 2 ]0;1[

�� C
n2
(K + t)2t�6 < 1

2

	
;

with C and K as above. Note that since the function t 7! (K+t)2t�6 (t > 0) is continuous
and strictly decreasing, In has the form: In = ]tn;1[, where tn is uniquely determined
by the equation: C

n2
(K + t)2t�6 = 1

2
. Note, further, that for any t in In, it111m 2 O0n, and

hence the set

In = fit111m j t 2 Ing;
is an arc-wise connected subset of O0n. To prove (a), it suÆces, then, to show that any � in
O0n is connected to some point in In via a continuous curve �, which is entirely contained
in O0n. So let � from O0n be given, and note that 0 � "(�) = �min(Im�) � k�k. Thus,

C

n2
(K + "(�))2"(�)�6 � C

n2
(K + k�k)2"(�)�6 < 1

2
;

and therefore "(�) 2 In and i"(�)111m 2 In. Now, let � : [0; 1] ! Mm(C ) be the straight
line from i"(�)111m to �, i.e.,

�(t) = (1� t)i"(�)111m + t�; (t 2 [0; 1]):

We show that �(t) 2 O0n for all t in [0; 1]. Note, for this, that

Im�(t) = (1� t)"(�)111m + tIm�; (t 2 [0; 1]);

so obviously �(t) 2 O for all t in [0; 1]. Furthermore, if 0 � r1 � r2 � � � � � rm denote
the eigenvalues of Im(�), then, for each t in [0; 1], (1� t)"(�) + trj (j = 1; 2; : : : ; m) are
the eigenvalues of Im�(t). In particular, since r1 = "(�), "(�(t)) = �min(Im�(t)) = "(�)
for all t in [0; 1]. Note also that

k�(t)k � (1� t)"(�) + tk�k � (1� t)k�k+ tk�k = k�k;
for all t in [0; 1]. Altogether, we conclude that

C

n2
(K + k�(t)k)2"(�(t))�6 � C

n2
(K + k�k)2"(�)�6 < 1

2
;

and hence �(t) 2 O0n for all t in [0; 1], as desired.

Proof of (b): Consider, for the moment, a �xed matrix � from O0n, and put � = Gn(�)
and � = G(�n(�)). Then Lemma 5.5 asserts that

a0 +
rX

i=1

ai�ai + ��1 = a0 +
rX

i=1

ai�ai + ��1;
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so that

�
� rX

i=1

ai�ai + ��1
�
� = �

� rX
i=1

ai�ai + ��1
�
�:

and hence

rX
i=1

�ai(� � �)ai� = � � �:

In particular, it follows that

�
k�kk�k

rX
i=1

kaik2
�
k� � �k � k� � �k: (5.17)

Note here that by Lemma 3.1,

k�k = kGn(�)k =
idm 
 trn

�
(�
 111n � Sn)

�1�
� (�
 111n � Sn)

�1 � (Im�)�1 = 1

"(�)
:

(5.18)

Similarly, it follows that

k�k = kG(�n(�))k �
(�n(�)
 111B � s)�1

 � (Im�n(�))
�1 � 2

"(�)
; (5.19)

where the last inequality follows from (5.14) in Lemma 5.5. Combining (5.17)-(5.19), it
follows that

� 2

"(�)2

rX
i=1

kaik2
�
k� � �k � k� � �k: (5.20)

This estimate holds for all � in O0n. If � satis�es, in addition, that 2
"(�)2

Pr
i=1 kaik2 < 1,

then (5.20) implies that � = �, i.e., Gn(�) = G(�n(�)). Thus, if we put

O
00
n =

�
� 2 O0n

�� "(�) >p2
Pr

i=1 kaik2
	
;

we have established that Gn(�) = G(�n(�)) for all � in O00n. Since "(�) is a continuous
function of �, O00n is clearly an open subset of O0n, and it remains to check that O00n is
non-empty. Note, however, that for any positive number t, the matrix it111m is in O and
it satis�es that kit111mk = "(it111m) = t. From this, it follows easily that it111m 2 O00n for all
suÆciently large positive numbers t. This concludes the proof of (b) and hence the proof
of Proposition 5.6. �

5.7 Theorem. Let r;m be positive integers, let a1; : : : ; ar be self-adjoint matrices in
Mm(C ) and, for each positive integer n, let X(n)

1 ; : : : ; X(n)
r be independent random ma-

trices in SGRM(n; 1
n
). Consider, further, free self-adjoint identically semi-circular dis-

tributed operators x1; : : : ; xr in some C�-probability space (B; �), and normalized such
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that �(xi) = 0 and �(x2i ) = 1 for all i. Then put as in (3.2) and (5.7):

s = a0 
 111B +
rX

i=1

ai 
 xi 2 Mm(C ) 
 B

Sn = a0 
 111n +
rX

i=1

ai 
X(n)
i 2Mm(C ) 
Mn(C ); (n 2 N);

and for � in O = f� 2Mm(C ) j Im(�) is positive de�niteg de�ne

Gn(�) = E
�
(idm 
 trn)

�
(�
 111n � Sn)

�1�	
G(�) = (idm 
 �)

�
(�
 111B � s)�1

�
:

Then, for any � in O and any positive integer n, we have

Gn(�)�G(�)
 � 4C

n2
(K + k�k)2(Im�)�17; (5.21)

where C = m3kPr
i=1 a

2
i k2 and K = ka0k+ 4

Pr
i=1 kaik.

Proof. Let n in N be �xed, and assume, �rst, that � is in the set O0n de�ned in (5.13).
Then, by Proposition 5.6, we haveGn(�)�G(�)

 = G(�n(�))�G(�)


=
idm 
 �

�
(�n(�)
 111B � s)�1 � (�
 111B � s)�1

�
� (�n(�)
 111B � s)�1 � (�
 111B � s)�1

:
Note here that

(�n(�)
 111B � s)�1 � (�
 111B � s)�1 = (�n(�)
 111B � s)�1
�
(�� �n(�)
 111n

�
(�
 111B � s)�1;

and therefore, taking Lemma 3.1 into account,Gn(�)�G(�)
 � (�n(�)
 111B � s)�1

 � �� �n(�)
 � (�
 111B � s)�1


� (Im�n(�))

�1 � �� �n(�)
 � (Im�)�1:

Now, k(Im�)�1k = 1="(�) (cf. (5.12)) and hence, by (5.14) in Lemma 5.5, k(Im�n(�))
�1k �

2="(�) = 2k(Im�)�1k. Furthermore, by (5.11) and Corollary 5.3,

�n(�)� �
 = a0 + rX

i=1

aiGn(�)ai +Gn(�)
�1 � �

 � C

n2
(K + k�k)2(Im�)�15:

Thus, we conclude that

Gn(�)�G(�)
 � 2C

n2
(K + k�k)2(Im�)�17;

which shows, in particular, that (5.21) holds for all � in O0n.
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Assume, next, that � 2 O n O0n, so that

C

n2
(K + k�k)2(Im�)�16 = C

n2
(K + k�k)2"(�)�6 � 1

2
: (5.22)

By application of Lemma 3.1, it follows thatG(�) � (�
 111B � s)�1
 � (Im�)�1; (5.23)

and similarly we �nd thatidm 
 trn
�
(�
 111n � Sn(!))

�1� � (Im�)�1;
at all points ! in 
. Hence, after integrating w.r.t. ! and using Jensen's inequality,

kGn(�)k � E
�idm 
 trn

�
(�
 111n � Sn)

�1�	 � (Im�)�1: (5.24)

Combining (5.22)-(5.24), we �nd that

Gn(�)�G(�)
 � 2

(Im�)�1 = 1

2
� 4(Im�)�1 � 4C

n2
(K + k�k)2(Im�)�17;

verifying that (5.21) holds for � in O n O0n too. �

6 The spectrum of Sn.

Let r;m 2 N , let a0; : : : ; ar 2Mm(C )sa and for each n 2 N , letX
(n)
1 ; : : : ; X

(n)
r be r indepen-

dent random matrices in SGRM(n; 1
n
). Let, further, x1; : : : ; xr be a semi-circular family

in a C�-probability space (B; �), and de�ne Sn, s, Gn(�) and G(�) as in Theorem 5.7.

6.1 Lemma. For � 2 C with Im� > 0, put

gn(�) = E
�
(trm 
 trn)[(�(111m 
 111B)� Sn)

�1]
	

(6.1)

and

g(�) = (trm 
 �)
�
(�111mn � s)�1

�
: (6.2)

Then

jgn(�)� g(�)j � 4C

n2
�
K + j�j�2(Im�)�7 (6.3)

where C, K are the constants de�ned in Theorem 5.7.

Proof. This is immediate from Theorem 5.7 because

gn(�) = trm(Gn(�111m))
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and

g(�) = trm(G(�111m)): �

Let Prob(R) denote the set of Borel probability measures on R. We equip Prob(R)
with the weak�-topology given by C0(R), i.e., a net (��)�2A in Prob(R) converges in
w�-topology to � 2 Prob(R), if and only if

lim
�

�Z
R

' d��

�
=

Z
R

' d�

for all ' 2 C0(R).

Since Sn and s are self-adjoint, there are, by Riesz' representation theorem, unique prob-
ability measures �n, n = 1; 2; : : : and � on R, such thatZ

R

' d�n = E
�
(trm 
 trn)'(Sn)

	
(6.4)

Z
R

' d� = (trm 
 �)'(s) (6.5)

for all ' 2 C0(R). Note that � is compactly supported while �n, in general, is not
compactly supported.

6.2 Theorem. Let Sn and s be given by (3.2) and (5.7), and let C = �2

8
m3kPr

i=1 a
2
ik2

and K = ka0k+ 4
Pr

i=1 kaik. Then for all ' 2 C1
c (R;R);

E
�
(trm 
 trn)'(Sn)

	
= (trm 
 �)'(s) +Rn (6.6)

where

jRnj � 4C

315�n2

Z
R

��((1 +D)8')(x)
���K + 2 + jxj�2 dx (6.7)

and D = d
dx
. In particular Rn = O( 1

n2
) for n!1.

Proof. Let gn; g; �n; � be as in (6.1), (6.2), (6.4) and (6.5). Then for any complex number
�, such that Im(�) > 0, we have

gn(�) =

Z
R

1

�� x
d�n(x) (6.8)

g(�) =

Z
R

1

�� x
d�(x): (6.9)

Hence gn and g are the Stieltjes transforms (or Cauchy transforms, in the terminology of
[VDN]) of �n and � in the half plane Im� > 0. Hence, by the inverse Stieltjes transform,

�n = lim
y!0+

�
� 1

�
Im(gn(x+ iy)) dx

�
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where the limit is taken in the weak�-topology on Prob(R). In particular, for all ' in
C1
c (R;R): Z

R

'(x) d�n(x) = lim
y!0+

h
� 1

�
Im
�Z

R

'(x)gn(x+ iy) dx
�i
: (6.10)

In the same way we get for ' 2 C1
c (R;R):Z

R

'(x) d�(x) = lim
y!0+

h
� 1

�
Im

Z
R

'(x)g(x+ iy) dx
i
: (6.11)

In the rest of the proof, n 2 N is �xed, and we put h(�) = gn(�)� g(�). Then by (6.10)
and (6.11)��� Z

R

'(x) d�n(x)�
Z
R

'(x) d�(x)
��� � 1

�
lim sup
y!0+

��� Z
R

'(x)h(x + iy) dx
���: (6.12)

For Im� > 0 and p 2 N , put

Ip(�) =
1

(p� 1)!

Z 1

0

h(�+ t)tp�1e�t dt: (6.13)

Note that Ip(�) is well de�ned because, by (6.8) and (6.9), h(�) is uniformly bounded in
any half-plane of the form Im� � ", where " > 0. Also, it is easy to check that Ip(�) is
an analytic function of �, and its �rst derivative is given by

I 0p(�) =
1

(p� 1)!

Z 1

0

h0(�+ t)tp�1e�t dt (6.14)

where h0 = dh
d�
. We claim that

I1(�)� I 01(�) = h(�) (6.15)

Ip(�)� I 0p(�) = Ip�1(�); p � 2: (6.16)

Indeed, by (6.14) and partial integration we get

I 01(�) =
�
h(�+ t)e�t

�1
0
+

Z 1

0

h(�+ t)e�t dt

= �h(�) + I1(�);

which proves (6.15) and in the same way we get for p � 2,

I 0p(�) =
1

(p� 1)!

Z 1

0

h0(�+ t)tp�1e�t dt

= � 1

(p� 1)!

Z 1

0

h(� + t)((p� 1)tp�2 � tp�1)e�t dt

= �Ip�1(�) + Ip(�);
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which proves (6.16). Assume now that ' 2 C1
c (R;R) and that y > 0. Then, by (6.15)

and partial integration, we haveZ
R

'(x)h(x + iy) dx =

Z
R

'(x)I1(x+ iy) dx�
Z
R

'(x)I 01(x + iy) dx

=

Z
R

'(x)I1(x+ iy) dx+

Z
R

'0(x)I1(x+ iy) dx

=

Z
R

((1 +D)')(x) � I1(x + iy) dx;

where D = d
dx
. Using (6.16), we can continue to perform partial integrations, and after p

steps, we obtain Z
R

'(x)h(x + iy) dx =

Z
R

((1 +D)p')(x) � Ip(x + iy) dx:

Hence by (6.12) we have for all p 2 N :

��� Z
R

'(x) d�n(x)�
Z
R

'(x) d�(x)
��� � 1

�
lim sup
y!0+

��� Z
R

((1 +D)p')(x) � Ip(x + iy) dx
���: (6.17)

Next, we use (6.3) to show that for p = 8 and Im� > 0 one has

jI8(�)j � 4C(K + 2 + j�j)2
315n2

: (6.18)

To prove (6.18), we apply Cauchy's integral theorem to the function

F (z) =
1

7!
h(�+ z)z7e�z;

which is analytic in the half-plane Imz > �Im�. Hence for r > 0Z
[0;r]

F (z) dz +

Z
[r;r+ir]

F (z) dz +

Z
[r+ir;0]

F (z) dz = 0

where [�; �] denotes the line segment connecting � and � in C oriented from � to �. Put

M(�) = sup
�jh(w)j �� Imw � Im�

	
:

Then by (6.8) and (6.9), M(�) � 2
jIm�j <1. Hence

��� Z
[r;r+ir]

F (z) dz
��� � M(�)

7!

Z r

0

j�+ r + itj7e�r dt

� M(�)

7!
(j�j+ 2r)7r � e�r

! 0; for r!1:
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Therefore,

I8(�) =
1

7!

Z 1

0

h(�+ t)t7e�t dt

= lim
r!1

Z
[0;r]

F (z) dz

= lim
r!1

Z
[0;r+ir]

F (z) dz

=
1

7!

Z 1

0

h(�+ (1 + i)t)((1 + i)t)7e�(1+i)t(1 + i) dt: (6.19)

By (6.3),

jh(w)j � 4C

n2
(K + jwj)2(Imw)�7; Imw > 0:

Inserting this in (6.19) we get

jI8(�)j � 4C

7!n2

Z 1

0

�
K + j�j+p

2t
�2

(Im�+ t)7
(
p
2t)7e�t

p
2 dt

� 26C

7!n2

Z 1

0

�
K + j�j+

p
2t
�2
e�t dt

=
4C

315n2
�
(K + j�j)2 + 2

p
2(K + j�j) + 4

�
� 4C

315n2
(K + j�j+ 2)2:

This proves (6.18). Now, combining (6.17) and (6.18), we have��� Z
R

'(x) d�n(x)�
Z
R

'(x) d�(x)
���

� 4C

315�n2
lim sup
y!0+

Z
R

��((1 +D)8')(x)
���K + 2 + jx+ iyj�2 dx

=
4C

315�n2

Z
R

��((1 +D)8')(x)
���K + 2 + jxj�2 dx

for all ' 2 C1
c (R;R). Together with (6.4) and (6.5) this proves Theorem 6.2. �

6.3 Lemma. Let Sn and s be given by (3.2) and (5.7), and let ' : R ! R be a C1-
function which is constant outside a compact subset of R. Assume further, that

supp(') \ sp(s) = ;: (6.20)

Then

E
�
(trm 
 trn)'(Sn)

	
= O

�
1
n2

�
; for n!1 (6.21)

V
�
(trm 
 trn)'(Sn)

	
= O

�
1
n4

�
; for n!1 (6.22)
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where V is the absolute variance of a complex random variable (cf. Section 4). Moreover

(trm 
 trn)'(Sn(!)) = O(n�4=3) (6.23)

for almost all ! in the underlying probability space 
.

Proof. By the assumptions, ' =  + c, for some  in C1
c (R;R) and some constant c in

R. By Theorem 6.2

E
�
(trm 
 trn) (Sn)

	
= (trm 
 �) (s) + O

�
1
n2

�
; for n!1;

and hence also

E
�
(trm 
 trn)'(Sn)

	
= (trm 
 �)'(s) +O

�
1
n2

�
; for n!1:

But since ' vanishes on sp(s), we have '(s) = 0. This proves (6.21). Moreover, applying
Proposition 4.7 to  2 C1

c (R), we have

V
�
(trm 
 trn) (Sn)

	 � 1

n2

 rX
i=1

a2i

2E�(trm 
 trn)( 
0(Sn))

2
	
: (6.24)

By (6.20),  0 = '0 also vanishes on sp(s). Hence, by Theorem 6.2

E
�
(trm 
 trn)j 0(Sn)j2

	
= O

�
1
n2

�
; as n!1:

Therefore, by (6.24)

V
�
(trm 
 trn) (Sn)

	
= O

�
1
n4

�
; as n!1.

Since '(Sn) =  (Sn) + c111mn, V
�
(trm 
 trn)'(Sn)

	
= V

�
(trm 
 trn) (Sn)

	
. This proves

(6.22). Now put

Zn = (trm 
 trn)'(Sn)


n =
�
! 2 


�� jZn(!)j � n�4=3
	
:

By (6.21) and (6.22)

E
�jZnj2

	
= jEfZngj2 + VfZng = O

�
1
n4

�
; for n!1:

Hence

P (
n) =

Z

n

dP (!) �
Z

n

��n4=3Zn(!)
��2 dP (!) � n8=3E

�jZnj2
	
= O(n�4=3); (6.25)

for n ! 1. In particular
P1

n=1 P (
n) < 1. Therefore, by the Borel-Cantelli lemma
(see e.g. [Bre]), ! =2 
n eventually, as n!1, for almost all ! 2 
, i.e., jZn(!)j < n�4=3

eventually, as n!1, for almost all ! 2 
. This proves (6.23). �

42



6.4 Theorem. Let m 2 N and let a0; : : : ; ar 2Mm(C )sa , Sn and s be as in Theorem 5.7.
Then for any " > 0 and for almost all ! 2 
,

sp(Sn(!)) � sp(s) + ]� "; "[;

eventually as n!1.

Proof. Put

K = sp(s) +
�� "

2
; "
2

�
F =

�
t 2 R j d(t; sp(s)) � "

	
:

Then K is compact, F is closed and K \ F = ;. Hence there exists ' 2 C1(R), such
that 0 � ' � 1, '(t) = 0 for t 2 K and '(t) = 1 for t 2 F (cf. [F, (8.18) p. 237]). Since
C nF is a bounded set, ' satis�es the requirements of lemma 6.3. Hence by (6.23), there
exists a P -null set N � 
, such that for all ! 2 
nN :

(trm 
 trn)'(Sn(!)) = O(n�4=3); as n!1:

Since ' � 1F , it follows that

(trm 
 trn)1F (Sn(!)) = O(n�4=3); as n!1:

But for �xed ! 2 
nN , the number of eigenvalues (counted with multiplicity) of the
matrix Sn(!) in the set F is equal to mn(trm 
 trn)1F (Sn(!)), which is O(n�1=3) as
n!1. However, for each n 2 N the above number is an integer. Hence, the number of
eigenvalues of Sn(!) in F is zero eventually as n!1. This shows that

sp(Sn(!)) � C nF = sp(s) + ]� "; "[

eventually as n!1, when ! 2 
nN . �

7 Proof of the main Theorem.

Throughout this section, r 2 N [ f1g, and, for each n in N , we let (X
(n)
i )ri=1 denote

a �nite or countable set of independent random matrices from SGRM(n; 1
n
), de�ned on

the same probability space (
;F; P ). In addition, we let (xi)
r
i=1 denote a corresponding

semi-circular family in a C�-probability space (B; �), where � is a faithful state on B.
Furthermore, as in [VDN], we let C h(Xi)

r
i=1i denote the algebra of all polynomials in r

non-commuting variables. Note that C h(Xi)
r
i=1i is a unital �-algebra, with the �-operation

given by:

(cXi1Xi2 � � �Xik)
� = cXikXik�1 � � �Xi2Xi1;

for c in C , k in N and i1; i2; : : : ; ik in f1; 2; : : : ; rg, when r is �nite, and in N when r =1.
The purpose of this section is to conclude the proof of the main theorem (Theorem 7.1
below) by combining the results of the previous sections.
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7.1 Theorem. Let r be in N [ f1g. Then there exists a P -null-set N � 
, such that
for all p in C h(Xi)

r
i=1i and all ! in 
 nN , we have

lim
n!1

p�(X(n)
i (!))ri=1

� = p�(xi)ri=1

�:
We start by proving the following

7.2 Lemma. Assume that r 2 N . Then there exists a P -null set N1 � 
, such that for
all p in C h(Xi)

r
i=1i and all ! in 
nN1:

lim inf
n!1

p�X(n)
1 (!); : : : ; X(n)

r (!)
� � kp(x1; : : : ; xr)k: (7.1)

Proof. We �rst prove that for each p in C hX1; : : : ; Xri, there exists a P -null-set N(p),
depending on p, such that (7.1) holds for all ! in 
 n N(p). This assertion is actually a
special case of [T, Prop. 4.5], but for the readers convenience, we include a more direct
proof: Consider �rst a �xed p 2 C hX1; : : : ; Xri. Let k 2 N and put q = (p�p)k. By [T,
Cor. 3.9] or [HP],

lim
n!1

trn
�
q(X(n)

1 (!); : : : ; X(n)
r (!))

�
= �

�
q(x1; : : : ; xr)

�
; (7.2)

for almost all ! 2 
. For s � 1, Z 2 Mn(C ) and z 2 B, put kZks = trn(jZjs)1=s and
kzks = �(jzjs)1=s. Then (7.2) can be rewritten as

lim
n!1

p�X(n)
1 (!); : : : ; X(n)

r (!)
�2k

2k
=
p(x1; : : : ; xr)2k2k (7.3)

for ! 2 
nN(p), where N(p) is a P -null-set. Since N is a countable set, we can assume
that N(p) does not depend on k 2 N . For every bounded Borel function f on a probability
space, one has

kfk1 = lim
p!1

kfkp; (7.4)

(cf. [F, Exercise 7, p. 179]). Put a = p(x1; : : : ; xr), and let �: D ! C(D̂) be the
Gelfand transform of the Abelian C�-algebra D generated by a�a and 111B, and let � be the
probability measure on D̂ corresponding to �jD. Since � is faithful, supp(�) = D̂. Hence,
k�(a�a)k1 = k�(a�a)ksup = ka�ak. Applying then (7.4) to the function f = �(a�a), we
�nd that

kak = ka�ak1=2 = lim
p!1

ka�ak1=2p = lim
p!1

kak2p: (7.5)

Let " > 0. By (7.5), we can choose k in N , such that

kp(x1; : : : ; xr)k2k > kp(x1; : : : ; xr)k � ":

Since kZks � kZk for all s � 1 and all Z 2Mn(C ), we have by (7.3)

lim inf
n!1

p�X(n)
1 (!); : : : ; X(n)

r (!)
� � kp(x1; : : : ; xr)k2k > kp(x1; : : : ; xr)k � ";
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for all ! 2 
nN(p), and since N(p) does not depend on ", it follows that (7.1) holds
for all ! 2 
nN(p). Now put N 0 =

S
p2PN(p), where P is the set of non-commutative

polynomials with rational coeÆcients. Then N 0 is again a null set, and (7.1) holds for all
p 2 P and all ! 2 
nN 0.

By [Ba, Thm. 2.12] or [HT1, Thm. 3.1], limn!1 kX(n)
i (!)k = 2, i = 1; : : : ; r, for almost

all ! 2 
. In particular

sup
n2N

kX(n)
i (!)k <1; i = 1; : : : ; r; (7.6)

for almost all ! 2 
. Let N 00 � 
 be the set of ! 2 
 for which (7.6) fails for some
i 2 f1; : : : ; rg. Then N1 = N 0 [ N 00 is a null set, and a simple approximation argument
shows that (7.1) holds for all p in C hX1; : : : ; Xri, when ! 2 
nN1. �

In order to complete the proof of Theorem 7.1, we have to prove

7.3 Proposition. Assume that r 2 N . Then there is a P -null set N2 � 
, such that for
all polynomials p in r non-commuting variables and all ! 2 
nN2,

lim sup
n!1

p�X(n)
1 (!); : : : ; X(n)

r (!)
� � kp(x1; : : : ; xr)k:

The proof of Proposition 7.3 relies on Theorem 6.4 combined with the linearization trick
in the form of Theorem 2.4. Following the notation of [BK] we putY

n

Mn(C ) =
�
(Zn)

1
n=1

�� Zn 2Mn(C ); supn2NkZnk <1	
and X

n

Mn(C ) =
�
(Zn)

1
n=1

�� Zn 2Mn(C ); limn!1kZnk = 0
	
;

and we let C denote the quotient C�-algebra

C =
Y
n

Mn(C )
.X

n

Mn(C ): (7.7)

Moreover, we let � :
Q

nMn(C ) ! C denote the quotient map. By [RLL, Lemma 6.13],
the quotient norm in C is given by��(Zn)

1
n=1

� = lim sup
n!1

kZnk; (7.8)

for (Zn)
1
n=1 2

Q
Mn(C ).

Let m 2 N . Then we can identify Mm(C ) 
 C with
Q

nMmn(C ) =
P
Mmn(C ), whereQ

nMmn(C ) and
P

nMmn(C ) are de�ned as
Q

nMn(C ) and
P

nMn(C ), but with
Zn 2 Mmn(C ) instead of Zn 2 Mn(C ). Moreover, for (Zn)

1
n=1 2

Q
nMmn(C ), we have,

again by [RLL, Lemma 6.13],(idm 
 �)
�
(Zn)

1
n=1

� = lim sup
n!1

kZnk: (7.9)
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7.4 Lemma. Let m 2 N and let Z = (Zn)
1
n=1 2

Q
nMmn(C ), such that each Zn is

normal. Then for all k 2 N

sp
�
(idm 
 �)(Z)

� � 1[
n=k

sp(Zn):

Proof. Assume � 2 C is not in the closure of
S1

n=k sp(Zn). Then there exists an " > 0, such
that d(�; sp(Zn)) � " for all n � k. Since Zn is normal, it follows that k(�111mn�Zn)

�1k � 1
"

for all n � k. Now put

yn =

(
0; if 1 � n � k � 1;

(�111mn � Zn)
�1; if n � k:

Then y = (yn)
1
n=1 2

Q
nMmn(C ), and one checks easily that �111Mm(C )
C � (idm 
 �)(Z)

is invertible in Mm(C ) 
 C =
Q

nMmn(C ) =
P

nMmn(C ) with inverse (idm 
 �)y. Hence
� =2 sp((idm 
 �)(Z)). �

Proof of Proposition 7.3 and Theorem 7.1. Assume �rst that r 2 N . Put


0 =
�
! 2 


�� supn2NkX(n)
i (!)k <1; i = 1; : : : ; r

	
:

By (7.6), 
n
0 is a P -null set. For every ! 2 
0, we de�ne

yi(!) 2 C =
Y
n

Mn(C )
.X

n

Mn(C )

by

yi(!) = �
�
(X

(n)
i (!))1n=1

�
; i = 1; : : : ; r: (7.10)

Then for every non-commutative polynomial p 2 C hX1; : : : ; Xri and every ! in 
0, we
get by (7.8) thatp(y1(!); : : : ; yr(!)) = lim sup

n!1

p�X(n)
1 (!); : : : ; X(n)

r (!)
�: (7.11)

Let j 2 N and a0; a1; : : : ; ar 2 Mm(C )sa . Then by Theorem 6.4 there exists a null set
N(m; j; a0; : : : ; ar), such that for

sp
�
a0 
 111n +

Pr
i=1ai 
X

(n)
i (!)

� � sp
�
a0 
 111B +

Pr
i=1ai 
 xi

�
+
��1

j
; 1
j

�
;

eventually, as n ! 1, for all ! 2 
nN(m; j; a0; : : : ; ar). Let N0 =
S
N(m; j; a0; : : : ; ar),

where the union is taken over all m; j 2 N and a0; : : : ; ar 2 Mn(Q + iQ)sa . This is a
countable union. Hence N0 is again a P -null set, and by Lemma 7.4

sp
�
a0 
 111n +

Pr
i=1ai 
 yi(!)

� � sp
�
a0 
 111B +

Pr
i=1ai 
 xi

�
+
��1

j
; 1
j

�
;
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for all ! 2 
0nN0, all m; j 2 N and all a0; : : : ; ar 2 Mn(Q + iQ)sa . Taking intersection
over j 2 N on the right hand side, we get

sp
�
a0 
 111n +

Pr
i=1ai 
 yi(!)

� � sp
�
a0 
 111B +

Pr
i=1ai 
 xi

�
;

for ! 2 
0nN0, m 2 N and a0; : : : ; ar 2Mn(Q + iQ)sa . Hence, by Theorem 2.4,p(y1(!); : : : ; yr(!)) � kp(x1; : : : ; xr)k;
for all p 2 C hX1; : : : ; Xri and all ! 2 
0nN0, which, by (7.11), implies that

lim sup
n!1

p�X(n)
1 (!); : : : ; X(n)

r (!)
� � kp(x1; : : : ; xr)k;

for all p 2 C hX1; : : : ; Xri and all ! 2 
0nN0. This proves Proposition 7.3, which, together
with Lemma 7.2, proves Theorem 7.1 in the case r 2 N . The case r =1 follows from the
case r 2 N , because C h(Xi)

1
i=1i = [1r=1C h(Xi)

r
i=1i. �

8 Ext(C�
red(Fr)) is not a group.

We start this section by translating Theorem 7.1 into a corresponding result, where the
self-adjoint Gaussian random matrices are replaced by random unitary matrices and the
semi-circular system is replaced by a free family of Haar-unitaries.

De�ne C1-functions ' : R ! R and  : R ! C by

'(t) =

8><
>:
��; if t � �2;R t
0

p
4� s2 ds; if � 2 < t < 2;

�; if t � 2:

(8.1)

and

 (t) = ei'(t); (t 2 R): (8.2)

Let � be the standard semi-circle distribution on R:

d�(t) =
1

2�

p
4� t2 � 1[�2;2](t) dt;

and let '(�) denote the push-forward measure of � by ', i.e., '(�)(B) = �('�1(B)) for
any Borel subset B of R. Since '0(t) =

p
4� t2 � 1[�2;2](t) for all t in R, it follows that

'(�) is the uniform distribution on [��; �], and, hence,  (�) is the Haar measure on the
unit circle T in C .

The following lemma is a simple application of Voiculescu's results in [V3].

8.1 Lemma. Let r 2 N[f1g and let (xi)ri=1 be a semi-circular system in a C�-probability
space (B; �), where � is a faithful state on B. Let  : R ! T be the function de�ned in
(8.2), and then put

ui =  (xi); (i = 1; : : : ; r):
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Then there is a (surjective) �-isomorphism �: C�
red(Fr)! C�((ui)ri=1), such that

�
�
�(gi)

�
= ui; (i = 1; : : : ; r);

where g1; : : : ; gr are the generators of the free group Fr, and � : Fr ! B(`2(Fr)) is the
left regular representation of Fr on `

2(Fr).

Proof. Recall that C�
red(Fr) is, by de�nition, the C�-algebra in B(`2(Fr)) generated by

�(g1); : : : ; �(gr). Let e denote the unit in Fr and let Æe 2 `2(Fr) denote the indicator
function for feg. Recall, then, that the vector state � = h � Æe; Æei : B(`2(Fr))! C , corre-
sponding to Æe, is faithful on C

�
red(Fr). We recall, further, from [V3] that �(g1); : : : ; �(gr)

are �-free operators w.r.t. �, and that each �(gi) is a Haar unitary, i.e.,

�(�(gi)
n) =

(
1; if n = 0;

0; if n 2 Z n f0g:
Now, since (xi)

r
i=1 are free self-adjoint operators in (B; �), (ui)

r
i=1 are �-free unitaries in

(B; �), and since, as noted above,  (�) is the Haar measure on T, all the ui's are Haar
unitaries as well. Thus, the �-distribution of (�(gi))ri=1 w.r.t. � (in the sense of [V3]) equals
that of (ui)

r
i=1 w.r.t. � . Since � and � are both faithful, the existence of a �-isomorhism

�, with the properties set out in the lemma, follows from [V3, Remark 1.8]. �

Let r 2 N [ f1g. As in Theorem 7.1, we consider next, for each n in N , independent

random matrices (X
(n)
i )ri=1 in SGRM(n; 1

n
). We then de�ne, for each n, random unitary

n� n matrices (U
(n)
i )ri=1, by setting

U
(n)
i (!) =  (X

(n)
i (!)); (i = 1; 2; : : : ; r); (8.3)

where  : R ! T is the function de�ned in (8.2). Consider, further, the (free) generators
(gi)

r
i=1 of Fr. Then, by the universal property of a free group, there exists, for each n in

N and each ! in 
, a unique group homomorphism:

�n;! : Fr ! U(n) = U(Mn(C ));

satisfying

�n;!(gi) = U
(n)
i (!); (i = 1; 2; : : : ; r): (8.4)

8.2 Theorem. Let r 2 N [ f1g and let, for each n in N , (U
(n)
i )ri=1 be the random

unitaries given by (8.3). Let, further, for each n in N and each ! in 
, �n;! : Fr ! U(n)
be the group homomorphism given by (8.4).

Then there exists a P -null set N � 
, such that for all ! in 
 n N and all functions
f : Fr ! C with �nite support, we have

lim
n!1

X
2Fr

f()�n;!()
 = X

2Fr
f()�()

;
where, as above, � is the left regular representation of Fr on `

2(Fr).
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Proof. In the proof we shall need the following simple observation: If a1; : : : ; as, b1; : : : ; bs
are 2s operators on a Hilbert space K, such that kaik; kbik � 1 for all i in f1; 2; : : : ; sg,
then

ka1a2 � � �as � b1b2 � � � bsk �
sX

i=1

kai � bik: (8.5)

We shall need, further, that for any positive " there exists a polynomial q in one variable,
such that

jq(t)j � 1; (t 2 [�3; 3]); (8.6)

and

j (t)� q(t)j � "; (t 2 [�3; 3]): (8.7)

Indeed, by Weierstrass' approximation theorem, we may choose a polynomial q0 in one
variable, such that

j (t)� q0(t)j � "=2; (t 2 [�3; 3]): (8.8)

Then put q = (1 + "=2)�1q0 and note that since j (t)j = 1 for all t in R, it follows from
(8.8) that (8.6) holds. Furthermore,

jq0(t)� q(t)j � "
2
jq(t)j � "

2
; (t 2 [�3; 3]);

which, combined with (8.8), shows that (8.7) holds.

After these preparations, we start by proving the theorem in the case r 2 N . For each
n in N , let X(n)

1 ; : : : ; X(n)
r be independent random matrices in SGRM(n; 1

n
) de�ned on

(
;F; P ), and de�ne the random unitaries U
(n)
1 ; : : : ; U

(n)
r as in (8.3). Then let N be a P -

null set as in the main theorem (Theorem 7.1). By considering, for each i in f1; 2; : : : ; rg,
the polynomial p(X1; : : : ; Xr) = Xi, it follows then from the main theorem that

lim
n!1

X(n)
i (!)

 = 2;

for all ! in 
 nN . In particular, for each ! in 
 nN , there exists an n! in N , such thatX(n)
i (!)

 � 3; whenever n � n! and i 2 f1; 2; : : : ; rg.

Considering, then, the polynomial q introduced above, it follows from (8.6) and (8.7) that
for all ! in 
 nN , we haveq�X(n)

i (!)
� � 1; whenever n � n! and i 2 f1; 2; : : : ; rg, (8.9)

and U (n)
i (!)� q

�
X

(n)
i (!)

� � "; whenever n � n! and i 2 f1; 2; : : : ; rg. (8.10)
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Next, if  2 Fr n feg, then  can be written (unambiguesly) as a reduced word:  =
12 � � �s, where j 2 fg1; g2; : : : ; gr; g�11 ; g�12 ; : : : ; g�1r g for each j in f1; 2; : : : ; sg, and
where s = jj is the length of the reduced word for . It follows then, by (8.4), that
�n;!() = a1a2 � � �as, where

aj = �n;!(j) 2
�
U

(n)
1 (!); : : : ; U (n)

r (!); U
(n)
1 (!)�; : : : ; U (n)

r (!)�
	
; (j = 1; 2; : : : ; s):

Combining now (8.5), (8.9) and (8.10), it follows that for any  in Fr n feg, there exists
a polynomial p in C hX1; : : : ; Xri, such that�n;!()� p

�
X

(n)
1 (!); : : : ; X(n)

r (!)
� � jj"; whenever n � n! and ! 2 
 nN:

(8.11)

Now, let fx1; : : : ; xrg be a semi-circular system in a C�-probability space (B; �), and put
ui =  (xi), i = 1; 2; : : : ; r. Then, by Lemma 8.1, there is a surjective �-isomorphism
�: C�

red(Fr)! C�(u1; : : : ; ur), such that (� Æ �)(gi) = ui, i = 1; 2; : : : ; r. Since kxik � 3,
i = 1; 2; : : : ; r, the arguments that lead to (8.11) show also that for any  in Fr n feg,(� Æ �)()� p(x1; : : : ; xr)

 � jj"; (8.12)

where p is the same polynomial as in (8.11). Note that (8.11) and (8.12) also hold in the
case  = e, if we put pe(X1; : : : ; Xr) = 1, and jej = 0.

Consider now an arbitrary function f : Fr ! C with �nite support, and then de�ne the
polynomial p in C hX1; : : : ; Xri, by: p =

P
2Fr f()p. Then, for any ! in 
 nN and any

n � n!, we haveX
2Fr

f()�n;!()� p
�
X

(n)
1 (!); : : : ; X(n)

r (!)
� � �X

2Fr
jf()j � jj

�
"; (8.13)

and X
2Fr

f() � (� Æ �)()� p(x1; : : : ; xr)
 � �X

2Fr
jf()j � jj

�
"; (8.14)

Taking also Theorem 7.1 into account, we may, on the basis of (8.13) and (8.14), conclude
that for any ! in 
 nN , we have

lim sup
n!1

�����
X
2Fr

f()�n;!()
� X

2Fr
f() � (� Æ �)()


����� � 2"

�X
2Fr

jf()j � jj
�
:

Since " > 0 is arbitrary, it follows that for any ! in 
 nN ,

lim
n!1

X
2Fr

f()�n;!()
 = X

2Fr
f() � (� Æ �)()

 = X
2Fr

f()�()
;

where the last equation follows from the fact that � is a �-isomorphism. This proves
Theorem 8.2 in the case where r 2 N . The case r =1 follows by trivial modi�cations of
the above argument. �
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8.3 Remark. The distributions of the random unitaries U
(n)
1 ; : : : ; U

(n)
r in Theorem 8.2

are quite complicated. For instance, it is easily seen that for all n in N ,

P
��
! 2 


�� U (n)
1 (!) = �111n

	�
> 0:

It would be interesting to know whether Theorem 8.2 also holds, if, for each n in N ,
U

(n)
1 ; : : : ; U

(n)
r are replaced be stochastically independent random unitaries V

(n)
1 ; : : : ; V

(n)
r ,

which are all distributed according to the normalized Haar measure on U(n).

8.4 Corollary. For any r in N [ f1g, the C�-algebra C�
red(Fr) has a unital embedding

into the quotient C�-algebra

C =
Y
n

Mn(C )
.X

n

Mn(C );

introduced in Section 7. In particular, C�
red(Fr) is an MF-algebra in the sense of Blackadar

and Kirchberg (cf. [BK]).

Proof. This follows immediately from Theorem 8.2 and formula (7.8). In fact, one only
needs the existence of one ! in 
 for which the convergence in Theorem 8.2 holds! �

We remark that Corollary 8.4 could also have been proved, directly, from the main theorem
(Theorem 7.1) together with Lemma 8.1.

8.5 Corollary. For any r in f2; 3; : : : g [ f1g, the semi-group Ext(C�
red(Fr)) is not a

group.

Proof. In Section 5.14 of Voiculescu's paper [V6], it is proved that Ext(C�
red(Fr)) cannot

be a group, if there exists a sequence (�n)n2N of unitary representations �n : Fr ! U(n),
with the property that

lim
n!1

X
2Fr

f()�n()
 = X

2Fr
f()�()

; (8.15)

for any function f : Fr ! C with �nite support.

For any r 2 f2; 3; : : :g[f1g, the existence of such a sequence (�n)n2N follows immediately
from Theorem 8.2, by considering one single ! from the sure event 
 n N appearing in
that theorem. �

8.6 Remark. Let us briey outline Voiculescu's argument in [V7] for the fact that (8.15)
implies Corollary 8.5. It is obtained by combining the following two results of Rosenberg
[Ro] and Voiculescu [V6], respectively:

(i) If � is a discrete countable non-amenable group, then C�
red(�) is not quasi-diagonal

([Ro]).

(ii) A separable unital C�-algebra A is quasi-diagonal if and only if there exists a se-
quence of natural numbers (nk)k2N and a sequence ('k)k2N of completely positive
unital maps 'k : A!Mnk(C ), such that limk!1 k'k(a)k = kak and limk!1 k'k(ab)�
'k(a)'k(b)k = 0 for all a; b 2 A ([V6]).
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Let A be a separable unital C�-algebra. Then, as mentioned in the introduction, Ext(A)
is the set of equivalence classes [�] of one-to-one unital �-homomorphisms � of A into
the Calkin algebra C(H) = B(H)=K(H) over a separable in�nite dimensional Hilbert
space H. Two such �-homomorphisms are equivalent if they are equal up to a unitary
transformation of H. Ext(A) has a natural semi-group structure and [�] is invertible in
Ext(A) if and only if � has a unital completely positive lifting:  : A! B(H) (cf. [Arv]).
Let now A = C�

red(Fr), where r 2 f2; 3; : : :g [ f1g. Moreover, let �n : Fr ! Un, n 2 N ,
be a sequence of unitary representations satisfying (8.15) and let H be the Hilbert space
H =

L1
n=1 C

n . Clearly,
Q

nMn(C )=
P

nMn(C ) embeds naturally into Calkin algebra
C(H) = B(H)=K(H). Hence, there exists a one-to-one �-homomorphism � : A ! C(H),
such that

�(�(h)) = �

0
B@
�1(h) 0

�2(h)

0
. . .

1
CA ;

for all h 2 Fr (here � denotes the quotient map from B(H) to C(H)). Assume [�] is
invertible in Ext(A). Then � has a unital completely positive lifting ' : A ! B(H).
Put 'n(a) = pn'(a)pn, a 2 A, where pn 2 B(H) is the orthogonal projection onto the
component C n of H. Then each 'n is a unital completely positive map from A toMn(C ),
and it is easy to check that

lim
n!1

k'n(�(h))� �n(h)k = 0; (h 2 Fr):

From this it follows that

lim
n!1

k'n(a)k = kak and lim
n!1

k'n(ab)� 'n(a)'n(b)k = 0; (a; b 2 A)

so by (ii), A = C�
red(Fr) is quasi-diagonal. But since Fr is not amenable for r � 2, this

contradicts (i). Hence [�] is not invertible in Ext(A).

8.7 Remark. letA be a separable unitalC�-algebra and let � : A! C(H) = B(H)=K(H)
be a one-to-one *-homomorphism. Then � gives rise to an extension of A by the com-
pact operators K = K(H), i.e., a C�-algebra B together with a short exact sequence of
*-homomorphisms

0! K
�! B

q! A! 0:

Speci�cally, with � : B(H) ! C(H) the quotient map, B = ��1(�(A)), � is the inclusion
map of K into B and q = ��1 Æ �. Let now A = C�

red(Fr), let � : A ! C(H) be the
one-to-one unital *-homomorphism from Remark 8.6, and let B be the compact extension
of A constructed above. We then have

a) A = C�
red(Fr) is an exact C

�-algebra, but the compact extension B of A is not exact.

b) A = C�
red(Fr) is not quasi-diagonal but the compact extension B of A is quasi-

diagonal.
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To prove a), note that C�
red(Fr) is exact by [DH, Cor. 3.12] or [Ki2, p. 453, l. 1{3].

Assume B is also exact. Then, in particular, B is locally reexive (cf. [Ki2]). Hence by
the lifting theorem in [EH] and the nuclearity of K, the identity map A! A has a unital
completely positive lifting ' : A ! B. If we consider ' as a map from A to B(H), it
is a unital completely positive lifting of � : A ! C(H), which contradicts that [�] is not
invertible in Ext(A). To prove b), note that by Rosenberg's result, quoted in (i) above,
C�
red(Fr) is not quasi-diagonal. On the other hand, by the de�nition of � in Remark 8.6,

every x 2 B is a compact perturbation of an operator of the form

y =

0
B@
y1 0

y2

0
. . .

1
CA ;

where yn 2Mn(C ), n 2 N . Hence B is quasi-diagonal.

9 Other applications.

Recall that a C�-algebraA is called exact if, for every pair (B; J) consisting of a C�-algebra
B and closed two-sided ideal J in B, the sequence

0! A 

min
J! A 


min
B! A 


min
(B=J)! 0 (9.1)

is exact (cf. [Ki1]). In generalization of the construction described in the paragraph
preceding Lemma 7.4, we may, for any sequence (An)

1
n=1 of C

�-algebras, de�ne two C�-
algebras Y

n

An =
�
(an)

1
n=1 j an 2 An; supn2Nkank <1	

X
n

An =
�
(an)

1
n=1 j an 2 An; limn!1kank = 0

	
:

The latter C�-algebra is a closed two-sided ideal in the �rst, and the norm in the quotient
C�-algebra

Q
nAn=

P
nAn is given by��(xn)1n=1

� = lim sup
n!1

kxnk; (9.2)

where � is the quotient map (cf. [RLL, lemma 6.13]) . In the following we let A denote
an exact C�-algebra. By (9.1) we have the following natural identi�cation of C�-algebras

A 

min

�Y
n

Mn(C )
.X

n

Mn(C )
�
=
�
A 


min

Y
n

Mn(C )
�.�

A 

min

X
n

Mn(C )
�
:

Moreover, we have (without assuming exactness) the following natural identi�cation

A 

min

X
n

Mn(C ) =
X
n

Mn(A)
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and the natural inclusion

A 

min

Y
n

Mn(C ) �
Y
n

Mn(A):

If dim(A) <1, the inclusion becomes an identity, but in general the inclusion is proper.
Altogether we have for all exact C�-algebras A a natural inclusion

A 

min

�Y
n

Mn(C )
.X

n

Mn(C )
�
�
Y
n

Mn(A)
.X

n

Mn(A): (9.3)

Similarly, if n1 < n2 < n3 < � � � , are natural numbers, then

A 

min

�Y
k

Mnk(C )
.X

k

Mkn(C )
�
�
Y
k

Mnk(A)
.X

k

Mnk(A): (9.4)

After these preparations we can now prove the following generalizations of Theorems 7.1
and 8.2.

9.1 Theorem. Let (
;F; P ), N , (X
(n)
i )ri=1 and (xi)

r
i=1 be as in Theorem 7.1, and let A

be a unital exact C�-algebra. Then for all polynomials p in r non-commuting variables
and with coeÆcients in A (i.e., p is in the algebraic tensor product A
 C h(Xi)

r
i=1i), and

all ! 2 
nN ,

lim
n!1

p�(X(n)
i (w))ri=1

�
Mn(A)

=
p�(xi)ri=1

�
A
minC�((xi)ri=1;111B)

: (9.5)

Proof. We consider only the case r 2 N . The case r = 1 is proved similarly. By
Theorem 7.1 we can for each ! 2 
nN de�ne a unital embedding �! of C�(x1; : : : ; xr;111B)
into

Q
nMn(C )=

P
nMn(C ), such that

�!(xi) = �
��
X

(n)
i (!)

�1
n=1

�
; i = 1; : : : ; r;

where � :
Q

nMn(C ) !
Q

nMn(C )=
P

nMn(C ) is the quotient map. Since A is exact, we
can, by (9.3), consider idA 
 �! as a unital embedding of A
minC

�(x1; : : : ; xr;111B) intoQ
nMn(A)=

P
nMn(A), for which

(idA 
 �!)(a
 xi) = ~�
��
a
X

(n)
i (!)

�1
n=1

�
; i = 1; : : : ; r;

where ~� :
Q

nMn(A)!
Q

nMn(A)=
P
Mn(A) is the quotient map. Hence, for every p in

A
 C hX1; : : : ; Xri,

(idA 
 �!)
�
p(x1; : : : ; xr)

�
= ~�

��
p(X

(n)
1 (!); : : : ; X(n)

r (!))
�1
n=1

�
:

By (9.2) it follows that for all ! 2 
=N , and every p in A
 C hX1; : : : ; Xri,p(x1; : : : ; xr)A
minC�(x1;::: ;xr;111B)
= lim sup

n!1

p�X(n)
1 (!); : : : ; X(n)

r (!)
�

Mn(A)
:
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Consider now a �xed ! 2 
nN . Put

� = lim inf
n!1

p�X(n)
1 (!); : : : ; X(n)

r (!)
�

Mn(A)
;

and choose natural numbers n1 < n2 < n3 < � � � , such that

� = lim
k!1

p�X(nk)
1 (!); : : : ; X(nk)

r (!)
�

Mn(A)
:

By Theorem 7.1 there is a unital embedding �0! of C�(x1; : : : ; xr;111B) into the quotientQ
kMnk(C )=

P
kMnk(C ), such that

�0!(xi) = �0
��
X

(nk)
i (!)

�1
k=1

�
; i = 1; : : : ; r;

where �0 :
Q

kMnk(C ) !
Q

kMnk(C )=
P

kMnk(C ) is the quotient map. Using (9.4) in-
stead of (9.3), we get, as above, that

kp(x1; : : : ; xr)kA
minC�(x1;::: ;xr;111B) = lim sup
k!1

p�X(nk)
1 (!); : : : ; X(nk)

r (!)
�

Mn(A)

= �

= lim inf
n!1

p�X(n)
1 (!); : : : ; X(n)

r (!)
�

Mn(A)
:

This completes the proof of (9.5). �

9.2 Theorem. Let (
;F; P ), (U
(n)
i )ri=1, �n;!; � and N be as in Theorem 8.2. Then for

every unital exact C�-algebra A, every function f : Fr ! A with �nite support (i.e. f is
in the algebraic tensor product A
 C Fr ), and for every ! 2 
nN

lim
n!1

X
2Fr

f()
 �n;!()

Mn(A)

=
X
2Fr

f()
 �()

A
minC

�

red
(Fr)

:

Proof. This follows from Theorem 8.2 in the same way as Theorem 9.1 follows from
Theorem 7.1, so we leave the details of the proof to the reader. �

In Corollary 9.3 below we use Theorem 9.1 to give new proofs of two key results from
our previous paper [HT2]. As in [HT2] we denote by GRM(n; n; �2) or GRM(n; �2) the
class of n � n random matrices y = (yij)1�i;j�n, whose entries yij, 1 � i; j � n, are n2

i.i.d. complex Gaussian random variables with density (��2)�1 exp(�jzj2=�2), z 2 C . It
is elementary to check that Y is in GRM(n; �2) if and only if Y = 1p

2
(X1 + iX2) where

X1 =
1p
2
(Y + Y �); X2 =

1

i
p
2
(Y � Y �)

are two stochastically independent self-adjoint randommatrices from the class SGRM(n; �2).

9.3 Corollary. [HT2, Thm. 4.5 and Thm. 8.7] Let H;K be Hilbert spaces, let c > 0, let
r 2 N and let a1; : : : ; ar 2 B(H;K) such that

 rX
i=1

a�i ai
 � c and

 rX
i=1

aia
�
i

 � 1;
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and such that fa�i aj j i; j = 1; : : : ; rg[ f111B(H)g generates an exact C�-algebra A � B(H).

Assume further that Y
(n)
1 ; : : : ; Y

(n)
r are stochastically independent random matrices from

the class GRM(n; 1
n
), and put Sn =

Pr
i=1 ai
Y (n)

i . Then for almost all ! in the underlying
probability space 
,

lim sup
n!1

max
�
sp(Sn(!)

�Sn(!))
	 � (

p
c+ 1)2: (9.6)

If, furthermore, c > 1 and
Pr

i=1 a
�
i ai = c111B(H), then

lim inf
n!1

min
�
sp(Sn(!)

�Sn(!))
	 � (

p
c� 1)2: (9.7)

Proof. By the comments preceding Corollary 9.3, we can write

Y (n)
i =

1p
2
(X(n)

2i�1 + iX(n)
2i ); i = 1; : : : ; r;

where X
(n)
1 ; : : : ; X

(n)
2r are independent self-adjoint random matrices from SGRM(n; 1

n
).

Hence S�nSn is a second order polynomial in (X
(n)
1 ; : : : ; X

(n)
2r ) with coeÆcient in the exact

unital C�-algebra A generated by fa�iaj j i; j = 1; : : : ; rg [ f111B(H)g. Hence, by Theorem
9.1, there is a P -null set N in the underlying probability space (
;F; P ) such that

lim
n!1

kS�n(!)Sn(!)k =
� rX

i=1

ai 
 yi

��� rX
i=1

ai 
 yi

�;
where yi =

1p
2
(x2i�1+ix2i) and (x1; : : : ; x2r) is any semicircular system in a C�-probability

space (B; �) with � faithful. Hence, in the terminology of [V3], (y1; : : : ; yr) is a circular
system with the normalization �(y�i yi) = 1, i = 1; : : : ; r. By [V3], a concrete model for
such a circular system is

yi = `2i�1 + `�2i; i = 1; : : : ; r

where `1; : : : ; `2r are the creation operators on the full Fock space

T = T(L) = C � L� L
2 � � � �
over a Hilbert space L of dimension 2r, and � is the vector state given by the unit vector
1 2 C � T(L). Moreover, � is a faithful trace on the C�-algebraB = C�(y1; : : : ; y2r;111B(T(L))).
The creation operators `1; : : : ; `2r satisfy

`�i `j =

(
1; if i = j;

0; if i 6= j:

Hence, we get

rX
i=1

ai 
 yi =
� rX

i=1

ai 
 `2i�1
�
+
� rX

i=1

ai 
 `�2i
�
= z + w;
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where

z�z =
� rX

i=1

a�i ai
�

 111B(T) and ww� =

� rX
i=1

aia
�
i

�

 111B(T):

Hence

 rX
i=1

ai 
 yi

 � kzk+ kwk �
 rX

i=1

a�iai
 1

2

+
 rX

i=1

aia
�
i

 1

2 � p
c+ 1:

This proves (9.5). If, furthermore, c > 1 and
Pr

i=1 a
�
i ai = c � 111B(H), then z

�z = c111A
B(T)
and, as before, kwk � 1. Thus, for all � 2 H
 T, kz�k = p

ck�k and kw�k � k�k. Hence

(
p
c� 1)k�k � k(z + w)�k � (

p
c + 1)k�k; (� 2 H
 T);

which is equivalent to

(
p
c� 1)2111B(H
T) � (z + w)�(z + w) � (

p
c+ 1)2111B(H
T):

Hence

�2pc111B(H
T) � (z + w)�(z + w)� (c+ 1)111B(H
T) � 2
p
c111B(H
T);

and therefore (z + w)�(z + w)� (c+ 1)111B(H
T)
 � 2

p
c: (9.8)

Since S�nSn is a second order polynomial in (X
(n)
1 ; : : : ; X

(n)
2r ) with coeÆcients in A, the

same holds for S�nSn � (c+ 1)111Mn(A). Hence, by Theorem 9.1 and (9.8),

lim
n!1

Sn(!)�Sn(!)� (c+ 1)111Mn(A)

 =
� rX

i=1

ai 
 yi

��� rX
i=1

ai 
 yi

�
� (c+ 1)111B(H
T)


� 2

p
c:

Therefore, lim infn!1minfsp(Sn(!)�Sn(!))g � (c+ 1)� 2
p
c, which proves (9.7). �

9.4 Remark. The condition that fa�iaj j i; j = 1; : : : ; rg [ f111B(H)g generates an exact
C�-algebra is essential for Corollary 9.3 and hence also for Theorem 9.1. Both (9.6) and
(9.7) are false in the general non-exact case (cf. [HT2, Prop. 4.9] and [HT3]).

We turn, next, to a result about the constants C(r), r 2 N , introduced by Junge and
Pisier in connection with their proof of

B(H) 

max

B(H) 6= B(H) 

min
B(H): (9.9)
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9.5 De�nition. [JP] For r 2 N , let C(r) denote the in�mum of allC 2 R+ for which there
exists a sequence of natural numbers (n(m))1m=1 and a sequence of r-tuples of n(m)�n(m)
unitary matrices

(u
(m)
1 ; : : : ; u(m)

r )1m=1

such that for all m;m0 2 N , m 6= m0

 rX
i=1

u
(m)
i 
 �u

(m0)
i

 � C; (9.10)

where �u
(m0)
i is the unitary matrix obtained by complex conjugation of the entries of u

(m0)
i .

To obtain (9.9), Junge and Pisier proved that limr!1
C(r)
r

= 0. Subsequently, Pisier [P3]

proved that C(r) � 2
p
r � 1 for all r � 2. Moreover, using Ramanujan graphs, Valette

[V] proved that C(r) = 2
p
r � 1, when r = p + 1 for an odd prime number p. From

Theorem 9.2 we obtain

9.6 Corollary. C(r) = 2
p
r � 1 for all r 2 N , r � 2.

Proof. Let r � 2, and let g1; : : : ; gr be the free generators of Fr and let � denote the left
regular representation of Fr on `

2(Fr). Recall from [P3, Formulas (4) and (7)] that

 rX
i=1

�(gi)
 vi

 = 2
p
r � 1 (9.11)

for all unitaries v1; : : : ; vr on a Hilbert space H. Let C > 2
p
r � 1. We will construct

natural numbers (n(m))1m=1 and r-tuples of n(m)� n(m) unitary matrices

(u
(m)
1 ; : : : ; u(m)

r )1m=1

such that (9.10) holds for m;m0 2 N , m 6= m0. Note that by symmetry it is suÆcient to
check (9.10) for m0 < m. Put �rst

n(1) = 1 and u
(1)
1 = � � � = u(1)r = 1:

Proceeding by induction, let M 2 N and assume that we have found n(m) 2 N and

r-tuples of n(m)�m(n) unitaries (u
(m)
1 ; : : : ; u

(m)
r ) for 2 � m � M , such that (9.10) holds

for 1 � m0 < m � M . By (9.11),

 rX
i=1

�(gi)
 �u
(m)
i

 = 2
p
r � 1;

for m = 1; 2; : : : ;M . Applying Theorem 9.2 to the exact C�-algebras Am0 = Mn(m0)(C ),
m0 = 1; : : : ;M , we have

lim
n!1

 rX
i=1

�n;!(gi)
 �u
(m0)
i

 = 2
p
r � 1 < C; (m0 = 1; 2; : : : ;M);
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where �n;! : Fr ! U(n) are the group homomorphisms given by (8.4). Hence, we can
choose n 2 N such that

 rX
i=1

�n;!(gi)
 �u
(m0)
i

 < C; m0 = 1; : : : ;M:

Put n(M + 1) = n and u
(M+1)
i = �n;!(gi), i = 1; : : : ; r. Then (9.10) is satis�ed for all

m;m0 for which 1 � m0 < m � M + 1. Hence, by induction, we get the desired sequence
of numbers n(m) and r-tuples of n(m)� n(m) unitary matrices. �

We close this section with an application of Theorem 7.1 to powers of random matrices:

9.7 Corollary. Let for each n 2 N Yn be a random matrix in the class GRM(n; 1
n
), i.e.,

the entries of Yn are n2 i.i.d. complex Gaussian variables with density n
�
e�njzj

2

, z 2 C .
Then for all p 2 N

lim
n!1

kYn(!)pk =
�
(p+ 1)p+1

pp

� 1

2

;

for almost all ! in the underlying probability space 
.

Proof. By the remarks preceding Corollary 9.3, we have

(Yn)
p =

�
1p
2

�
X

(n)
1 + iX

(n)
2

��p

;

where, for each n 2 N , X
(n)
1 ; X

(n)
2 are two independent randommatrices from SGRM(n; 1

n
).

Hence, by Theorem 7.1, we have for almost all ! 2 
:

lim
n!1

kYn(!)pk = kypk;

where y = 1p
2
(x1 + ix2), and fx1; x2g is a semicircular system in a C�-probability space

(B; �) with � faithful. Hence, y is a circular element in B with the standard normalization

�(y�y) = 1. By [La, Proposition 4.1], we therefore have kypk = ((p+ 1)p+1=pp)
1

2 . �

9.8 Remark. For p = 1, Corollary 9.7 is just the complex version of Geman's result
[Ge] for square matrices (see [Ba, Thm. 2.16] or [HT1, Thm. 7.1]), but for p � 2 the
result is new. In [We, Example 1, p.125], Wegmann proved that the empirical eigenvalue
distribution of (Y p

n )
�Y p

n converges almost surely to a probability measure �p on R with

max(supp(�p)) =
(p+ 1)p+1

pp
:

This implies that for all " > 0, the number of eigenvalues of (Y p
n )

�Y p
n , which are larger

than (p + 1)p+1=pp + ", grows slower than n, as n ! 1 (almost surely). Corollary 9.7
shows that this number is, in fact, eventually 0 as n!1 (almost surely).
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