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Abstract. We calculate prices of first touch digitals under nor-
mal inverse gaussian (NIG) processes, and compare them to prices
in the gaussian model with the same instantaneous variance. Nu-
merical results are produced to show that for typical parameters
values, the relative error of the gaussian approximation to NIG-
price can be several dozen percent if the spot price is at the distance
0.05-0.2 from the barrier (normalized to one). A fast approximate
pricing formula under NIG is derived.

1. Introduction

Pricing of contingent claims of European type and perpetual Ameri-
can options under non-gaussian processes is fairly well understood both
from the theoretical viewpoint and numerical implementation of pric-
ing formulas (see e.g. [2], [4], [10], [13], [5], [7] and the bibliography
therein) but not much is known even about the behavior of prices of
contingent claims of other types. In the paper, we study the behavior
of non-gaussian prices not far from the boundary, where non-gaussian
effects must be felt in the first place, and we start with the simplest
case of first touch digitals. One should expect similar deviation from
gaussian prices near barrier for barrier options but in the case of first
touch digitals, this boundary effect is observed in the most pure form
since all the value of the option comes from the other side of the barrier.
In the paper, we show that non-gaussian prices can differ drastically
from the gaussian approximation when the spot price is 5-20 percent
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from the barrier. This naturally explains why this is the region where
barrier options become usually illiquid.

In the gaussian case, explicit formulas for first touch digitals are
well-known (see e.g. [11]); these formulas are easy to implement in
numerical calculations. Recently, general formulas for the case of Reg-
ular Lévy Processes of Exponential Type (RLPE) were obtained in [6]
and [7] (class RLPE contains many families of Lévy processes used in
theoretical and empirical studies of financial markets, normal inverse
gaussian processes including), however, these formulas involve the dou-
ble Fourier inversion (and one more integration needed to calculate the
factor in the Wiener-Hopf factorization formula), and hence it is dif-
ficult to implement them in practice. In the paper, we construct a
numerical method based on time discretization, and use the method
to study typical errors of the gaussian approximation when a non-
gaussian model (here, normal inverse gaussian model) is replaced by
the gaussian model with the same instantaneous variance. Numerical
examples demonstrate that in the region S/H ≤ 1.2, the relative error
can be several dozen percent. The error remains sizable farther from
the barrier but becomes smaller.

The numerical method works rather slowly, however. By using the
general formulas from [6] and [7], we derive an approximate formula,
which is both fairly accurate and fast, for many parameters values. The
formula provides a good approximation for S not very close to H, and
under assumption that the tails of probability density decay sufficiently
fast: the faster the decay is, the closer to the boundary the approxi-
mate formula works. For typical parameters values, this approximate
formula works well if the spot price S differs from H by 1-3 percent or
more and time to expiry is 5 days or more; the farther the spot price
from the barrier and time to expiry larger, the better the approxima-
tion. The approximate formula and any numerical method can be used
in conjunction since the former works better far from the expiry and
barrier, where numerical methods are usually too slow and/or not quite
reliable. In addition, the approximate formula can be used to check a
concrete implementation of any numerical method.

The plan of the paper is as follows. In Section 2, we recall the
definition of NIG and pricing formula for the first-touch digitals. In
Section 3, an approximate formula is derived: first, in the general form,
and then the formula is made explicit for the case of Normal Inverse
Gaussian processes. In Section 4, numerical examples are provided to
compare the pricing under NIG with the Gaussian pricing, and study
the accuracy of the approximate formula. Section 5 concludes, and
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the description of the numerical method and technical calculations are
delegated to the appendix.

2. Normal Inverse Gaussian Processes and exact pricing

formula for first-touch digitals

Consider a model market of a riskless bond and a stock. We assume
that the riskless rate r > 0 is constant, and the logarithm of the spot
price of the stock Xt = ln St follows a Lévy process under the historic
measure P. If X is not a Brownian motion, an equivalent martingale
measure (EMM) is typically non-unique, and it follows from the general
result due to Delbaen and Schachermayer [8] (see also bibliography
therein) that the no-arbitrage condition is satisfied for pricing under
any EMM Q, which is absolutely continuous w.r.t. P.

Let ψ be the characteristic exponent of X under Q. We use the fol-
lowing definition of the characteristic exponent, ψ, of the Lévy process
X: E[eiξXt ] = e−tψ(ξ). Since Q is an EMM, both the bond and stock
must be priced under Q, and therefore ψ must admit the analytic con-
tinuation into a strip =ξ ∈ (0, 1), and continuous continuation into the
closed strip =ξ ∈ [0, 1]. Further, the following condition must hold

r + ψ(−i) = 0. (2.1)

The normal inverse Gaussian distribution has proven to be a flexible
and yet simple statistical model which fits empirical logreturns on all
time scales extremely well. The family of normal inverse gaussian dis-
tributions was introduced by Barndorff-Nielsen [1], and later applied
to financial data by Barndorff-Nielsen [2], Rydberg [15], Prause [14],
and Bolviken and Benth [3], to mention only a few. The characteristic
exponent of a NIG (see eg. [2]) is given by

ψ(ξ) = −iµξ + δ[(α2 − (β + iξ)2)1/2 − (α2 − β2)1/2], (2.2)

where δ > 0, α > |β|. From (2.2), it is clearly seen that a mixture
of NIG-processes with the same α and β but different µ and δ is a
NIG process with the same α and β. In other words, a subclass of
normal inverse gaussian distributions with fixed α and β is closed under
convolution, as the class of normal distributions is.

NIG have another important property: for any t > 0, the following
explicit analytical formula for the probability density is available:

pt(x) =
α

π
exp[t(δ

√
α2 − β2 − βµ) + βx]

K1(αδ〈(x/t− µ)/δ〉)
〈(x/t− µ)/δ〉 , (2.3)

where 〈y〉 = (1+|y|2)1/2, and K1 denotes the modified Bessel function of
the third kind with index 1. It is often of interest to consider alternative
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parameterizations of the normal inverse Gaussian laws. In particular,
letting α = δα and β = δβ, we have that α and β are invariant under
location-scale changes. Several authors (see e.g. [3, 14]) used this
alternative parameterization in the definition of NIG. We refer to [3,
14] for results related to the fitting parameters in the case of NIG
distributions and references to relevant literature.

We assume that X is a NIG under an EMM Q, chosen by the market,
and we consider the first-touch digital (another name is a touch-and-
out option) which pays $ 1 the first time the stock price S crosses
the level H from above. If the stock price never crosses the level H
before time T , the claim expires worthless. Denote by Vd(H,T ; S, t)
the no-arbitrage price of such a contract. The formula for the value
Vu(H,T ; S, t) of the similar contract, which pays $ 1 the first time the
stock price crosses the level H from below, easily follow by the reflection
of the real axis w.r.t. the origin.

Set x = ln(S/H), u(x, t) = Vd(H,T ; S, t). Then for t < T and
x ∈ R,

u(x, t) = E[e−rT ′1T ′≤T | Xt = x], (2.4)

where T ′ is the hitting time of (−∞, 0] by X. Denote by L the infini-
tesimal generator of process X, and set τ = T−t, v(x, τ) = u(x, T−τ).
In [6, 7], the following theorem is proven.

Theorem 2.1. The v is a solution to the problem

(∂τ + r − L)v(x, τ) = 0, x > 0, τ > 0, (2.5)

v(x, τ) = 1, x ≤ 0, τ ≥ 0, (2.6)

v(x, 0) = 0, x > 0, (2.7)

in the class of bounded measurable functions.

In the case of NIG, ψ(ξ) admits the analytic continuation w.r.t. ξ
into the strip =ξ ∈ (−α+β, α+β), and moreover, for each q = iλ+r >
0, there exist σ− < 0 < σ+ and c0 > 0 such that

<(iλ + r + ψ(ξ)) > c0, ∀ =ξ ∈ (σ−, σ+) (2.8)

(see [6, 7]). The solution to the problem (2.5)-(2.7) is expressed in
terms of the minus-factor φ−(λ, ξ) in the Wiener-Hopf factorization
formula

iλ + r

iλ + r + ψ(ξ))
= φ+(λ, ξ)φ−(λ, ξ), (2.9)
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which holds for ξ in (2.8). The factor φ−(λ, ξ), for ξ in the half-space
=ξ < σ+, is given by

φ−(λ, ξ) = exp

[
− 1

2πi

∫
=ξ=ρ+

ξ ln(iλ + r + ψ(η))

η(ξ − η)
dη

]
(2.10)

= exp

[
− 1

2πi

∫
=ξ=ρ+

ψ′(η)

iλ + r + ψ(η)
ln

η − ξ

η
dη

]
,(2.11)

where ρ+ ∈ (=ξ, σ+) is arbitrary; in this paper, we do not need the for-
mulas for the plus-factor. In [6, 7], by using the Laplace transform and
the Wiener-Hopf factorization method, the following pricing formula
was derived

v(x, τ) = (2π)−2

∫ +∞+iσ

−∞+iσ

∫ +∞+iω+

−∞+iω+

ei(τλ+xξ)φ−(λ, ξ)(λξ)−1dξdλ,

(2.12)
where σ < 0, and ω+ ∈ (0, σ+) is sufficiently close to 0. The reader may
notice that (2.12) is not computationally effective, though relatively
short. Below, we derive an effective approximate formula; it is long,
however.

3. Approximate formulas for the case of large steepness

parameters

3.1. General case. In this section, we obtain an approximate formula
for the pricing under NIG for the case

α >> 1, |β| << α, αδτ >> 1. (3.1)

We find the leading term of the asymptotic of the price v(x, τ) of the
first-touch digital as α → +∞. Notice that in the empirical studies of
the financial markets (see e.g. [3], [14]), α is large: typically, of order
25-60, and sometimes up to 100 or more, whereas |β/α| is small.

For α in the middle range 30−50, the approximate formula provides
reasonable approximation if τ ≥ 5 days and S/H ≥ 1.03; one business
day corresponds to τ = 1/252. In the region τ ≥ 10 days, the relative
error is only several percent. Notice that the asymptotic formula works
well for large τ and x, where the numerical methods are expected to
produce serious errors. Thus, the approximate formula can be used to
supplement any numerical method, and the formula works pretty fast:
on ordinary PC, it takes about 1.25 sec. to calculate option values at
40 points by using Matlab. The formula in the Black-Scholes model
takes much less time: 0.05 sec., but the error of the latter is several
times larger than that of the former.
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The asymptotic formula is an integral over an appropriate contour L
in the λ−plane, and the integrand is expressed via the roots ξ = ξ(λ)
of the “characteristic equation”

iλ + r + ψ(ξ) = 0, (3.2)

for λ ∈ L. One can show (see [7]) that for the model classes of RLPE,
for typical parameters’ values, the equation (3.2) has exactly two roots
for λ = 0, call them −iβ−(0) and −iβ+(0), in the upper and the lower
half-plane, respectively. These roots are outside the cuts in the complex
plane, of the form [iλ+, +i∞) and (−i∞, iλ−]; in the case of NIG,
λ+ = α + β, λ− = β − α, where λ− < 0 < λ+. It follows that
in a sufficiently small neighborhood of 0 in the λ-plane, there exist
ωmin < 0 < ωmax and branches −iβ−(λ) and −iβ+(λ) of roots of (3.2)
with the following property

−<β+(λ) < ωmin < 0 < ωmax < −<β−(λ). (3.3)

Suppose that there exists a contour L with the following properties

a) the roots −iβ±(λ) exist for each λ ∈ L, they are simple, and condi-
tion (3.3) holds;

b) there exist C0 << λ+ and C1, c1 > 0 s.t. for all λ ∈ L satisfying
|<λ| ≥ C0, we have

c1|<λ| ≤ =λ ≤ C1|<λ|, (3.4)

and

c1|<λ| ≤ =(−iβ−(λ)). (3.5)

Then we can push the contour of the integration =ξ = iω+ up, and on
crossing the root −iβ−(λ), apply the residue theorem. Since

φ−(λ, ξ) =
iλ + r

(iλ + r + ψ(ξ))φ+(λ, ξ)
,

and φ+(λ, ξ) does not vanish in the upper half-plane =ξ ≥ 0, we obtain
the leading term of asymptotics in the form

v(x, τ) = −(2π)−1

∫
L

eiλτ+β−(λ)x iλ + r

iλψ′(−iβ−(λ))φ+(λ,−iβ−(λ))
dλ.

(3.6)
In the next subsection, we construct a contour L satisfying conditions
(3.4)-(3.5), in the case on NIG. Similar construction can be made for
other model classes of RLPE; in cases, when an infinite contour satis-
fying properties a) and b) is difficult to construct, one can be satisfied
with the construction of L in the region |λ| < C,C > 0, and use (3.6)
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with the integration over such a finite contour: due to (3.1) and (3.4)-
(3.5), the integration over the part of L outside the ball of radius λ+

makes a small contribution to (3.6), anyway.
Before proceeding further, we rewrite formula (3.6) in a more con-

venient form, under assumption that ψ is holomorphic in the upper
half-plane with the cut [iλ+, +i∞), and for each λ ∈ L, equation (3.2)
has no roots hanging over −iβ−(λ). The first condition is satisfied for
all model classes of RLPE, in particular, for NIG. In the next subsec-
tion, it is shown that in the case of NIG, the latter condition is satisfied
for all λ ∈ L, provided L is constructed properly. Under certain con-
ditions a universal construction of the contour L is suggested.

By transforming the line of the integration (2.11) into the integral
over the banks of the cut [iλ+, +i∞) and using the residue theorem,
we obtain

φ−(λ, ξ) =
−β−(λ)

−β−(λ) + iξ
exp(Φ−(λ, ξ)), (3.7)

where

Φ−(λ, ξ) =
1

2π

∫ +∞

λ+

[
ψ′(iz − 0)

iλ + r + ψ(iz − 0)
− ψ′(iz + 0)

iλ + r + ψ(iz + 0)

]

· ln z + iξ

z
dz. (3.8)

By using (3.7), we can rewrite (3.6) as

v(x, τ) =
1

2πi

∫
L

eiλτ+β−(λ)xλ−1 exp Φ−(λ,−iβ−(λ))dλ. (3.9)

Equations (3.9) and (3.8) give an approximate formula for v(x, τ),
which can be simplified. It can be shown that Φ−(λ,−iβ−(λ)) is small
if |λ| is not too large (below, the detailed study is made for the case
of NIG). Hence, if we approximate Φ−(λ,−iβ−(λ)) in (3.9) with a rel-
atively small error, the resulting relative error in (3.9) will be smaller
still. Due to (3.5), for |λ| << λ+ and z ≥ λ+, we have

ln
z + β−(λ)

z
=

β−(λ)

z
+ O((β−(λ)/z)2),

therefore (3.9) can be simplified further

v(x, τ) =
1

2πi

∫
L

eiλτ+β−(λ)x+P(λ)λ−1dλ, (3.10)

where

P(λ) =
1

2π

∫ +∞

λ+

[
ψ′(iz − 0)

iλ + r + ψ(iz − 0)
− ψ′(iz + 0)

iλ + r + ψ(iz + 0)

]
β−(λ)

z
dz.

(3.11)
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A pair of formulas (3.10)-(3.11) is the approximate pricing procedure
for first-touch digitals; to apply it, one must choose an appropriate
contour L. In the next subsection, we provide this construction in the
case of NIG, and explicitly calculate the integral (3.11). In the result,
we obtain the pricing formula, which involves only one integration.

3.2. The case of NIG. For NIG, (3.2) assumes the form

iλ + r − iµξ + δ[(α2 − (β + iξ)2)1/2 − (α2 − β2)1/2] = 0. (3.12)

Let condition (3.1) hold, in particular, let α be large. We introduce
some simplifying notation, change the variable, and in the end, describe
L with the properties (3.3)–(3.5). Set

σ0 = r + µβ − δ(α2 − β2)1/2,

ρ =
σ0

α
√

δ2 + µ2
, u1 =

µ√
δ2 + µ2

, v1 =
δ√

δ2 + µ2
; (3.13)

U = α(
√

δ2 + µ2τ + u1x), V = αv1x; (3.14)

then U ∈ R, and V > 0. We calculate the roots of (3.12), change the

variable λ = α
√

δ2 + µ2k + iσ0 in (3.10), and obtain

v(x, τ) =
e−σ0τ−βx

2πi

∫
L′

exp[iUk − V
√

1 + k2 + P0(k)]

k + iρ
dk, (3.15)

where P0(k) = P(α
√

δ2 + µ2k + iσ0), and the branch of the square

root is determined by the condition <√1 + k2 > 0; the contour L′ will
be chosen so that <(1 + k2) 6∈ (−∞, 0]. For details, see the appendix.

Set β′ = β/α, β′±(k) = β±(α
√

δ2 + µ2k + iσ0)/α. By calculating the
integral in (3.11) (see the appendix), we obtain

P0(k) =
β′−(k)P+(k) + β′+(k)P−(k) + I0(k)

2πβ′+(k)
, (3.16)

where

P±(k) = i ln((k ±
√

1 + k2)(v1 + iu1)); (3.17)

I0(k) =
4v1(iβ

′k − u1)(π/2− arctan
√

1+β′
1−β′ )√

1− β′2
, (3.18)

β′±(k) = −β′ + iu1k ± v1

√
1 + k2. (3.19)

Introduce new parameters

W =
√

U2 + V 2, u∗ = U/W, v∗ = V/W, R =
e−σ0τ−βx

2πi
, (3.20)
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and functions

S(k) = iu∗k − v∗
√

1 + k2, G(k) =
exp(P0(k))

k + iρ
.

In the new notation,

v(x, τ) = R

∫
L′

exp(WS(k))G(k)dk. (3.21)

We restrict ourselves to the cases

0 < −u1 < 2β′ < v1 < −ρ, (3.22)

and
0 < u1 < −2β′ < v1 < −ρ, (3.23)

which are natural under condition (3.1). Set

u0 = min{v1,−2β′u1 + v1

√
1− 4β′2,−u1/β

′,−ρ− 0.05}, (3.24)

and for u satisfying
| u1 |< u ≤ u0, (3.25)

define a contour L′(u) in k-plane by

L′(u) = {k = ku(s) | ku(s) =
√

1− u2s + iu
√

s2 + 1, s ∈ R}. (3.26)

Usually β′ > 0, and further, we will consider the case (3.22). The case
β′ < 0 ((3.23)) is a simple modification of the case (3.22).

It can be shown that the corresponding contour L(u) in λ-plane

L(u) = {λ = λu(s)|λu(s) = α
√

δ2 + µ2ku(s) + iσ0, s ∈ R}, (3.27)

satisfies conditions (3.4)-(3.5), provided (3.1), (3.22) and (3.25) hold.
See the appendix for details.

Fix u ∈ (−u1; u0) and set v =
√

1− u2. Now we write down the
formula for v(x, τ) by deforming first the line of the outer integration
in the formula (2.12) into L(u) given by (3.27), and then the line of the
inner integration into an appropriate contour hanging over the upper
root −iβ−(λ). Notice that in the process of deformation the contour of
outer integration never reaches the cuts (since |u| < 1), and does not
cross the pole (since u + ρ < 0). Finally, we obtain

v(x, τ) = R

∫ +∞

−∞
e−W (uu∗+vv∗)

√
s2+1+iW (vu∗−uv∗)sG(ku(s))k

′
u(s)ds,

(3.28)
where parameters ρ and R,W given by (3.13) and (3.20), respectively.
In order that the integrand in (3.28) oscillates slowly, we choose u to
minimize |vu∗ − uv∗|. Usually, the choice u = u∗ is possible. In this
case L(u) is the curve of steepest descent (cf. [9]).
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To compute numerically the integral in (3.28), we need to cut off an
appropriate neighbourhood |s| ≥ Λ of the infinity (and we will choose
Λ ≥ 1). Set

a = −u1v1

3π
; (3.29)

b =
1

4

(
β′ +

√
2√

2v2
1

− 2

3

)
+

v1

2
√

1− β′2

(
β′v1

3
− u1

β′(2
√

2− 1)

)
; (3.30)

c =
2
√

2|R|eb

v(W (uu∗ + vv∗)− a)
. (3.31)

Direct calculations in the appendix show that the integral over |s| ≥ Λ
(we denote it by I(Λ)) admits an estimate via

ε(Λ) := c exp[(a−W (uu∗ + vv∗))
√

Λ2 + 1], Λ ≥ 1. (3.32)

For any given ε, we choose Λ, Λ ≥ 1, so large that ε(Λ) = ε/2. As
soon as Λ is chosen, we use the trapezoid rule to compute the integral
over [−Λ; Λ]. To determine the number of points for integration, it is
difficult to use the usual estimate for the computational error of the
trapezoid method; the so-called “doubling procedure” is more efficient.
Each next approximation is obtained by doubling of the number of
points for integration until the absolute difference between two last
approximations is less then the desired value ε/2.

While considering the integral over a finite segment [−Λ, Λ], the pole
of the integrand must be taken care of. It follows from the explicit
expression for k(s) that k(0) + iρ is small iff u + ρ is. Numerical
calculations show that in the neighbourhood of zero, the integrand in
(3.28) assumes not very large values, provided u + ρ > 0.05.

3.3. Algorithm. In this subsection, we summarize the constructions
above in a form suitable for immediate implementation. We normalize
K = 1, fix ε > 0, the computational error, and assume that NIG’s
parameters are given. After that we

1. define parameters u1, v1, ρ by (3.13), and a, b by (3.29)-(3.30);
2. fix x = ln S/H and τ = T − t, and check conditions (3.1) and

(3.22); if the former fails, then the approximate pricing formula
may produce significant errors, and if the latter does then a different
formula (not written here) must be used;

3. define W,u∗, v∗, R by (3.20), c by (3.31) and u0 by (3.24);
4. if u∗ ∈ (−u1; u0] then set u = u∗; otherwise, set u = u0;
5. set v =

√
1− u2;
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6. set

Λ = max


1;

[(
ln(2cε−1)

W (uu∗ + vv∗)− a

)2

− 1

]1/2



(cf. (3.32));
7. apply the trapezoid method of numerical integration and “doubling

procedure” to (3.28), and calculate the integral over [−Λ; Λ] until
the computational error assumes the value ε/2; ku(s) in (3.28) is
defined in (3.26).

4. Numerical examples

Fix the riskless rate r > 0, and assume that under an EMM chosen by
market, X is a NIG with parameters δ, α, β. When these parameters
are chosen, the last parameter, µ, is fixed by the EMM requirement
(2.1). In empirical studies of financial markets (see [3, 14]), typically,
the instantaneous variance σ2 is in the range (0.15, 0.5), and α is large:
of order 25 - 60 or even more, and |β/α| is small. Notice that in the
case of NIG

σ2 := ψ′′(0) =
δ

α(1− (β/α)2)3/2
,

and conditions
α ≥ 25, (4.1)

0.15 < σ2 < 0.5; (4.2)

0 < β/α << 1; (4.3)

together with the EMM requirement define a surface in the (α, δ, β,
µ) - space for the parameters of NIG, where good performance of the
approximate formula derived in Section 3 can be guaranteed, as our
numerical experiments show.

In Fig. 1 we plot the NIG-price vNIG(x, τ) of the first touch digital
for typical parameter’s values, and in Fig. 2, we compare vNIG(x, τ)
with the price in the Black - Scholes model, vBS(x, τ), calculated for
the volatility σ2 = (ψ)′′(0). Numerical examples show that the most
significant difference ∆BS(x, τ) := vBS(x, τ) − vNIG(x, τ) is for x in
the neighbourhood of −µτ . The absolute error ∆BS has the maximum
fairly close to zero, and starting with τ ≥ 5, it decreases rather slowly as
S/K increases. It remains sizable up to S/K = 1.2 and even farther,
where the price itself is rather small. Hence, the study of relative
errors is more natural. We introduce relative error functions for the
asymptotic formula and Black-Scholes approximation

εasymp =
vasymp(x, τ)− vNIG(x, τ)

vNIG(x, τ)
, εBS =

vBS(x, τ)− vNIG(x, τ)

vNIG(x, τ)
,
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Figure 1. The NIG-price of the first touch digital at
τ = 1, 5, 7, 10 days to expiry. Parameters: r = 0.05, δ =
11, α = 40, β = 6
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Figure 2. The difference of the Gaussian price and
NIG-price, at τ = 1, 5, 7, 10 days to expiry. Parameters:
r = 0.05, δ = 11, α = 40, β = 6
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Figure 3. Relative error functions εasymp and εBS. Up-
per panel: approximate NIG; lower panel: Black-Scholes.
Parameters: r = 0.05, δ = 11, α = 40, β = 6, σ2 = 0.2845
at τ = 5, 7, 10 days to expiry.

and

ε∗asymp =
vasymp(x, τ)− vNIG(x, τ)

1− vNIG(x, τ)
, ε∗BS =

vBS(x, τ)− vNIG(x, τ)

1− vNIG(x, τ)
,

which are plotted in Fig. 3 and Fig. 4, respectively, for the chosen
parameter’s values. The role of the relative errors ε∗asymp and ε∗BS is
two-fold: first, near the boundary the leading term of the price v is
1, therefore the quality of an approximate formula for v can be better
characterized by the relative error of calculation of 1 − v rather than
v itself; second, qualitatively, near the boundary, 1− v behaves as the
barrier price, hence ε∗asymp and ε∗BS can be used as qualitative proxies
for expected relative errors of the corresponding formulas for barrier
options, near the barrier. Typically, the relative error εasymp is less
than 5 per cent in the region (0 ; 0.2) for τ ≥ 10 days to expiry, and
it decreases with increasing τ and α, δ. For smaller τ , εasymp is larger
but still much less that εBS. If α ∈ (30, 50), then the relative error
εasymp grows from −1% up to several per cent in the region, where
vNIG(x, τ) > 0.01. Usually, vNIG(x, 5) > 0.01 and vNIG(x, 10) > 0.01
as x < 0.15 and x < 0.2, respectively (see Fig.1). In this region the
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Figure 4. Relative error functions ε∗asymp and ε∗BS. Up-
per panel: approximate NIG; lower panel: Black-Scholes.
Parameters: r = 0.05, δ = 11, α = 40, β = 6, σ2 = 0.2845
at τ = 5, 7, 10 days to expiry.

Black-Scholes error εBS is essentially larger than εasymp, and it can be
several dozen percent; it weakly decreases as the volatility increases
and α remains fixed. Fig. 3 demonstrates this effect. Comparing
εasymp and εBS, we conclude that the approximation of vNIG(x, τ) by the
asymptotic formula vasymp(x, τ) is much better than the approximation
by the Gaussian price vBS(x, τ), in the region α ∈ (30, 50), τ > 5 days,
x ∈ (0, 0.2). For α ∈ (50, 80), τ > 5 days, x ∈ (0, 0.2), the relative error
(vBS(x, τ) − vasymp(x, τ))/vBS(x, τ) is 10 -25 percent, and we expect
that εBS is of the same order of magnitude: the larger α, the better
the asymptotic formula works, and the less εasymp is (for large α, the
performance of the numerical procedure is rather poor, and so it is
better to characterize the performance of the Black-Scholes model by
using the approximate formula).

In Fig.4, we compare relative errors ε∗asymp and ε∗BS. Usually, |ε∗asymp|
is less than 4 − 5% and ε∗BS ∈ (0.2; 0.6) for ln(S/K) ∈ (0.005; 0.05).
For larger ln(S/K), the relative advantage of the asymptotic formula
is also clear.

Set κ− = 0.5 − π−1 arctan(µ/δ). It is shown in [7] that near the
barrier, for τ > 0 fixed (and not too small) the difference 1−vNIG(x, τ)
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Figure 5. Graph of W (x, τ) near the barrier. Param-
eters: r = 0.05, δ = 11, α = 40, β = 6, κ− = 0.5505 at
τ = 5, 7, 10 days to expiry.

behaves approximately like const · xκ− . The numerical calculations
show that this is really the case in the region x ∈ (0; 0.01). Recall
that in the Gaussian model, the price is smooth up to the boundary,
and therefore, the difference 1− vBS(x, τ) is approximately linear as a
function of x, near the barrier. Notice that κ− is approximately 0.5,
provided parameters satisfy conditions (4.1)-(4.3). Thus, one should
expect the significant difference between NIG and Gaussian prices in
the neighbourhood of origin. This is confirmed in Fig.4, the lower
panel. Further, we conclude that for a fixed τ > 0, the function

W (x, τ) := (1− vNIG(x, τ))/xκ−

is approximately constant near the barrier, and Fig. 5 demonstrates
this effect.

To estimate the deviation between vNIG(x, τ) and the approximate
formula vasymp(x, τ), we introduce the absolute error function

∆asymp(x, τ) := vasymp(x, τ)− vNIG(x, τ),

and the similar function for the price in the Black-Scholes model. In
a rather small neighborhood of the barrier, ∆asymp is negative near
the barrier, then it sharply grows till its positive maximum, and then
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Figure 6. Absolute error functions. Upper panel: ap-
proximate NIG; lower panel: Black-Scholes. Parame-
ters: r = 0.05, δ = 11, α = 40, β = 6, σ2 = 0.2845 at
τ = 5, 7, 10 days to expiry.

it slowly decreases. Fig. 6 compares absolute errors ∆asymp(x, τ) and
∆BS(x, τ). In particular, |∆BS| is several times larger than |∆asymp(x, τ)|,
and the larger x, the less |∆BS/∆asymp|. (Notice that in the upper
graph, the vertical scale is 10 times less than in the lower one).

Numerical examples for typical parameters’ values are presented in
Table 1.

5. Conclusion

In the paper, typical behavior of prices of first-touch digitals in the
non-gaussian NIG model is analyzed and compared to the behavior of
prices in the Black-Scholes model with the same instantaneous vari-
ance. Starting from the barrier, the NIG-price sharply falls below the
gaussian price, and it remains lower in the region, which depends on
time to expiry. The smaller the τ , the sharper the peak of the differ-
ence, and the faster the decay of the latter. For typical parameters
values, in the range 5-20 percent to barrier, the relative error of the
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Table 1. Error functions

A

τ 5 days 7 days 10 days
ln(S/K) 0.05 0.1 0.15 0.1 0.15 0.2 0.1 0.15 0.2
εasymp 0.016 0.046 0.082 0.027 0.045 0.070 0.015 0.023 0.035
εBS 0.156 0.285 0.410 0.193 0.286 0.371 0.130 0.187 0.249

∆asymp 0.009 0.010 0.006 0.008 0.006 0.004 0.006 0.005 0.004
∆BS 0.082 0.062 0.031 0.059 0.039 0.022 0.052 0.041 0.029

B

τ 5 days 7 days 10 days
ln(S/K) 0.05 0.1 0.15 0.1 0.15 0.2 0.1 0.15 0.2
εasymp 0.007 0.033 0.108 0.003 0.032 0.126 -0.014 -0.008 0.024
εBS 0.153 0.255 0.256 0.177 0.229 0.257 0.112 0.157 0.204

∆asymp 0.003 0.003 0.002 0.001 0.001 0.001 -0.003 -0.001 0.001
∆BS 0.061 0.023 0.004 0.028 0.009 0.002 0.027 0.014 0.006

C

τ 5 days 7 days 10 days
ln(S/K) 0.05 0.1 0.15 0.1 0.15 0.2 0.1 0.15 0.2
εasymp 0.019 0.047 0.092 0.023 0.043 0.081 0.008 0.015 0.029
εBS 0.159 0.293 0.394 0.198 0.291 0.364 0.129 0.190 0.255

∆asymp 0.009 0.007 0.003 0.005 0.003 0.002 0.003 0.002 0.002
∆BS 0.073 0.042 0.014 0.044 0.022 0.009 0.041 0.027 0.015

D

τ 5 days 7 days 10 days
ln(S/K) 0.05 0.1 0.15 0.1 0.15 0.2 0.1 0.15 0.2
εasymp 0.029 0.087 0.211 0.043 0.100 0.238 0.018 0.041 0.093
εBS 0.234 0.492 0.581 0.336 0.511 0.622 0.214 0.350 0.494

∆asymp 0.011 0.006 0.002 0.006 0.003 0.001 0.004 0.003 0.002
∆BS 0.084 0.034 0.006 0.043 0.014 0.003 0.045 0.024 0.010

E

τ 5 days 7 days 10 days
ln(S/K) 0.05 0.1 0.15 0.1 0.15 0.2 0.1 0.15 0.2
εasymp 0.035 0.094 0.183 0.019 0.062 0.145 0.004 0.020 0.053
εBS 0.247 0.406 0.385 0.253 0.316 0.301 0.174 0.236 0.276

∆asymp 0.015 0.012 0.006 0.004 0.004 0.003 0.001 0.003 0.003
∆BS 0.103 0.050 0.012 0.051 0.022 0.007 0.051 0.030 0.015

Panel A. Parameters: r = 0.05, δ = 12, α = 30, β = 5, µ = −2.19, σ2 = 0.42.
Panel B. Parameters: r = 0.05, δ = 10, α = 50, β = 5, µ = −1.06, σ2 = 0.2.
Panel C. Parameters: r = 0.05, δ = 11, α = 40, β = 6, µ = −1.76, σ2 = 0.29.
Panel D. Parameters: r = 0.05, δ = 7.2, α = 40, β = 8, µ = −1.5, σ2 = 0.19.
Panel E. Parameters: r = 0.05, δ = 8, α = 30, β = 3, µ = −0.89, σ2 = 0.27.
εasymp (∆asymp) and εBS (∆BS) are relative (absolute) error functions for
the approximate formula in the NIG model, and the Black-Scholes model
with the same instantaneous variance, respectively.
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gaussian approximation is dozens percent, if the time to expiry, τ , is
less than 10 days.

A fast efficient approximate pricing formula is derived. The formula
is the leading term of the asymptotics of the exact pricing formula (the
latter is too complex for numerical implementation) as the steepness
parameter α in the definition of a NIG process tends to infinity. The α
characterizes the rate of the exponential decay of the tails of probabil-
ity densities (provided the asymmetry parameter β is relatively small
which is usually the case); thus, the approximate formula works bet-
ter when the tails decay fast. It is shown that for typical parameters
values, the formula performs well at 5 days to expiry and more, and
at the relative distance to the barrier 3 percent or more; the larger the
time to expiry and distance to barrier are, the better the performance
of the formula. Typically, the relative error of the asymptotic formula
is several times less than that of the Black-Scholes approximation.

Appendix A. Numerical procedure

We approximate Vd(T ; Xt, t) by the price f(Xt, t) of the touch and
out option in the corresponding discrete time model with equally spaced
dates tk, k = 0, 1, . . . , m, where t0 = 0, tm = T . Set ∆τ := T/m. We
have

f(x, tm) = 0, x > 0, (A.1)

and for all k,
f(x, tk) = 1, x ≤ 0. (A.2)

For k = m − 1,m − 2, . . . , and x > 0, the price f(x, tk) can be found
as the price of the European option with the terminal payoff f(Xtk+1

)
and the expiry date tk+1:

f(x, tk) = E[e−r∆τf(Xtk+1
) | Xtk = x], x > 0. (A.3)

In the case of NIG, an explicit formula for the probability density p∆τ

of X under EMM is known (see (2.3)), and we can use it to write (A.3)
in the form

f(x, tk) = e−r∆τ

∫ −x

−∞
p∆τ (y)dy + e−r∆τ

∫ +∞

−x

p∆τ (y)f(x + y, tk+1)dy.

(A.4)
Denote by I1(−x) and I2(x, k) the first and the second summands in
the R.H.S. of (A.4), respectively.

In the general case, p∆τ can be expressed in terms of the character-
istic exponent ψ(ξ), by using the Fourier transform

p∆τ (x) = (2π)−1

∫ +∞

−∞
e−ixξ−∆τψ(ξ)dξ, (A.5)
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and I1(−x) assumes the form

I1(−x) = (2πi)−1

∫ +∞+iσ

−∞+iσ

eixξ−∆τ(r+ψ(ξ))ξ−1dξ, (A.6)

where σ ∈ (−α + β, 0) is arbitrary.
Now we turn to I2(x, k). We choose large Λ > 0 and N , so that

h := Λ/N is small, and construct the grid xj = ±jh, j = 1, 2, . . . , N.
For a chosen step of numerical integration, h, with the weight function
e−r∆τp∆τ (x), we can express I2(xl, k) as follows.

I2(xl, k) ≈
N−1∑
j=−l

cjf(xj + xl, tk+1), (A.7)

where

cj =

∫ xj+1

xj

e−r∆τp∆τ (y)dy.

(When |j + l| > N , we set the corresponding term to be zero). Notice
that the integrals I1(xl) and coefficients cj can be found with the desired
relative error by using a simple modification of the fast option pricing
methods (cf. [7], [12]). Denote by I∗1 (xl) and c∗j their numerical values,
respectively. On the first step, we set

f(xl, T −∆τ) = I∗1 (x−l), l = 0, 1, . . . , N.

On the step k, k > 1, we obtain an approximation for f(xl, T−k∆τ), l =
0, 1, . . . , N

f(xl, T − k∆τ) ≈ I∗1 (x−l) +
N−1∑
−l

c∗jf(xl + xj, T − (k − 1)∆τ). (A.8)

We increase Λ and decrease h till the relative difference between two
results becomes less than 0.001. To test the program we use the trape-
zoid rule for the integrals I2(x, k). Numerical calculations show that the
maximum difference between the results of the two programs is about
0.01, mostly much smaller, and relative difference is less than four per-
cent even at τ =10 days to expiry; for smaller τ , the relative difference
is smaller. The difference between the two numerical procedures for
typical parameters values is shown on Fig. 7. We see that the error of
the numerical procedure makes relatively insignificant impact even on
the quantitative results in Section 4, nothing to say about qualitative
description of behavior of prices and performance of the approximate
formula and the formula in the Black-Scholes model.
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Figure 7. Difference between results of two numerical
procedures. Parameters: r = 0.05, δ = 11, α = 40, β = 6,
at τ = 5, 7, 10 days to expiry.

Appendix B. Technical details

B.1. Computation of P(λ). We make the change of variable z = β+
αw, and introduce the shorthand notation λ′ = λ/α, σ′0 = σ0/α, β′ =
β/α. The direct albeit lengthy calculations in (3.11) lead to

P(λ) =
δβ−(λ)

πα

∫ ∞

1

µ(w2 − 1)− w(iλ′ + σ′ + µw)

(iλ′ + r′ + µβ′ + µw − δ
√

1− (β′)2)2 + δ2(w2 − 1)

· dw

(w + β′)
√

w2 − 1

= − δβ−(λ)

πα(δ2 + µ2)

∫ ∞

1

µ + w(iλ′ + σ′)
(w − w+(λ))(w − w−(λ))

dw

(w + β′)
√

w2 − 1
,

where

w± = w±(λ) := −β±(λ) + β

α
= −iu1k ∓ v1

√
1 + k2, (B.1)

Recall that λ = α
√

δ2 + µ2k + iσ0, s ∈ R. By calculating the integral,
we obtain the following explicit formula for P(λ):

P(λ) = c+(λ)P1(w+(λ)) + c−(λ)P1(w−(λ)), (B.2)
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where

c±(λ) =
2δ

δ2 + µ2
· µ + w±(λ)(iλ′ + σ′)

w±(λ)− w∓(λ)
= iv1k ∓ u1

√
1 + k2; (B.3)

P1(w±(λ)) = −β−(λ)

2πα

∫ ∞

1

dw

(w − w±(λ))(w + β′)
√

w2 − 1

=
β−(λ)

2πβ±(λ)
(P2(w±(λ))− I1); (B.4)

I1 =
2√

1− (β/α)2
(π/2− arctan

√
α + β

α− β
), (B.5)

and

P2(w±(λ)) =

∫ +∞

1

dw

(w − w±(λ))
√

w2 − 1

=
1

i
√

1− w±(λ)2
ln(−w±(λ) + i

√
1− w±(λ)2)

= − ln((k ±√1 + k2)(v1 + iu))

i(iv1k ∓ u1

√
1 + k2)

. (B.6)

Gathering (B.2)-(B.6), we obtain the explicit formula (3.16) for P0(k).

B.2. Verification of condition (3.3). The roots−iβ±(λ) of equation
(3.12) are

β−(λ) = −β +
µ(σ0 + iλ)− δ

√
(δ2 + µ2)α2 − (iλ + σ0)2

(δ2 + µ2)
, (B.7)

β+(λ) = −β +
µ(σ0 + iλ) + δ

√
(δ2 + µ2)α2 − (iλ + σ0)2

(δ2 + µ2)
. (B.8)

For λ = λu(s) (see (3.27)), we obtain

−<β−(λ) = β − α(uu1 + vv1)
√

s2 + 1;

−<β+(λ) = β − α(vv1 − uu1)
√

s2 + 1.

Note that on the strength of (3.22) and (3.25), uu1 + vv1 ≥ 0 and
α(vv1 − uu1) ≥ 2β. Thus, (3.3) holds.
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B.3. Derivation of an estimate for I(Λ). For a fixed Λ ≥ 1, we
have

|I(Λ)| ≤ 2|R|
∫ +∞

Λ

e−W (uu∗+vv∗)
√

s2+1eP0(ku(s))|k′u(s)|
|ku(s) + iρ| ds. (B.9)

Then we need estimates for |k′u(s)|
|ku(s)+iρ| and eP0(ku(s)) in the region |s| ≥ 1.

|k′u(s)|
|ku(s) + iρ| ≤

[
s2 + v2

(s2 + 1)(v2s2 + (u
√

s2 + 1 + ρ)2)

]1/2

≤ 1

v
. (B.10)

To obtain an estimate for eP0(ku(s)), we use (3.16)-(3.19), and the stan-
dard technique of calculus. Notice that

β′±(ku(s)) = −β′ − (u1u∓ v1v)
√

s2 + 1 + i(u1v ± v1u)s

and

P±(ku(s)) = ±i ln(
√

s2 + 1 + s)− θ±,

where

θ+ = π/2− arctan
vv1 − uu1

vu1 + uv1

, θ− = π/2 + arctan
vv1 + uu1

uv1 − vu1

.

It follows from (3.25) that

0 < θ+ <
π

2
,

π

2
< θ− < π. (B.11)

We obtain

<β′−(ku(s))P+(ku(s)) + β′+(ku(s))P−(ku(s))

2πβ′+(ku(s))
(B.12)

=
ln(
√

s2 + 1 + s)

2π
<β′−(ku(s))− β′+(ku(s))

β′+(ku(s))
i− θ+

2π
<β′−(ku(s))

β′+(ku(s))
− θ−

2π
.

Direct calculations show that under conditions (3.22) and (3.25)

ln(
√

s2 + 1 + s)

2π
<β′−(ku(s))− β′+(ku(s))

β′+(ku(s))
i

= −v1(β
′u + u1)s

√
s2 + 1 ln(

√
s2 + 1 + s)

π|β′+(ku(s))|2
< −u1v1

π
F1(s)F2(s)

√
s2 + 1, (B.13)
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where for |s| ≥ 1,

F1(s) :=
s2

|β′+(ku(s))|2

≤ s2

(−β′ + (v1v − u1u)
√

s2 + 1)2

≤ β′2

(v1v − u1u)2 − β′2)
≤ 1

3
, (B.14)

and

F2(s) :=
ln(
√

s2 + 1 + s)

s
≤ ln(1 +

√
2) < 1. (B.15)

(All the estimates below are also written for |s| ≥ 1). Substituting
(B.11) and (B.14)-(B.15) into (B.13) yields

ln(
√

s2 + 1 + s)

2π
<β′−(ku(s))− β′+(ku(s))

β′+(ku(s))
i < −u1v1

3π

√
s2 + 1, (B.16)

Then we have

−<β′−(ku(s))

β′+(ku(s))
= F3(s) + F4(s), (B.17)

where

F3(s) :=
(v1v

√
s2 + 1)2 − (β′ + u1u

√
s2 + 1)2

|β′+(ku(s))|2

≤ β′ + (v1v + uu1)
√

s2 + 1

−β′ + (v1v − uu1)
√

s2 + 1
≤ β′ +

√
2(v1v + uu1)

−β′ +
√

2(v1v − uu1)

≤ β′ +
√

2

−β′ +
√

2(v2
1 − u2

1)
<

β′ +
√

2√
2v2

1

; (B.18)

F4(s) :=
(v2

1u
2 − u2

1v
2)s2

|β′+(ku(s))|2 ≤ v2
1u

2 − u2
1v

2

3
<

1

3
. (B.19)

By using (B.11) and (B.17)-(B.19), we derive the estimate for the sec-
ond term in (B.12):

−θ+

2π
<β′−(ku(s))

β′+(ku(s))
<

1

4

(
β′ +

√
2√

2v2
1

+
1

3

)
. (B.20)
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Substitute (B.11) and (B.16), (B.20) into (B.12) and obtain

<β′−(ku(s))P+(ku(s)) + β′+(ku(s))P−(ku(s))

2πβ′+(ku(s))

<
1

4

(
β′ +

√
2√

2v2
1

− 2

3

)
− u1v1

3π

√
s2 + 1. (B.21)

Now we derive an estimate for <[I0(ku(s))/(2πβ′+(ku(s)))]

< I0(ku(s))

2πβ′+(ku(s))
=

v1I1

π

(
−u1< 1

β′+(ku(s))
+ β′< iku(s)

β′+(ku(s))

)

<
v1

2
√

1− β′2
(F5(s) + F6(s)), (B.22)

where

F5(s) := − u1

−β′ + (v1v − uu1)
√

s2 + 1

≤ − u1

−β′ +
√

2(v1v − uu1)
< − u1

β′(2
√

2− 1)
; (B.23)

F6(s) :=
β′v(v1u + u1v)s2

(−β′ + (v1v − uu1)
√

s2 + 1)2

≤ β′v(v1u + u1v)

3
<

β′v1

3
. (B.24)

Using (B.22)-(B.24), we have

< I0(ku(s))

2πβ′+(ku(s))
<

v1

2
√

1− β′2

(
β′v1

3
− u1

β′(2
√

2− 1)

)
. (B.25)

It follows from (3.16), (B.21) and (B.25) that in the region |s| ≥ 1

exp(<P0(ku(s))) < exp(a
√

s2 + 1 + b), (B.26)

where a, b are defined in (3.29)-(3.30). Substitute (B.10) and (B.26)
into (B.9):

|I(Λ)| ≤ 2|R|v−1eb

∫ +∞

Λ

e(a−W (uu∗+vv∗))
√

s2+1ds

≤ 2
√

2|R|v−1eb

∫ +∞

Λ

e(a−W (uu∗+vv∗))
√

s2+1sds√
s2 + 1

(B.27)

= ε(Λ).

Note that a is small and integral in (B.27) converges, provided W (uu∗+
vv∗) is large (see (3.1)).
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