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Abstract

We consider a data set of locations where people in Central Bohemia
have been infected by tick-borne encephalitis, and where population census
data and covariates concerning vegetation and altitude are available. The
aims are to estimate the risk map of the disease and to study the depen-
dence of the risk on the covariates. Instead of using the common area level
approaches we consider a Bayesian analysis for a log Gaussian Cox point
process with covariates. Posterior characteristics for a discretized version
of the log Gaussian Cox process are computed using Markov chain Monte
Carlo methods. A particular problem is to determine a model for the pop-
ulation intensity, and the dependence of the results on the model for the
population intensity is discussed in detail. Model validation is based on
the posterior predictive distribution of various summary statistics.

Keywords: population intensity, Langevin-Hastings algorithm, Markov chain Monte
Carlo, spatial point process.

1 Introduction

The aims of statistical disease mapping are to characterize the spatial variation
of cases of a disease and to investigate connections with possible covariates. In
particular it is of interest to identify areas with an elevated disease risk. The
data may be a point pattern showing e.g. home residences of diseased people or
locations where people have acquired an infection. Often, the data are aggregated
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so that only counts of diseased people within subregions of the study region are
available. Indeed, most statistical analyses reported in the literature are based
on a so-called area level approach, where a model for aggregated data is used
after an initial aggregation. However, if a spatial point pattern is available, it is
more natural to use a spatial point process model. Recent surveys of both the
area level approach and point process modelling in disease mapping are given by
Diggle (2000), Richardson (2001), and the accompanying discussions by Knorr-
Held (2001) and Mgller (2001). For disease mapping in general, see Best et al.
(1999), Lawson et al. (2001), and the references therein.

In this paper we consider a point process approach to the analysis of a data
set, of locations where people in Central Bohemia have been infected by tick-
borne encephalitis (TBE). Specifically we consider a log Gaussian Cox point
process (LGCP), where covariates concerning occurrence of different forest types,
altitude, and the population density are used in the modelling of the spatially
varying intensity of TBE infections. LGCPs were independently introduced in
astronomy by Coles and Jones (1991) and in statistics by Moller et al. (1998).

A particular problem is the determination of the population intensity of hu-
mans being at risk. Raw geographical population data connects population num-
bers to home locations, but typically people get infected during visits to more
or less distant surroundings of their homes. This is an additional complication
compared with spatial analysis of chronic diseases like cancer, where the objec-
tive may be to study association between disease incidence and risk factors at
the home locations. We consider various approaches to smoothing of population
data, where the smoothing to some extent is related to the movement of people
around their homes.

The data and previous analyses in Zeman (1997) and other papers are de-
scribed in more detail in Section 2. Section 3 considers estimation of the pop-
ulation intensity, modelling of the risk function in terms of a LGCP depending
on covariates, and our Bayesian approach to inference using Markov chain Monte
Carlo methods. The results for different models of the population intensity are
discussed in Section 4.

2 Data and background

2.1 Description of data and scientific problem

TBE is an infectious debilitating illness which is transmitted by parasitic ticks
and which occasionally afflicts humans. Epidemiologists and medical practition-
ers making decision on prophylactic measures deal with the problem of estimat-
ing the risk that a human gets infected by TBE at a specific location, cf. Zeman
(1997). Since field studies of potential animal hosts are expensive, usually the
data for statistical analysis consist of case locations and a population map. More-



over, explanatory variables of geographical nature which may influence the risk
of infection are often available from geographical information systems.

Figure 1: Locations of infection of 446 cases of tick-borne encephalitis in Central
Bohemia. For each distinct location the number of cases associated with the
location is shown (a plus corresponds to one case).

Figure 1 shows the point pattern of locations of 446 cases of TBE in Central
Bohemia reported during 1971-93 by inhabitants living in Central Bohemia. The
empty space in the middle of the figure corresponds to the capital Prague, and the
total area of Central Bohemia is about 11860 km?. This data set was first studied
in Zeman (1997). Only 255 distinct points are visible due to ties in the data
caused by positional error where several cases in an area have been associated
with a common representative point. The distinct points in Figure 1 are marked
with the number of cases associated with each point. Information concerning the
distribution of the positional error is not available.

Let S denote the region of Central Bohemia. We have six covariates d; (s), .. .,
de(s), s € S, which are shown in Figures 2a-d. Here d;(-), ..., d5(-) are indicator
functions for the subareas of S covered by small forests (area between 0.1 and 0.5
km?), medium forests (area between 0.5 and 1.5 km?), coniferous forest, mixed
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Figure 2: a) Small forests (0.1-0.5 km?) and b) medium forests (0.5-1.5 km?)
(independent of the forest type). ¢) Three types of forest. Conifer: black; mixed:
dark grey; foliate: light grey. d) Map of altitudes (in metres).

forest, and foliate forest, respectively, and dg(+) is altitude in km. Each small or
medium forest is represented by a disc of area equal to the area of the forest,
and these covariates are possibly relevant since ticks can be transmitted by deers
and other animals living in small or medium size forest areas. The covariates
d;(-),i=1,...,5, are obtained from a LANDSAT-5 MSS satellite image of res-
olution 80x80 m?. The covariate dg(-) is obtained from the Institute of Military
Topography, Dobruska.

Finally, population data from the National Census Bureau, Prague, are avail-
able. For the Central Bohemia they consist of the number of inhabitants in 3582
administrative units. In Figure 3 each unit is represented by a disc with center at



a census point and radius given by 0.02/#inhabitants in the unit km. Clusters
of discs correspond to larger towns and cities. The total number of inhabitants
is 1,112,717 and the largest city has about 74,000 inhabitants.
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Figure 3: Population at 3582 administrative units in Central Bohemia represented
by discs (see the text).

2.2 Previous data analysis

Zeman (1997) considers both the point pattern of TBE cases and another point
pattern of cases for a related disease, Lyme borreliosis (LB). The LB data consist
of paired data: 866 reported locations of infection during 1987-91 in Central
Bohemia and the home location of each infected person. Zeman (1997) uses the
distances between cases of infection and home location to obtain a kernel for
smoothing the population map; see Section 3.2 also. Apart from this smoothed
population map no other covariates are included in Zeman’s analysis where the
intensity functions of TBE and LB cases (each considered as a realization of
a point process) are estimated by kernel methods. For each disease, Zeman



(1997) obtains a risk map by the ratio of the estimated intensity function and
the smoothed population map (Bithell, 1990).

A similar ratio estimator of the risk map is suggested by Krej¢it (2000) where
again both the TBE and the LB data are analyzed, using only the population
data as an explanatory variable. He assumes that each point pattern of cases is a
realization of an inhomogeneous Poisson point process with an intensity function
constructed from beta splines, where the coefficients are estimated by a maximum
likelihood method.

Incorporating the other explanatory variables in the model has so far only been
studied in connection to two area level approaches for the TBE data. Masata
(1999) divides Central Bohemia into 41 irregular subregions, and he includes three
covariates (the area in percentage of conifer, mixed, and foliate forests in each
subregion) in a Bayesian Gaussian-Gaussian model (Stern and Cressie, 1999).
Jiruse et al. (2000) use a subdivison of 141 squares of 10x10 km?, and include
the same types of covariates as Masata (1999) together with the mean altitude
and the proportion covered by small forests in each square. They use first a
generalized linear model and the Akaike Information Criterion to find an optimal
set, of parameters, and second an empirical Bayesian approach to estimate the
risk. Jiruse et al. (2000) compare the credibility intervals for risk estimators
obtained by their method with those of Masata (1999), and conclude that rather
similar results are obtained in subregions with a large risk for infection, although
it is only the model in Masata (1999) which incorporates spatial dependence.
The results of the above-mentioned papers are further discussed in Section 4.

3 Bayesian analysis using log Gaussian Cox pro-
cesses

We use the following hierarchical model: At the first level, the point pattern x of
locations of tick cases is assumed to be a realization of a Poisson process X with an
intensity function which is a product of a population intensity and a risk function
as described in Section 3.1. Estimation of the population intensity is discussed in
Section 3.2. At the next level a log linear model for the risk function is proposed
in Section 3.3, incorporating the covariate information and a Gaussian process
which takes account of spatial variation not explained by the covariates and the
uncertainty of the estimated population intensity. At the final stage hyper priors
on the unknown parameters for the covariates and the Gaussian field are imposed,
whereby a posterior is obtained in Section 3.4. For computational reasons certain
approximations of the posterior are required as discussed in Section 3.5 and the
Appendix. Finally, Section 3.6 deals with MCMC simulation of the posterior.
Strictly speaking, the multiple points in x cannot occur under the proposed
model. However, our approximate approach actually only utilize counts of loca-



tions within certain small cells and this makes the results less sensitive to the
presence of ties in x.

3.1 A simplified model

Our modelling of the TBE data is motivated by the following simplifying consider-
ations, which are similar to one of the steps in the construction of a Neyman-Scott
process (Neyman and Scott, 1958; Diggle, 1983).

In the observation period 1971-93 a number m = 1,112,717 of persons are
living at home locations hy, ..., h,, € S, and the 7th person makes a number N;
of visits to the surroundings of h;. The N;’s are assumed to be independent and
Poisson distributed with mean A > 0 independent of 7. Given the NV;, the location
of each visit of the ith person is distributed according to some density g, on S,
and the locations of visits of all persons are assumed to be independent. For a
visit to a location s € S, there is associated a probability 7(s) for getting an
infection during the visit. The random set of locations where persons have been
infected is then a Poisson process with intensity function of the form

A(s) = p(s)m(s), s € S (1)

where p(s) =AY, gn,(s) is the population intensity of humans visiting s.

3.2 Estimation of population intensity

The population intensity p(s) is a crucial component of the modelling. As it is
unknown, we discuss below how it may be estimated; see also the discussion in
Section 4.

For the LB data both locations of infection and home are available. Under
the crude assumption that the densities g, are of the form g;,(s) = g(||s — hil|)
one may as in Zeman (1997) try to estimate g from the LB data. Recall that
if f denotes the density of ||Z|| for a two-dimensional random variable Z with
isotropic density gn(z) = g(||z — h||), then g and f are related by

g(ll=ll) = =D/ @nllz]), = € R (2)

Zeman (1997) fits a power regression to a histogram for the log distances between
home and place of infection. He then obtains an expression f(h) = ah® for the
density of the distances and uses this as a kernel for smoothing of the population
data. Strictly speaking f is not a proper density on R, , and apparently Zeman
(1997) is not using the correct transformation (2) to obtain a density on R?.
We try another approach where we fit a non-parametric kernel density esti-
mate f to the distances between home and place of infection in the LB data.
The density f is subsequently transformed by (2) into a density g. The kernel



estimate of the population intensity is finally

ps) = A Ka(lls — usl) (3)
jEU
where U is the index set of the administrative units, K is the number of persons
associated with the jth unit, and u; is the census point of the unit, cf. Figure 3.
Here A is for the moment left unspecified as it is absorbed into another parameter
introduced in Section 3.3. Note that we are ignoring the fact that people in the
Jth unit live in the vicinity of u; and not exactly at u;.
The kernel estimate and alternative models for the population intensity are
further discussed in Section 4.

3.3 Prior distributions and likelihood using a LGCP
We model 7 in (1) by a log linear model,

m(s) = exp (87d(s) + Y (s)) (4)

where Y'(s) is a zero-mean Gaussian process, 3 = (8y,...,3s)" is a regression
parameter, and d(s) = (1,d;(s),...,ds(s))T where d;(s),...,ds(s) are the 6 co-
variates associated with the location s € S, cf. Section 2.1.

The role of exp(Y(s)) is partly to model deviations of p(s)/p(s) from one.
Therefore we do not constrain (4) to be less than one. Actually, in Section 4, A
is absorbed in exp(f) and we replace the unknown p by the estimate (3) with
A = 1. Then =(s) is more precisely a relative risk function, since for sy, s5 € S,
7(s1)/m(s2) is the ratio of risk functions at the locations s; and ss.

We assume that Y is second-order stationary and isotropic with exponential
covariance function, i.e.

Cov(Y(s1),Y(s2)) = cllls1 — s2ll: 0%, ) = 0" exp(—|ls1 — szl /o)~ (5)

where 02 > 0 is the variance and o > 0 is the correlation parameter. A log

Gaussian Cox process (LGCP) is then obtained by assuming that conditionally
onY = (Y(s))ses and 8 = (8,0, «), the cases X form a Poisson process with
intensity function p(s)m(s).

We view the Gaussian distribution for Y as a prior and the conditional dis-
tribution of X given (Y, 0) as the likelihood. Furthermore, a hyper prior density
p(#) for 0 is imposed; specific hyper priors are considered in Section 4. Notice
that the likelihood depends on € only through 3, and it has density

plalY: 3) = exp (151 = [ pls)exp (57d(s) + Y (5))ds) x

S

[T 568 exp (87d(€) + Y (€)) (6)

tex

with respect to the unit rate Poisson process on S where |- | denotes area.
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3.4 Posterior

The posterior, that is, the conditional distribution of (Y,#) given X = z, can
be specified as follows. Suppose that p() is proper and let E, denote expec-
tation conditionally on #. For n > 1 and pairwise distinct si,...,s, € S, let
f(s1,050)(+]0) denote the conditional density of (Y'(s1),...,Y(sn)) given 6. The
posterior density of (Y (s1),...,Y (s,),0) given X = x is defined by

f(51 ..... sn)(yla <o Yn, 9|1‘) X Eg[p(fL'|Y, 5)|Y(81) =Yy, Y(Sn) = yn]x
f(sl,...,sn)(yla ce 7yn|9)p(9) (7)

The posterior of the process (Y, ) given X = z is then given by the consistent
set of finite-dimensional posterior distributions with densities of the form (7) for
n > 1 and distinct sq,...,s, € S. If p(#) is improper we define the posterior
similarly provided it is well-defined; i.e. provided

/ Eylp(2]Y, B)]p(6)d8 < oo.

3.5 Discretized LGCPs

The integral in (6) depends on the infinitely dimensional random field Y which
cannot be represented on a computer. In practice we therefore approximate the
integral by a Riemann sum as follows. The region S is appropriately translated
and embedded in a rectangular region, say a square [0,b[* of sidelength b > 0.
For integer M > 1, define the lattice

={b/(2M),b/M +b/(2M), ..., b(M — 1)/M+b/(2M)}2
and let
C’(Mw) =SNu—>0b/2M),u+b/(2M)[x[v —b/(2M),v+b/(2M)[, (u,v) € ™.

The approximation of the integral is now

[ atrexn (8Ta(s)+ () ds ~ 3 1Ot exp () + V(). ()

nerM

For £ € x N C’é‘/’,n € IM it is for computational reasons also convenient

(see Section 3.6) to approximate p(€) exp (87d(€) + Y({)) by p(n) exp (67d(n) +
Y(n)). For n € IM, we further replace d(n) by d"(n fcM (s)ds/|C}!], since

the average value d™ (1) is a better representative of the covariate values d(s),
s € C), than d(n). Combining this with (8), an approximation of p(z|Y, ) is



obtained:

P (alY, 8) = exp (1| = 3 1Cpn) exp (574" () + Y (n) ) %

[T ™ @ exp (n () (8Td" () + ¥ (n))) 9)
CHina

where n(n) = card(z N C}'), n € I™. The approximate posterior density is
hence given by

f(sjwl ..... sn)(yla -y Yn, 9|1‘) & Eg[pM(1‘|K B)|Y(81) =Y., Y(Sn) = yn] X
f(51 ..... sn)(yla sy yn|9)p(9) (10)

It is defined similarly for p(#) improper provided

/ Eylp™ (x]Y, B)]p(6)d6 < co.

Our Bayesian approach is based on (9) where {si,...,s,} agrees with M.
Then we are in a sense back in an area level approach, since pM(z|Y; 3) only
depends on z through the counts n*(n), n € I”. However, we use a much
finer partitioning of S into cells 07]7” than in typical area level approaches, see
Section 4. Furthermore, under certain conditions we verify in the Appendix that
expectations computed with respect to the approximate posterior (10) converge
to the corresponding expectations with respect to (7) when M tends to infinity.

3.6 Markov chain Monte Carlo for discretized LGCPs

In this section we discuss MCMC simulation of the approximate posterior (10)
when {si,...,s,} agrees with ™. The main obstacle is to handle the high
dimensional covariance matrix of Y = (Y'(1)),c;n. However, the computational
cost can be reduced very much by employing the circulant embedding technique
described in Dietrich and Newsam (1993) and Wood and Chan (1994); see also
Moller et al. (1998). This is shortly explained below.

The lattice I is extended to

M = 1{b/(2M),b/M +b/(2M), ..., b(Mey — 1)/M +b/(2M)}?

where My > 2M — 2. For &,n € IM let gd(&, 1) denote geodesic distance when
IM

ot 15 wrapped on a torus. The symmetric matrix K = {c(gd(&,7); 0%, @) }¢ yer
is block circulant with M, circulant blocks of dimension Mgy X Mey, S0 it can
easily be diagonalized by means of the two-dimensional discrete Fourier trans-
form. Note that the submatrix {c(gd(&,n); 0% @)}¢nerm coincides with the co-

variance matrix of Y.
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Suppose that K is positive semi-definite (i.e. K has non-negative eigenvalues).
Then we can extend Y to a larger Gaussian field Yy, = (Yn)ne m with covariance
matrix K. Using a lexicographic ordering of the indices, we can set

Vet = QT (11)

where I' follows a standard multivariate normal distribution of dimension d =
rank(K), and where @ is a M2, x d matrix of rank d so that K = QTQ. Thus

from I we obtain Yay and hence Y.

Note that Mo = 2M —2 is the smallest extension which gives a block circulant
matrix K. If K turns out not to be positive semi-definite, it may help to use a
larger extension M, > 2M — 2. Such large extensions are usually only needed
if the correlations for Y are slowly decaying. In order to apply the fast Fourier
transform for the calculations of Q and Yuy by (11), My should be a power of
two (or three or five).

The posterior density for (T, 6) is

(7, lx) o< p(6) exp(~|17]1*/2) exp( > 1C3 () exp (87 () + i) ) x

nefM
H p(n " exp ( M(n) (BTJM(U) + ?jn))
et

where § = QT~. This is very similar to the posterior density for the Poisson-
log normal model considered in Christensen and Waagepetersen (2001). For the
MCMC simulations of (I',#) given X = x we use the same type of fixed-scan
hybrid algorithm as in Christensen and Waagepetersen (2001), where v, 3, o,
and « are updated in turn using so-called truncated Langevin-Hastings updates
for v and g and standard random walk Metropolis updates for ¢ and «. For
further details of our MCMC algorithm we refer to the above-mentioned paper.
Finally, posterior simulations of (', §) are transformed into posterior simulations
of (Y, 0).

For fixed values of 6 the nice convergence properties of truncated Langevin-
Hastings algorithms applied to conditional simulation in discretized LGCPs,
Poisson-log normal and related models are studied in Mgller et al. (1998) and
Christensen et al. (2001).

4 Results and discussion

In this section we discuss the results for the TBE data obtained by the Bayesian
approach described above. Details concerning specification of priors, estimation
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of population intensity, and the MCMC algorithm are given in Section 4.1. Sec-
tion 4.2 compares posterior results obtained with different models for the popula-
tion intensity. Model selection is adressed in Section 4.3. The estimated relative
risk map is discussed in Section 4.4. Concluding remarks are given in Section 4.6.

4.1 Specification of models and computational details

For the discretized LGCP, S is rescaled and embedded in a unit square which is
divided into a grid of square cells C}¥, 1 € I where M = 65, cf. Section 3.5.
Thereby Central Bohemia is covered by 2166 cells, and S occupies about 51% of
the unit square. Results with other values M = 17, 33, and 129, are discussed
in Section 4.5.

The following models of the population intensity are considered, setting A = 1,
cf. Section 3.3.

e Model W (constant p): peonst(s) = > ey K;/|S] is constant,

e Model P (kernel based on paired data): ppair(s) = >y Kjg([ls — uj]) is
estimated as in (3) using the paired LB data.

e Models B,D, and E (Gaussian kernel): p;(s) = > .y Kjg(lls — u;l;7)
where g(-;7) : Ry — Ry is given by g(h;7) = é(s;7) for s € R? with
|Is|| = h and where ¢ is the density for a two-dimensional radially symmetric

Gaussian distribution with zero mean and standard deviation 7. Model B:
7=0.7km. D: 7 =25km. E: 7 = 5km.

For the corresponding LGCPs, model W is equivalent to the limiting case with
a Gaussian kernel where 7 — oo. Figure 4 shows the kernels used to compute
population intensity models P, B, D, and E. Note that the tail for P falls between
the tails of D and E.

o
(42}
o
o
o
N
=
o
o
—
o
o
o -
o
5 10 15 20
distance

Figure 4: Kernels for models P, B, D, and E.
For all the population intensity models we use independent hyper priors for
B, o, and « given by
p(B)x1, HeR,
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p2(0) < exp(=107°/0) /o, 0 >0,
p3(a) x 1/a, —6.91 < loga < —1.10.

The improper prior p; is completely flat and the improper py yields an essentially
flat prior for logo. The limits for the log uniform prior p3 are chosen subjectively
in order to accomodate a reasonable range of strengths of correlation. By similar
arguments as in the proof of Proposition 1 in Christensen et al. (2001), a proper
posterior (10) is obtained for the discretized LGCP, but strictly speaking we do
not know whether a proper posterior (7) is also obtained for the original LGCP.
One may therefore consider the possibility of restricting the supports of 8 and o
to large but bounded regions, see also the Appendix.

We use the hybrid algorithm mentioned at the end of Section 3.6 for the
approximate posterior computations. In order to improve the mixing properties
of the algorithm we use a reparametrization where each of the covariates d, ..., dg
is standardized by substracting the mean and dividing by the standard deviation
of the variable. However, when presenting our results in Section 4.2 we use the
original parametrization. User-specified parameters of the algorithm are tuned
to obtain acceptance rates which are fairly close to theoretically optimal values
(see Christensen and Waagepetersen, 2001): the acceptance rates for updates
of v, B, o, and loga are 0.56, 0.54, 0.24, and 0.25, respectively. For posterior
simulations we use 500,000 scans of the algorithm, where a scan consists of an
update of each of the parameters v, 5, o, and a. The Monte Carlo estimates
of the various characteristics of the posterior shown in Section 4.2 are calculated
from a subsample obtained with spacing equal to 100.

4.2 Posterior results and comparison of models

Posterior histograms of fy, ..., B, 0, and log a are rather symmetric and close
to the normal distribution under any of the population intensity models; as an
example the results for model B are shown in Figure 5. Note that the marginal
posterior distribution for « is concentrated on a much smaller interval than the
support of its prior ps.

Posterior means for the 3;, and for the different models are shown in Table 1.
The numbers in parantheses are the probabilities p; = P(; > 0|z). Under model
B, ps and ps indicate that the presence of mixed forest (5,) or foliate forest
(B5) increases the risk of infection; in Jiruse et al. (2000) the presence of mixed
forest is concluded to be a significant covariate. For all the population intensity
models there is evidence that the presence of coniferous forest decreases the risk
of infection and, except for B, that a high altitude increases the risk of infection.
The posterior means are rather sensitive to the choice of population intensity
model. The qualitative results based on the posterior probabilities p; are on the
other hand rather similar for all population intensity models except model B.
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Figure 5: From left top to right bottom: marginal posterior distributions for
Bos - - -, Bs, 0, and log a under the model B.

The posterior means and standard deviations for ¢ and log v are rather com-
parable for the different models. The posterior means for o ranges between 2.0
(model W) and 2.4 (B), and the standard deviation between 0.1 (W) and 0.2
(model D). The posterior means for loga are between -3.8 (B) and -3.3 (D),
while the standard deviations take the value 0.2. The posterior mean of the
empirical mean of Y is close to zero for all models, and the posterior mean of
its empirical standard deviation is a bit larger than 2 and close to the posterior
mean of o for all models. Notice that Y is playing an important role in the
model since the posterior for o is concentrated on an interval far from zero. For

the exponential correlation function with loga = —3.8, the correlation is bigger
than 0.01 for distances less than 15 km on the physical scale. Finally, let
AM(s) = p(n) exp (BTdM (n) + Y (n)), s € C,F, (12)

denote the intensity function of the discretized LGCP. The posterior mean
E[[4AY(s)ds|z] of the intensity function integrated over Central Bohemia is
between 445.5 and 446.1 (close to the number of observed cases) for the different
models.
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Bo &5t B B3 B4 Bs 56
W 101 (0) -12(3) -5(4) -45(0) .1(6) 2(6) 15(10)
P -07(0) -1.0(4) -1(5) -33(0) 2(6 4(7) 1.0 (L0)
B -98(0) -1.6(3) -0(5) -18(1) 22(1.0) 2.2 (1.0) -0 1 (.5)
D -96(0) -21(2) -2(5) -34(0) -2(4) .3(6)  10(1.0)
E -98(0) -1.6(3) -4(4) -40(0) -3(3) .0(5) 1.3(10)

Table 1: Posterior means for 3; and p; = P(3; > 0|x) (in paranthesis), i =
0,...,6, under models W, P, B, D, and E.

4.3 Model selection

As the posterior results depend much on the choice of population map, one may
naturally ask from which model conclusions should be drawn. In the Bayesian
framework there exist several tools for model selection including Bayes factors,
posterior predictive distributions, and, of course, an extended Bayesian analysis
where prior probabilities are also assigned to the different models in question.

We restrict attention to the consideration of posterior predictive distributions,
basically because this is supported by our present software. Consider a summary
statistic U(z) computed from the data z. The idea is to assess the fit of a posterior
model by comparing U(z) with the posterior predictive distribution; i.e. in our
case the distribution of U(X) where X is a Cox process with random intensity
surface distributed as [AM|z], see (12). Below we consider two types of summary
statistics: the counts n*(n), n € I, and a variant of the K-function.

For the counts n(n), n € I, we just compare n™(n) with the posterior
predictive mean \, = |C)'|E[AY () |2] and compute discrepancy statistics

Xi= ), M) =A) and =Y (M) = AP A,

nerMns neIMns

The values of these y2-statistics can be used to rank the different models according
to their predictive performance. Note that x3 is more tolerant towards deviations
between n* () and the posterior predictive mean )\ when )\ is large. The values
of x? under the different models are B: 120, W: 171 E: 179 P: 184, D: 192.
However, the picture is different for x32 where we have W: 1054, P: 1096, E:
1112, D: 1133, B: 1344. This is consistent with the degree of smoothness of the
population maps employed so that the smallest values of x3 are obtained for the
models with the smoothest population maps. Another approach for using the cell
counts n™ (n) would be to consider so-called cross-validation predictive densities
(Gelfand, 1996), but this is computationally quite demanding in our setting. In
the following we restrict attention to models B and W.

Our LGCP X can be extended to a so-called second-order intensity-reweighted
stationary point process on R? for which an extension of the K-function can
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L()-t

be defined; for details see Baddeley et al. (2000). If A(-) denotes the intensity
function for X, the inhomogeneous K-function is given by

Kinhom t |A|E[ Z Z ||§ 77” < t) (13)

£EeXnNAn eX

for ¢ > 0 and an arbitrary A C R? with 0 < |A| < oo. It is common practice to
transform Kipnom into Linhom(t) = v/ Kinhom /™ which is equal to ¢ for a Poisson
process. From (13) we obtain an estimate of Kiyhom by omitting the expectation,
letting A = S, and replacing X with the observed data x; we here ignore the
edge effects caused by unobserved tick infections outside S. Furthermore, the
unknown A(+) is replaced by the maximum likelihood estimate under the Poisson
model corresponding to model W without Y~ (or equivalently with o2 = 0).

Figure 6 shows the estimated Liypom(t) —t. Notice that the estimate is bigger
than zero which indicates clustering — this is in accordance with the results
in Section 4.2 which showed that Y was not a negligible part of the model.
Theoretically, Linnom(0) = 0, and the behaviour of the estimate for small values
of ¢ is an artifact due to the multiple points in the data. The dotted curves
in Figure 6 are envelopes, i.e. pointwise minima and maxima for estimates of
Linhom (t) — t computed from 39 point patterns simulated under the posterior
predictive distributions corresponding to model B and W, respectively. If the
observed data were generated by one of the posterior predictive distributions,
then for each ¢t > 0, there is 5% probability that the estimate of Linnom(t) — ¢
from the data falls outside the envelopes. If we disregard the small t-values, then
neither of the posterior predictive distributions seem to be in conflict with the
observed data.

Figure 6: Estimated Lippom(t) — ¢ (solid line) versus ¢ (measured in km) under
model B and model W.
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4.4 Relative risk map

The posterior mean of the relative risk function under models B and W are shown
in Figure 7 on a log scale. More precisely, in order to compare the results for
model W and B we plot

log E[exp(5"d" (n) + Y (n) — max {7d" (&) +Y(©)}|a],n e 1M NS,

EerMngs

for each model. The relative risk function is less varying under model W than
under model B; for model B the smallest and the largest values are exp(—11.06)
and exp(—0.13), respectively, and for the model W the values are exp(—9.18)
and exp(—0.05). Comparing Figure 7 with the maps in Zeman (1997), Masata
(1999), and Krejcit (2000), the overall features are rather similar (no such map
is shown in Jiruse et al., 2000).

Figure 7: Maps of the logarithm of the posterior mean of the relative risk function
divided by its maximal value. Left: model B. Right: model W.

Jiruse et al. (2000) compare their results with those of Masata (1999) in a plot
showing the credibility intervals of the relative risk function evaluated separately
for each cell (ordered with increasing risk) in the irregular division of 41 cells
used in Magata (1999). Figure 8 shows 2.5% and 97.5% posterior quantiles for
the log relative risk function. The uncertainty is large; for model B and the cell
with the largest mean posterior relative risk the 2.5% and 97.5% quantiles are
—1.32 and 0, respectively; for model W the corresponding numbers are —0.48
and —0.01, respectively. The oscillations of the quantiles are smaller for model
W than model B due to the constant population intensity for model W.



Figure 8: The log mean posterior relative risk function divided by its maximal
value for the 200 cells with largest mean posterior relative risk. The lower and
upper curves are 2.5% and 97.5% posterior quantiles. Left: model B. Right:
model W.

4.5 Dependence on grid size

Tables 2 and 3 contain posterior means for ; and p; = P(5; > 0|z), i =
0,...,6, obtained with different choices of the grid size M under model B and W,
respectively. The numbers depend much on M, and in particular the different
results for M = 65 and M = 129 suggest that we need a larger value than
M = 65 in order to approximate well the exact posterior of the ;’s. However,
using M = 129 or larger is computationally very time consuming. It is perhaps
not so surprising that the results for M = 65 and M = 129 differ since the
various covariates vary on a fine scale compared with the spatial resolution of
the grid cells obtained with M = 65 and M = 129. The cell-averaged covariate
vectors d*°(-) and d'?°(-) (see Section 3.5) may thereby be quite different from
each other and the original covariate vector d(-). Comparing model B and W,
the results for M = 65 and M = 129 are more similar for model W since the
constant population intensity is not sensitive towards averaging over grid cells.

M Bo el Do Bs Ba Bs Bs

17 -83(0) 83(3) -38(3) -47(1) 68 (1.0) 49 (1.0) -16 (1)
33 -84 (0) -81(1) -7.5(0) 0.3(.6) 4.7(1.0) 7.1 (1.0) -2.6 (.0)
65 -9.8(.0) -1.6(3) -0(5) -1.8(1) 22(1.0) 2.2(1.0) -.1(5)
120 114 (0) -1.2(2) -1.2(1) -50(0) -4(3) .1(5) 20(L)

Table 2: Posterior means for 5, and p; = P(f; > 0|x) (in paranthesis), i =
0,...,6, under model B and for four choices of grid size M = 17, 33, 65, 129.
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M Bo b B 3 B4 Bs Bs

17 -94(0) 91(8 -81(1) -73(0) 69(1.0) 33(9) 8(7)
33 -9.6(.0) -1.7(4) -40 (1) -3.4(0) 3.0(1.0) 2.5 (1.0) 1.0(.9)
65 -10.1 (.0) -1.2(.3) -5(4) -45(0) .1(6) .2(6) 1.5(L0)
129 -11.3 (.0) -6(4) -12(1) -6.0(0) -8(1) -3(3) 2.1(1.0)

Table 3: Posterior means for 3; and p; = P(3; > 0|x) (in paranthesis), i =
0,...,6, under model W and for four choices of grid size M =17, 33, 65, 129.

4.6 Discussion

The approximate posterior results are very sensitive to the choice of grid size
M for the discretization and results must thus be reported conditional on the
chosen value of M. Considering M = 65, the results concerning which covariates
are important for predicting tick infections depend much on which population
model is used. The best fit is according to the statistic y3 obtained with the
population intensity model W. A uniform population intensity is on the other
hand not realistic. Model P is obtained empirically from paired data, but under
very crude assumptions. With the data available it seems hard to make a definite
choice between the different population intensity models considered. One should
therefore consider either of the two following possibilities: 1) collect more data
from which a satisfactory population intensity model could be constructed, or
2) include uncertainty concerning the population model in the analysis e.g. by
introducing a prior for the various models, or perhaps just on 7 if one restricts
attention to the Gaussian smoothing kernels.

In many examples of disease mapping one fixed population map is regarded as
the truth, but our results suggest that such an approach can easily be misleading.
Moreover, our analysis appears to be more satisfactory than those in Zeman
(1997) and Krejéit (2000), since they do not include the covariate information
and because of larger flexibility in our approach. Jiruse et al. (2000) and Masata
(1999) deal with covariates but in an area level approach. Thanks to the point
process setting used in the present paper, we have provided a more detailed
modelling and analysis of the spatial dependence (recall that Magata (1999) uses
only 41 irregular cells and Jiruse et al. (2000) only 141 cells of size 10 x 10 km?,
and it is only in Masata (1999) that spatial dependence is incorporated).

The sensitivity to the choice of discretization may be reduced by omiting the
approximation where the product in (6) over observed points is replaced by the
product in (9) over grid cells. One then needs to deal with the joint density of
(Y(n))nervyu,- By factorizing the density of (Y'(1)),esay,, methods based on the
fast Fourier transform may still be used, but the programming and computational
complexity increases.

It would also be interesting to analyze the tick data by a Cox process model
where exp(Y'(+)) in (4) is replaced by the random intensity function of a Pois-
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son/gamma process (Wolpert and Ickstadt, 1998) or more generally, a shot-noise
Cox process (Brix, 1999), see also Mgller and Waagepetersen (2001). The calcula-
tion of the integral in (6) may still require numerical methods, but possibly much
finer approximations may be feasible, so that the posterior results become less
sensitive to the numerical approximation. Moreover, some care must be taken in
order to handle boundary effects.
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Appendix: Convergence of approximate posteri-
ors

In our Bayesian analysis we are interested in expectations with respect to the pos-
terior distribution of (Y (s1),...,Y (s,),0) for a finite set of locations s, ..., s,,
where in practice we compute expectations with respect to the approximate poste-
rior (10). It is therefore natural to investigate whether approximate expectations
converge to the corresponding exact posterior expectations with respect to (7)
when M tends to infinity. In Theorem 1 below we verify that this is the case
under the somewhat restrictive assumption that the hyper prior density p(6) has
compact support. Furthermore, we let Y'(s),cr2 denote a second-order station-
ary zero-mean Gaussian process with almost surely continuous sample paths and
variance 02 > 0. These properties are satisfied for a Gaussian field with the
exponential covariance function in (5), cf. Theorem 3.4.1 in Adler (1981).
The following lemma is used in the proof of Theorem 1.

Lemma 1. For any | > 0, ¢? > 02, and compact K C R? with positive area,

Eexp (suplY; + (sup Y5)*/(2¢7)) < oc.

seEK sEK
Proof. Let 0 < e < (20%)7! — (2¢?)~1. Since

lim t~%log P(sup Yy > t) = (20%)7" (14)
t—o0 seK
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(see e.g. p. 160 in Adler, 1981) there exists a 7" > 0 such that

P(SEII?Y; > 1) < exp(t*(e — (20%)7h))

for all t > T'. Let F(t) = exp(lt + t*/(2¢?)), G(t) = P(sup,eg Ys > t), and note
that G(0) = 1. The result now follows by integration by parts:

FE exp <sup 1Y + (sup YS)Z/(QW)) =1+ /000 G(t)F(dt) <

/0 G(t)F(dt) + /Too exp (t*(e — (20%) 7"+ (2¢*) ™) + 1) (1 + t/(¢*))dt < <.

O

Theorem 1. Assume that the support Oy = {0 € R® : p() > 0} is compact,
A(s) = p(s)exp (B7d(s) + Y (s)) is almost surely Riemann integrable on S, and
p(+) and d(-) are bounded on S and continuous at all n € x. Consider any Borel
function h: R* x ©g — R with h(y1,...,yn,0) < exp(max; y?/(2¢%))k(0) for all
(Y1, - Yn, 0), where supgee, 0> < 1> < 0o and k : R® — R is a Borel function
so that [ k(0)p(0)df < co. Then

lim h(ylaaynae)f(szwl sn)(y177yn79|$)dyd9:

M—c0 ) oy

/ B s 90 0) Fisroony (1 -« s B]) .

Proof. Combining the fact that (Y(s))ses is almost surely continuous with the as-
sumptions on p(-), d(-), and A(-), we obtain that limy,_,., p™ (z|Y, B) = p(z|Y, )
almost surely, cf. (6) and (9). Further, by (9)

PV (a]Y, ) < sup p(s)*" exp (card (x) (sup 7d(s) + sup Y (s)))

s€S s€S s€S
and so
h(Y(Sl)a ) Y(Sn)a 9)pM(x|K B) S
sup p(s)@4@) exp (card(x) (sup BTd(s)))k(H) X
s€S s€S
exp (card(z) sup Y (s) + sup Y (s)?/(2¢%)).
seS seS
By Lemma 1,
K(0) = Egexp (card(z)sup Y (s) + sup Y (s)*/(2¢*)) < oc. (15)
s€S s€S
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Note that K (#) depends only on (o, «) and it can be checked that K(-) is con-
tinuous (we omit the details). Using (15) and the compactness of ©¢ the result
now follows by applying dominated convergence to the numerator and the denu-
merator in

/ B g O o (1o Bl)dydl =
[ B 1) Y (50, 00 1Y 50100 / Eolp™ (2], B)]p(0)do0.

O

Remark: In applications (including ours) p(-) and d(-) will typically be piecewise
continuous, whereby the assumptions of Theorem 1 concerning p(-) and d(-) are
fulfilled. One is further typically interested in computing the posterior probability
of some event (in which case h(-) is an indicator function) or moments of Y'(s;)
or w(s;), i = 1,...,n. In all these cases the corresponding choices of h(-) are
covered by the theorem.
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