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Abstract

A classical result, due to Lamperti, establishes a one-to-one correspon-
dence between a class of strictly positive Markov processes that are self-
similar, and the class of one-dimensional Lèvy processes. This correspon-
dence is obtained by suitably time-changing the exponential of the Lévy
process. In this paper we generalise Lamperti’s result to processes in n
dimensions. For the representation we obtain, it is essential that the same
time-change be applied to all coordinates of the processes involved. Also
for the statement of the main result we need the proper concept of self-
similarity in higher dimensions, referred to as multi-self-similarity in the
paper.

The special case where the Lévy process ξ is standard Brownian motion
in n dimensions is studied in detail. There are also specific comments on
the case where ξ is an n-dimensional compound Poisson process with drift.

Finally, we present some results concerning moment sequences, ob-
tained by studying the multi-self-similar processes that correspond to n-
dimensional subordinators.
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1. Introduction and main results

Consider (Bu + νu)u≥0 , a one-dimensional Brownian motion (BM) with drift ν ≥
0 started at 0. Lamperti’s [15] representation of (exp (Bu + νu))u≥0 as

exp (Bu + νu) = R
(ν)∫ u

0
dv exp 2(Bv+νv)

(u ≥ 0) (1.1)

where
(
R

(ν)
t

)
t≥0

is a Bessel process (BES) of index ν or ‘dimension’ 2ν + 2

started at 1, has proved a powerful tool in the study of the exponential func-
tional (

∫ u
0 dv exp 2 (Bv + νv))u≥0 which plays an important role for a number of

questions in mathematical finance (e.g. Dufresne [6], Geman and Yor [7]; see
also the collection of papers: Yor [21]), studies of hyperbolic Brownian motion
(e.g. Gruet [8], Ikeda and Matsumoto [10]) and Brownian motion in random me-
dia (e.g. Hu, Shi and Yor [9], Comtet and Monthus [3], Comtet, Monthus and Yor
[4] and Kawazu and Tanaka [13]).

Lamperti’s original representation is not (1.1) but the squared version

exp 2 (Bu + νu) = R
(ν)2∫ u

0
dv exp 2(Bv+νv)

(u ≥ 0) (1.2)

where S = R(ν)2 is a squared Bessel process (BESQ) of ‘dimension’ 2ν + 2, i.e. S
satisfies the SDE

dSt = (2ν + 2) dt+ 2
√
St dWt (1.3)

with W a standard BM(1). Here the point of the representation (1.2) rather

than (1.1) is that R(ν)2 is the diffusion with the self-similarity (or semi-stability)
property used by Lamperti [15] in his main result, Theorem 4.1, part of which
may informally be stated as follows: any 1-self-similar strictly positive and ‘nice’
Markov process is a time-change of the exponential of a Lévy process; see (1.5)
below.

For the discussion of (1.1) and (1.2) we assumed that the Brownian motion

B should have drift ν ≥ 0 which ensures that R
(ν)
t and St are well defined for all

t ≥ 0. Throughout the paper we shall work under conditions so that the random
time-changes we consider map the time axis [0,∞[ onto itself. Note however that
Lamperti’s Theorem 4.1 in [15] in particular contains a version of (1.2) also when
ν < 0 but with St defined only up to the finite killing time

∫∞
0 dv exp 2 (Bv + νv) .

Our main result, Theorem 1.2, should generalise similarly, but we do not pursue
this generalisation here.

In a recent paper, studying some concrete examples of multidimensional dif-
fusions, Jacobsen [12] found an n-dimensional analogy to (1.2) when the one-
dimensional Brownian motion with drift is replaced by an n-dimensional Gaus-
sian Lévy process G = (Gi)1≤i≤n (Brownian motion in n dimensions with some
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drift vector and some covariance matrix) and R(µ)2 is replaced by a certain n-
dimensional diffusion S = (Si)1≤i≤n , referred to as the multi-self-similar diffusion
below (see (1.17) for the precise definition of S), and the same time change is ap-
plied to all coordinates. More precisely, (1.2) in its n-dimensional form becomes

expGi
u = Si∫ u

0
dv exp Ḡv

(u ≥ 0) (1.4)

provided G is such that the one-dimensional scaled Brownian motion Ḡ :=
∑

iG
i

has drift ≥ 0, a condition equivalent to the requirement that
∫∞
0 dv exp Ḡv = ∞

a.s., cf. (1.9) below.
Since Lamperti’s representation (1.2) holds with Brownian motion with drift

replaced by any one-dimensional Lévy process ξ such that
∫∞
0 dv exp ξv = ∞

a.s. with the resulting counterpart of R(ν)2 a 1-self-similar Markov process X, i.e.

exp ξu = X∫ u

0
dv exp ξv

, (1.5)

it seemed natural to search for a general version of (1.4), where G is replaced by an
n-dimensional Lévy process ξ = (ξi)1≤i≤n and S is replaced by an n-dimensional
Markov process, self-similar in a suitable sense. Note that the representation is
required to hold coordinatewise with the same time-change used on all coordinates.

Notation. Below, R+ denotes the open interval ]0,∞[ while R0 is the interval
[0,∞[ . If Y is a process starting from a given state y, Y0 = y a.s., we write Y (y) to
emphasize the starting value. If ξ is a Lévy process in n dimensions it is always
understood that ξ0 = 0 = (0, . . . , 0) a.s. and if a ∈ Rn, ξ(a) := ξ + a is the same
Lévy process started from a, but always defined on the same probability space as
ξ. If X is a Markov process, then X(x) denotes X starting from the given state
x, with X(x) defined on some probability space – only in special cases (such as
(1.10) below) is there a natural construction of all X(x) for x arbitrary on the

same probability space. Conversely, if
(
X(x)

)
x∈E

for a state space E, is a family

of processes (on the same or different probability spaces), with X(x) starting at
x, and each X(x) enjoying the Markov property with the same Markov transition
semigroup, we shall say that

(
X(x)

)
x∈E

is a Markovian family. In particular, if

X(x) is for fixed x a Lévy process such that the convolution semigroup is the same
for all x, we shall say that

(
X(x)

)
x∈Rn or Rn

+

is a Lévy family. For the coordinate

processes of ξ(a) and X(x), where a = (ai), x = (xi), we write ξi,(ai) and X i,(xi)

respectively.

In order to formulate the multidimensional Lamperti representation we need
the appropriate concept of self-similarity for n-dimensional processes. In the liter-
ature (e.g. Kiu [14], Definition 1, Sato [19], Definition 13.4) one often sees just a
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verbatim copy of the basic definition in dimension one, i.e. an Rn-valued Markov
process X = (X i) is α-self-similar if for every c > 0 and every initial state x it
holds that (

cαX
(x/cα)
t

)
t≥0

(d)
=
(
X

(x)
ct

)
t≥0

. (1.6)

For our purposes this is however not the correct concept and instead we require
(corresponding to the case α = 1) the following definition that appears to be new:

Definition 1.1. An n-dimensional Markov family
(
X(x)

)
x∈Rn

+

with state space

Rn
+ is multi-self-similar if for all scaling factors ci > 0 and all initial states x = (xi)

it holds that (
ciX

i,(xi/ci)
t

)
1≤i≤n,t≥0

(d)
=
(
X

(x)
ct

)
t≥0

, (1.7)

where c =
∏n

1 ci.

If
(
X(x)

)
x∈Rn

+

is multi-self-similar we shall also refer to each member of the

family as a multi-self-similar process.
The important difference with (1.6) is of course that we permit different scal-

ings of each coordinate processes. Taking all ci = c0 > 0 we see that if (1.7) holds,
then X(x) is 1/n-self-similar in the traditional sense, cf. (1.6).

Definition 1.1 corresponds to the case of 1-multi-self-similarity. A natural
generalisation is to call a Markov family

(
X(x)

)
x∈Rn

+

α-multi-self-similar (where

α = (αi)1≤i≤n with all αi > 0) if

(
cαi
i X

i,(xi/c
αi
i )

t

)
1≤i≤n,t≥0

(d)
=
(
X

(x)
ct

)
t≥0

. (1.8)

This definition connects with Definition 1.1 in a simple manner: if
(
Y (y)

)
is

multi-self-similar in the sense of Definition 1.1, then the family
(
Ỹ (y)

)
defined by

Ỹ i,(yi) =

(
Y

i,

(
y
1/αi
i

))αi

is α-multi-self-similar.

Our main result is now the following:

Theorem 1.2. (The multidimensional Lamperti representation).
(a) Let ξ = (ξi)1≤i≤n be an n-dimensional Lévy process starting from 0, right-

continuous with left limits and satisfying∫ ∞

0
dv exp ξ̄v = ∞ a.s. (1.9)
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where ξ̄ :=
∑n

1 ξ
i. Let x = (xi) ∈ Rn

+ and define implicitly the n-dimensional
process X(x) by

X
i,(xi)∫ u

0
dv exp ξ̄

(ā)
v

= exp ξi,(ai)
u (1 ≤ i ≤ n, u ≥ 0), (1.10)

where ai = log xi and ā =
∑n

1 ai. Then the family
(
X(x)

)
x∈Rn

+

is strongly Marko-

vian and has the multi-self-similarity property (1.7), with each process X(x) right-
continuous with left limits and initial state x. Furthermore it holds that∫ ∞

0
ds

1

Z
(z)
s

= ∞ a.s. (1.11)

where Z(z) =
∏n

1 X
i,(xi), z =

∏n
1 xi.

(b) If conversely
(
X(x)

)
x∈Rn

+

is a strong Markov family with each X(x) right-

continuous with left limits, that satisfies the multi-self-similarity property (1.7)
and is such that (1.11) holds for some, and then automatically for all initial states

x ∈ Rn
+ with z =

∏n
1 xi, then the processes ξ(a) =

(
ξi,(ai)

)
1≤i≤n

, where ξ
(a)
0 = a

for all a, defined implicitly by ai = log xi and

ξ
i,(ai)∫ t

0
ds 1/Z

(z)
s

= logX
i,(xi)
t (1 ≤ i ≤ n, t ≥ 0)

form a Lévy family
(
ξ(a)

)
a∈Rn

.

The proof of the theorem is given in Section 2 below, where we also discuss
some further properties of the multi-self-similar processes, that are extensions of
results from Bertoin and Yor [2]. One such result (see Proposition 1 in [2]) is

Theorem 1.3. Assume that ξ is an n-dimensional subordinator with Lévy expo-
nent Φ (p) , i.e.

E exp−〈p, ξu〉 = exp−uΦ (p) (p = (pi)i ∈ R
n
0 ). (1.12)

Then for every p ∈ Rn
0 there exists a probability measure ρp on R0 such that

E

n∏
i=1

(
X

i,(1)
t

)−pi

=
∫ ∞

0
ρp(dx) e

−tx, (t ≥ 0)

whereX(1) is the multi-self-similar process starting from 1 = (1, . . . , 1) determined
by (1.10) using ξ itself. The probability ρp is characterized by its integral moments,∫ ∞

0
xk ρp(dx) = Φ (p) Φ (p+ 1) · · ·Φ (p+ (k− 1)) , (k = 1, 2, . . .) (1.13)

where we write j = (j, . . . , j) ∈ R
n.
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Notation. In (1.12), 〈·, ·〉 denotes the Euclidean scalar product.

Theorem 1.3 permits the following generalisation that, as will be shown in
Section 2, is obtained quite easily from Theorem 1.3 itself and Theorem 1.2:

Corollary 1.4. Let q ∈ Rn
+ and let ξ be an n-dimensional subordinator with

Lévy exponent Φ (p) . Then the equation

exp ξi
u = (q)X i∫ u

0
dv exp〈q,ξv〉 (1 ≤ i ≤ n, u ≥ 0)

defines a process (q)X with initial state 1, which is α-multi-self-similar in the
sense defined in (1.8) with αi = 1

qi
. Furthermore, for every p ∈ R

n
0 there exists a

probability ρp,q on R0 such that

E

n∏
i=1

(
(q)X i

t

)−pi

=
∫ ∞

0
ρp,q(dx) e

−tx, (t ≥ 0) .

The probability ρp,q is characterized by its integral moments,∫ ∞

0
xk ρp,q(dx) = Φ (p) Φ (p+ q) · · ·Φ (p+ (k − 1) q) , (k = 1, 2, . . .). (1.14)

Finally it also holds for any p, q ∈ Rn
0 that the sequence

k!

Φ (p+ q) · · ·Φ (p+ kq)
, (k = 1, 2, . . .) (1.15)

is the sequence of moments for a probability measure on R0 and that this proba-
bility is unique provided Φ (p) > 0.

Corollary 1.4 in particular exhibits two types of moment sequences for proba-
bilities on R0. While our arguments are probabilistic, Berg and Duran [1] obtain
similar results by analytic methods.

In Section 3 we focus on ξ = G being Gaussian, cf. (1.4) above and in particular
study in depth the case where ξ = B is BM(n), standard Brownian motion in n
dimensions:

Theorem 1.5. In the standard Brownian case, the multidimensional Lamperti
representation

expBi
u = Si∫ u

0
dv exp B̄v

(1 ≤ i ≤ n, u ≥ 0)

holds with the n-dimensional diffusion S = (Si) with initial state 1 described as
follows: define (Ci

u)1≤i≤n,u≥0 as the Gaussian process independent of B̄ such that

Bi
u = 1

n
B̄u + Ci

u.
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Then there is a 2-dimensional Bessel process (Rv)v≥0 starting from 1 such that S
admits the skew-product representation

Si
t =

(
Rnt

4

) 2
n exp

(
Ci

4
n

∫ nt/4

0
dh 1/R2

h

)
. (1.16)

The initial values 0 for B and 1 for S were omitted from the notation used in
the theorem. Of course we write B̄ =

∑n
i B

i.
For S still the diffusion in Theorem 1.5, we also in Section 3 derive some

explicit formulas for the transition semigroup, using known results on BES and
BESQ processes.

In the case of a general Gaussian Lévy process G starting at 0 with drift vector
ν = (νi)1≤i≤n and covariance matrix Γ = (Γij)1≤i,j≤n (possibly singular, but 6= 0),

the diffusion S = (Si) determined by (1.4) starts at 1 and satisfies the SDE

dSi
t =

νi + 1
2
Γii

Z\i,t
dt+

√√√√ Si
t

Z\i,t
dBΓ,i

t (1.17)

where Z\i =
∏

j:j 6=i S
j and BΓ =

(
BΓ,i

)
1≤i≤n

is n-dimensional Brownian with

drift 0, covariance Γ. This result was shown in Jacobsen [12] and prompted the
investigation that led to the present paper. Note that (1.9) holds for ξ = G if and
only if ν̄ =

∑n
1 νi ≥ 0, and that (1.3) corresponds to the 1-dimensional special

case of (1.17) where G is Brownian motion with drift 2ν and variance 4 (= Γ for
n = 1).

In view of its importance we shall briefly indicate the direct argument that
leads from the diffusion S solving (1.17), to the Brownian motion G, cf. Theorem
1.2(b): trusting that when ν̄ ≥ 0 all Si

t are strictly positive (as may be argued by
showing that Z =

∏n
i=1 S

i is a one-dimensional diffusion and then verifying that
Zt > 0 always), take logarithms in (1.17) and use Itô’s formula to arrive at

d logSi
t =

νi

Zt

dt+
1√
Zt

dBΓ
t ,

from which it is clear that a time-change through
(∫ t

0 ds 1/Zs

)
t≥0

leads from S to

G.
The multi-self-similarity property of the diffusion S is also argued easily: take

ci > 0, define S̃i
t = ciS

i
t for 1 ≤ i ≤ n, t ≥ 0 and verify from (1.17) that

dS̃i
t = c̃

νi + 1
2
Γii

Z̃\i,t
dt+

√
c̃

√√√√ S̃i
t

Z̃\i,t
dBΓ,i

t ,
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where c̃ =
∏n

i=1 ci and Z̃\i =
∏

j:j 6=i S̃
j .

To supplement the treatment of continuous processes in Section 3, we finally
consider in Section 4 the simplest case with jumps, i.e. ξ is an n-dimensional
compound Poisson process with drift in which case the process X obtained by the
Lamperti representation becomes a piecewise deterministic Markov process in the
sense of M. Davis [5].

2. The multi-self-similarity property; proofs of Theorems
1.2, 1.3 and Corollary 1.4

Suppose that
(
X(x)

)
is a right-continuous left limit Markov family which has

the multi-self-similarity property (1.7). Taking ci = xi in (1.7) and scaling t by
c = z =

∏n
1 xi we see that (

1

xi

X
i,(xi)
zt

)
1≤i≤n,t≥0

(d)
= X(1), (2.1)

a fact we shall use frequently below.
A second useful consequence of (1.7) is that if Pt (x, ·) denotes the transition

function for X,
Pt (x, ·) = P (Xs+t ∈ · |Xs = x) ,

then for, say, any bounded and measurable f : Rn
+ → R,∫

Rn
+

Pt (x, dy) f(y) =
∫

Rn
+

Pt/z (1, dy) f ((xiyi)i) (2.2)

where (xiyi)i denotes the vector with coordinates xiyi, 1 ≤ i ≤ n. Thus the
transition function Pt (x, ·) is completely determined from the transitions Ps (1, ·)
from the state 1. Furthermore, if f(y) depends on y only through the product∏
yi, i.e. f(y) = g (

∏
yi) , we may write the integral on the right of (2.2) as∫

Rn
+

Pt/z (1, dy) g
(
z
∏
yi

)
= Eg

(
zZ

(1)
t/z

)
=

∫
R+

P̃t (z, dỹ) g(ỹ) (2.3)

where Z(1) =
∏n

i X
i,(1) as usual, and P̃t (z, dỹ) is the well understood transition

function for the one-dimensional 1-semi-stable Markov process Z resulting from
the one-dimensional Lamperti representation of the Lévy process ξ̄ =

∑
ξi, cf. the
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discussion of the agglomeration property in Corollary 2.1 below. But then for any
general f as in (2.2),∫

Rn
+

Pt (x, dy) f(y) = E

[
E

(
f
(
X

(x)
t

) ∣∣∣Z(z)
t

)]
=

∫
R+

P̃t (z, dz̃) E

[
f
(
X

(x)
t

) ∣∣∣Z(z)
t = z̃

]
=

∫
R+

P̃t (z, dz̃) E

[
f
((
xiX

i,(1)
t/z

)
i

) ∣∣∣Z(1)
t/z = z̃/z

]
=

∫
R+

P̃t/z (1, dz̃) E

[
f
((
xiX

i,(1)
t/z

)
i

) ∣∣∣Z(1)
t/z = z̃

]
. (2.4)

Thus, in general, the transition function for X may be found from the knowl-
edge of the transition functions from state 1 in the one-dimensional case and an
understanding of the conditional law of X(1)

s given Z(1)
s for all s.

Note that by Dynkin’s criterion (see e.g. Pitman and Rogers [16]) the dis-
cussion leading to (2.3) shows that Z =

∏n
1 X

i is in fact a Markov process with
respect to the filtration generated by X.

We proceed now with the proofs of the main results, beginning with

Proof of Theorem 1.2. (a) [From ξ to X] . Note first that because (1.9) is
assumed to hold, also∫ ∞

0
dv exp

(
ξ̄(ā)
v

)
= eā

∫ ∞

0
dv exp

(
ξ̄v
)

= ∞ a.s.,

i.e. (1.10) determines X(x) uniquely from ξ(a) through time-substitution with the
strictly increasing and continuous additive functional

A(a)
u =

∫ u

0
dv exp

(
ξ̄(ā)
v

)
In particular X(x) is therefore cadlag and strong Markov.

Note next that all the processes X(x) for x arbitrary are defined on the same
probability space, viz. the space where ξ and all the ξ(a) are defined.

Let
(
F ξ

u

)
denote the filtration generated by ξ and introduce the F ξ

u-stopping

times determining the inverse of A(a),

H
(a)
t := inf

{
u ≥ 0 : A(a)

u > t
}
≡ inf

{
u ≥ 0 : A(a)

u = t
}

and finally write G(a)
t = F ξ

H
(a)
t

. Of course

X
i,(xi)
t = exp ξ

i,(ai)

H
(a)
t

(1 ≤ i ≤ n, t ≥ 0) (2.5)
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and X(x) is G(a)
t -adapted.

From the identity A(a)

H
(a)
t

= t it follows that d
dt
H

(a)
t = exp−ξ̄(ā)

H
(a)
t

= 1/Z
(z)
t , i.e.

H
(a)
t =

∫ t

0
ds

1

Z
(z)
s

.

Since a.s. A(a) increases from 0 to ∞, so does the inverse H (a) and (1.11) follows.
To prove the multi-self-similar property for X, we shall in fact show the path-

wise identity
ciX

i,(xi/ci)
t/c = X

i,(xi)
t (1 ≤ i ≤ n, t ≥ 0) (2.6)

between processes for arbitrary choices of x = (xi) ∈ Rn
+ and ci > 0 with c =

∏
ci.

But obviously

H
(a)
t = inf

{
u : eā

∫ u

0
dv exp ξ̄v = t

}
= Hte−ā ,

writing H as short for H(0), and therefore by (2.5), since z = eā, xi = eai ,

X
i,(xi)
t = xi exp ξi

Ht/z
.

Using this expression with xi replaced by xi/ci we also get

ciX
i,(xi/ci)
t/c = ci

(
xi

ci
exp ξi

H(t/c)/(z/c)

)
.

Thus (2.6) follows and the multi-self-similar property is proved.
It remains to show that all the processes X(x) share the same transition func-

tion. More specifically, defining the Markov kernels

Pt (x, ·) = P

(
X

(x)
t ∈ ·

)
we claim that for all s, t ≥ 0 and all x,

P

(
X

(x)
t+s ∈ ·

∣∣∣G(a)
t , X

(x)
t = y

)
= Ps (y, ·) .

But
X

i,(xi)
t+s = exp ξ

i,(ai)

H
(a)
t+s

= exp ξ
i,(ai)

H
(a)
t +H̃s

where

H̃s = inf

u ≥ 0 :
∫ H

(a)
t +u

H
(a)
t

dv exp ξ̄(ā)
v = s


= inf

{
u ≥ 0 : exp

(
ξ̄

(ā)

H
(a)
t

) ∫ u

0
dv exp

(
ξ̄
H

(a)
t +v

− ξ̄
H

(a)
t

)
= s

}
(2.7)
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where under the integral we may obviously write ξ̄ instead of ξ̄(ā). Using that ξ(a)

is strong Markov and Lévy we see that the conditional law of X
(x)
t+s given G(a)

t ,

X
(x)
t = y, is the same as the conditional law of(

exp
(
ξ

i,(ai)

H
(a)
t

+
(
ξi

H
(a)
t +H̃s

− ξi

H
(a)
t

)))
1≤i≤n

=
(
X

i,(xi)
t U i

)
1≤i≤n

and here, referring to (2.7), using that exp
(
ξ̄

(ā)

H
(a)
t

)
= Z

(z)
t and recalling that ξ

itself corresponds to X(1), it follows that((
U i
)

1≤i≤n

∣∣∣G(a)
t , X

(x)
t = y

)
(d)
= X

(1)

s/
∏

yi
.

Thus

P

(
X

(x)
t+s ∈ ·

∣∣∣G(a)
t , X

(x)
t = y

)
= P

((
yiX

i,(1)

s/
∏

yj

)
i
∈ ·
)

= P

(
X(y)

s ∈ ·
)

as desired, using the multi-self-similar property for the last equality.
(b) [From X to ξ] . With

(
X(x)

)
x∈Rn

+

a multi-self-similar and strong Markov

family, consider X(x) for an arbitrary initial state x. From (2.1) it follows that
Z(z) =

∏n
1 X

i,(xi) satisfies (
1
z
Z

(z)
zt

)
(d)
= Z(1) (2.8)

where Z(1) =
∏n

1 X
i,(1). In particular the law of Z(z) depends only on z, not on

the individual xi.
Note that (2.8) also shows that if (1.11) holds for some z > 0, it holds for all

z.
(2.8) shows the R+-valued process Z to be 1-self-similar, hence by Lamperti’s

original result [15] there exists a one-dimensional Lévy process ξ̄ such that

exp ξ̄(ā)
u = Z

(z)∫ u

0
dv exp ξ̄

(ā)
v

(u ≥ 0) (2.9)

where ā = log z, ξ̄(ā) = ξ̄ + ā.
Letting A(ā)

u =
∫ u
0 dv exp ξ̄(ā)

v and arguing as in the proof of (a), one finds that
the inverse

H
(ā)
t = inf

{
u ≥ 0 : A(ā)

u = t
}

satisfies

H
(ā)
t =

∫ t

0
ds

1

Z
(z)
s

.

11



Therefore (1.11) implies that limu→∞A(ā)
u = ∞ a.s.

Now define the n-dimensional process ξ(a) =
(
ξ

i,(ai)
i

)
, where ai = log xi, by

exp ξi,(ai)
u = X

i,(xi)

A
(ā)
u

(1 ≤ i ≤ n, u ≥ 0),

in particular, see (2.9),

ξ̄(ā) =
n∑

i=1

ξi,(ai).

Introducing (Gt) to be the filtration generated by X(x), we note that for each
u, A(ā)

u is a Gt-stopping time and that ξ(a) is Fu-adapted, where Fu = G
A

(ā)
u
. We

can therefore complete the proof by showing that for all u ≥ 0, h > 0 it holds that
ξ

(a)
u+h− ξ(a)

u is independent of Fu with a law that depends on a, u and h through h
only. We shall achieve this by identifying the conditional joint law of

(
exp

(
ξ

i,(ai)
u+h − ξi,(ai)

u

))
1≤i≤n

=

X
i,(xi)

A
(ā)
u+h

X
i,(xi)

A
(ā)
u


1≤i≤n

(2.10)

given G
A

(ā)
u
, X

i,(xi)

A
(ā)
u

= x◦i , 1 ≤ i ≤ n for an arbitrary x◦ = (x◦i ) ∈ Rn
+.

First note that

A
(ā)
u+h = A(ā)

u + inf
{
t ≥ 0 :

∫ t

0
ds/Z

(z)

A
(ā)
u +s

= h
}

so by the strong Markov property for X(x), the conditional law from (2.10) is that
of (

1
x◦i
X

i,(x◦i )
τ

)
1≤i≤n

(2.11)

with τ the stopping time for X(x◦) given by

τ = inf
{
t ≥ 0 :

∫ t

0
ds/Z(z◦)

s = h
}

where of course Z(z◦) =
∏n

1 X
i,(x◦i ), z◦ =

∏n
1 x

◦
i . (The reader is reminded that

X(x◦) is just the name for a process with the relevant distribution, viz. that of the
multi-self-similar process X starting at x◦. X(x◦) is not an object defined on the
probability space where X(x) and ξ(a) are defined).

To prepare for the use of the multi-self-similar property of X in our argument,
we now observe that by an elementary calculation

τ = z◦τ ′ (2.12)

12



where

τ ′ = inf

{
t′ ≥ 0 :

∫ t′

0
ds′/

(
1

z◦
Z

(z◦)
z◦s′

)
= h

}
.

Inserting (2.12) into (2.11) and using (2.1) we finally see that the conditional law

from (2.10) is the marginal law of X
(1)
τ◦ where τ ◦ is the stopping time for X(1)

given by

τ ◦ = inf

{
t◦ ≥ 0 :

∫ t◦

0
ds◦/Z(1)

s◦ = h

}
.

Since the result neither depends on Fu nor ā nor u, the proof is complete.

An easy consequence of Theorem 1.2 is the following agglomeration property
of the multi-self-similar processes.

Corollary 2.1. Suppose that
(
X(x)

)
x∈Rn

+

is an n-dimensional Markov family,

multi-self-similar in the sense of Definition 1.1 and defined in terms of one n-
dimensional Lévy process ξ as in (1.10). Let

{1, . . . , n} =
n′⋃

k=1
Ik

where the Ik are non-empty and disjoint and define for yk ∈ R+, 1 ≤ k ≤ n and
arbitrary xi ∈ R+ such that

∏
Ik
xi = yk for all k,

Y k,(yk) =
∏
Ik

X i,(xi). (2.13)

Then
(
Y (y)

)
y∈Rn

+

is a multi-self-similar strong Markov family with values in Rn′
+ .

Note. Of course Y (y) =
(
Y k,(yk)

)
1≤k≤n

with y = (yk) . That the definition (2.13)

is unambiguous is clear from (2.6) and also from the first line of the proof.

Proof. Using (1.10) we find

Y
k,(yk)∫ u

0
dv exp η̄

(b̄)
v

= exp
(
ηk,(bk)

u

)

where η(b) = η + b with b = (bk) given by bk =
∑

Ik
ai (so that b̄ = ā), and where

η =
(
ηk
)

is the n′-dimensional Lévy process given by ηk =
∑

Ik
ξi (so that η̄ = ξ̄).

Now use Theorem 1.2(a).

The special case of Corollary 2.1 with ξ Gaussian was given in Jacobsen [12].
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If we take n′ = 1, I1 = {1, . . . , n} we see that if X is n-dimensional multi-
self-similar Markov with all X i > 0, then Z =

∏
X i > 0 is one-dimensional

1-self-similar:
(
cZ

(z/c)
t

)
t≥0

(d)
=
(
Z

(z)
ct

)
t≥0

for all c > 0.

Remark 1. Corollary 2.1 states that our multi-self-similar processes have a mul-
tiplicative agglomeration property, which is deduced easily from the (trivial) ad-
ditive agglomeration property of Lévy processes. More precisely we shall say
that a class L of laws of processes where the members of the class must corre-
spond to processes in different dimensions, has the additive, resp. multiplicative,

agglomeration property if for all U = (U i)1≤i≤n

(d)∈ L of dimension n ≥ 2 and

all disjoint partitionings {1, . . . , n} =
⋃n′

k=1 Ik with the Ik 6= ∅, it holds that

Ũ =
(
Ũk
)

1≤k≤n′

(d)∈ L where

Ũk =

{ ∑
i∈Ik

U i (additive case)∏
i∈Ik

U i (multiplicative case).

An instance of a class of non-Lévy processes with the additive agglomeration prop-
erty is provided by the family of multivariate Jacobi diffusions in Jacobsen [12],
Example 5. Taking the exponential of each coordinate of such a diffusion (without
a time-change) yields a class of diffusions with the multiplicative agglomeration
property, that is not multi-self-similar.

Returning to the proofs of the main results, we next give

Proof of Theorem 1.3. Consider for x ∈ Rn
+ the functional(

n∏
i=1

xpi
i

)∫ ∞

0
ds

n∏
1

(
X i,(xi)

s

)−pi−1
. (2.14)

(This random variable is not only finite but has a finite expectation as will be
argued below). By (2.1) the law of (2.14) equals the law of(

n∏
i=1

xpi
i

) ∫ ∞

0
ds

n∏
1

(
xiX

i,(1)
s/z

)−pi−1

=
∫ ∞

0
ds

n∏
1

(
X i,(1)

s

)−pi−1
. (2.15)

But for t ≥ 0, the Markov property for X(1) implies that the conditional distri-
bution of

Vt =

(
n∏

i=1

(
X

i,(1)
t

)pi

)∫ ∞

t
ds

n∏
1

(
X i,(1)

s

)−pi−1
(2.16)
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given
(
X(1)

s

)
0≤s≤t

, X
(1)
t = x is precisely the law of (2.14). Since by (2.15) that

law depends neither on x nor t, we deduce that Vt is independent of
(
X(1)

s

)
0≤s≤t

with a law the same as that of (2.15). Consequently

E

∫ ∞

t
ds

n∏
1

(
X i,(1)

s

)−pi−1
= E

n∏
1

(
X

i,(1)
t

)−pi

EVt

= E

n∏
1

(
X

i,(1)
t

)−pi

E

∫ ∞

0
ds

n∏
1

(
X i,(1)

s

)−pi−1
,(2.17)

whether the expectations are finite or not.
Now, with Ht =

∫ t
0 ds 1/Z(1)

s we have X i,(1)
s = exp ξi

Hs
and hence

E

∫ ∞

0
ds

n∏
1

(
X i,(1)

s

)−pi−1
= E

∫ ∞

0
dHs exp (−〈p, ξHs〉)

=
∫ ∞

0
duE exp (−〈p, ξu〉)

=
1

Φ(p)
, (2.18)

in particular the expectation is finite. We have shown that (2.17) may be written

E

∫ ∞

t
ds

n∏
1

(
X i,(1)

s

)−pi−1
=

1

Φ(p)
E

n∏
1

(
X

i,(1)
t

)−pi

(2.19)

with both expectations finite: that on the left is ≤ 1/Φ(p) by (2.18).
Differentiating with respect to t in (2.19) gives

−E

n∏
1

(
X

i,(1)
t

)−pi−1
=

1

Φ(p)

∂

∂t
E

n∏
1

(
X

i,(1)
t

)−pi

.

Again by (2.19) the expression on the left equals

−Φ(p + 1)E
∫ ∞

t
ds

n∏
1

(
X i,(1)

s

)−pi−2
,

and repeated differentiation now yields the formula

∂k

∂tk
E

n∏
1

(
X

i,(1)
t

)−pi

= (−1)k Φ (p) Φ (p+ 1) · · ·Φ (p+ k) E

∫ ∞

t
ds

n∏
1

(
X i,(1)

s

)−pi−k−1
, (2.20)
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valid for k = 0, 1, . . .. From this it follows in particular that t 7→ E
∏n

1

(
X

i,(1)
t

)−pi

is a completely monotone function of t, hence by Bernstein’s theorem there is a
probability ρp on R0 such that

E

n∏
1

(
X

i,(1)
t

)−pi

=
∫ ∞

0
ρp(dx) e

−tx. (2.21)

Finally, the formula (1.13) for the moments of ρp follows from (2.20) (for t = 0)
and (2.18).

Remark 2. Writing (Ft) for the filtration generated by X(1) we see from the fact
that Vt given by (2.16) is independent of Ft with a law equal to that of (2.15),
and from (2.18) that

E

[∫ ∞

0
ds

n∏
1

(
X i,(1)

s

)−pi−1 |Ft

]

=
∫ t

0
ds

n∏
1

(
X i,(1)

s

)−pi−1
+

n∏
1

(
X

i,(1)
t

)−pi 1

Φ(p)

defines a uniformly integrable Ft-martingale. The same fact follows using a time-
change on the exponential functional Lévy martingale

E

[∫ ∞

0
dv exp−〈p, ξv〉 |Gu

]
=
∫ u

0
dv exp−〈p, ξv〉+

1

Φ (p)
exp−〈p, ξu〉 .

Remark 3. Note that by (2.19), (2.20) may be written

∂k

∂tk
E

n∏
1

(
X

i,(1)
t

)−pi

= (−1)k Φ (p) Φ (p+ 1) · · ·Φ (p+ k− 1) E

n∏
1

(
X

i,(1)
t

)−pi−k

or, see (2.21),∫ ∞

0
ρp(dx) x

ke−tx = Φ (p) Φ (p+ 1) · · ·Φ (p+ k− 1)
∫ ∞

0
ρp+k(dx) e

−tx

which implies that ρp+k � ρp with Radon-Nikodym derivative

dρp+k

dρp

(x) =
xk

Φ (p) Φ (p+ 1) · · ·Φ (p+ k− 1)
.
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Proof of Corollary 1.4. It suffices to apply Theorem 1.3 to the n-dimensional
subordinator ξ̃ defined by

ξ̃i
u = qiξ

i
u

which, by the Lamperti representation, has the associated multi-self-similar pro-
cess

(
X̃ i
)

1≤i≤n
defined implicitly by

exp
(
qiξ

i
u

)
= X̃ i∫ u

0
dv exp〈q,ξv〉.

Defining (q)X i
t =

(
X̃ i

t

)1/qi

we then have

E

[
n∏

i=1

(
(q)X i

t

)−pi

]
= E

[
n∏

i=1

(
X̃ i

t

)−pi/qi

]

and since the Lévy exponent Φ̃ of ξ̃ is given by Φ̃ (p) = Φ ((piqi)i) formula (1.14)
follows since ρp,q is obviously equal to ρ̃(pi/qi)i

and, for j ∈ N,

Φ̃

((
pi

qi

)
i

+ j

)
= Φ ((pi + jqi)i) = Φ (p+ jq) .

It remains to establish (1.15). To this end, let ζ be a one-dimensional subordi-
nator with Lévy exponent ϕζ. Then, letting a ≥ 0 and defining Ia =

∫ ea
0 du e−ζu,

where ea is independent of ζ and exponential at rate a, it holds that

E (Ia)
k =

k!

(a+ ϕζ (1)) (a + ϕζ (2)) · · · (a+ ϕζ (k))
. (2.22)

To see this, write the expectation as

E (Ia)
k = k!

∫ ∞

0
du1

∫ ∞

u1

du2 · · ·
∫ ∞

uk−1

duk E exp

(
− k∑

j=1
ζuj

)
k∏

j=1

1(ea>uj). (2.23)

But here (writing u0 = 0),

E exp

(
− k∑

j=1
ζuj

)
k∏

j=1

1(ea>uj) = E exp

(
− k∑

j=1
(k + 1− j)

(
ζuj

− ζuj−1

))
1(ea>uk)

= e−auk

k∏
j=1

exp (− (uj − uj−1)ϕζ (k + 1− j))

and since uk =
∑k

1 (uj − uj−1) it is now easy to perform the integrations in (2.23)
and arrive at (2.22).
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To proceed, consider an arbitrary n-dimensional subordinator η with Lévy
exponent Φη. Applying the preceding to the one-dimensional subordinator 〈q, η〉
shows that

k!

(a+ Φη (q)) (a+ Φη (2q)) · · · (a + Φη (kq))

defines a moment sequence. Applying this with a = Φ(p) and Φη = Φ (p+ ·) −
Φ (p) (which is the Lévy exponent for the Esscher transform of ξ determined by
the local change of measure

dP̃|Fξ
u

dP|Fξ
u

= exp (−〈p, ξu〉+ uΦ (p))

for any u ≥ 0) finally shows (1.15) to be a sequence (mk)k≥1 of moments. That
this sequence determines a unique probability on R0 if Φ (p) > 0 follows from the

simple observation that the power series
∑∞

k=0mk
hk

k!
≤ ∑∞

k=0

(
h

Φ(p)

)k
converges for

0 ≤ h < Φ (p) .

3. The case with ξ standard Brownian motion

3.1. Some facts about Bessel processes

In this subsection we gather the notation and results we need about Bessel pro-
cesses. As already mentioned in the introduction, the Bessel process with index
ν (denoted BES(ν)) occurs in the one-dimensional Lamperti representation of
Brownian motion with drift ν ≥ 0 as, see (1.1)

exp (Bu + νu) = R
(ν)

A
(ν)
u

(3.1)

where
A(ν)

u =
∫ u

0
dv exp 2 (Bv + νv) .

We shall call d = 2 (1 + ν) the ‘dimension’ of the Bessel process. Thus R(ν) is an
R+-valued diffusion with infinitesimal generator Lν given by

Lνf(x) = 1
2
f ′′(x) +

2ν + 1

2x
f ′(x)

(
f ∈ C2

b (R+)
)
.

For any ν ≥ 0 we denote by Pν
a the law on C (R0,R+) of R(ν) when starting

from a. We write (Ru)u≥0 for the canonical process on C (R0,R+) and we denote
by Rt = σ {Rs; 0 ≤ s ≤ t} for t ≥ 0 the canonical filtration.
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From the Cameron-Martin relationship between the laws of (Bu + νu)u≥0 and
(Bu)u≥0, we deduce by time-changing and with the help of (3.1) that

P
ν
a|Rt

=
(

Rt

a

)ν

exp

(
−ν

2

2

∫ t

0
ds

1

R2
s

)
· P0

a|Rt
, (3.2)

a denoting the initial state: R0 ≡ a a.s. under both probabilities
The following formula, which expresses negative moments of a Bessel process

will also be useful:

E
ν
1

[
1

(Rt)
2b

]
=

1

Γ (b)

∫ 1/2t

0
dr e−rrb−1 (1− 2tr)ν−b (3.3)

for b ∈ C with Re b > 0 (see e.g. Yor [20], Proposition 6.4 or Yor [21], p.67).

3.2. A proof of Theorem 1.5, and a characteristic function determining
the semigroup of the multi-self-similar diffusion defined by stan-
dard Brownian motion

With B =
(
Bk
)

1≤k≤n
a standard BM(n)-process and B̄ =

∑n
1 B

k, from the one-

dimensional Lamperti representation

exp B̄u = Z∫ u

0
dv exp B̄v

with Z a 1-self-similar diffusion, we deduce by e.g. writing Itô’s formula for exp B̄
and time-changing with the inverse of

(∫ u
0 dv exp B̄v

)
u≥0

, or just using (1.2) for

ν = 0, that Z satisfies (
Z t

n

)
t≥0

(d)
=
((
R t

4

)2
)

t≥0
(3.4)

with R a 2-dimensional Bessel process starting from 1. In the sequel, just use the
notation Rt =

√
Z 4t

n
for all t.

Note. In this subsection we label the coordinates of a process k rather than i,
since below i will denote the complex unit.

We next consider the orthogonal decomposition of B with respect to B̄, i.e.
we define the process C =

(
Ck
)

1≤k≤n
by

Bk
t = 1

n
B̄t + Ck

t (t ≥ 0, 1 ≤ k ≤ n) . (3.5)
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Then C is a mean 0, n-dimensional Gaussian Lévy process, independent of B̄,
where the covariance matrix for its increments is given by

E

[(
Ck

s+t − Ck
s

) (
C`

s+t − C`
s

)]
= E

[
Ck

t C
`
t

]
=

{ (
1− 1

n

)
t (k = `) ,

− 1
n
t (k 6= `) .

(3.6)

By (1.10) in Theorem 1.2, the multi-self-similar diffusion S = S(1) =
(
Sk
)

1≤k≤n

starting from 1, determined by B satisfies

Sk∫ u

0
dv exp B̄v

= expBk
u (3.7)

and hence by time-changing and using (3.4)

Sk
t =

(
Rnt

4

) 2
n exp

(
Ck

4
n

∫ nt/4

0
dh 1/R2

h

)
which establishes (1.16) and completes the proof of Theorem 1.5.

Using some of the results from Subsection 3.1, we can now give an explicit
formula for the characteristic function of

(
log Sk

t

)
1≤k≤n

. Since S0 ≡ 1 this gives

the characteristic function for the transition probabilities Pt (1, ·) from state 1 of
the diffusion S which, by the discussion at the beginning of Section 2, is enough to
determine the transition probabilities from any state, see (2.2). Furthermore (use
(2.4) with x = 1), Pt (1, ·) is determined by the law of Zt (the transition probabil-
ity from the state 1 for the product process Z =

∏n
k=1 S

k), which is known from

(3.4) as that of
(
Rnt/4

)2
, and the conditional law of St given Zt. In Proposition 3.1

below we describe this conditional law together with the characteristic function
for the transition probabilities of

(
log Sk

)
k
.

We begin by deriving a first expression for the characteristic function of
(
log Sk

t

)
.

Let λ = (λk)1≤k≤n ∈ Rn, write λ̄ =
∑n

1 λk and T = nt
4

and use that C is indepen-
dent of R to obtain,

E

[
n∏

k=1

exp
(
iλk logSk

t

)]
= E

[
n∏

k=1

(
Sk

t

)iλk

]

= E

[
(RT )2i λ̄

n exp

(
−
(

2
n

∫ T

0
dh

1

R2
h

)
ϕn (λ)

)]
(3.8)

where

ϕn (λ) = E

(
n∑

k=1

λkC
k
1

)2

=
(
1− 1

n

) n∑
k=1

λ2
k − 1

n−1

∑
1≤k,k′≤n,k 6=k′

λkλk′

 . (3.9)
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With the help of the absolute continuity relationship (3.2) (for a = 1) we can
write the last term in (3.8) as

E
νn(λ)

[
(RT )2i λ̄

n
−νn(λ)

]
with

νn (λ) =
2√
n

√
ϕn (λ).

Now we apply (3.3) with ν = νn (λ) and b = 1
2
νn (λ) − i λ̄

n
(whence ν − b =

1
2
νn (λ) + i λ̄

n
) and obtain,

E

[
n∏

k=1

(
Sk

t

)iλk

]
=

1

Γ
(

1
2
νn (λ)− i λ̄

n

) ∫ 1
2T

0
dr
e−r

r
(r (1− 2Tr))

1
2
νn(λ)

(
1− 2Tr

r

)i λ̄
n

which is the first expression for the desired characteristic function. An alternative
way of writing this is obtained by observing that since

∑n
1 C

k
t ≡ 0 (which implies

ϕn (λ) = ϕn (λ+ c1) for any c ∈ R) we may as well write λ in the form θ+ c1 for
θ = (θk)1≤k≤n with θ̄ =

∑n
1 θk = 0 and thus arrive at

E

[
n∏

k=1

(
Sk

t

)i(θk+c)
]

=
1

Γ
(

1
2
νn (θ)− ic

) ∫ 1
2T

0
dr
e−r

r
(r (1− 2Tr))

1
2
νn(θ)

(
1− 2Tr

r

)ic

.

(3.10)
The form (3.10) of the characteristic function allows the following partial in-

version of the Fourier transform: introducing

Π
(θ)
t =

n∏
k=1

(
Sk

t

)iθk

and writing Zt =
∏n

k=1 S
k
t as before, (3.10) becomes when taking the gamma value

to the left

E

[
Π

(θ)
t (Zt)

ic
] ∫ ∞

0
dx x

1
2
νn(θ)−1−ice−x =

∫ ∞

0
dx x

1
2
νn(θ)−1e−x

E

[
Π

(θ)
t

(
Zt

x

)ic
]

=
∫ 1

2T

0
dr
e−r

r
(r (1− 2Tr))

1
2
νn(θ)

(
1− 2Tr

r

)ic

which, essentially by Fourier inversion with c varying freely, allows us to identify
the measures

f 7→
∫ ∞

0
dx x

1
2
νn(θ)−1e−x

E

[
Π

(θ)
t f

(
Zt

x

)]
,

f 7→
∫ 1

2T

0
dr
e−r

r
(r (1− 2Tr))

1
2
νn(θ) f

(
1− 2Tr

r

)
.
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Changing the order of integration in the first integral and then making the sub-
stitution x = yZt there, together with the substitution 1−2Tr

r
= 1

s
in the second

integral leads to the identity

∫ ∞

0
dy f

(
1

y

)
E

[
ZtΠ

(θ)
t (yZt)

1
2
νnθ−1 e−yZt

]

=
∫ ∞

0
ds f

(
1

s

)
s

1
2
νn(θ)−1 e−s/(2Ts+1)

(2Ts+ 1)νn(θ)+1
.

This being true for, say all bounded Borel functions f, allows us to identify the
two integrands, i.e. we have the formula

EΠ
(θ)
t (Zt)

1
2
νn(θ) e−sZt =

e−s/(2Ts+1)

(2Ts+ 1)νn(θ)+1
(s ≥ 0) (3.11)

valid for all θ ∈ Rn with θ̄ = 0. But the expression on the right of (3.11) may
be recognized as the Laplace transform for the transition probability of a squared
Bessel process: if Qδ

x denotes the law of a BESQ(δ)-process X◦ of ‘dimension’
δ = 2 (ν + 1) starting from x ≥ 0, then, see e.g. Revuz and Yor [18], Chapter XI,

Qδ
x

(
e−µX◦

t′
)

=
1

(2µt′ + 1)
δ
2

exp

(
− µx

2µt′ + 1

)
(µ ≥ 0, t′ ≥ 0)

and thus, if qδ
t′ (·, ·) denotes the transition density

qδ
t′ (x, x

′) dx′ = Qδ
x (X◦

t′ ∈ dx′) ,

(3.11) implies that for all bounded Borel functions g,

EΠ
(θ)
t (Zt)

1
2
νn(θ) g (Zt) =

∫ ∞

0
dz q

δn(θ)
T (1, z) g (z) (3.12)

where δn (θ) = 2 (νn (θ) + 1) . But either from (3.4) or (3.12) for θ = 0 (in which
case Π(θ) ≡ 1, νn (θ) = 0) we know that

P (Zt ∈ dz) = q2
T (1, z) dz, (3.13)

hence (3.12) shows that

E

[
Π

(θ)
t |Zt = z

]
=
q

δn(θ)
T (1, z)

q2
T (1, z)

z−
1
2
νn(θ). (3.14)
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Finally, letting λ = (λk) ∈ Rn and using (3.14) wih θk = λk − 1
n
λ̄, where as usual

λ̄ =
∑n

1 λk, we obtain the conditional characteristic function for
(
log Sk

t

)
k
,

E

[
n∏

k=1

(
Sk

t

)iλk |Zt = z

]
=
q

δn(λ)
T (1, z)

q2
T (1, z)

z−
1
2
νn(λ)+i λ̄

n . (3.15)

We summarise our findings in the following result, where (3.16) is obtained from
(3.15) inserting the known explicit forms for the qδ

T (see e.g. Revuz and Yor [18],
Chapter XI) and (3.17) follows taking expectations in (3.15), using (2.1), (3.13)
and the explicit form of qδ

T . Recall that T = nt
4
.

Proposition 3.1. For S the multi-self-similar diffusion starting from 1, deter-
mined by the multidimensional Lamperti representation of n-dimensional stan-
dard Brownian motion as in (3.7), it holds for any t > 0 that Zt =

∏n
k=1 S

k
t has

density q2
nt/4 (1, ·) and that the characteristic function of

(
logSk

t

)
k

given Zt = z

is given by the expression

E

[
n∏

k=1

(
Sk

t

)iλk |Zt = z

]
=

(
Iνn(λ)

I0

)(
4
√
z

nt

)
zi λ̄

n (3.16)

for all z > 0 and all λ = (λk)1≤k≤n ∈ Rn. Finally, the transition probabilities
Pt (x, ·) for S are determined by∫

Rn
+

Pt (x, dy)
n∏

k=1

(yk)
iλk = 2

nt

n∏
k=1

(
xk

z

)iλk
∫

R+

dz̃ e−
2
nt

(z+z̃)Iνn(λ)

(
4
nt

√
zz̃
)
z̃i λ̄

n

(3.17)
for x ∈ Rn

+, λ ∈ Rn, writing z =
∏n

k=1 xk.

Note that from (3.16) it follows that if λ̄ = 0, then the characteristic function

of
(
logSk

t − 1
n

logZt

)
k

given Zt = z is R-valued, i.e. for any µ = (µk)k ∈ Rn it

holds that the conditional law of
n∑

k=1

µk

(
logSk

t −
1

n
logZt

)

given Zt = z is symmetric (around 0) for any z > 0.

3.3. The two-dimensional case

We note that the contents of Theorem 1.5 in the case n = 2 are clearly related to
the conformal invariance of planar Brownian motion. Indeed, first starting with
B1 + iB2 a C-valued standard Brownian motion and noting the fact that

βu = 1√
2

(
B1

u +B2
u

)
, γu = 1√

2

(
B1

u − B2
u

)
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are two independent standard Brownian motions, we get

expB1
u ≡ exp

(
1
2

(
B1

u +B2
u

)
+ 1

2

(
B1

u − B2
u

))
= exp

(
1√
2
(βu + γu)

)
,

expB2
u ≡ exp

(
1
2

(
B1

u +B2
u

)
− 1

2

(
B1

u −B2
u

))
= exp

(
1√
2
(βu − γu)

)
so that

S1
t =

√
Zt exp

(
1√
2
γt

)
, S2

t =
√
Zt exp

(
− 1√

2
γt

)
with u =

∫ t
0 dh

1
Zh

and
(√

Zt

)
t≥0

(d)
=
(
R t

2

)
t≥0

as in (3.4) above a process indepen-

dent of γ.
Another equivalent presentation of the process (S1, S2) is that

Lt := log S1
t + i log S2

t (t ≥ 0)

is a conformal martingale. More precisely it may be written as

Lt = ξ∫ t

0
dh 1/S1

h
S2

h

(t ≥ 0)

with ξ a standard two-dimensional Brownian motion.

3.4. A change of variables

In Subsection 3.2, we explained how the law of the process
(
Sk

t

)
1≤k≤n,t≥0

could

be expressed in terms of that of(
Rt,

∫ t

0
dh

1

R2
h

)
t≥0

where Rt =
√
Z 4t

n
is a two-dimensional Bessel process starting from 1. In the

present Subsection 3.4, we show how to compute the law of
(
Sk

t

)
k,t
, in terms of

that of
(
Rt,

∫ t
0 dsR

2
s

)
t≥0

via the definition and study of the process

Y k
t =

∫ t

0
Z\k,s dS

k
s (1 ≤ k ≤ n, t ≥ 0) , (3.18)

where as before Z\k,s = Zs/S
k
s =

∏
` 6=k S

`
s.

In the sequel, rather than developing some tedious computations, we shall
refer to the following (implicit) description of the multidimensional marginals of(
Rt,

∫ t
0 dsR

2
s

)
t≥0

, which, thanks to the Markov property of R, may be reduced to

the description of the one-time t-marginals; this may be done via the following
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formula, which should be attributed to Lévy (see e.g. Pitman and Yor [17] and
Yor [20] for many further developments): for a = α+ iβ, α ≥ 0, β ∈ R and b ≥ 0
one has

E
r

[
exp

(
−aR2

t −
b2

2

∫ t

0
dsR2

s

)]

=
(
cosh (bt) +

2a

b
sinh (bt)

)−1

exp

(
−r

2b

2

1 + 2a
b

coth (bt)

coth (bt) + 2a
b

)
. (3.19)

Here is now the description of the process
(
Y k
)

k
:

Proposition 3.2. i) The processes Y k and Z satisfy the equations

dY k
t = 1

2
dt+

√
Zt dB

k
t , dZt =

n∑
k=1

dY k
t = n

2
dt+

√
Zt dB̄t. (3.20)

ii) The vector-valued process
(
Y k
)

1≤k≤n
satisfies

Y k
t = 1

2
t+ 1

n

(
Zt − 1− n

2
t
)

+ Ĉk
(∫ t

0
dsZs

)
(1 ≤ k ≤ n, t ≥ 0) (3.21)

where the process
(
Ĉk

u

)
1≤k≤n,u≥0

is distributed as
(
Ck

u

)
1≤k≤n,u≥0

(see formulas

(3.5) and (3.6)), and is independent of Z.

Proof. (i) As a particular case of (1.17) we have

dSk
t = 1

2

dt

Z\k,t

+

√√√√ Sk
t

Z\k,t

dBk
t

and (3.20) now follows from Itô’s formula.

(ii) (3.21) follows from (3.20), once we use the decomposition of
(
Bk
)

k
in terms

of B̄ and
(
Ck
)

k
, see (3.5). Then conditioning on B̄ or Z (these two processes have

the same filtration), we may express the vector-valued process
(∫ t

0

√
Zs dC

k
s

)
1≤k≤n

evaluated at time t, as
(
Ĉk

u

)
evaluated at u =

∫ t
0 dsZs.

With the help of formulas (3.19) and (3.21) we are now able to write down

the joint characteristic function for
(
Y k

t

)
k
. We consider for θ ∈ Rn, writing At as

short for
∫ t
0 dsZs,

〈θ, Yt〉 = 1
2
θ̄t+ θ̄

n

(
Zt − 1− nt

2

)
+
〈
θ, ĈAt

〉
. (3.22)
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The Gaussian variable
〈
θ, Ĉu

〉
is centered and has variance

E

[〈
θ, Ĉu

〉2
]

=

 n∑
k=1

θ2
k − 1

n−1

∑
k,k′:k 6=k′

θkθk′

u = ϕn (θ)u, (3.23)

cf. (3.9). Thus from (3.22) and (3.23) we obtain

E [exp i 〈θ, Yt〉] = exp
(
i1
2
θ̄t
)

E

[
exp

(
i θ̄
n

(
Zt − 1− nt

2

)
− 1

2
ϕn (θ)

∫ t

0
dsZs

)]
and, since Zt = R2

nt
4
, we obtain

E [exp i 〈θ, Yt〉] = exp
(
i1
2
θ̄t
)

E

[
exp

(
i θ̄
n

(
R2

nt
4
− 1− nt

2

)
− 2

ϕn (θ)

n

∫ nt/4

0
dsR2

s

)]

which can be computed with the help of formula (3.19).

4. The case with ξ compound Poisson

While in Section 3 we treated the most important case of the multivariate Lam-
perti representation when the Lévy process ξ is continuous, viz. ξ standard Brow-
nian motion, we in this section shall focus on the simplest situation where ξ has
jumps, i.e. we shall assume that ξ is an n-dimensional compound Poisson pro-
cess with drift. The one-dimensional case (with no drift) was treated briefly by
Lamperti [15], the example p. 218.

The compound Poisson process with drift (starting at 0) is given by

ξu = βu+
Nu∑
`=1

η`

where β = (βi)1≤i≤n is the drift vector, N = (Nu)u≥0 is a homogeneous Poisson
process with intensity κ > 0, and (η`)`≥1 is a sequence of iid random variables
with values in Rn\0, independent of N. Thus in particular, writing π for the
distribution of the η`, the Lévy measure for ξ is the bounded measure ν = κπ on
Rn\0.

In order to proceed we need (1.9) to hold as will be assumed from now on. Note
however that since ξ̄ =

∑n
i=1 ξ

i is a one-dimensional compound Poisson process
with drift β̄ =

∑n
i=1 β

i and Lévy measure ν̄ the restriction to R\0 of the measure
σ (ν) , where σ : Rn\0 → R is the transformation σ (y) =

∑n
i=1 yi, it follows that

if Eη1 is well defined (i.e. E (η1 ∨ 0) <∞ or −E (η1 ∧ 0) <∞), then (1.9) holds if
and only if

β̄ + κEη1 ≥ 0.
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Consider now the multi-self-similar Markov family
(
X(x)

)
x∈Rn

+

determined by

the Lamperti representation,

X
i,(xi)∫ u

0
dv exp ξ̄

(ā)
v

= exp ξi,(ai)
u , (4.1)

see Theorem 1.2, where we remind the reader that ξi,(ai)
u = ξi

u+ai with ai = log xi.
It is clear from (4.1) and the structure of ξ, that the Markov process X(x) is

piecewise deterministic in the sense of M. Davis [5] – we shall refer to
(
X(x)

)
x∈Rn

+

as a PDMP-family. In particular X(x) for any x has finitely many jumps on finite
time intervals and all randomness for X(x) is contained in the jump times and the
nature of the jumps.

From M. Davis [5] or Jacobsen [11] it is known that a general class of PDMP-

families is obtained by considering families
(
X̃(x)

)
x

of piecewise continuous pro-
cesses

X̃
(x)
t = φt−T̃Ñt

(
ỸÑt

)
(4.2)

of the following form: 0 ≡ T̃0 < T̃1 < · · · ≤ ∞ are the jump times for X̃(x),
Ñt = max

{
` : T̃` ≤ t

}
is the number of jumps on [0, t] , while Ỹ0 ≡ x and Ỹ` = X̃T̃`

(defined only if T̃` <∞) for ` ≥ 1 denotes the state reached by X̃(x) at the time of

the `’th jump. A structure sufficient for
(
X̃(x)

)
x

to be a strong Markov family is

then that the φt (y) (apart from being continuous in t) must satisfy the semigroup
property

φt+s (y) = φt (φs (y)) , φ0 (y) = y (4.3)

while for the marked point process
(
T̃`, Ỹ`

)
n≥1

it should hold that (for ` = 0, 1, . . .),

P

(
T̃`+1 > t |G`

)
= exp

(
−
∫ t−T̃`

0
ds q

(
φs

(
Ỹ`

)))
(4.4)

on the set
(
T̃` <∞

)
for t ≥ T̃`, while

P

(
Ỹ`+1 ∈ ·

∣∣∣G`, T̃`+1

)
= p

(
φT̃`+1−T̃`

(
Ỹ`

)
, ·
)

(4.5)

on the set
(
T̃`+1 <∞

)
; in (4.4) and (4.5), G` is the σ-algebra generated by(

T̃`′ , Ỹ`′
)

1≤`′≤`
; in (4.4), q (y) is the intensity for a jump to occur from state y,

and in (4.5), p is a Markov kernel on the state space with p (y, ·) the distribution
of the destination for a jump from state y.

In the one result of this section that we shall now present, we show that the
PDMP-family determined by (4.1) has the structure described by (4.2), (4.3),
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(4.4) and (4.5), and we identify φ, q and p. In the statement of the proposition
T` denotes the time of the `’th jump of X(x) (which is a.s. finite for any `) and

Y` = X
(x)
T`

the state reached by that jump.

Proposition 4.1. The PDMP-family
(
X(x)

)
x∈Rn

+

determined by (4.1) from ξ, the

compound Poisson process with drift, has the form (4.2) for any x ∈ Rn
+ with the

φt (y) = (φi
t (y))1≤i≤n satisfying (4.3) and given by, writing z =

∏n
i=1 yi,

φi
t (y) =

 yi

(
1 + β̄

z
t
)βi/β̄

if β̄ 6= 0,

yi exp
(

βi

z
t
)

if β̄ = 0,
(4.6)

and the distribution of (T`, Y`)`≥1 given by (4.4) and (4.5) with Y0 ≡ x and

q (y) =
κ

z
, (4.7)

p (y, ·) = the law of
(
yie

ηi
1

)
1≤i≤n

. (4.8)

Proof. From Theorem 1.2 we know
(
X(x)

)
x

to be a strong Markov family

and by the strong Markov property it therefore suffices to consider, for a given
arbitrary initial state x, the behaviour of X(x) on the interval [0, T1] only. But
then, if τ1 is the time of the first jump for ξ, by (4.1) we have

T1 =
∫ τ1

0
dv exp ξ̄(ā)

v

and since on [0, τ1[, ξ is deterministic, ξu = βu, therefore also

T1 = F (τ1) , (4.9)

X
i,(xi)
t = exp (ai + βiu)

(
t < T1, u = F−1 (t)

)
with F the function

F (u) =
∫ u

0
dv exp

(
ā + β̄v

)
=

{
eā 1

β

(
eβ̄u − 1

)
if β̄ 6= 0,

ueā if β̄ = 0.

Consequently φi
t(x) = exp (ai + βiF

−1 (t)) proving (4.6) (since eā =
∏n

1 xi) and
(4.3) may then be verified directly. (4.7) follows from (4.9) since P (τ1 > u) = e−κu.
Finally (4.8) is clear from the identities

∆X
i,(xi)
T1

= ∆ exp ξi,(ai)
τ1 = exp ξ

i,(ai)
τ1−

(
eηi

1 − 1
)

= X
i,(xi)
T1−

(
eηi

1 − 1
)
,
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where we use the standard notation ∆ to denote jump sizes.

With
(
X(x)

)
x

the PDMP-family described in Proposition 4.1, it follows from

the general theory for piecewise deterministic Markov processes, M. Davis [5] or
Jacobsen [11], that the infinitesimal generator has the form, writing z =

∏n
i=1 xi,

z\i =
∏

j:j 6=i xj ,

Af (x) =
n∑

i=1

βi

z\i
∂xi
f (x) +

κ

z

∫
Rn\0

π (dy)
[
f
(
(xie

yi)1≤i≤n

)
− f (x)

]
.

Note that for β̄ < 0, φi
t (x) is strictly positive (as it has to be) only for t <

−z/β̄, hence for (4.4) to make sense we must have that the first jump for X(x)

occurs before time −z/β̄ with probability 1. That this is indeed the case follows

from the observation that
∫−z/β̄
0 ds q (φs (x)) = ∞ with φ as in (4.6) and q given

by (4.7).
From the multiplicative agglomeration property (or from the one-dimensional

Lamperti representation of Z(z) =
∏n

i=1X
i,(xi)) we know that the product pro-

cesses
(
Z(z)

)
z∈R+

also form a PDMP-family. The semigroup ψt (z) of functions

determining the deterministic behaviour of this family is quite simple, viz.

ψt (z) =
n∏

i=1

φi
t (xi) = z + β̄t

so that Z(z) is always piecewise linear, and if β̄ = 0 it is seen that Z(z) is a Markov
chain (piecewise constant) with state space R+.

As a final comment and curiosity we mention that if the Lévy measure ν for
ξ is such that ν {y :

∑n
i=1 yi 6= 0} = 0 (which for n ≥ 2 is entirely possible with a

non-degenerate ν), then ξ̄ ≡ 0 and Z(z) is trivial, Z
(z)
t ≡ z + β̄t.
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