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Abstract

The time-reversibility of a Markov process implies a particular structure of the score
function. It is explored which martingale estimating functions and other unbiased es-
timating functions have a similar structure. This leads to an estimating function with
a semiparametric efficiency property. Also relations to martingale estimating functions
based on eigenfunctions of the infinitesimal generator are found.
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1 Introduction

It is often useful or necessary to model time series data sampled at discrete time points by a
continuous time process. This is for instance the case, when the dynamics of the phenomenon
under study are given by a stochastic differential equation. It is also the case in finance,
where models for pricing derivative assets are usually formulated as continuous time models.
Unfortunately, the likelihood function is in many cases not explicitly available for discretely
sampled continuous time models, but estimating functions have turned out to be very useful
in obtaining estimators and drawing inference for models where the likelihood function is not
explicitly known; see e.g. Bibby and Sørensen (1995, 2001), Sørensen (1997, 2000), Genon-
Catalot, Jeantheau, and Larédo (1999), Kessler and Sørensen (1999), Kessler (2000), Jacobsen
(2001), H. Sørensen (2001), and Kessler and Paredes (2002). An application to financial data
was given in Bibby and Sørensen (1997), while Pedersen (2000) used the method to estimate
the nitrous oxide emission rate from the soil surface.

For Markov models martingale estimating functions are often a sum of terms of the follow-
ing form: A function of an observation minus its conditional expectation given the previous
observation. It is, however, not always obvious how to choose the function of the data on which
to base the estimating function. The results in this paper are a contribution to the investi-
gation of this question. We study when martingale estimating functions and other unbiased
estimating functions have the same structure as the score function for a time-reversible Markov
process. In Section 2 we introduce some necessary regularity conditions on the models and
review three basic properties of the score function for a time-reversible Markov process. In
particular, we derive the time-reversibility condition for estimating functions. In Section 3 we
study when martingale estimating functions satisfy this condition. In this way we arrive at an
estimating function that is efficient in the sense of semiparametric models, and we find relations
to martingale estimating functions based on eigenfunctions of the infinitesimal generator. Fi-
nally, in Section 3 we consider estimating functions that satisfy the time-reversibility condition
and study when they are martingale estimating functions or, more generally, when they are
unbiased.

2 Conditions on the model and on the estimating func-

tions

Consider a statistical model, parametrized by Θ ⊆ IRp, for a continuous-time stochastic process
X with state space E ⊆ IR. It is assumed that X is a Markov process for each θ, and that
the transition distribution has a strictly positive density y 7→ p(t, x, y; θ) with respect to the
Lebesgue measure on E. Specifically, y 7→ p(t, x, y; θ) is the density of Xt given X0 = x (t > 0).
We denote the class of infinitesimal generators by {Aθ : θ ∈ Θ}.

Suppose the data are observations at discrete time points Xt1 , . . . , Xtn, 0 < t1 < · · · < tn,
and that X0 = x0 is non-random. Then the likelihood function is given by

Ln(θ) =
n∏

i=1

p(∆i, Xti−1
, Xti ; θ),

where ∆i = ti − ti−1 with t0 = 0, and the score function by

Un(θ) =
n∑

i=1

∂θ log p(∆i, Xti−1
, Xti; θ). (2.1)
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In many continuous-time models there is no tractable expression for the transition density
p, but inference about the parameter θ can often usefully be made using another estimating
function

Gn(θ) =
n∑

i=1

g(∆i, Xti−1
, Xti ; θ), (2.2)

where g is some function with values in IRp that is more tractable than ∂θ log p, and which
should be thought of as an approximation to ∂θ log p. An estimator of θ is obtained by solving
the equation Gn(θ) = 0. In order to get as close to the efficient likelihood inference as possible,
it seems preferable that g should have as many properties in common with ∂θ log p as possible.
Let us therefore review three important properties of ∂θ log p, and formulate these as conditions
on estimating functions. To simplify the exposition, we shall from now on assume that the
observation times are equidistant, i.e. that, for some ∆ > 0, ti = ∆i for all i.

Under weak conditions the score function is a martingale for quite general stochastic process
models, see e.g. Barndorff-Nielsen and Sørensen (1994). Indeed, under conditions allowing the
interchange of integration and differentiation,

∫
∂θ log p(t, x, y; θ)p(t, x, y; θ)dy =

∫ ∂θp(t, x, y; θ)

p(t, x, y; θ)
p(t, x, y; θ)dy

=
∫

∂θp(t, x, y; θ)dy = ∂θ

∫
p(t, x, y; θ)dy = 0.

Thus a reasonable condition on an estimating function is that it is a martingale, i.e. that g
satisfies the following condition.

Condition P ∫
E

g(∆, x, y; θ)p(∆, x, y; θ)dy = 0 (2.3)

for all θ ∈ Θ and all x ∈ E.

In many cases simpler and more explicit estimating functions can be obtained by replacing
Condition P by the weaker Condition Q given below. To do this we need to assume that X is
ergodic for all θ ∈ Θ. We also assume that the invariant probability measure has a density with
respect to the Lebesgue measure on E and denote the density by µθ. Define the two-dimensional
stationary distribution Qt

θ by

Qt
θ(x, y) = p(t, x, y; θ)µθ(x). (2.4)

For p-dimensional functions f and h defined on E and E2, respectively, we will use the notation

µθ(f) =
∫

E
f(x)µθ(x)dx and Qt

θ(h) =
∫

E
h(x, y)Qt

θ(x, y)dxdy.

Then we can formulate the following condition.

Condition Q
Q∆

θ (g(∆; θ)) = 0 for all θ ∈ Θ. (2.5)

Obviously, Condition P implies Condition Q, so the score function Un(θ) satisfies Condition Q
under weak conditions.

Condition Q is an asymptotic unbiasedness condition on the estimating function G, which
(under some regularity conditions) is enough to ensure that there exists a consistent estimator of
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θ which solves the estimating equation Gn(θ) = 0 (at least for n large enough). The asymptotic
theory of estimating functions is reviewed in Sørensen (1999). In order to ensure asymptotic
normality of estimators obtained from estimating functions satisfying Condition Q, but not
Condition P, the following condition is needed on the model.

Condition 2.1 For every θ ∈ Θ, zero is an isolated point in the set of eigenvalues for the
infinitesimal generator Aθ.

Under Condition Q and Condition 2.1 we have that

1√
n

Gn(θ)
D→ Np(0, Vθ)

as n →∞, where the expression for the asymptotic variance matrix is rather complicated and
involves the potential of X; for details see e.g. Kessler (2000). Properties implying Condition
2.1 in the case of diffusion models were studied in Hansen and Scheinkman (1995), Genon-
Catalot, Jeantheau and Larédo (2000), and Kessler (2000). In particular, for one-dimensional
diffusion models simple conditions can be given.

Now suppose X is time-reversible. Then Qt
θ(x, y) = Qt

θ(y, x), or more explicitly,

p(t, x, y; θ)µθ(x) = p(t, y, x; θ)µθ(y) (2.6)

for all (x, y) ∈ E2, all t > 0 and all θ ∈ Θ. Equation (2.6) implies that

∂θ log p(t, x, y; θ) + `θ(x) = ∂θ log p(t, y, x; θ) + `θ(y),

where

`θ(x) = ∂θ log µθ(x) =
∂θµθ(x)

µθ(x)
. (2.7)

Time-reversibility is not an uncommon property for a Markov process. For instance, all one-
dimensional diffusions are time-reversible, see Kent (1978). For time-reversible processes it is
of interest to study the consequences of imposing the following condition, which is satisfied by
the score function.

Condition R
g(∆, x, y; θ) + `θ(x) = g(∆, y, x; θ) + `θ(y) (2.8)

for all θ ∈ Θ and all (x, y) ∈ E2.

Note that, even when the transition density is intractable, the density of the invariant density
may be known, as is the case for one-dimensional diffusions. Therefore, it may well be easy to
check Condition R and thus possible to find a tractable g satisfying (2.8). Examples will be
given in the following sections.

In the rest of the paper we will assume that the invariant measure satisfies the following
Condition 2.2. By L2

p(µθ) we denote the set of p-dimensional functions defined on E for which
every coordinate is square integrable with respect to µθ, and by L2

p,0(µθ) we denote the subspace
of L2

p(µθ) of functions f for which µθ(f) = 0.

Condition 2.2

`θ ∈ L2
p,0(µθ) for all θ ∈ Θ.

A sufficient condition ensuring that µθ(`θ) = 0 is that the family of functions {∂θµθ(x)| θ ∈ Θ}
is locally dominated integrable with respect to the Lebesgue measure on E.
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3 Martingale estimating functions

In this section we will study which martingale estimating functions satisfy Condition R. We
first consider estimating functions of the form

g(t, x, y; θ) = fθ(y)− πθ,tfθ(x), (3.1)

where fθ is a p-dimensional function defined in E, and πθ,t denotes the transition operator
defined by πθ,tf(x) = Eθ(f(Xt)|X0 = x). This choice is a natural way to obtain a function g
satisfying Condition P.

Obviously, g satisfies Condition P, but for which choices of fθ is Condition R satisfied too?
We can assume that t = 1 and that µθ(fθ) = 0 without loss of generality, because we can change
the time-scale and we can subtract µθ(fθ) from fθ without changing g. In the following we will
suppress t in the notation. Under Condition 2.2, it is not difficult to see that for functions fθ

satisfying µθ(fθ) = 0, Condition R is satisfied if and only if fθ satisfies the equation

πθ(fθ) = `θ − fθ. (3.2)

Indeed, equation (2.8) is equivalent to

fθ(y) + πθfθ(y)− `θ(y) = fθ(x) + πθfθ(x)− `θ(x)

for all (x, y) ∈ E2. Hence the function qθ(y) = fθ(y) + πθf(y)− `θ(y) must be constant (as a
function of y), and its constant value is µθ(qθ) = µθ(fθ)+µθ(πθfθ)−µθ(`θ) = 0. Note that (3.2)
is the Poisson equation for the operator −πθ. To solve this equation, we suppose that Condition
2.1 is satisfied. Under this condition, since it implies that πθ is a contraction in L2(µθ), the
operator πθ + I, where I denotes the identity operator, has a bounded inverse, Vθ, on L2

p,0(µθ).
Hence the solution to the equation (3.2) is

fθ = Vθ`θ. (3.3)

Specifically,

Vθ =
∞∑
i=0

(−1)iπi
θ, (3.4)

where the sum converges in L2
p,0(µθ) because πθ is a strong contraction under Condition 2.1.

Using that πθVθ = 1− Vθ and (3.4), we see that the function g given by (3.1) and (3.3) can
also be written as

g(x, y; θ) = Vθ`θ(y)− πθVθ`θ(x) = Vθ`θ(y) + Vθ`θ(x)− `θ(x) (3.5)

= `θ(y)− [πθVθ`θ(y) + πθVθ`θ(x)] = `θ(y) +
∞∑
i=1

(−1)i[πi
θ`θ(y) + πi

θ`θ(x)].

Interestingly, martingale estimating functions of this form were derived via a completely
different route in Kessler, Schick and Wefelmeyer (2001). They considered semiparametric
reversible Markovian models for X, where only the family of invariant measures {µθ| θ ∈ Θ}
was specified parametrically. It was proved in the paper that the estimator obtained from
(2.2) with g given by (3.5) is efficient in the sense of semiparametric models, i.e. it yields an
estimator whose asymptotic variance attains the semiparametric lower bound. To obtain a
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semiparametric estimator, it is obviously necessary to estimate πθVθ non-parametrically from
the data. Kessler, Schick and Wefelmeyer (2001) also proved that estimation based on this
efficient martingale estimating function is asymptotically equivalent to estimation based on the
simple estimating function

n∑
i=1

f̃(Xi∆; θ),

where
f̃(x; θ) = 2Vθ`θ(x)− `θ(x) = (Vθ − πθVθ)`θ(x).

This simple estimating function is of the form considered in Kessler (2000).
Obviously, parameters on which the invariant probability measure µθ does not depend can-

not be estimated by the estimating function given by (3.5). If µθ does not depend on the ith
coordinate of θi, then the ith coordinate of `θ will be equal to zero, and hence so will the ith co-
ordinate of g. Thus g maps into a sub-space of a dimension equal to the number of parameters
needed to parametrize µθ.

Let us study the operator Vθ a little more in the case where the set of eigenvalues for the
infinitesimal generator Aθ is discrete. Denote the eigenvalues and the corresponding eigenfunc-
tions by {λθ

i : i = 0, 1, . . .} (λθ
0 ≤ λθ

1 ≤ · · ·) and {ϕθ
i : i = 0, 1, . . .}. We assume that the

eigenfunctions are normalized such that ‖ϕθ
i ‖θ = 1 for all i and that the set of eigenfunctions

constitute a complete orthonormal system in L2
1(µθ). Here ‖ · ‖θ denotes the norm in L2

1(µθ).
We can assume that ϕθ

0 = 1. The space L2
1,0(µθ) is the orthogonal complement to the subspace

spanned by ϕθ
0, so any h ∈ L2

p,0(µθ) has a representation
∑∞

i=1 aiϕ
θ
i , where the jth coordinate

of ai equals 〈hj , ϕ
θ
i 〉θ. Here hj is the jth coordinate of h, and 〈·, ·〉θ denotes the inner product

in L2
1(µθ). It is not difficult to see that

Vθh =
∞∑
i=1

ai

1 + e−λθ
i

ϕθ
i = h−

∞∑
i=1

ai

1 + eλθ
i

ϕθ
i . (3.6)

Now consider Vθ`θ. A standard calculation shows that 〈`θ, ϕ
θ
i 〉θ = −µθ(∂θϕ

θ
i ), provided that the

interchange of integration and differentiation is allowed. A standard condition ensuring this
is that the family of functions {∂θ(µθϕ

θ
i )} is locally dominated integrable with respect to the

Lebesgue measure. Thus we obtain that

fθ = Vθ`θ = `θ +
∞∑
i=1

µθ(∂θϕ
θ
i )

1 + eλθ
i

ϕθ
i . (3.7)

In Kessler and Sørensen (1999) it was proposed to construct martingale estimating functions
from eigenfunctions of the infinitesimal generator. From (3.5) we would get an estimating
function of the type considered in that paper by truncating the series in (3.7) and by not
including `θ. Equation (3.7) is a further argument for using this type of estimating function,
but indicates that it might be worthwhile to study the case where also the function `θ is
included.

Using (3.5) we see that

g(x, y; θ) = `θ(y) +
∞∑
i=1

µθ(∂θϕ
θ
i )

1 + eλθ
i

[ϕθ
i (x) + ϕθ

i (y)].

Example 3.1 Consider the diffusion model

dXt = −β(vt − α)dt + σ
√

XtdWt,

6



which is known in the finance literature as the CIR model for short term interest rates, see
Cox, Ingersoll and Ross (1985). This process is ergodic and its stationary distribution is the
gamma distribution with shape parameter 2βασ−2 and scale parameter 2βσ−2 provided that
β > 0, α > 0, σ > 0, and 2θα ≥ σ2. Hence we can estimate the parameters θ1 = 2βασ−2 and
θ2 = 2βσ−2 by means of the estimating function given by (3.7). We see that

`θ(x) =




log(θ2x)−Ψ(θ1)

−x + θ1/θ2


 ,

where Ψ denotes the di-gamma function.
The eigenfunctions of the generator are Laguerre polynomials evaluated at θ2x, see e.g.

Karlin and Taylor (1981). Specifically, the i-th eigenfunction is the i-th order polynomial

ϕθ
i (x) =

i∑
j=0

ρij(θ1, θ2)x
j

with coefficients

ρij(θ1, θ2) =
(−θ2)

j

j!

(
i + θ1 − 1

i− j

)
,

j = 0, . . . , i, i = 1, 2, . . .. The corresponding eigenvalue is iθ. To calculate (3.7) we need to
calculate µθ(∂θϕ

θ
i ), which is given by

µθ(∂θk
ϕθ

i ) =
i∑

j=0

[∂θk
ρij(θ1, θ2)](θ1 + j − 1)(j)θj

2.

where a(j) = a(a− 1) · · · (a− j + 1). With this specification, (3.7) does not seem to correspond
to any known function, and in practice one would have to truncate the series, say at i = N . A
more efficient estimating function would be obtained by using the optimal martingale estimating
function based on `θ, ϕθ

1, . . . , ϕ
θ
N . The results in this section can therefore be interpreted as an

argument for using this estimating function for inference.
2

The more general weighted martingale estimating functions with g of the form

g(t, x, y; θ) = α(t, x; θ)[fθ(y)− πθ,tfθ(x)] (3.8)

are less tractable and probably do not often satisfy Condition R. To investigate this type of
estimating function, we can again assume that t = 1 and suppress t in the notation. A function
g of this form satisfies Condition P. Condition R is equivalent to

α(x; θ)fθ(y)− α(y; θ)fθ(x) = (3.9)

`θ(y)− `θ(x) + α(x; θ)πθfθ(x)− α(y; θ)πθfθ(y),

which implies that
α′(x; θ)f ′θ(y)− α′(y; θ)f ′θ(x) = 0, (3.10)

where a prime indicates differentiation with respect to x (or y). To simplify the notation let
us assume here that θ, α, and f are one-dimensional. Equation (3.10) states that the function
f ′θ(x)/α′(x; θ) is constant, so a necessary condition that Condition R is satisfied is that

α(x; θ) = c1(θ)fθ(x) + c2(θ). (3.11)
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The case c1 = 0 was treated above. By inserting (3.11) into (3.9), we find that the function
`θ(x) − [c1(θ)fθ(x) − c2(θ)]πθfθ(x) is equal to a constant, which must be −c1(θ)〈fθ, πθfθ〉θ.
Usually 〈fθ, πθfθ〉θ 6= 0. Thus we have obtained the non-linear equation

`θ(x) = c1(θ) [fθ(x)πθfθ(x)− 〈fθ, πθfθ〉θ] + c2(θ)πθfθ(x), (3.12)

which does not seem tractable in general. In the following simple example it can, however, be
solved.

Example 3.2 Consider the Ornstein-Uhlenbeck process, which is the solution of the stochastic
differential equation

dXt = −θXtdt + dWt.

Its invariant measure is the normal distribution with mean zero and variance 1/(2θ), so

`θ(x) = −(x2 − (2θ)−1).

Consider the function fθ(x) = κθx. Since πθfθ(x) = κθe
−θx, it follows that

fθ(x)πθfθ(x)− 〈fθ, πθfθ〉θ = κ2
θe
−θ(x2 − (2θ)−1).

Thus equation (3.12) is satisfied with c1 = −1 if we choose κθ = eθ/2. The corresponding g
equals

g(x, y; θ) = x[y − xe−θ].

The martingale estimating function with this g is optimal in the class of estimating functions
with g of the form g(x, y; θ) = α(x; θ)[y − xe−θ]. The corresponding estimator equals, in fact,
the maximum likelihood estimator of θ in the model dXt = −θXtdt + σdWt.

2

4 Estimating functions satisfying Condition R

In this section we will attack the problem from a different angle. Here we will assume that g
satisfies Condition R, and then study what is further needed for Condition P or Condition Q
to hold. Again we will simplify matters by assuming that the observations are equidistant with
∆ = 1. Obviously, an estimating function (2.2) satisfies Condition R if and only if

g(x, y; θ) = `θ(y) + f̃θ(x, y) (4.1)

for all x, y and θ, where f̃θ is symmetric in x and y. Hence we need only discuss how to choose
the function f̃θ.

First we consider the case
f̃θ(x, y) = hθ(x) + hθ(y) (4.2)

for some function hθ. In this case Condition P is satisfied precisely when

πθhθ = −πθ`θ − hθ.

This is again the Poisson equation (3.2), only with `θ replaced by −πθ`θ. Thus

hθ = −πθVθ`θ,
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and
g(x, y; θ) = `θ(y)− [πθVθ`θ(y) + πθVθ`θ(x)] = Vθ`θ(y)− πθVθ`θ(x).

Comparison to (3.5) shows that this is the same estimating function as the one derived in
Section 3.

We conclude our investigation by considering the more general case

f̃θ(x, y) = hθ(x)kθ(y) + hθ(y)kθ(x). (4.3)

To simplify matters a bit we assume that θ, hθ and kθ are one-dimensional. Here Condition P
is satisfied precisely when

πθ`θ + kθπθhθ + hθπθkθ = 0.

Suppose we can choose a kθ such that πθkθ(x) 6= 0 for all x ∈ E. Then

kθ

πθkθ

πθhθ = −πθ`θ

πθkθ

− hθ, (4.4)

which is the Poisson equation for the operator Kθ = (kθ/πθkθ)πθ. Suppose the operator Kθ + I
has a bounded inverse, Uθ, defined on some subset Uθ of L2

0(µθ). Then the solution to equation
(4.4)

hθ = Uθmθ,

provided that the function

mθ = −πθ`θ

πθkθ

belongs to the domain Uθ of Uθ. The operator Uθ is given by

Uθh =
∞∑
i=0

(−1)iKi
θh, (4.5)

for any h ∈ L2
0(µθ) for which the sum converges (in L2(µθ)). Thus Uθ is contained in the set

of functions f for which the sum (4.5) converges. In general, Uθ is a proper subset of L2
0(µθ)

depending on the choice of the function kθ.
A bit more can be said if we choose kθ equal to an eigenfunction ϕθ of the generator with

eigenvalue λθ, because under weak regularity conditions πθϕθ = e−λθϕθ. Simple sufficient
conditions for diffusion processes are given in Kessler and Sørensen (1999). Above we required
that πθϕθ(x) 6= 0 for all x ∈ E, so the considerations here only apply to models with an
eigenfunction without zero points in E. In this situation Kθ = eλθπθ, so Uθ contains the
functions f ∈ L2

0(µθ) for which πθf ≤ e−λ1f for some λ1 > λθ, i.e. Uθ contains the span of all
eigenfunctions with eigenvalue strictly larger than λθ.

Finally, to obtain simpler results, we turn to Condition Q, which is satisfied when

〈kθ, πθhθ〉θ + 〈πθkθ, hθ〉θ = 0.

Since we have assumed that the observed Markov process is time-reversible, πθ is self-adjoint,
so this equation simplifies to

〈kθ, πθhθ〉θ = 0. (4.6)

This problem has several solutions. Define

hθ =
∑
i∈I1

ai(θ)ϕ
θ
i

kθ =
∑
i∈I2

bi(θ)ϕ
θ
i ,
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where Ij ⊆ IN0, j = 1, 2 with I1 ∩ I2 = ∅, where ai(θ) and bi(θ) are real numbers, and where
the ϕθ

i -s are eigenfunctions of the infinitesimal generator Aθ. Under the regularity conditions

mentioned above ensuring that πθϕ
θ
j = e−λθ

j ϕθ
j , where λθ

j is the eigenvalue corresponding to ϕθ
j ,

we have for i 6= j that 〈ϕθ
i , πθϕ

θ
j〉θ = e−λθ

j 〈ϕθ
i , ϕ

θ
j〉θ = 0. Hence equation (4.6) is satisfied.

Example 4.1 Consider the class of diffusion processes given as the solutions of

dXt = −θ tan(Xt)dt + dWt, θ ≥ 1
2 .

The solutions are ergodic diffusions on the interval (−π
2
, π

2
) that can be thought of as an

Ornstein-Uhlenbeck process on a finite interval. The invariant measure is given by

µθ(x) =
Γ(2θ + 1) cos2θ(x)

4θΓ(θ + 1
2
)2

, x ∈ (−π
2 , π

2 ),

where Γ denotes the gamma-function, so

`θ(x) = 2 log(cos(x)) + 2
(
Ψ(2θ + 1)−Ψ(θ + 1

2)
)
− log(4),

where Ψ denotes the di-gamma function. The eigenfunctions are ϕθ
i (x) = Cθ

i (sin(x)), where
Cθ

i is a Gegenbauer polynomial of order i, see Kessler and Sørensen (1999). The first two
non-trivial eigenfunctions are sin(x) and 2(θ + 1) sin2(x)− 1, so

g(x, y; θ) = 2 log(cos(x)) + 2
(
Ψ(2θ + 1)−Ψ(θ + 1

2)
)
− log(4)

+ sin(x)
(
2(θ + 1) sin2(y)− 1

)
+ sin(y)

(
2(θ + 1) sin2(x)− 1

)

satisfies Condition R. That the necessary regularity conditions are satisfied for this model is
demonstrated in Kessler and Sørensen (1999).

2

Acknowledgement.

Most of this research was done while Mathieu Kessler stayed at the Department of Theoretical
Statistics, University of Copenhagen. This stay was jointly financed by MaPhySto - Centre for
Mathematical Physics and Stochastics, funded by a grant from The Danish National Research
Foundation, and the University of Copenhagen. Our collaboration was also supported by the
European Commission through the Research Training Network DYNSTOCH under the Human
Potential Programme.

References

Barndorff-Nielsen, O.E. and Sørensen, M. (1994): A review of some aspects of asymptotic like-
lihood theory for stochastic processes. Int. Statist. Rev. 62, 133–165.

Bibby, B.M. and Sørensen, M. (1995): Martingale estimating functions for discretely observed
diffusion processes. Bernoulli 1, 17–39.

10



Bibby, B.M. and Sørensen, M. (1997): A hyperbolic diffusion model for stock prices. Fi-
nance and Stochastics 1, 25 – 41.

Bibby, B.M. and Sørensen, M. (2001): Simplified estimating functions for diffusion models
with a high-dimensional parameter. Scand. J. Statist. 28, 99–112.

Cox, J.C., Ingersoll, J.E. and Ross, S.A. (1985): A theory of the term structure of interest
rates. Econometrica 53, 385–407.
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