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Abstract

We determine the ultimate ruin probability and the Laplace trans-
form of the distribution of the time to ruin in the classical risk model,
where claims arrive according to a renewal process, with waiting times
that are of phase-type, while the claims themselves follow a distribu-
tion with a Laplace transform that is a rational function. The main
tools are martingales, the optional sampling theorem and results from
the theory of piecewise deterministic Markov processes.
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1 Introduction

In this paper we study the classical risk model

Ny
Xt:x0+at—ZUn
n=1
where N is a renewal counting process (delayed so that Ny = 0) and the
claims (Un)n21 form a sequence of iid strictly positive random variables,
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independent of N. The purpose is to determine the distribution of T,,, the
time to ruin,
Truin = inf {¢t : X; <0}

for as large a class of interarrival time distributions (that describe N) and
claim size distributions as possible, with x5 > 0 an arbitrary initial reserve.
More precisely, we shall give an exact description of the Laplace transform £
for T,u, when the interarrival distribution is of phase-type while the claims
have a distribution with a Laplace transform that is a rational function (in
particular the claims can be of phase-type). In this generality there is no
hope of obtaining closed form expressions for £, but in the description we
give of £ (0) for an arbitrary 6, the only non-explicit part consists in finding
all roots with strictly negative real parts for a given polynomium, which
makes it easy to evaluate each £ (#)-value numerically.

As an easy byproduct we also find the probability pruin = P70 (Tiuin < 00)
of ultimate ruin.

The technique used for obtaining the results is standard: we determine
a suitable class of martingales and use the optional sampling theorem. Here
it is absolutely essential that we consider martingales not just with respect
to the filtration generated by X, but also use the continuous time Markov
chain J that generates the phase-type interarrival times. The idea of using
this larger filtration we believe to be new.

The main problem in applying the martingale method is the problem of
undershoot, i.e. at the time of ruin the risk process makes a downward jump
to a random level < (0 where for a direct and successful use of the martingale
approach one would need Xt . to be a fixed, non-random quantity. This
problem is resolved by replacing X by a suitable piecewise deterministic
Markov process, absorbed at the time of ruin, that also involves the Markov
chain J. (The idea of using a martingale for X itself absorbed at Ty, goes
back at least to Gerber [6] who used it in particular to find py,,, when N is
a homogeneous Poisson process and the U, are exponential).

For existing results about the model and problem studied here, see As-
mussen [1], Chapter 5. For the simplest case with N Poisson and the claims
exponential, the distribution of the time to ruin is known. Other special cases
have been studied by Dickson and Hipp [4] and [5] who obtained expressions
for pruin and also certain quantities related to the claim causing ruin. In all
however it is perhaps fair to say that not too many exact results are avail-
able concerning the distribution of T, ,. In the literature, approximations
have been studied extensively (see Asmussen [1] and the references there),
but what there is of precise results deal typically with the double Laplace



transform

[ee)
/ e VTR0 [e*GT”‘i“; Thruin < oo] dxg
0

and then only for special models.

For recent results on the distributions of passage times and overshoot for
Lévy processes with two-sided jumps of phase-type, see Asmussen et al [2].
Also see Winkel [9] for explicit results on level passage events (including the
passage time itself) for Lévy processes that are subordinators, .

It is feasible (as suggested to the author by S. Asmussen and M. Bladt),
that the methods used in this paper may allow one to drop the assumption
that claims arrive according to a renewal process and use the much more
general setup with a Markov arrival process (MAP) instead — however it is
as yet not clear to the author how to do this in detail.

2 The model

Let (V,),~, be a sequence of independent random variables, the interarrival
times between claims, 0 < V,, < oo, such that the V,, for n > 2 are iid, and
consider the delayed renewal counting process N = (Ni),o:

Ny =Y Lms
n=1

where T,, = V; + --- 4+ V,, is the time of the n’th claim.

Further, let (U,,),~, be a sequence of iid random variables 0 < U,, < oo,
independent of the sequence (V},), let a > 0, 75 > 0 and consider the risk
process X = (X;),», With initial state z,

Ny
Xi=zo+at—>Y U,

n=1

Thus xq is the initial capital or reserve and « is the premium rate.
The time to ruin is

Trun = inf {t : X, <0} < o0.
(using inf ) = co) with Laplace transform
L) =B [e™ i Ty, < 00| (0> 0). (1)
Mostly we shall study £ for § > 0 in which case

L(0)=E™ [eTw=] (0>0). (2)
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From (1) we in particular obtain the ruin probability

Pruin ‘= Pro (Truin < OO) - ['(0) (3)
which can also be obtained using (2),
R - o _eTruin
Pruin = 1im [e } : (4)

Of course the Laplace transform L is defective precisely when pry, < 1.

Throughout the paper it is assumed that the interarrival times V,, for
n > 2 are of phase-type. Vi will always have a distribution closely related
to that of the other V,,, in particular of course the distribution may be the
same.

As introduced by Neuts [8] the phase-type distribution comes from a
Markov chain J* = (J}),~, with finite state space {1,...,p}U{V} = EU{V}
with p > 1 and V an absorbing state. Considering an initial distribution
a = (a;),cp for J* that is concentrated on E, the phase-type distribution is
then the distribution of T, the time to absorption in V.

With this structure for J*, the intensity matrix @ for J* has the form

(the first p rows and columns corresponding to the states 1,...,p and the
last row and column corresponding to V),
A Q q
= 5
0 ( o )
with @ € RP*P satisfying for all 7,7 € E that
Qi=-XN<0, Q;>0fori#j, > Q<0 (6)
jeE

and with ¢ € RP*! determined so that @ becomes a true intensity matrix
and hence is given by
q=-Q1, (7)
1 denoting the column vector with all entries = 1.
It is assumed throughout that absorption is possible from any 1 € F,
ie. all A; > 0 and the transition matrix Il = (m;), ;. that governs the
jumps for J* satisfies that for all ¢+ € E there exists n € N such that

S <1, (8)

jEE
WZ(]" ) denoting the (i, j)'th element of the n’'th power I1" of II. Equivalently,
the transition probabilities p;;(t) =P (J;k—i—t =jl|Jr= 2) for J* satisfy that

> pi(t) <1 (t>0,i€E). 9)

JEE



For later reference, recall that II is given by

1 : . qi
mii = 0, WiijQij (i #7), Zﬂz’jzl—y-
v JEE (

We shall call @ a sub-intensity matriz if () can be used to form the
intensity matrix for a Markov chain with an absorbing state as in (5) and such
that for this chain, absorption into V is possible — and therefore eventually
certain — from any 7 € E.

Before proceeding, here are some of the formulas pertinent to the phase-
type distribution: if the initial distribution for J* is a = (a;),cp (written as
a column vector) with a; > 0, > a; = 1, then the distribution of Ty, has
survivor function

P (Taps > t) = a’e@1 (¢ >0) (10)

?

density
fr(t) = —a"eQ1 = ey (11)

and Laplace transform

Ly () =a" (Q—pl) 7 Ql=1+pa" (Q—p)™'1 (u>0). (12)

Lemma 1 (Facts about sub-intensity matrices). Let @ be a sub-intensity
matrix.

(i) \i=—Qy >0 foralliec E.

(ii) Q is non-singular.
(i1i) Q — 1 is a sub-intensity matriz for all 6 > 0.
(iv) Qv < 0 for all v € RP*! with v > 0.

(v) All coordinates of the vector 6 (Q — 51)_1 1 are strictly decreasing func-
tions of 0 > 0, decreasing from 0 to —1.

(vi) All coordinates of the vector § (Q — 6I)™" 1 are strictly convex functions
of 0 > 0.

Notation. If u € (u;),cp is a vector we write u > 0, respectively u > 0, if
u; > 0 for all 7, respectively u; > 0 for all i.



Proof. (i) A\; = 0 makes ¢ absorbing in contradiction to the assumption
that it is possible to reach V # i from 1.

(ii) also requires the basic assumption that @) be a sub-intensity matrix:
by (9) €91 < 1 and with

|v]| = max {|v;| : i € E}, HetQH = Sup{”etQUH vl < 1}

it follows that HetQH < 1. But then, if Quy = 0, since e?v, = vy we deduce
that [Jogl| = [ @vo| < [[ol| if vo # 0, hence vy = 0.

(iii) is obvious: (6) holds for @) — 61 and (8) also holds since direct ab-
sorption into V from any i is now possible: 3, (Q — 61I) i < 0 for all .

(iv) Consider v with v > 0 and write @'v = u. Then v; = 3=; Q;;u; and
determining i, such that u;, = max {u; : ¢ € E'}, in particular

0<wiy = —AjUiy + Z Qigj U
J#io

< = igUip + (Z Qioj) Uiy -

J#io

Since 0 < > jstio Qipj < A, the last expression would be < 0 were u;, > 0.
Thus u;, < 0 as wanted.

(v) and (vi) follow from the right-most expression in (12) with a = ¢;,
for an arbitrary iy € E together with the fact that Laplace transforms for
strictly positive random variables decrease strictly from 1 to 0 and are strictly
convex. |

In order to find the distribution of T, when the V,, are phase-type, we
shall use a joint process (X, J) = (X3, J;),~o With fixed initial state (X, Jy) =
(w0,10) . Here X is going to be the risk process from above, J is independent of
the sequence (U,,) and J; is defined for all ¢ by using independent versions of
the Markov chain J* as follows: suppose given an entrance law a = (a;);cf »
i.e.all a; > 0, Y a; = 1. Start J in state ig and let it follow J* until the time
of absorption, at which point in time V; the first claim U; is triggered and J
is returned to E using the entrance law a. Now let J follow a new copy of J*
(independent of everything else) until its time of absorption V5, then trigger
Us as a claim at time Vi + V5 and return J to E using the distribution a etc.
Thus in particular

PP (Vy > s) = Z (eSQ)in - <68Q1>i0

JEE



while for n > 2, the V,, are iid with the distribution described by either of
(10), (11) or (12).
Note that for n > 2,

E:=F"0y = —o"'Q7'1
and that (essentially) by the law of large numbers
Pruin =1 iff  af <EU;. (13)
We shall denote by P the probability

P = 3 g, P,

inER

so that under P* the time until the first claim V; is independent of and has
the same distribution as the V,, for n > 2.

The process (X, J) with fixed initial state (z, ) is a time-homogeneous
piecewise deterministic Markov process (PDMP, see Davis [3]) (with transi-
tions that do not depend on the initial state (x¢, o)) with state space R x £
determined as follows, cf. Jacobsen [7]: piecewise deterministic behaviour

G (1) = (x + at, i),

total intensity for a jump
and jump probabilities r ((z,1),-) given by

1

r((z,9) . {(z.7)}) = )\_iQij (i #7),
r((z,4) ] —o0,2'] x {j}) = ;J\—iaj(l—FU(ac—x')) (@' <z, i,j€E)

with Fp the distribution function for the U,. (The first line describes the
jump of J when there is no absorption for J*, the second what happens
when absorption occurs, i.e. a renewal takes place and one of the claims U,
is triggered).

With the fixed initial value (x¢,4), (X, J) may be identified with the
marked point process (77,Y,)) where T is the time of the n’th jump for

(X, J) (which comes before the n’th jump for X), Y/ = (XTA, JTA) the state
reached by that jump and

(Xt, Jt) = ¢t7T]’v, ( 1(7;) )
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using Ty = 0, Yy = (0, 1%) . Here N = 32071 1(77 <4y counts the total number
of jumps for (X, J).
From the description of (X, .J) one finds that the space-time generator
has the form, see e.g. Davis [3], Section 26 or Jacobsen [7], Section 6.3.,
Ag(t;2,9) = Dig(t;2,9) + aDyg (t2,9) + Y Qijg (£, j)

JEE
v Y0 [ Fyldy) gt - p.9).
jer 1000l
If in particular g is bounded and Ag = 0, then the process (g (¢; X¢, Ji)),50

is a true martingale.
We shall exploit the martingale technique, but not on the PDMP (X, J).

Define <X, j) by
- {Xt if t < Truin

Xt N 0 if ¢ Z Truina Jt - JTmin/\t.

Since ruin can only occur at a renewal epoch, it is clear that (X , J) is a

time-homogeneous PDMP with state space Ry X £, initial state (zo,40) and
determined by deterministic behaviour ¢, total jump intensity ¢ and jump
probabilities 7 as follows:

~ N | (@+atyi) ifx>0

¢“%”_{ (0,4) if 2 =0,
(i) — N ifx>0

Y=Y 0 ifz=0,

and for z > 0, provided Fy is continuous

Pl (@) = Qs (£9).
7 ((z,1),]0,2] x {j}) = %%u—pb@—f» 0<a2' <z, i,j€E).

(In the last line, with a jump corresponding to a new claim occurring from
(x,1) the distribution of the new x coordinate is that of (z —U;) vV 0. In
particular 7 ((z,7), {(0,7)}) = £a; (1 — Fy (z)). If Fy is not continuous the
Fy values should be replaced by limits from the left).

The space-time generator for (X' L J ) has the form

Ag (t;z.i) = Dig(t;z,i) +aD.g(tx,7) + Z Qijg (t;z,7) (14)
+qi Z a; </]0x[FU (dy) g (t;x —y,7) + (1 — Fy(z)) g (4 O,j)>
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for z > 0 and Ag (;0.,4) = Dyg (£;0,7).
What is done in the sequel is to hunt for bounded g such that

Ag (t;2,i) =0

when =z > 0 (but not for = 0!) so that by Ito’s formula (Jacobsen [7],
Theorem 6.3.1), writing T as short for Ty,

g(tXe k) = g(0;0,i0) + /Ot ds Ag (s; X, J.) + My
= ¢(0;20,10) + Tt/\t ds ./Tg (s; 0. jT/\S) + Mtloc
= g (O, Zo, Z()) + 1(T§t) <g (t; O, jT> — g (T, 0, jT)) -+ Mtloc’

where M™° is a local martingale. With ¢ and A bounded, M becomes
uniformly bounded on finite time intervals and is therefore a true martingale
M with expectation 0. By optional sampling, for any ¢, E®© M, = 0 and
since the term involving the indicator 1(p<4) vanishes when evaluated with

t replaced by T A t, it follows that the process (g (T Aty Xope, jT/\t)>t>0 is

a martingale (with respect in fact to the filtration generated by the joint
process (X , J)) and therefore

Emo’iog (Truin A t; XTruin/\t7 jTruin/\t> =g (0, X, ZO) (1’0 > 07 iO S E,t > O) ’
(15)
an identity that is essential for what follows.

3 Exponential claims

In this section we discuss the special case where the U, are assumed to
be exponential while the V,, are of phase-type as described in the previous
section. This will serve to demonstrate the martingale method in a simple
framework and also motivate the approach used for the general result in the
next section.

Theorem 2 Consider the joint process (X, J) with initial state (xo,1i0) and
assume that the claims U,, are exponential at rate 3 > 0, P (U, > u) = e=P¢
for uw > 0. Then for every 60 > 0

L () = Eroi0e 0Truin — — Uy g€ " (16)



where vy = y(0) is the unique solution from the interval |—3, 0] to the equation

y=B0-ay)a (Q-(@-ay) )1 (17)

and vy, = vy is the vector

vy=Q-0-anD) g (18)

In particular, if the V,, are iid (J is started according to the entrance law a),

Ewoe*OTruin — %e’ﬂol (19)

For fized initial state, the ruin probability is
Pruin = Pw07i0 (Truin < OO) = _/U’y(O-I-),ioe’Y(O—’—)IO (20)
where v (0+) = limgg g0 Y(0), while if the V,, are iid,

Pruin = Pro (Truin < OO) = ﬁ - ’Y(O—l_) 67(0+)m0' (21)

Here v (04) = 0 and prin = 1 (in both (20) and (21)) if and only if
—afa’ Q71 < 1 (i.e. iff (13) holds), and v (0+) < 0 and prun < 1 if and
only if —aBa”Q™'1 > 1 in which case vy (0+) is the only strictly negative
solution to the equation

1=—afad" (Q+ayl)™"1. (22)

Proof. Consider the function

) cevr ot ifz >0
g (ta z, 7’) - { Ke—et lf = 0. (23)

For z > 0,

Ag(t;z,i) = (=0+a7)ce™ " +(Qc); e "
+3 gaje (/ dy Be™PVee’ @) 4 e_ﬁxK) . (24)
0

JEE

Given 6 > 0 the problem is to find scalars v and K and a (column) vector ¢
so that this expression vanishes for all z > 0 and all ¢ € E. The factor e~
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cancels out and we are left with exponential terms e’ and e #* — equating
the two coefficients to 0 yields the conditions

G
(omy—@)chQchﬁJr7 (aTc)q = 0 (25)
%: i@ <_6Lj_’)/0j + K) = 0. (26)

In order for (25) to hold, the first two terms must yield a vector proportional
to g. With v < 0 write 6 = 6 — o~y which is > 0 if v < 0. The matrix

Qs = @ — oI is then a sub-intensity matrix and in particular invertible
(Lemma 1(ii)), and defining
vy =05 = -0Q; Q1 =-1-46Q;'1 (27)
it is seen that (25) holds with ¢ = v, provided
B r
—a v, = —1 28

and using (27) it is seen directly that this is equivalent to (17). Further (26)
holds if
B r

= a
B+

We now show that (17) has exactly one solution v € |—3,0[. By Lemma
1(v) and (vi), the right hand side of (17) is strictly increasing and convex
as a function of v < 0. It remains to note that as v T 0 the left hand side
(limit 0) is > the right hand side (limit 30a” (Q —0I) '1 < 0 by Lemma
1(iv)), while for v = — the left hand side (value —f3) is < the right hand
side (value Bdza’ (Q(;ﬁ)_l 1> —( by Lemma 1(v), writing dg = 6 + af3).

To establish the final claim of the theorem, we saw already that the right
hand side of (17) is strictly increasing as a function of v and (Lemma 1(iv))
strictly decreasing as a function of 6 > 0. It follows that 6 +— ~ () is strictly
decreasing, i.e. v(0) T v(0+) as 6 | 0, and letting 6 | 0 in (17) we see that
v (0+4) solves the equation

v=—Bayad" (Q+ay)"'1, (29)

which always has the solution v = 0, but where it is clear that we need the
strictly negative solution if it exists. The right hand side of (29) is strictly
increasing and strictly convex as a function of v < 0 with the value 0 for
~v = 0 and therefore v (0+) < 0 iff

1< D, (—ﬂa’yaT (Q+ay)™ 1) |ly=0 -

vy = —1.

11



Since the derivative equals —Baa’ @711, the proof is complete. [ |

Example 3 The simplest application of the theorem is when p = 1. Then all
Vy, (including Vi) are iid exponential at rate X > 0 corresponding to Q@ = —\,
q = \. Also, necessarily a; = 1.

The equation (17) for v = 7 (0) becomes

_ BB —ay)
7 —A—0+ay

which has one positive and one negative solution, where we need the negative
r001,

1
7_%<)\+9—Ozﬁ—\/(A+0—a6)2+4aﬁ9). (30)
Also vy = —% S0
Ewoe_eTruin — Me"/wo
G
for xg >0, 0 > 0 with v given by (30). Letting 0 | 0 yields the well known
result
1 ifA=ap
Pruin = ﬁe(g—ﬁ)xo Zf)\ < O[ﬁ.

For a different derivation of the results from this example, see Asmussen
[1], Proposition 1V.1.2

4 The general case

This section contains the main result of the paper, Theorem 6. This result
generalizes Theorem 2 to allow for non-exponential claims, more precisely
it is assumed that the Laplace transform of the distribution for the U, is
a rational function, while the V,, are of general phase-type as described in
Section 2. In particular the class of claim size distributions includes all
phase-type distributions. (For an extensive discussion of rational Laplace
transforms and matrix-exponential distributions, see Asmussen [1], Section
VIIL.6).

With Theorem 2 and its proof in mind it seems natural to look for martin-
gales of the form (g (Truin At )N(Tmin/\t, ijin/\t))t>0 with, for a given 6 > 0,

) e 0t e x> 0),
g(tx,0) = { oLyt Ex : 0; (31)

12



where v, ¢k, K — but not m — depend on 6, Theorem 2 corresponding to the
case m = 1. We shall of course need g bounded so the v, € C must satisfy
Rev, < 0 —in fact it will turn out that Rev, < 0. (As will be shown, it is for
m > 2 essential to allow for complex valued v; which if present will appear
in conjugate pairs).

The main difficulty for m > 2 is to arrive at the martingale condition

Ag(t;z,i)=0 (t>0,2>0,ic E), (32)

cf. the discussion in Section 2, more specifically the question is which claim
size distributions Fy to consider, and how, corresponding to a given [y, one
should find the ‘parameters’ v, K and ¢;; as functions of 6 > 0 — apriori it is
not at all clear that this is possible in any generality for m > 2, at least there
is no simple algebraic correspondence between the Fy required for m > 2
and the simple exponentials used for m = 1, even though the extension to ¢
of the form (31) from the case m = 1, see (23), is simple and linear.

In the discussion that follows it will be useful to think of all the ~; as
distinct. This is indeed what happens for most values of 6, but for special
f-values it may happen that two or more 7, collapse into the same value, a
situation that creates some special technical problems.

Writing out (32) when g is given by (31) yields, cf. (24),

m

Z — ag) cipe™x + Z Z Qijcire™”

k=1 JEE k=1
([ Frldn) Yo (- o) ) <0 3
jEE 10.2[ k=1

For 6 > 0 fixed, put §; = 0 — a7y, and define (cf. (27)) the k'th column of
the matrix (c;z) by

Ol = TkQ(s_qu (34)
where the 74 are real or complex numbers to be determined later. (Even
though ¢, may now be complex, a suitable version of Lemma 1 still holds,
in particular @5, is invertible as long as Red, > 0). Inserting (34) into
(33) shows the latter to be implied by (a common factor ¢; appears and can
therefore be divided away),

PITIEDY sk/] [FU (dy) @ 4+ (1—Fy(z))K=0 (z>0) (35)
k=1 k=1 0,2

where

Sp = Z a;cjr = rkaTQé_qu. (36)

JEE
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It is from (35) that we shall shortly deduce the required structure for
Iy, i.e. that the corresponding Laplace transform L be a rational function.
After that, with Fy given, the task is to show how the 7., r, and K should
be determined in order for (35) to hold for an arbitrary 6 > 0.

First note that K is found easily: let | 0 in (35) to obtain

—ij:’f’k. (37)

Inserting this into (35), the expression on the left becomes linear in the ry
implying that they can only be determined up to proportionality.

Looking at (35), it is clear that it becomes much more tractable by taking
Laplace transforms with [;* (1 — Fy(x)) de < oo (i.e. EU, < o0) the only
condition needed in order to obtain an equivalent formulation of (35). This
integrability condition we therefore assume for now, and note that it is au-
tomatic for all Fy; considered in Theorem 6. So let v > 0, multiply by e™**
and integrate = from 0 to oco. Since

LU (I/)

/ dx e_”””/ Fy (dy) em@—y) = ,
0 0 V—"Yk
1

/0°° doe™ (1= Fy (2) = — (1= Ly (v),

(35) becomes

Ne

m

+ Ly (v))

— Yk =Y — Yk

+%(1—LU(V)):0 (v>0)

and solving this for Ly and using (37) gives

— 2 1% i 38
S j (38)

which is certainly a rational function of v. More precisely, for 7y = () such
that Revy < 0 for all k, introduce the polynomials

LU (l/) =

ﬁV_Vk e = Il w—)

1<0<m, b4k
and multply by 7 (v) in the numerator and denominator of (38) to obtain

Y Tk’)’kﬂ\lk (v)
SRy (= sk) v — i) Ty, (V)

LU (V) = ) (39)

14



a rational function with the denominator a polynomium in v of degree (at
most) m and the numerator a polynomium of degree < m — 1.

Having thus argued that Ly must be rational, we of course now assume
that this is indeed the case,

Ly (v) = /O T By (da) = ;Z ((Z ; (v >0) (40)

where Ry is a polynomium of degree exactly m > 1 and Py is a polynomium
of degree < m — 1. As polynomiums Py (z) and Ry (2) are defined for all
z € C and to normalize we now further assume that they have no common
roots and that the leading term of Ry is 2™ (Ry(z) —2™ is of degree < m—1).
Then

(i) Py(0) = Ry(0) # 0 (because Ly(0) = 1 and Py, Ry do not have a
common root at 0);

(ii) all the m roots z (counted with multiplicity) of Ry satisfy that Rez < 0
(by analytic extension

PU (Z)
RU (Z)

is well defined with |Ly(z)| < 1 provided Rez > 0. In particular, for
such z, Ry(z) = 0 is impossible since Ry (z) = 0 implies Py(z) # 0 by
assumption);

Lu(2) = [ e Fy (do) =

(iii) the distribution Fy has moments of all orders (because of (i), Ly can
be differentiated an arbitrary number of times at v = 0).

Because of (iii) the arguments leading from (35) to (38) are valid and (38)
implies (35).
On the domain {z € C : Rez < 0} we shall use the analytic extension

o= G

of Ly. This will of course not in general equal [;° e=** Fy; (dz) since the inte-
gral need not (and for values of z with Re z too negative will not) converge.
The function Ly has singularities precisely at the points where Ry has its
roots.

With the structure (40) imposed on Ly, given 6 > 0 (39) must be solved
for the v, and the ry (recall that s is determined from g, 7 by (36)),
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something achieved by identifying the numerator on the right of (39) with
Py, the denominator with Ry:

Py(v) = —gjrww\lk(u), (41)
(g @)= Po ) = 3 (it s e 0), (12)

using for (42) that the denominator in (39) due to (41) equals

I/zk: (Tk + Sk) ’}/kﬂ\lk (l/) + PU (I/) .

(In order to identify the right hand side of (39) with Py (v) /Ry (v), one of
course only needs proportionality (with the same factor) between the left and
right hand side of (41) and (42). Demanding equality pinpoints the r which
otherwise are determined only up to proportionality as was noted above after
the derivation of (35)).

Because of (i) above both (41) and (42) are identities between polynomi-
ums of degree m — 1 and identifying the coefficients to the powers 1/ yields
2m equations with 2m unknowns, to be solved presently.

For the proof and statement of the main result we need two lemmas.

Lemma 4 Suppose that P is a polynomium of degree < m — 1 and that

Y1y e vy Ym are distinct complex numbers. Then
Pz)=> l( ) W\lk(z) (z€C), (43)
k=1 Tk (%)

and if apm_1 18 the leading coefficient for P (so that a1 = ﬁDm_l’P (2)
for all z),

s =3 Z(V’“) . (44)
k=1 Tk (V)

Proof.  The expression on the right of (43) is well defined precisely because
the ~y, are distinct. Since ’/T\lk (Vko) = Ok, it follows that the two sides of (43)
agree at the m points 7, 1 < kg < m. Since both are polynomiums of degree
< m — 1, they are identical. (44) follows directly from (43) when matching
the coefficients to 2™~ on both sides. [ |
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Lemma 5 Let 79 € C and let ¢ be a function, analytic in an open set
containing vo. Then

. z’”: o(w) D™ o ()

Y iy () (m— 1) (45)

Here v, = (Yo, ---,%) and the limit is taken through v = (71, ..., Ym) with
all ~yy distinct.

Note. 1t is essential for the validity of (45) that all v, converge to -y, simul-
taneously. If ¢ is a polynomium of degree < m — 1, (45) follows from (44)
with the values of the sum on the left of (45) not depending on v and 7.
For ¢ = P such a polynomium we may also use (45) in its general form to
obtain a limiting expansion from (43): write the sum in (43) as

PO/ (=)
) kzz:l 7r\lk ()

and use (45) (for z # ~, fixed) with

n_ P()
o) =
to obtain . P )
_ _ m m—1 < ,
P(Z) - (Z PYO) (m_1>|Dz’ o |Z:’YO .

Using Leibniz’ rule for the differentiation, one easily recovers the Taylor
expansion

m k—1
PE) =Y T =)

k=1

k—1

Proof. (Due to Bo Markussen). From ¢, extract the first m terms of the
Taylor expansion around 7y, and consider

~ n D lg(2)

(z) = ¢(2) — S (z—70)" . (46)

k=1

Using (44) with P the polynomium defined by the sum in (46), it is clear
that the assertion of the lemma amounts to

lim Y (Z;(’Yk)

= ¥
170 o= g, (V)

—0. (47)
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Because ¢ is analytic (in a neighborhood of 7y) we may write

0(2) = ¥(2) (z = 20)"
where 1 is analytic and ¥(vy) = 0.
For the next steps in the argument, fix 7,

.+, Ym distinct.
The sum S, in (47) we write as
T~ (Ve — VO)m_l
Sm > W) =Y ()
k=1 Nk ()
S (e — '70)m_1
+D () =
k=1 Tk (V&)

By (44) the second sum equals ¥ (7,,) . The first

_mz:: (Vk—’)’o) o

— ©Y9m-1,
Hz 1z;ék (7% — 7e)
where

_ w (Z) - 1/} (PYm)
Ui (2) = 2— (2 =) -
The sum &,,—1 has the same structure as S,,, only m has been replaced by

— 1 and ¥ by ¥,,,. §,,—1 may therefore be handled exactly as &,,, using the
decomposmon

Vm (V) = (Um (V) = Y (Ym—-1)) + Um (Ym—1)

to split S,,,—1 into two sums, in one of which k ranges from 1 to m — 2 while

the other reduces to ¥y, (Ym-1) by (44). Continuing and defining recursively
(for 2 <k <m with ¢y,41 =)

Uy (2) = Dt (Zz — f:ﬂ () (2 =), (48)

it is seen that each v is analytic and proceding by induction it follows that
for 0 <m/' <m —2,

/

m—m'—1 m—m'—2
S, =

(% — 70)
djm Ym— + wm m’ Y m—1m/ .
0 #1- { 2 19221 (1) 1= 1€7ék1 (Ve —e)

3

J

Thus, for m' =m — 2,

Z k1 (Vi)

(49)
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Note that here for £k < m — 1 the k£’th term is

=7 (50)

with ~; a point on the line segment connecting 7y, and ;1. We want this to
— 0 as 7 — 7, and for this it suffices to show that D,y o stays bounded
uniformly in the v; and z when all of these are close to . We therefore
need to be able to control repeated derivatives of the 1, uniformly in all
arguments, in a neighborhood of 7. As the final step in the proof we therefore
show by induction that for 2 < k < m + 1 and all m' > 0,

Uit (V) = (Ve — Y0) Dara (2)

/

sup | Dy (2)| < o0 (51)

where O is a small neighborhood of v if true, by (50) all terms in (49) for
k < m —1 will then — 0 as 7 — 7, and since also the term for £ = m,
Y (Ym) , tends to ¥ (y9) = 0, the desn"ed conclusion S, — 0 will follow.

For k = m + 1 (51) is a trivial assertion about 1 and its derivatives. If
(51) has been shown for k + 1 and all m’ we find from (48) first that iy (z)
is bounded and then for m’ > 1,

D;nllﬁk (2) = (z—m) D;”' Vg1 (2) — Vg1 (k)
2=k

/Dm 1Pk ( ) Yrt1 ('Yk)
2= Yk '

But by elementary calculations

D Vi1 (2) — Yrgr ()

Z—“Yk

N (i )" yr z%] (2 = W) DI (Yrg1 (2) = Yrgr () (53)

and here the sum

)m’—|—1

i O =2 Doy (2) = s () = Q=2 pteng (%)

(m/ + 1)!
for some v* on the line segment between z and 7. It is now clear from the

induction hypothesis that (53) has the desired boundedness properties, hence
so has D™y, from (52) as desired. |
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We are now able to state and prove the main result of the paper. Recall
from Section 2 that the (V},),~; are independent and of phase-type so the
Laplace transform for the V,, when n > 2 is given by (12), while the distribu-
tion of V] is either given by the survivor function (10) using the probability
Pzo:0 or is the same as that of V5 using the probability P*0. Recall also the
notation Qs = Q — 1.

Theorem 6 Suppose that the waiting times (V,,),~, are independent and
of phase-type as just described, and the claims (Unjn>1 are independent of
(V,,) and iid with a distribution whose Laplace transform Ly is given by (40)
with Ry a polynomium of degree m > 1 and Py a polynomium of degree
< m —1 and Py and Ry normalized as described after (40). Then the
Laplace transform of Ty, is given as follows: for 6 > 0,

m —1 x
— Tk (QH—a'ka) . e VkTO -
Z}T:l Tk

£ (0) — E107i06_0Truin —

where for 1 < k < m, the v, = v (0) are the precisely m possibly complex
valued solutions, counted with multiplicity, to the master equation

Ly (0 —az) = };Z ((j)) (: LUl(z)> (55)

that satisfy Re z < 0, and where

Py ()

Ty =Tk (9) = —
Ve (Ve)

(56)

provided all the v are distinct while if not, (54) is defined by continuous
extension using Lemma 5.
In the case where Vi has the same distribution as the V,, for n > 2,

C (0) — Z Qa; E@“O’ioe—@Tmm - ETIZL:I ’rkLV (9 — aryk) eVkTo
20 — ‘

m
i0eE > k=1Tk

(57)

Note. The master equation (55) also has the alternative and quite appealing
form B

Ly(z)Ly (0 — az) =1,
where for Rez < 0 it is of course essential that it is the analytic continuation
Ly rather than the Laplace transform Ly itself that appears on the left.
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Remark 1 For most (we believe all but countably many) 0 > 0, the m so-
lutions to (55) with Re~y, < 0 will be distinct, hence the i, are well defined
by (56) and so are the Laplace transforms (54) and (57). Since the Laplace
transforms are continuous functions of 0 it suffices to know them for a dense
set of 0-values, however we find it useful to note that e.q. the expression on
the right of (54) is well defined even if two or more i, are the same (in which
case (56) does not make sense): the precise expression depends on how the
Yk are grouped according to the distinct coinciding values. If e.g. all v, = 7o,
the right hand side of (54) becomes by Lemma 5

~

__m—1 Py ()
D'y v |’7:’YO

m—1Pu(v) -1 YTo
D7 Qefa'y i €17 |1=yq

And if y1 = v2 = o and the vy for k > 3 are distinct and # ~yy, then ry is
well defined by (56) if k > 3 and to compute the right hand side of (54) one
further needs

2
_ Pc ()
T Q _1a . 67km0 = D
— " ( ’ ”’“>Zo "y ILss (v — )

2
P,
Z Tk _ D»Y C (/Y)
k=1 v Hj23 (7 — %

-1
<Q6—oﬁ)i0 e |’Y=70 ’
k

) |’Y=’Yo

as follows using Lemma 5 with m = 2.

Typically the case of concurring . arises as follows: as 0 increases (or
decreases) through some critical value, two distinct real solutions of (55)
collapse into one and then split into two complex conjugate solutions.

With concurring vg, the basic structure of the martingale determining
function g also changes from the form (31): if e.g all v — o (with the
distinct during the limit), the limiting g takes the form

- m—1 P, _ -

(h2,0) = —e 0 (mi1)!D7 1 Uv(w (Qe—lay)i‘ﬁ e (x> 0)
g i el e—et 1 Dm—]_ PU('Y) | (I -
(m—=1)!"" 5 Y=Y =

using Lemma 5 as above. For x > 0 this yields a contribution of the form
m—1
o~ 070w 3 &t
=0

i.e. the different exponentials € from the original g in (31) are replaced by
€M% times a polynomium in x of degree < m — 1.
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Proof.  (Theorem 6). Let 6 > 0 be given. We first show that the master
equation (55) has exactly m solutions v (counted with multiplicity) with
Re~, < 0. Rewrite the equation as

Py (2) Ly (0 — az) = Ry(2), (58)

an equivalent formulation since Py and Ry do not have any common roots.
Because € > 0 both sides of (58) are analytic in an open set containing the
domain {z: Rez < 0} of the complex plane. As noted above ((ii), p.15) all
the m roots of Ry satisfy Rez < 0. Now take p > 0 and let I', denote the
interior of the subset of C determined by the boundary

Oy, ={z:]zl=p.Rez <0} U{z:2=1iy,—p <y < p}.

By Rouché’s theorem from complex function theory, Ry and the difference
Ry — PyLy (0 — a-) will have the same number of zeros (counted with mul-
tiplicity), i.e. m zeros, in I', provided

|Py(2)Ly (0 — az)| < |Ru(z)| (2 €dL,). (59)

But if z € dI', with Rez < 0, |z| = p, since|Ly (0 — az)| < 1 we only need
|Py(2)] < |Ry(z)] in order to obtain (59), which is true for p large enough
because Ry is a polynomium of higher degree than Py. And if z € JI',
with Rez = 0, |2| < p we still have |Ly ( —az)| < 1 but are now inside
the domain where Ly (2) = Py(z)/Ry(z) is defined as a Laplace transform,
hence |Ly(2)| < 1ie. |Py(2)|] < |Ry(2)|. Thus (59) is true and we see that
for p large enough, (55) has precisely m solutions in I',, hence precisely m
solutions z satisfying Re z < 0.

Assume now that the solutions ~y; are distinct. Recalling that (see (36)),

Sk = TkaTQg__la%q

= —rLy (0 — ayg)
B (%)

Py ()

we see that the right hand side of (42) becomes

and inserting 7y given by (56) this

o Lo () = Po (v
v ( k)lo U ( k)w%g )
k=1 Ve (V&)

(Ru (v) = Pu (v))

H
]

R | =
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by Lemma 4. This establishes (42) and (41) follows similarly inserting (56)
on the right hand side of (41) and again using Lemma 4. It is more delicate to
treat the case where two or more of the 7, coincide — we don’t give the details
but refer to Remark 1. But in all cases now, by the discussion preceding the
statement of the theorem, for 6 > 0 given and 7 the m solutions to (55)

with Revy, < 0, the process (g (Tmm Nt; XTMHM, ijin/\t)>t>0 is a bounded

martingale when g is as in (31), K = — Y, g (see (37)), ¢ = m:Qplan, 4
(see (34)) and 7 is given by (56) (if all the 7 are distinct, otherwise the
definition of g is obtained by continuous extension from Lemma 5). Thus by
optional sampling, cf. (15),

]Emo’iol(T <t)K670Trum+]Ezoyi01(Truin>t)670t Z Cjt,ke’}/kj(t = g (07 xO’ ZO) (t Z 0) :

ruin> =
) (60)
Since Reyy < 0 and X; = X; > 0 on the set (T, > t), the last term is
dominated by a constant times e~% which — 0 as t — oo. Thus, for 6 > 0,

) 1
Exo,loe—eTruin — ?g (0, 1'0, Z())

and (54) follows. Multiplying by a;, and summing on iy gives (57) since

> iy (Qlar ). = 0" Qg ard = —Lv (6 — ),

i
i0€E 0

see (12). |

Although Theorem 6 does not give the Laplace transform £ (#) in closed
analytic form, the result is good enough to make numerical computation in
concrete models easy: the master equation (55) can be rewritten as P (z) =0
with P a polynomium, hence the problem of determining the 74 (0) for each
0 is reduced to that of locating the relevant roots of P. After that, finding
the i () and c¢;x, (0) causes no problems as long as the 7 are distinct. Note
though that for values of # where the v, are distinct, but some of them close
together, the formula (56) for the ry becomes numerically unstable.

For m = 1 with the U, exponential so that Ry(z)/Py(z) = (6+ z) /5,
using (12), (55) reduces to (17) from Theorem 2.

We shall conclude with a discussion on how to determine the ultimate
ruin probability pru,. This may be done using (54) and taking limits as
010, cf. (4), but we also have
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Corollary 7 Suppose that a& > EU; so that pry, < 1. Then the equation

~ Ru(z)

Ly (—az) = Po2)

(61)

has precisely m possibly complex valued solutions vy = v (0), 1 < k < m,
counted with multiplicity, that satisfy Re~yr < 0, and the ruin probability is
given by the expression

~ S n0) (@701,

ruin — ]PHJOJ'O Truin = 0 62
p ( < 00) ST (0) (62)
where Py (44(0)
ry (0) = —— % (63)
Ye(0)mz " ((0))

provided all the v(0) are distinct while if not, (62) is defined by continuous
extension using Lemma 5.
In the case where Vi has the same distribution as the V,, for n > 2,

, m. 0) L (— 0)) e (0o

Pruin = Z aio]P)wO’ZO (Truin < OO) - Zk_l rk( ) ‘r/n( ayk( )) € .
i0EE > i1 7k(0)

Note. (61) is obtained from (55) by formally taking 6 = 0. Obviously (61)

always has the solution z = 0.

Proof.  We imitate the proof of Theorem 6 with the precaution that all
action must take place in a part of the complex plane bounded away from
0, and therefore proceed as follows: choose € > 0 so small that Ee*’t < oo
(i.e. Ry(z) does not have any roots z with |z| < ¢), and replace I', from p.22
with the open region I'; determined as interior to the boundary

o, ={z:|z| =p,Rez < —e}U{z:2=—c+1iy,—p <y < p}.

To conclude by Rouché’s theorem that (61) has precisely m solutions for p
sufficiently large and ¢ sufficiently small, we need to show (cf. (59)) that

Lu(2)||Ly (—az)| <1 (z€0r?). (64)

If |z| = p this is argued exactly as in the proof of Theorem 6. If 2 = —¢ + iy
with —p <y < p, note that for € > 0 small enough in fact

’EU<Z)‘ = < Ly(—¢)

/ e W) By (dx)
0
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while

Ly (—az)| = ' / oot 1y (d)| < Ly (ag) .

To complete the proof of (64) it suffices to observe that € +— Ly(—¢)Ly (ag)
is continuously differentiable in a neighborhood of ¢ = 0 with a derivative
that satisfies

D. (Ly(=&)Ly (ag)) |- = EUy —a& < 0

because of the basic assumption made in the statement of the corollary, and
thus, for € > 0 small enough,

LU(_g)LV (OzE) < EU(O)LV (O) =1.

Proceeding now exactly as in the proof of Theorem 6, consider the m solu-
tions 7%(0) to (61) and define (being lazy and assuming that the solutions are

distinct) 74(0) by (63), K(0) = —> 7" 7r,(0) and ¢;x(0) = r(0) (Q:}WR(O)Q)Z.-
Then (g (T Nt; X’TM, jTAt))po is a P*o-_martingale where

. N Zgn Cik(O)evk(O)m (l' > 0)
st = RO G20

and the analogue of (60) becomes
K(0)P™% (Tyyy < 8)+E Lo o i 0)e™OXe = ¢ (0:m,49) (£ >0).
The last term is dominated by (using that X, = X, on (Truin > 1))

B 1o 3 e 0) X0 (65)

But the assumption a& > EU; ensures that lim;_ ., X; = oo a.s. so because
Rev,(0) < 0, (65) vanishes as t — oo, hence (60) in the limit yields the
desired equation

K(O)Pmo,io (Truin < OO) =g (0, Zo, Z()) .

Corollary 7 applies only under the assumption a& > EU;, but in all cases
the ruin probability may be found from the Laplace transform (54), see (4). It
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is of some interest to verify why, in case & < EUy, letting 6 | 0 in (54) yields
the limit 1, and this we now argue assuming the sharp inequality a& < EU;
to hold.

If formally we put 6 = 0 in (55), we obtain the equation (61) which as
already noted always has z = 0 as a solution. Furthermore, differentiating
at z = 0 gives for the left hand side the derivative a& and for the right, the
derivative EU;. Thus (13) is simply an inequality between the derivatives for
z = 0 on the left and right of (61).

Returning to (55) as it is used in Theorem 6, fix § > 0 close to 0 and
suppose that (13) holds in the sharp form af < EU;. Let z = = be real and
< 0. Then Ly (f — ax) for x =0 is

Ry (0)
Ly (0)<1= Py (0)
Furthermore the derivative
DoLy (6 — az) |owo < a€ < EU, = D20
Py (z)

which is enough (draw a picture) to conclude that if o < EU;, then the mas-
ter equation (55) has for 6 > 0 sufficiently small at least one real solution
v (6) < 0 such that limg_o~y (6) = 0 which is in agreement with Theorem
6 in the following sense: suppose that as 6 | 0, (55) has m distinct solu-
tions 1 (0) ..., vm (0) such that v, (#) < 0 and converges to 0, while 7y ()
converges to a non-zero limit 7 (0) for £ > 2. Then, by (56),

_ Pu(0)
I3 (= (0))
while for £ > 2, limg_,g7y, () 7 (f) = 0. Consequently (54) implies, when

multiplying by 7 (f) in numerator and denominator, that with x the limit
(66),

lim 71 (6) 71 (6) = (66)

—r(Q7'q);,

R

Pruin =

which equals 1 because of (7).
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