POSITIVITY THEOREM WITHOUT COMPACTNESS ASSUMPTION

Rémi Léandre

I. INTRODUCTION

Let us consider a general manifold M and some vector smooth fields $X_i, i = 0, ..., m$. Let us suppose that in all points x, the Lie algebra spanns by the vector fields X_i, X_0 alone excluded is equal to $T_x(M)$. Let us consider an Hoermander's type operator $\Delta = X_0 + 1/2 \sum_{i>0} X_i^2$. Hoermander's theorem ([H]) states that under this assumption, the semi-group generated by Δ has a smooth density $p_t(x, y)$. We are concerned by showing when $p_1(x, y) > 0$. For that, we consider the control equation:

(1.1)
$$dx_t(h) = X_0(x_t(h))dt + \sum_{i>0} X_i(x_t(h))h_t^i dt$$

starting from x, where h_t^i belongs to $L^2([0,1])$. In \mathbb{R}^d , when Hoermander's condition is given in x and when the vector fields X_i are bounded with bounded derivatives of all orders, Ben Arous and Léandre ([B.L]) have given the following criterium: $p_1(x,y) > 0$ if and only if there exists a h such that $x_1(h) = y$ and such that $h' \to x_1(h')$ is a submersion in h'.

This last condition is called Bismut condition ([Bi]).

Tools used by Ben Arous and Léandre were Malliavin Calculus. This theorem was generalized by Léandre ([L₁]) for jump process. An abstract version for diffusion was given by Aida, Kusuoka and Stroock ([A.K.S]). Bally and Pardoux ([B.P]) has given a version of this theorem to the case of a stochastic heat equation. A. Millet and M. Sanz Sole ([M.S]) have given a positivity theorem to the case of a stochastic wave equation. Fournier ([F]) has generalized the theorem of Léandre ([L₁] to the case of a non-linear jump process associated to the Boltzmann equation. Léandre ([L₃]) has studied the case of a delay equation on a manifold.

By using the mollifer in Malliavin sense introduced by Jones-Léandre ([J.L]) and Léandre ([L₂], our goal is to remove the boundedness assumption in the theorem of Ben Arous and Léandre, and to generalize it to a general manifold M not obligatory complete. Our theorem is the following:

Theorem: Let us suppose that in all points x of the manifold M, the Lie algebra spanns by the X_i , X_0 alone excluded, is equal to $T_x(M)$. Then $p_1(x, y) > 0$ if and only if there exists an h such that $x_1(h) = y$ and such that $h' \to x_1(h')$ is a submersion in h.

We thank the warm hospitality of Maphysto, university of Aarhus, where this work was done.

PROOF OF THE THEOREM

Let us show that the condition is suffisant.

Let us introduce the solution of the stochastic differential equation in Stratonovitch sense, where B_t^i are some independent Brownian motions:

(2.1)
$$dx_t(x) = X_0(x_t(x))dt + \sum_{i>0} X_i(x_t(x))dB_t^i$$

starting from x. Let us introduce the exit time τ of the manifold. If f is a smooth function on M, we have classically (See [I.W], [Nu]):

(2.2)
$$\int p_1(x,y)f(y)dy = E[f(x_1(x))1_{\tau>1}]$$

In general, we cannot apply Malliavin Calculus to the diffusion $x_t(x)$. In order to be able to apply Malliavin Calculus, we introduce the mollifers of Jones-Léandre ([J.L]) and Léandre ([L₂]). We consider a smooth function from M into R^+ , equal to 0 only in x and which tends to ∞ when y tends to infinity, the one compactification point of M. We consider a smooth function over] - k, k[($k \in R^+$), equals to 1 over [-k/2, k/2] and which behaves as $\frac{1}{(k-y)^{+r}}$ when $k \to k_-$. Outside] - k, k[, this function, called $g_k(y)$ is equals to $= \infty$. We suppose that $g_k \geq 1$.

We choose a big integer r. We choose a smooth function from $[1, \infty]$ into [0, 1], with compact support, equals to 1 in 1 and which decreases.

The mollifer functional of Jones-Léandre ([J.L]) is

(2.3)
$$F_k = h(\int_0^1 g_k(d(x_s(x)))ds)$$

 F_k belongs to all the Sobolev spaces in the sense of Malliavin Calculus if r is big enough (See [J.L], [L₂], [Nu], [I.W], [Ma]), and is equal to 1 if $\sup_s d(x_s(x)) \le k/2$, is smaller to 1 if $\sup_s d(x_s(x)) > k/2$ and is equal to 0 almost surely if $\sup_s d(x_s(x)) \ge k$. Moreover, $F_k \ge 0$.

We introduce the auxiliary measure μ_k :

(2.4)
$$\mu_k: f \to E[F_k f(x_1(x))]$$

To the measure μ_k , we can apply Malliavin Calculus. In particular, μ_k has a smaller density q_k smaller than $p_1(x, y)$. In particular, if there exists a h such that $x_1(h) = y$ and $h' \to x_1(h')$ is a submersion in h, we can find an enough big k such that $q_k(y) > 0$, by the positivity theorem of Ben Arous and Léandre ([B.L]). This shows that the condition is suffisant.

In order to show that the condition is necessary, we remark that if $p_1(x, y) > 0$ in y, $q_k(y)$ is still strictly positive for k enough big, because for k big enough, for ϵ small

(2.5)
$$|E[(1_{\tau>1} - F_k)f(x_1(x))]| \le \epsilon ||f||_{\infty}$$

where $||f||_{\infty}$ denotes the uniform norm of f.

Therefore, it is enough to apply Ben Arous-Léandre result in the other sense.

Remark: Let us suppose that Hoermander's condition is checked only in x. We can suppose that h is decreasing and that g_k decreases to 1, such that F_k increases to $1_{\tau>1}$. By Malliavin Calculus, μ_k has a density q_k , which increases. Let us consider the indicatrice functional of a set of measure 0 for the Lebesgue measure over M. We have:

But

(2.7)
$$\mu_k[f] = E[F_k f(x_1(x))] =$$

and $F_k f(x_1(x))$ increases and tends to $1_{\tau>1} f(x_1(x))$, which is in L^1 . We deduce that

(2.8)
$$E[1_{\tau>1}f(x_1(x))] = 0$$

This means that the law of $x_1(x)$ has a density without to suppose that Hoemander's hypothesis is checked in all points.

REFERENCES

[A.K.S] Aida S. Kusuoka S. Stroock D.W.: On the support of Wiener functionals. In "Asymptotics problems in probability theory: Wiener functionals and asymptotics". K.D. Elworthy S. Kusuoka N. Ikeda edt. Pitman Res. Math. Series. 284 (1993), 3-34.

[B.P] Bally V. Pardoux E.: Malliavin Calculus for white noise driven parabolic S.P.D.E.S. Potential analysis. 9.1. (1998), 27-64.

[B.L] Ben Arous G. Léandre R.: Déroissance exponentielle du noyau de la chaleur sur la diagonale (II). P.T.R.F. 90.3 (1991), 377-402.

[Bi] Bismut J.M.: Large deviations and the Malliavin Calculus. Progress in Math. 45. Birkhauser (1984).

[F] Fournier N.: Strict positivity of the solution to a 2-dimensional spatially homogeneous equation without cutoff. Ann. Inst. Henri. Poincaré. Probab. Stat. 31. 4 (2001), 481-502.
[H] Hoermander L.: Hypoelliptic second order equations. Act. Math. 119 (1967), 147-171.
[I.W] Ikeda N. Watanabe S.: Stochastic differential equations and diffusion processes. North-Holland (1981).

[J.L] Jones J.D.S. Léandre R.: A stochastic approach to the Dirac operator over the free loop space. Proc. Steklov. Inst. 217 (1997), 253-282.

 $[L_1]$ Léandre R.: Strange behaviour of the heat kernel on the diagonal. In "Stochastic processes, physics and geometry". S. Albeverio edt. World Scientific (1990), 516-527.

 $[L_2]$ Léandre R.: Brownian motion over a Kaehler manifold and elliptic genera of level N. In "Stochastic analysis and applications in physics". R. Sénéor L. Streit edt. Nato Asie Series. Kluwer (1994), 193-219.

[L₃] Léandre R.: Positivity theorem for a stochastic delay equation on a manifold. Preprint.

[Ma] Malliavin P.: Stochastic calculus of variation and hypoelliptic operators. In "Stochastic analysis" K. Itô edit. Kinokuyina (1978), 155-263.

[M.S] Millet A. Sanz-Solé M.: points of positive density for the solution to a hyperbolic SPDE. Potential Analysis 7.3. (1997), 623-659.

[Nu] Nualart D.: The Malliavin Calculus and related topics. Springer (1995).

Maphysto. Department of mathematics. University of Aarhus. Aarhus. DENMARK

Institut Elie Cartan. Faculté des sciences. Université Henri Poincaré. 54000. Vandoeuvre-les-Nancy. FRANCE

email: leandre@iecn.u-nancy.fr