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SHOT NOISE COX PROCESSES
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Abstract

Shot noise Cox processes constitute a large class of Cox and Poisson cluster

processes in Rd , including Neyman-Scott, Poisson-Gamma, and shot noise G

Cox processes. It is demonstrated that due to the structure of such models,

a number of useful and general results can easily be established. The focus is

on the probabilistic aspects with a view to statistical applications, particularly

results for summary statistics, reduced Palm distributions, simulation with or

without edge e�ects, conditional simulation of the intensity function, and local

and global Markov properties.
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1. Introduction

Cox process models constitute one of the most important and applicable classes

of point process models for aggregated or clustered point patterns caused by e.g. an

(usually unobserved) environmental random heterogeneity, and they play a major role

in stochastic geometry and spatial statistics, see e.g. [14, 15, 47] the references therein.

Brie
y, a Cox process is the natural extension of a Poisson process, considering the

intensity measure of the Poisson process as a realisation of a random measure. When a

Cox processX is de�ned on the d-dimensional Eucledian space Rd it is usually speci�ed

by a random �eld Z(�) � 0, � 2 R
d , so that the conditional distribution of X given

Z is a Poisson point process on R
d with intensity function Z. Many recent papers
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[6, 7, 8, 9, 10, 12, 19, 26, 35, 50] deal with simulation-based inference for new 
exible

model classes of such Cox processes, cf. the surveys [34, 38].

This paper is concerned with shot noise Cox processes (SNCP), i.e. when Z is of

the form

Z(�) =
X
j


jk(cj ; �) (1)

where k(cj ; �) is a kernel (i.e. a density function for a continuous d-dimensional random

variable) and the (cj ; 
j) 2 R
d � (0;1) are the points of a Poisson point process � on

R
d � (0;1); further details and conditions are given in Section 2. This is a rich class

of Cox process models which includes Neyman-Scott processes [39], Poisson-gamma

processes [50], and shot noise G Cox processes [8] as special cases, cf. Section 2. As

discussed in more detail in Sections 2 and 4, SNCPs can also be viewed as a large class

of Poisson cluster processes.

The focus in the paper is on the probabilistic aspects of SNCPs with a view to

statistical applications, and the aim is both to give a uni�ed and self-contained expo-

sition and to present a number of new results. Particularly, we demonstrate that the

structure of SNCPs allow us easily to establish various useful and general results.

The paper is organised as follows. Section 2 provides some background material.

Section 3 concerns results for the summary statistics and the reduced Palm distribu-

tions of a SNCP. The latter turn out to be of a particular simple form. Section 4

studies di�erent simulation algorithms for simulation of a SNCP within a bounded

window W , and for conditional simulation of � given the restriction of a SNCP within

W . In particular the role of edge e�ects is discussed. Finally, Section 5 deals with local

and global Markov properties of SNCPs when the kernel has a bounded support, and

the similarities and di�erences to usual Gibbs or Markov point processes are clari�ed.

2. Conditions and examples

This section provides some background material, conditions, and examples used

throughout the text.

We require that the Poisson point process � is speci�ed by a locally �nite di�use

intensity measure �, i.e. �(D) is de�ned for Borel sets D � R
d � (0;1), �(D) < 1

whenever D is bounded, and �(f(c; 
)g) = 0 for all (c; 
) 2 R
d� (0;1). Moreover, Z is
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assumed to be almost surely locally integrable, i.e. with probability one,
R
B
Z(�)d� <1

for bounded Borel sets B � R
d . These restrictions become convenient for establishing

the results in Sections 3{4. As veri�ed later in Proposition 1, the intensity function

�(�) = EZ(�) of X is given by

�(�) =

Z

k(c; �)d�(c; 
) (2)

provided the integral is �nite for all � 2 R
d | in turn this condition implies that Z is

almost surely locally integrable.

It is often convenient to view a SNCP as a cluster process, meaning that X j� is

distributed as the superposition
S
j Xj of independent Poisson processes Xj , (cj ; 
j) 2

�, where Xj has intensity function 
jk(cj ; �). The point process C of cj 's is countable

but not necessarily locally �nite (this is exempli�ed in Example 3 below). However,

for any bounded B � R
d , with probability one XB � X \B is �nite, and so only �nite

many Xj has points in B. We refer to C as the centre process and to Xj as the cluster

with centre cj , intensity 
j , and dispersion density k(cj ; �). In the literature the centre

points are also called parent or mother points and the clusters for o�spring or daughter

points.

Often in applications � is of the form

�(D) =

Z Z
(c;
)2D

dcd�(
) (3)

where � is a locally �nite measure on (0;1). This is equivalent to assume that the

distribution of � is invariant under translations of C in R
d , and it implies that C is

independent of the point process of cluster-intensities. By (2),

�(�) =

Z
k(c; �)dc

Z

d�(
) (4)

provided the integrals are �nite. If furthermore k(c; �) = k(� � c) is invariant under

translations in R
d (where we abuse the notation and let k(�) denote a density function

for a continuous d-dimensional random variable), we have that Z and hence X is

stationary, i.e. their distributions are invariant under translations in R
d . For short we

refer to this as the stationary case of a SNCP. Note that the intensity then reduces to

� =

Z

d�(
)
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provided the integral is �nite. Finally, if also k(�) = k(k�k) is isotropic (where we

again abuse the notation), the distribution of X is invariant under motions in R
d .

Example 1. In the stationary case of a SNCP where � is concentrated at the pa-

rameter � (i.e. �((0;1)) = �(f�g) > 0), we have a Neyman-Scott process [39] with

intensity � = ��, where � = �(f�g) is the intensity of the centre process, see e.g. [47].

Two mathematically tractable models are

(I) a Mat�ern cluster process [27, 28] where

k(�) = 1[k�k � r]=(!dr
d)

is the uniform density on the ball b(0; r) in R
d with centre 0 and radius r > 0,

and

!d = �d=2=�(1 + d=2)

is the volume of b(0; 1);

(II) a Thomas process [49] where

k(�) = exp(�k�k2=(2!2))=(2�!2)d=2

is the density for d independent normally distributed variables with mean 0 and

variance !2 > 0.

In both cases k is isotropic. We refer to the kernels in (I) and (II) several times in the

sequel.

Example 2. Suppose that � is of the form (3) where � = �((0;1)) <1. Then C is a

stationary Poisson process with intensity � and the cluster-intensities are independent

of C and i.i.d. with distribution Q = �=�. A Neyman-Scott process is clearly a special

case of this model.

Example 3. A shot noise G Cox process [8] is a SNCP with � of the form (3) where

� is absolutely continuous with respect to Lebesgue measure with density

f�;�;� (
) = �
���1 exp(��
)=�(1� �); 
 > 0: (5)

Here \G" refers to that

�G(B) =
X
j


j1[cj 2 B]
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is a so-called G-measure on the Borel �-algebra in R
d , see [8] or [38]. Further � > 0,

� < 1, and � � 0 are parameters with � > 0 if � � 0. These restrictions are equivalent

to local �niteness of �.

The intensity function exists only for � 6= 0. Then

�(�) = ���
Z
k(c; �)dc

which reduces to � = ��� in the stationary case.

The distribution of � depends much on � as described below.

The case � < 0: Then � is a special case of the marked Poisson process in Example 2,

i.e. C is a stationary Poisson process with intensity ����=�, the 
j are i.i.d. and

independent of C, and each 
j is gamma distributed with shape parameter �� and

inverse scale parameter � .

The case 0 � � < 1: The situation is now less simple as C is not locally �nite,

since
R1
0
f�;�;�(
)d
 = 1. As f(c; 
) 2 � : c 2 Ag and f(c; 
) 2 � : c 2 Bg are

independent for disjoint Borel sets A;B � R
d , we can for simplicity assume that C is

concentrated on a bounded Borel set B with Lebesgue measure jBj. Then the 
j de�ne

an inhomogeneous Poisson process on (0;1) with intensity function jBjf�;�;� , the cj

are i.i.d. and independent of the 
j , and each cj is uniformly distributed on B.

For � = 0, we have a Poisson-gamma process as �G is a so-called gamma-measure

[14, 50].

3. Summary statistics

In this section we exploit the form (1) of Z and the so-called Slivnyak-Mecke theorem

to establish di�erent useful results for the summary statistics of a SNCP X . As is

custom in point process theory, we abuse notation and write e.g. X n� � X nf�g when

we delete a point � from X , and X [ � � X [ f�g when we add a point � 2 R
d to X .

The following lemma presents the Slivnyak-Mecke theorem in terms of � and X j�,

respectively. The lemma follows from Theorem 3.1 in [29] which also states that the

Poisson processes � and X j� are uniquely characterised by the equations (6) and (7).

For the point process X , we let Rd be equipped with the usual Borel �-algebra, Nlf

denotes the set of locally �nite subsets of Rd , Nlf is equipped with the usual �-algebra
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Nlf generated by the sets FB;n = fx 2 Nlf : card(xB) = ng for n = 0; 1; : : : and

bounded Borel sets B � R
d , and Nlf �R

d is the corresponding product �-algebra. For

the point process � on Rd � (0;1), we de�ne the corresponding �-algebras in a similar

way.

Lemma 1. We have that

E

X
(c;
)2�

f(� n (c; 
); (c; 
)) =

Z
Ef(�; (c; 
))d�(c; 
) (6)

for nonnegative measurable functions f , and

E

� X
�2X

h(X n �; �)

�����
�
=

Z
Z(�)E [h(X; �)j�]d� (7)

for nonnegative measurable functions h.

3.1. First and second order characteristics

Expressions for the product moments E [Z(�1 ) � � �Z(�n)] can easily be obtained by

combining (1) and (6). Below we concentrate on the two �rst moments, i.e. the intensity

function �(�) = EZ(�) and the pair correlation function g(�; �) = E [Z(�)Z(�)]=[�(�)�(�)]

(provided the means exist, and taking 0=0 = 0). These two functions are the funda-

mental characteristics or summary statistics of the �rst and second order properties

for a spatial point process, see e.g. [47]. Moreover, Ripley's K-function [41, 42] for

the stationary case and its extension [3] for the nonstationary case can be obtained by

integrating the pair correlation function.

Proposition 1. The intensity function exists and is given by

�(�) =

Z

k(c; �)d�(c; 
) (8)

provided the integral is �nite for all � 2 R
d . Furthermore, the pair correlation function

exists and is given by

g(�; �) = 1 + �(�; �)=(�(�)�(�)) (9)

provided the integral

�(�; �) =

Z

2k(c; �)k(c; �)d�(c; 
)

is �nite for all �; � 2 R
d .
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Proof. The �rst result follows immediately from (1) and (6).

Suppose that �(�; �) < 1 for all �; � 2 R
d . Then by (8) and Jensen's inequality,

�(�)2 � �(�; �) <1, so �(�) <1 for all � 2 R
d . Using (6) twice we obtain that

E

X
j 6=k

f(� n f(cj ; 
j); (ck; 
k)g; (cj ; 
j); (ck; 
k))

=

Z Z
Ef(�; (c; 
); (c0 ; 
0))d�(c; 
)d�(c0; 
0)

for nonnegative measurable functions f . Combining this with (6) and (8), we see that

E [Z(�)Z(�)]

= E

X
j 6=k


jk(cj ; �)
kk(ck; �) + E

X
j


2j k(cj ; �)k(cj ; �)

=

Z Z

k(c; �)
0k(c0; �)d�(c; 
)d�(c0; 
0) +

Z

2k(c; �)k(c; �)d�(c; 
)

= �(�)�(�) + �(�; �)

whereby (9) is veri�ed.

Thus g � 1, in accordance with the usual interpretation that g � 1 indicates

aggregation of the points in X , see e.g. [38, 48]. Roughly speaking Proposition 1

implies that the �rst and second order properties of a SNCP depend only on the choice

of kernel! This is exempli�ed below.

Example 4. Suppose that k(c; �) = k(� � c) and consider �rst a stationary Neyman-

Scott process (Example 1). By (8) and (9),

� = ��; g(�; �) = 1 + '(� � �)=�; (10)

where

'(�) =

Z
k(�)k(� + �)d�

is the density for the di�erence between two independent points which each have density

k. For a Thomas process this reduces to

'(�) =
�
4�!2

��d=2
exp

�
� k�k2=

�
4!2

��
;

while expressions for a Mat�ern cluster process can be found in [46, 47].
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Consider next a stationary shot noise G Cox process with � 6= 0 (Example 3). Then

� = ���; g(�; �) = 1 +
1� �

���+2
'(� � �): (11)

The class f(�; g) : � > 0; � > 0g obtained from (10) and the class f(�; g) : � > 0; � <

1; � > 0g obtained from (11) both agree with f(�; 1 + a') : � > 0; a > 0g, so for any

given kernel k we cannot distinguish between these classes. For instance, imagine that

we have obtained nonparametric estimates �̂ and ĝ, using only the assumption that

X is a stationary point process, see e.g. [37, 48]. Then we cannot distinguish between

whether (�̂; ĝ) �ts a Neyman-Scott process or a shot noise G Cox process.

3.2. Reduced Palm distributions and further results for summary statistics

We now establish a very simple description of the reduced Palm distributions of a

SNCP which e.g. makes it very easy to simulate from these distributions by the methods

in Section 4. Related results for in�nite divisible point processes can be found in [1, 22]

and [29] (Theorem 6.1).

Suppose that X is a SNCP with intensity function �. For � 2 R
d , let P !

� denote

the reduced Palm distribution at the point �. The reduced Palm distributions are for

Lebesgue almost all � 2 R
d with �(�) > 0 uniquely de�ned by the equations,

E

X
�2X

h(X n �; �) =

Z Z
h(x; �)dP !

�(x)�(�)d� (12)

for nonnegative measurable functions h, cf. [14, 47].

Proposition 2. For �(�) > 0, let

Z�(�) = 
�k(c�; �); � 2 R
d ;

where (c� ; 
�) is a random variable with distribution

P ((c�; 
�) 2 D) =

Z
D


k(c; �)d�(c; 
) =�(�) (13)

for Lebesgue sets D � R
d � (0;1). Assume that X�j(
� ; c�) is a Poisson process with

intensity function Z�, and (
� ; c�; X�) is independent of (�; X). Then for Lebesgue

almost all � 2 R
d with �(�) > 0,

P !
�(F ) = P (X [X !

� 2 F ); F 2 Nlf : (14)
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Proof. The reduced Palm distributions are for Lebesgue almost all � with �(�) > 0

uniquely characterised by the equations

E

X
�2X

1[� 2 A; (X n �) \ B = ;] =

Z
A

P!
�(FB;0)�(�)d� (15)

for bounded Borel sets A;B � R
d , where FB;0 = fx 2 Nlf : x \ B = ;g. This follows

from the following facts. It is well known that Nlf is generated by the events FB;0 for

bounded Borel sets B � R
d . Hence the class of sets FB;0 � A for bounded Borel sets

A;B � R
d , generates the product �-algebra on Nlf � R

d . This class is closed under

intersection, so (15) and standard measure theoretical methods imply (12).

Now, for bounded Borel sets A;B � R
d ,

E

X
�2X

1[� 2 A; (X n �) \ B = ;]

= E

�
E

� X
�2X

1[� 2 A; (X n �) \ B = ;]

�����
��

= E

Z
A

X
(c;
)2�


k(c; �) exp

�
�

Z
B

X
(c0;
0)2�


0k(c0; �)d�

�
d�

=

Z
A

E

X
(c;
)2�


k(c; �) exp

�
�

Z
B

X
(c0;
0)2�


0k(c0; �)d�

�
d�

=

Z
A

Z
E
k(c; �) exp

�
�

Z
B

X
(c0;
0)2�[(c;
)


0k(c0; �)d�

�
d�(c; 
)d�

=

Z
A

Z

k(c; �) exp

�
�

Z
B


k(c; �)d�

�
d�(c; 
)d�

� E exp

�
�

Z
B

X
(c;
)2�


k(c; �)d�

�

=

Z
A

P (X !
� \ B = ;)�(�)d� � P (X \B = ;)

=

Z
A

P ((X [X !
�) \ B = ;)�(�)d�

using (7) to obtain the second identity, and (6) for the fourth identity. Hence the P !
�

given by (14) for �(�) > 0 satisfy (15), and so they are reduced Palm distributions.

By (14) we can view P !
� as the distribution of a Cox process with random intensity

function Z !
�(�) = Z(�) + Z�(�). If � is of the form (3), then (4) and (13) imply that


� and c� are independent with P (
� 2 A) /
R
A 
d�(
) for Borel sets A � (0;1) and
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P (c� 2 B) /
R
B
k(c; �)dc for Borel sets B � R

d . In the stationary case with intensity

� > 0, the reduced Palm distributions exist for all � 2 R
d , since we can take 
� = 
0,

c� = c0 + �, and X� = X0 + �, so that P !
�(F ) = P (X [ (X0 + �) 2 F ).

For the rest of this section we consider the stationary case with intensity � > 0.

Apart from the summary statistics mentioned in Section 3.1, one usually consider the

empty space function F (r) = P (dist(0; X) � r) and the nearest-neighbour function

G(r) = P !
0(dist(0; X [X0) � r), where r � 0 and

dist(A;B) = inffk� � �k : � 2 A; � 2 Bg

denotes the shortest distance between two sets A;B � Rd (we set dist(A;B) =1 if A

or B is empty). In general no simple expressions seem available for these two summary

statistics, but they can at least by approximated by simulations using Proposition 2

and the methods in Section 4. However, the so-called J-function introduced in [25] and

de�ned by J(r) = (1�G(r))=(1�F (r)) for F (r) < 1, may be calculated by numerical

methods due to the following result.

Corollary 1. For a stationary SNCP with intensity � > 0,

J(r) =
1

�

Z Z

k(c) exp

�
�

Z
b(c;r)


k(�)d�

�
dcd�(
); for all r � 0:

Proof. By de�nition of J and Proposition 2,

J(r) = P ((X [X0) \ b(0; r) = ;)=P (X \ b(0; r) = ;) = P (X0 \ b(0; r) = ;)

=
1

�

Z Z

k(�c) exp

�
�

Z
k�k�r


k(� � c)d�

�
dcd�(
)

whereby the result follows.

Corollary 1 extends the results in [25] for Neyman-Scott processes. It follows that

J(0) = 1 and J(r) < 1 is nonincreasing for r > 0 with

lim
r!1

J(r) =

Z

 exp(�
)d�(
)=�:

If the kernel has �nite range R, i.e. k(�) = 0 for k�k � R, then J(r) is constant for

r � 2R.
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4. Simulation and easy constructions of shot noise Cox processes

Although SNCPs are tractable for mathematical analysis, at least when compared

to many other types of point process models, simulation is needed for performing

statistical inference, cf. [7, 8, 9, 10, 11, 38, 50]. In this section we describe various

simulation algorithms for both the restrictionXW ofX to a bounded Borel setW � R
d

with volume jW j > 0, and for � given XW .

We shall several times exploit the following lemma.

Lemma 2. Consider X =
S
j Xj as a cluster process, cf. Section 2, but suppose only

that for all c 2 R
d , k(c; �) is a nonnegative Lebesgue integrable function. That is � is a

Poisson process with intensity measure � as usual, and conditional on �, the clusters

Xj are independent Poisson processes, and Xj associated to (cj ; 
j) 2 � has intensity

function 
jk(cj ; �). Let B � R
d be a given Borel set, and de�ne

�B = f(cj ; 
j) 2 � : Xj \ B 6= ;g;

pB(c; 
) = 1� exp

�
� 


Z
B

k(c; �)d�

�
;

and

�B(D) =

Z
D

pB(c; 
)d�(c; 
)

for Borel sets D � R
d � (0;1). Then

(i) pB(c; 
) is the probability that a cluster associated to (c; 
) 2 � has at least one

point falling in B;

(ii) �B and � n �B are Poisson processes with intensity measures �B and � � �B ,

respectively, and (�B ; fXj : (cj ; 
j) 2 �Bg) and (�n�B ; fXj : (cj ; 
j) 2 �n�Bg)

are independent;

(iii) conditional on �B, the clusters Xj with (cj ; 
j) 2 �B are independent, and Xj

is distributed as a Poisson process with intensity function � ! 
jk(cj ; �) when

we have conditioned on that this Poisson process has at least one point in B;

(iv) conditional on �B, the point processes Xj\B with (cj ; 
j) 2 �B are independent,

and Xj \ B is distributed as a Poisson process with intensity function � !
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jk(cj ; �)1[� 2 B] when we have conditioned on that this Poisson process is

nonempty;

(v) conditional on � n �B, the clusters Xj with (cj ; 
j) 2 � n �B are independent,

and Xj is a Poisson process with intensity function � ! 
jk(cj ; �)1[� 62 B].

Proof. (i), (iii), and (v) follow immediately from the description of X as a cluster

process. Since �B is obtained by independent thinning of � with retention probability

pB we obtain immediately (ii). Similarly, (iii) implies immediately (iv).

4.1. Simulation of SNCPs with edge e�ects and truncation

Simulation of XW is most easily done by applying Lemma 2. Edge e�ects play a

role, as XW is a Cox process with random intensity measure

ZW (�) = 1[� 2W ]Z(�) =
X
j

1[� 2W ]
jk(cj ; �) (16)

which depends on all those centres cj 2 C with k(cj ; �) > 0 for some � 2 W . We

consider an extended bounded region Wext � W so that points in a cluster Xj with

centre cj 62Wext fall in W with a negligible probability, cf. (i) in Lemma 2. Moreover,

as exempli�ed in Example 5 below, only �nite many (cj ; 
j) 2 � with cj 2 Wext are

used in the simulations.

Example 5. Consider again Example 3 in the case 0 � � < 1. Then C \ Wext is

in�nite. De�ning q(t) = �(Wext � [t;1)) for t > 0, then q is a strictly decreasing

function which maps (0;1) onto (0;1), and we can write

f(c; 
) 2 � : c 2 C \Wextg = f(c1; 
1); (c2; 
2); : : :g

where q(
1) < q(
2) < : : : are the points of a unit rate Poisson process on (0;1). For

simulation and inference, one approximates ZW by

ZW (�) �
JX
j=1


jk(cj ; �)

where J < 1 is a \cut o�". For a discussion on how q�1 and the tail sum
P

j>J 
j

can be evaluated, see [8, 50].
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Returning to our general setting of a SNCP, we let the cut o� be determined by

ignoring those (cj ; 
j) 2 � with 
j � �, where � � 0 is a user-speci�ed parameter

(we include here the case � = 0 which means no truncation at all). Then XW is

approximated by
S
fXj \W : (cj ; 
j) 2 �\ (Wext� (�;1))g in the simulations, where

we �rst simulate the Poisson process � \ (Wext � (�;1)), and next the associated

independent processes Xj \W , where by (iv) in Lemma 2, Xj \W is a Poisson process

with intensity function � ! 
jk(cj ; �)1[� 2 W ]. In order to evaluate the error of the

approximation it is convenient to consider a function kdomW : Rd �R
d ! (0;1) so that

(C1) kdomW (c; �) � k(c; �) if � 2 W , and kdomW (c; �) = 0 if � 62W ;

(C2) we can easily calculate the integral

adomW (c) =

Z
W

kdomW (c; �)d�; c 2 R
d :

We illustrate this in Example 6 below.

Proposition 3. Let

M =
X
j

1[cj 62 Wext or 
j � �]card(Xj \W )

be the number of missing points when we have made a simulation of XW by ignoring

those clusters Xj with cj 62 Wext or 
j � �. Then

EM �

Z
1[c 62 Wext or 
 � �]
adomW (c)d�(c; 
):

Proof. By (6),

EM = EE [M j�] = E

X
j

1[cj 62 Wext or 
j � �]

Z
W


jk(cj ; �)d�

=

Z
1[c 62Wext or 
 � �]

Z
W


k(c; �)d�d�(c; 
)

whereby (C1) implies the result.

Example 6. LetW = b(0; R) andWext = b(0; R+r), and consider the stationary case

of a SNCP where the kernel k(c; �) = k(� � c) is given by either the uniform kernel (I)

or the Gaussian kernel (II) in Example 1. In case (I) Xj \W = ; whenever cj 62Wext,

so it is only the truncation of the 
j which play a role for the error done when making
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simulations with � > 0. Setting kdomW (c; �) = sup�2W k(c; �) for � 2 W , (C1){(C2) are

satis�ed: for s = kck � 0, in case (I)

aI(s) � adomW (c) = (R=r)d1[s � R+ r];

while in case (II)

aII(s) � adomW (c) =
�
!dR

d
Æ�
2�!2

�d=2�
exp

�
� 1[s > R]

�
s�R

�2
=(2!2)

�
:

Thus in case (I)

EM � !d(R(R+ r)=r)d
Z �

0


d�(
);

while in case (II) by making a shift to polar coordinates

EM � �d

Z Z
1[s > R+ r or 
 � �]
aII(s)dsd�(
)

where

�d = 2�d=2=�(d=2)

is the surface area of b(0; 1). These integrals may easily be determined by numerical

methods when � has a density like e.g. (5).

4.2. Simulation of SNCPs without edge e�ects and truncation

Recently Brix and Kendall [11] showed how edge e�ects and truncation can be

avoided when making simulation of a SNCP (which they call a Cox Poisson cluster

process). This section provides a short and easy description of their method using

Lemma 2.

The idea is to obtain a simulation of XW by independent thinning of the nonempty

clusters in a Cox process Xdom
W with random intensity function

Zdom
W (�) =

X
j


jk
dom
W (cj ; �) (18)

where kdomW satis�es (C1){(C2). By (C1), (16), and (18), Xdom
W dominates XW in the

sense that Zdom
W � ZW . Let Xdom

j ; (cj ; 
j) 2 �, denote the clusters of Xdom, and let

�dom
W = f(cj ; 
j) 2 � : Xdom

j 6= ;g:

By (i)-(ii) in Lemma 2, �dom
W is a Poisson process on Rd�(0;1) with intensity measure

�domW (D) =

Z
D

pdomW (c; 
)d�(c; 
)
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where

pdomW (c; 
) = 1� exp

�
� 


Z
W

kdomW (c; �)d�

�
= 1� exp(�
adomW (c)):

Finally, assume that

(C3)

�domW �

Z
pdomW (c; 
)d�(c; 
) <1

and we can easily calculate �domW (at least by numerical methods).

This means that �dom
W is almost surely �nite, and we can make perfect simulations of

XW as follows, cf. Proposition 4 below.

Perfect simulation algorithm for SNCPs:

(a) generate the Poisson process �dom
W = f(c1; 
1); : : : ; (cN ; 
N )g;

(b) for each j = 1; : : : ; N generate

(i) Xdom
j which is distributed as a conditional Poisson process with intensity

function 
jk
dom
W (cj ; �) given that it is nonempty;

(ii) X 0
j which is an independent thinning of Xdom

j with retention probabilities

k(cj ; �)=k
dom
W (cj ; �) for � 2 Xdom

j ;

(c) return
S
j X

0
j .

The generation of the Poisson process �dom
W in (a) is rather straightforward for the

speci�c examples of SNCPs considered in this paper, cf. [11] and Example 7 below.

For the loop in (b) it is implicit that the generation of processes in (i){(ii) is independent

of previous generations. The generation of Xdom
j in (i) will be straightforward in our

examples where kdomW (c; �) = sup�2W k(c; �)1[� 2 W ] is constant for � 2 W when

c = cj is �xed.

Proposition 4. The output in (c) above follows the same distribution as XW .

Proof. We consider Xdom =
S
j X

dom
j as a cluster process (including the empty

clusters!) where conditional on � the clusters are independent Poisson processes so

that Xdom
j associated to (cj ; 
j) 2 � has intensity function 
jk

dom
W (cj ; �). By (iv) in
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Lemma 2 we have correctly generated the nonempty clusters in (i) of the algorithm. If

we are making an independent thinning of each of the empty or nonempty clustersXdom
j

in the same way as in (ii) of the algorithm (thinning an empty Xdom
j simply means

that X 0
j = ;), we obtain that each X 0

j given (cj ; 
j) 2 � is a Poisson process with

intensity function � ! 1[� 2 W ]
jk(cj ; �), and all these clusters X 0
j are conditionally

independent given �. Hence
S
j X

0
j and XW are identically distributed. Of course we

need here only to consider the union of nonempty X 0
j , so the output in (c) and XW

are identically distributed.

Example 7. Let the situation be as in Example 6.

In case (I) the centres of �dom
W are contained in b(0; R + r), pdomW (c; 
) = 1 �

exp(�
(R=r)d) for kck � R+ r, and

�domW = !d(R+ r)d
Z �

1� exp
�
� 
(R=r)d

��
d�(
):

In case (II) pdomW (c; 
) = 1� exp(�
aII(kck)) is also a radically symmetric function of

c which decays fast to zero, and

�domW = �d

Z Z 1

0

sd�1

�
1� exp

�
�


!dR
d

(2�!2)d=2
exp

�
�
1[s > R]

2!2

�
s�R

�2���
dsd�(
):

If � is concentrated at � and � = �(f�g) as in Example 1, we have a Mat�ern cluster

process in case (I) and a Thomas process in case (II). For the Mat�ern cluster process,

the centres in �dom
W form a homogeneous Poisson process on b(0; R+ r) with rate

�domW = �!d(R + r)d
�
1� exp

�
� �(R=r)d

��
:

For the Thomas process,

�domW = ��d

Z 1

0

sd�1

�
1� exp

�
�

�!dR
d

(2�!2)d=2
exp

�
�
1[s > R]

2!2

�
s�R

�2���
ds

is �nite and easily determined by numerical integration. We can �rst generate N �

po(�domW ) and next the N i.i.d. centres cj , where the direction of cj is uniformly

distributed and independent of sj = kcjk, and sj has a density proportional to

sd�1

�
1� exp

�
�

�!dR
d

(2�!2)d=2
exp

�
�
1[s > R]

2!2

�
s�R

�2���
; s > 0

(each sj can be generated by e.g. rejection sampling [43]).
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Consider a shot noise G Cox process with parameter (�; �; �) as in Example 3. Then

in case (I),

�domW = �!d(R+ r)d[(� + (R=r)d)� � ��]=� if � < 0

and

�domW =
�!d(R+ r)d

�(1� �)

Z 1

0

�
1� exp

�
� (R=r)d


��

���1 exp(��
)d
 if 0 � � < 1:

And in case (II),

�domW =
��d

�(1� �)

Z 1

0

Z 1

0

�
1� exp

�
�


!dR
d

(2�!2)d=2
exp

�
�
1[s > R]

2!2

�
s�R

�2���

sd�1
���1 exp(��
)dsd
:

In all cases �domW is �nite, and it is known or can be determined by numerical integration.

Finally, �dom
W is a �nite inhomogeneous Poisson process with intensity function (c; 
)!

(1 � exp(�
adomW (c)))f�;�;� (
), and we can generate this along similar lines as above

for the Thomas process.

4.3. Conditional simulation

Suppose we have observed a �nite point con�guration XW = x, and let

f(xj�) = exp

�
jW j �

Z
W

Z(�)d�

�Y
�2x

Z(�) (20)

denote the density of XW given � with respect to the unit rate Poisson on W . For

simplicity we assume in this section that � has support D = Wext � (�;1) where

Wext � W , � > 0, and 0 < �(D) < 1. Then � given XW = x is a �nite point

process on D with unnormalised density �(�jx) = f(xj�) with respect to the marginal

distribution of �, where the normalising constant is the \likelihood" L(x) = Ef(xj�).

A closed form expression of L(x) is in general unknown. Thus simulation from �(�jx)

is needed for making prediction of � as well as for performing likelihood and Bayesian

inference based on MCMC methods, see e.g. [4, 7, 23, 24, 26, 38, 50].

We can use the Metropolis-Hastings algorithm in [18] for conditional simulation.

Brie
y, suppose � = f(c1; 
1); : : : ; (cn; 
n)g (with �(�jx) > 0) is the current state of

the Metropolis-Hastings chain. Then we make either a birth or a death proposal, each

with probability 1=2. If a birth is proposed, we generate a point (c; 
) with distribution
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�=�(D), and with probability minf1; r(�; (c; 
))g, where

r(�; (c; 
) =
�(� [ (c; 
)jx)�(D)

�(�jx)(n + 1)
;

we let � [ (c; 
) be the next state of the chain, and we retain � otherwise. If a

death is proposed, we let � n (ci; 
i) be the next state of the chain with probability

(1=n)minf1; 1=r(� n (ci; 
i); (ci; 
i))g, i = 1; : : : ; n (we set 1=r(� n (ci; 
i); (ci; 
i)) = 0

if �(� n (ci; 
i)) = 0), and we retain � otherwise. By (1) and (20),

�(� [ (c; 
)jx)

�(�jx)
= exp

�
� 


Z
W

k(c; �)d�

�Y
�2x

�
1 +


k(c; �)P
(cj ;
j)2�


jk(cj ; �)

�
(21)

where the integral can easily be calculated for the uniform kernel (I) and the Gaussian

kernel (II) (Example 1) if e.g. W is rectangular.

Alternative and more complicated algorithms using auxiliary techniques or by run-

ning a spatial birth-death process have been proposed [26, 50]. The Metropolis-

Hastings algorithm described above is proposed because of its simplicity and since

its theoretical properties are well-understood (see [31] for de�nitions of the following

concepts): It is reversible with invariant (unnormalised) density �(�jx); this follows

along similar lines as in [18], noticing that �( jx) > 0 implies that �( [ (c; 
)jx) > 0

(however, �( [ (c; 
)jx) > 0 does not imply that �( jx) > 0, since e.g. �(;jx) = 0

when x 6= ;). Further, it is irreducible and aperiodic on the support


x = f� � D : card(�) <1; �(�jx) > 0g

= f� � D : card(�) <1; for each � 2 x exists (c; 
) 2 � with k(c; �) > 0g

(basically because if �(�jx) > 0 and �(�0jx) > 0 then �(� [ �0jx) > 0 and the

Metropolis-Hastings chain can move from � to � [ �0 to �0, and it can stay at �).

Furthermore, Proposition 5 below states that under weak conditions on the kernel, the

chain is geometrical ergodic. For example, the conditions are satis�ed for the uniform

and Gaussian kernels (I){(II) considered in Example 6. Furthermore, we have that

with probability one,
R
(c;
)2D:k(c;�)>0

d�(c; 
) > 0 for all � 2 XW .

Proposition 5. Let x = fx1; : : : ; xmg 6= ; so that
R
(c;
)2D:k(c;xi)>0

d�(c; 
) > 0; i =

1; : : : ;m. Assume there exist strictly positive constants Æ; Æ0i; Æ
00
i so that for all c 2Wext

and i = 1; : : : ;m we have that
R
W
k(c; �)d� � Æ and if k(c; xi) > 0 then Æ0i � k(c; xi) �

Æ00i . Then the Metropolis-Hastings chain is geometrical ergodic.
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Proof. The corresponding result and proof in [17] do not immediately apply since

they rely much on the assumption that �(�jx) is locally stable, that is

�(� [ (c; 
)jx) �M�(�jx) (22)

for some constant M and all � [ (c; 
) 2 
x with (c; 
) 62 �. This is not satis�ed in

our case, since �(;jx) = 0. However, we start by verifying that (22) holds whenever

� 2 
x. Next we show that for any integer N , f� 2 
x : card(�) � Ng is a so-called

small set for the chain. Thereby geometric ergodicity follows along similar lines as in

the proof of Proposition 3.3. in [17].

Let � 2 
x, and set Æ0 = minfÆ01; : : : ; Æ
0
mg and Æ

00 = maxfÆ001 ; : : : ; Æ
00
mg. By (21),

�(� [ (c; 
)jx)

�(�jx)
� exp(�
Æ)

mY
i=1


Æ00i + �Æ0

�Æ0
(23)

because of the conditions on the kernel and since 
j > � > 0. The upper bound in (23)

is a bounded function of 
 > � which attains its maximum at either the solution to the

equation

mX
i=1

Æ00i

Æ00i + �Æ0

= Æ

or, if there is no such solution, at the limit 
 = �. Thus �(� [ (c; 
)jx)=�(�jx) is

bounded from above by a constant M . Furthermore, it is bounded from below by

exp(�
Æ00jW j).

Since �(D) > 0 and
R
(c;
)2D:k(c;xi)>0 d�(c; 
) > 0; i = 1; : : : ;m, there exists a

constant L > � so that �(Wext � (�; L)) > 0,
R
(c;
)2D:k(c;xi)>0;
i<L

d�(c; 
) > 0; i =

1; : : : ;m, and exp(�LÆ00jW j)�(D) � 1. Let m0 � maxfm;M�(D) � 1g be an inte-

ger. Then, if N � card(�) and P t(�; F ) denotes the transition probability for the

Metropolis-Hastings chain when it starts in � 2 
x and after t-steps belongs to an
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event F � 
x,

Pm0+N (�; F ) �
[ 12 exp(�LÆ

00jW j)�(D)]m
0

(card(�) + 1) � � � (card(�) +m0)

�
1

2[card(�) +m0] � � � 2[1 +m0]

�

�
1

2
�

M�(D)

2(m0 + 1)

�N�card(�)

�

Z
(c1;
1)2D:
1<L

� � �

Z
(cm0 ;
m0 )2D:
m0<L

(24)

1[f(c1; 
1); : : : ; (cm0 ; 
m0)g 2 F ]
d�(c1; 
1)

�(D)
� � �

d�(cm0 ; 
m0)

�(D)

corresponding to �rst adding (c1; 
1); : : : ; (cm0 ; 
m0) to �, next deleting the points

in �, and �nally making no changes when N � card(�) births are proposed. Hence

Pm0+N (�; F ) � �0Q(F ) where

�0 =

�
1

2

�m0+N
[exp(�LÆ00jW j)�(D)]m

0

(N + 1) � � � (N +m0)

m0!

(N +m0)!

�
1�

M�(D)

m0 + 1

�N

is a strictly positive constant and Q(F ) denotes the integral (24). Note that Q is a

�nite nonzero measure, since if we set xj = xm for j � m,

Q(
x) �

Z
D

� � �

Z
D

1[k(cj ; xj) > 0; 
j < L; j = 1; : : : ;m0]
d�(c1; 
1)

�(D)
� � �

d�(cm0 ; 
m0)

�(D)

is strictly positive. Thus f� 2 
x : card(�) � Ng is a small set.

5. Markov properties of shot noise Cox processes

The investigation of Markov properties of SNCPs provides deeper understanding

and is relevant to the considerations of edge e�ects.

Throughout Sections 5.1{ 5.3 we assume that X is a SNCP with uniformly bounded

clusters, i.e. the kernel k(c; �) has support contained in b(c; r) where r > 0 is a parameter

which does not depend on c 2 R
d . For example, the uniform kernel (I) (but not the

Gaussian kernel (II)) in Example 1 clearly satis�es this condition. For B � R
d , we set

B�r =
[
�2B

b(�; r) = f� 2 R
d : dist(�;B) � rg;

and call A � B a maximal connected component of B if A�r is a connected set, but

(A [ �)�r is not for any � 2 B nA. Moreover, we let C(B) denote the set of maximal

connected components of B.
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It is intuitively clear that the connected components in C(X) are conditional inde-

pendent in some sense, since o�spring in di�erent components have di�erent parents,

and the parents generating nonempty clusters is a Poisson process. This intuition is

to some extend made precise in Sections 5.1 and 5.3. The connection to usual Gibbs

or Markov point processes [16, 40, 44, 45, 47] and to nearest-neighbour Markov point

processes [2] is discussed in Sections 5.1 and 5.2.

5.1. Local Markov properties

This section extends the results in [5, 8] concerning the nearest-neighbour Markov

property (in the sense of [2]) for �nite Neyman-Scott and shot noise G Cox processes to

the general case of the restriction XW of the SNCP X to a bounded Borel setW � R
d .

We need �rst to introduce some notation. By (20) XW is almost surely �nite with

density

fW (x) = E

�
exp

�
jW j �

Z
W

Z(�)d�

�Y
�2x

Z(�)

�
for �nite x �W

with respect to the unit rate Poisson process �W on W (indeed this is true for any

Cox process X with random intensity function Z). Clearly fW is hereditary, i.e. for

�nite point con�gurations x � W and points � 2 W n x, we have that fW (x) > 0 if

fW (x [ �) > 0. The Papangelou conditional intensity [20] is de�ned by

�W (x; �) = fW (x [ �)=fW (x)

taking 0=0 = 0.

In general XW is not a Markov process in the usual Ripley-Kelly [44] sense, since

�W (x; �) will depend on points � 2 x n b(�; R) for any R less than half the diameter of

W , cf. [5]. However, as shown after Proposition 6 below, �W (x; �) depends only on x

through y�, i.e. the subset y � x with y[� 2 C(x[�). Thus XW is a nearest-neighbour

Markov process in the sense of Baddeley and M�ller [2].

Before stating Proposition 6 we need to introduce some further notation and a

lemma. For nonempty �nite point con�gurations x �W , de�ne

	W (x) =
X
i

X
fx1;:::;xig

iY
j=1

Z
exp

�
� 


Z
W

k(c; �)d�

� Y
�2xj


k(c; �)d�(c; 
) (25)
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where the �rst sum is over i = 1; : : : ; card(x) and the second sum is over all unordered

partitions of x into nonempty point con�gurations x1; : : : ; xi (it will be apparent from

the proof of Proposition 6 that x1; : : : ; xi correspond to the nonempty Xj \W ).

Lemma 3. We have that

e(i�1)jW j

Z
� � �

Z
h(x1; : : : ; xi)d�W (x1) : : :d�W (xi) =

Z X
(x1;:::;xi)

h(x1; : : : ; xi)d�W (x)

for any integer i � 1 and any measurable function h(x1; : : : ; xi) � 0, where the sum is

over all ordered partitions of x into i nonempty point con�gurations.

Proof. This follows immediately from the expansion

�W (F ) =

1X
n=0

e�jW j

n!

Z
W

� � �

Z
W

1[fx1; : : : ; xng 2 F ]dx1 � � �dxn

where F is any event for �nite point con�gurations contained in W , and where the

term for n = 0 is read as 1[; 2 F ].

Proposition 6. The density of XW is given by

fW (x) = cW
Y

y2C(x)

	W (y) (26)

with normalising constant

cW = exp

�
jW j �

Z
pW (c; 
)d�(c; 
)

�

and where the product in (26) is set equal to one if x = ;.

Proof. Since neither the proof of the related result in Theorem 1 in [5] nor the

modi�ed proof given in Section 4.2.2 in [8] immediately extend to the present more

general situation, we give here another (and simpler) proof.

By (ii) in Lemma 2,

P (XW = ;) = P (�W = ;) = exp

�
�

Z
pW (c; 
)d�(c; 
)

�
= e�jW jcW (27)

whereby (26) is veri�ed for x = ;. Hence we need only to check that

P (XW 2 F )=P (XW = ;) = ejW j

Z
F

Y
y2C(x)

	W (y)d�W (x) (28)
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for any event F of �nite point con�gurations contained in W and with ; 62 F . By (iv)

in Lemma 2, conditional on �W , Xj \W associated to (cj ; 
j) 2 �W has density

q(cj ;
j)(x
j) = exp

�
jW j � 
j

Z
W

k(cj ; �)d�

�� Y
�2xj


jk(cj ; �)

��
pW (cj ; 
j)

with respect to �W . Hence, combining (27) with (ii) and (iv) in Lemma 2, the left

hand side in (28) is equal to

1X
i=1

1

i!

Z Z
� � �

Z Z
1[x1 6= ;; : : : ; xi 6= ;; x1 [ : : : [ xi 2 F ]

iY
j=1

q(cj ;
j)(x
j)

d�W (x1)d�W (c1; 
1) � � � d�W (xi)d�W (ci; 
i)

=

1X
i=1

1

i!

Z Z
� � �

Z Z
1[x1 6= ;; : : : ; xi 6= ;; x1 [ : : : [ xi 2 F ]

iY
j=1

exp

�
jW j � 
j

Z
W

k(cj ; �)d�

�� Y
�2xj


jk(cj ; �)

�

d�W (x1)d�(c1; 
1) � � � d�W (xi)d�(ci; 
i):

It is straightforwardly veri�ed that this is equal to the right hand side in (28), using

�rst Lemma 3 and next the fact that
Q

�2xj 
jk(cj ; �) = 0 whenever (xj)�r is not a

connected set.

It follows from (26) that

�W (x; �) = �W (y�; �) = 	W (y� [ �)=
Y

z2C(y�)

	W (z): (29)

This veri�es the claim above that XW is a nearest-neighbour Markov point process.

Densities of a similar form as in (26) but for various kind of lattice and point process

models have been considered in several papers [5, 13, 32, 33, 36]. Using a terminology

similar to that in [36], we may call a �nite point process with a density of the product

form (26) a Markov connected component point process.

5.2. Integral and di�erential characterisations

There are many equivalent ways of de�ning or characterising a Gibbs or Markov

point process ~X on R
d , cf. [16, 40, 44, 45]. Below we �rst brie
y present the integral

and di�erential equations in [16, 40], which are most convenient for our purpose. We
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next show how these equations can be extended to SNCPs provided the random set

X�r has bounded connected components.

Suppose that E is a so-called energy function, i.e. a real measurable function de�ned

for all �nite x � R
d (we have for simplicity excluded the case where E(x) =1; this case

is of interest when dealing with so-called hard core processes, but it is not of relevance

for the present paper). Furthermore, assume E has �nite range of interaction R � 0,

i.e. for all �nite x � R
d and points � 2 R

d n x, E(x) � E(x [ �) depends only on x

through x \ b(�; R). Then for any locally �nite point con�guration x � R
d and any

point � 2 R
d n x, de�ne

~�(x; �) = exp[E(x \ b(�; R))�E((x \ b(�; R)) [ �)]:

Finally, assume that E is stable in the sense of Ruelle [45], i.e. there exists a constant

K � 0 so that E(x) � �Kcard(x) for all �nite x � R
d . Then ~X is a Gibbs point

process with energy function E if and only if

E

X
�2 ~X

h( ~X n �; �) =

Z
E [~�( ~X; �)h( ~X; �)]d� (30)

for nonnegative measurable functions h. From the integral equation (30) follows that

~�(�) = E~�( ~X; �) is an intensity function for ~X, and for Lebesgue almost all � with

~�(�) > 0, the reduced Palm distribution ~P !
� for

~X is absolutely continuous with respect

to the distribution ~P for ~X, and we have the di�erential equation

d ~P !
�

d ~P
(x) = ~�(x; �); (31)

cf. (12).

Remarkably, although the SNCP X is in general not a Gibbs process in the sense

above, it satis�es both (30) and (31) with ( ~X; ~�) replaced by (X;�) where

�(X; �) = E [Z(�)jX ]:

Indeed this is true for any Cox process speci�ed by a random intensity function Z,

since by (7) and basic properties for conditional mean values,

E

X
�2X

h(X n �; �) = EE

� X
�2X

h(X n �; �)

����Z
�
= E

Z
E(h(X; �)jZ)Z(�)d�

=

Z
E [h(X; �)Z(�)]d� =

Z
EfE [Z(�)jX ]h(X; �)gd�:
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In addition, for a SNCP X with bounded connected components, we have the following

extension of (29) for bounded regions W to the \in�nite volume" Rd .

Proposition 7. Suppose that with probability one any y 2 C(X) is �nite, and let Y�

denote the y � X with y[ � 2 C(X [ �). Then for Lebesgue almost all � with �(�) > 0,

with probability one,

�(X; �) = lim
s!1

�b(�;s)(X \ b(�; s); �) = 	(Y� [ �)=
Y

z2C(Y�)

	(z) (33)

where 	 = 	Rd is given by (25) with W replaced by Rd .

Proof. With probability one, the Poisson process X j� has no atoms, so � 62 X .

Since X is locally �nite, only �nite many y 2 C(X) has dist(y; �) � 2r, and Y� is

the union of such y, so Y� is �nite almost surely. Consequently, with probability one,

Y� � b(�; s�r) for all suÆciently large s. As 	b(�;s)(x) = 	(x) for �nite x � b(�; s�r),

we obtain that the second identity in (33) is satis�ed almost surely, cf. (29).

By (30) with ( ~X; ~�) replaced by (X;�), repeating the arguments at the beginning

of the proof of Proposition 2, the �rst identity in (33) follows if for any bounded Borel

sets A;B � R
d ,

E

X
�2X

1[� 2 A; (X n �) \B = ;] =

Z
A

E

�
1[X \ B]	(Y� [ �)=

Y
z2C(Y�)

	(z)

�
d�: (34)

By (7)

E

X
�2X

1[� 2 A; (X n �) \ B = ;] = EE

� X
�2X

1[� 2 A; (X n �) \ B = ;]

�����
�

= E

Z
A

Z(�)1[X \B = ;]d� =

Z
A

E(Z(�)1[X \ B = ;])d�

so let us consider the latter mean value for an arbitrary �xed � 2 A and write Xs =

Xb(�;s), fs = fb(�;s), and �s = �b(�;s). Then

E(Z(�)1[X \ B = ;])

= lim
s!1

E(Z(�)1[Xs \ B = ;; Y� � b(�; s� r)])

= lim
s!1

E

Z
Z(�)1[x \ B = ;; y� � b(�; s� r)] (35)

exp

�
jb(�; s)j �

Z
b(�;s)

Z(�)d�

�Y
�2x

Z(�)d�s(x)
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using the monotone convergence theorem and the facts that B is bounded and Y� is

�nite almost surely to obtain the �rst equality, and the de�nition of X as a Cox process

for the next equality, where y� denotes the y � x with y [ � 2 C(x [ �). By Fubini's

theorem we can interchange the order of the expectation and integration in (35), and

E

�
Z(�) exp

�
jb(�; s)j �

Z
b(�;s)

Z(�)d�

�Y
�2x

Z(�)

�
= fs(x [ �) = �s(x; �)fs(x)

where y� � b(�; s� r) implies that

�s(x; �) = 	(y� [ �)=
Y

z2C(y�)

	(z):

If (Ys)� denotes the y � Xs with y[� 2 C(Xs[�), then (Ys)� = Y� for (Ys)� � b(�; s�r),

and so

E(Z(�)1[X \B = ;])

= lim
s!1

Z
1[x \ B = ;; y� � b(�; s� r)]�s(x; �)fs(x)d�s(x)

= lim
s!1

E

�
1[Xs \B = ;; (Ys)� � b(�; s� r)]	(Y� [ �)=

Y
z2C(Y�)

	(z)

�

=E

�
1[X \ B]	(Y� [ �)=

Y
z2C(Y�)

	(z)

�

using again the monotone convergence theorem. Thereby (34) is veri�ed.

The condition that the connected components in C(X) are almost surely �nite can

be rephrased as the condition that the balls b(�; r); � 2 X , do not percolate. This is

clearly the case if the balls b(cj ; 2r); cj 2 C, do not percolate. Some results are known

when C is a stationary Poisson process: for d = 1 there is no percolation (Theorem

3.1 in [30]), but for d � 2 only some rather wide bounds are known for the \critical

density" of C (see e.g. Theorem 3.10 in [30]). We refrain from a further discussion of

percolation in the present paper.

5.3. Global Markov properties

A global Markov property for nearest-neighbour Markov point processes can be

established for XW when W � R
d is a bounded Borel set, cf. [21, 33]. Corollary 2

below establishes a related result for the \in�nite volume", i.e. a global Markov property

for both XW and XW c , where W c = R
d nW .
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We start by establishing a slightly more general result, where D(�) read as \distri-

bution of �" and D(�j � � � ) as \conditional distribution of � given � � � ". Since we deal

with the \in�nite volume", the proof is di�erent from that in [21].

Proposition 8. Let B � R
d be a given Borel set, let C = CB(X) denote the union of

those y 2 C(X) with dist(y;B) � r, and assume that C is �nite almost surely. Then

D(X n CjC) = D(Y n (B�r [ C�2r)) (36)

where Y is independent of X and D(Y ) = D(X).

Proof. The proof is rather trivial if C = ;, so let us assume that C 6= ;. Below

we recursively de�ne X(1) as the union of clusters in X with o�spring in U (0) = B�r,

X(2) as the union of clusters in X with o�spring in U (1) = X
(1)
�2r but no o�spring in

U (0), X(3) as the union of clusters in X with o�spring in U (2) = X
(2)
�2r but no o�spring

in U (0) [ U (1), etc. Clearly, with probability one, since C is �nite and nonempty,

C =
SI
i=1X

(i) where 1 � I < 1, X(i) 6= ; for i = 1; : : : ; I , and X(I+1) = ;.

Furthermore, we let X(0) = X n (B�r [C�2r), and let �i � � be the process of centres

and intensities corresponding to the nonempty clusters for X(i), i = 0; 1; 2; : : : ; I .

Thereby X =
SI
i=0X

(i) and � =
SI
i=0�i where in each union the I + 1 sets are

disjoint point processes.

Case i = 1: Using a notation as in Lemma 2, if p1 = pU(0) , �1 = �U(0) = p1�

(meaning that �1 is the measure de�ned by �1(D) =
R
D
p1(c; 
)d�(c; 
) for Borel sets

D � R
d � (0;1)), and �1 = �U(0) , then X(1)j�1 is the union of independent clusters

with a distribution as in (iii) in Lemma 2 (with B = U (0)). Furthermore, set U (1) =

X
(1)
�2r, �

0

1 = (1 � p1)�, �
0

1 = � n �1, and X
0

1 = X n X(1). Then by (ii) in Lemma 2,

�
0

1j(�1; X
(1)) is a Poisson process with intensity measure �

0

1, and by (v) in Lemma 2,

X
0

1j(�1; X
(1);�

0

1) is the union of independent clusters where the cluster associated to

(cj ; 
j) 2 �
0

1 is a Poisson process with intensity function � ! 
jk(cj ; �)1[� 62 U (0)].

Case i � 2: We consider only this case as long as X(i�1) 6= ;. Conditional on

Ti � (�1; X
(1); : : : ;�i�1; X

(i�1)), set

Vi = U (i�1) n
i�2[
j=0

U (j);

and use (i){(iii) in Lemma 2 with pi = pVi , �i = pi�
0

i�1, and �i = �Vi to conclude
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that X(i)j(Ti;�i) is the union of independent clusters with a distribution as in (iii)

in Lemma 2 (with B = Vi). Set U (i) = X
(i)
�2r, �

0

i = (1 � pi)�i�1, �
0

i = � n
Si
j=1 �j ,

and X
0

i = X n
Si
j=1X

(j). By (ii) and (v) in Lemma 2, �
0

ij(Ti;�i; X
(i)) is a Poisson

process with intensity measure �
0

i , and X
0

i j(Ti;�i; X
(i);�

0

i) is the union of independent

clusters where the cluster associated to (cj ; 
j) 2 �
0

i is a Poisson process with intensity

function � ! 
jk(cj ; �)1[� 62 Vi]. Note that �
0

i =
�Qi

j=1(1� pj)
�
�, where

iY
j=1

(1� pj(c; 
)) = exp

�
� 


Z
Si�1
j=0 U

(j)

k(c; �)d�

�

as the sets U (0); V2; : : : ; Vi are disjoint and U
(0) [ V2 [ : : : [ Vi =

Si�1
j=0 U

(j). Note also

that the �rst time we obtain that X(i) = ;, then I = i� 1 and

V0 �
I[

j=0

U (j) = B�r [X
(1)
�2r [ : : : [X

(I)
�2r = B�r [ C�2r:

Case i = 0: It follows now that �0j(�1; X
(1); : : : ;�I ; X

(I)) is a Poisson process with

intensity measure �0 = p0�, where

p0(c; 
) �
IY

j=1

(1� pj(c; 
)) = exp

�
� 


Z
V0

k(c; �)d�

�
;

and X(0)j(�0;�1; X
(1); : : : ;�I ; X

(I)) is the union of independent clusters where the

cluster associated to (cj ; 
j) 2 �0 is a Poisson process with intensity function � !


jk(cj ; �)1[� 62 V0]. By de�nition of C, X n C = X n V0 = X(0), so

D(X n Cj�1; X
(1); : : : ;�I ; X

(I)) = D(X(0)j�0; V0) = D(Y n V0); (37)

whereby (36) follows.

The condition in Proposition 8 that C is almost surely �nite is satis�ed if e.g. B is

bounded and X has almost surely no in�nite connected components. The proof above

depend on having a �nite C or equivalently a �nite I (this was used in (37) to obtain

a well-de�ned conditional distribution). Intuitively, due to the strong independence

properties in a cluster process, one may propose that Proposition 8 remains true

without this restriction. Possibly this can be established by a limit argument, but

we do not attempt to verify this here.
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Corollary 2. Let @W denote the boundary of a given bounded Borel set W � R
d , and

assume that C = C@W (X) is �nite almost surely. Then XW and XW c are conditionally

independent given C, and

D(XW nCjC) = D(YW n (C�2r [ @W�r)) (38)

and

D(XW c n CjC) = D(YW c n (C�2r [ @W�r)): (39)

Proof. We have that XA and XB are independent for Borel sets A;B � R
d with

dist(A;B) > 2r, as D(XAjZ) = D(XAjZA�r) and D(XB jZ) = D(XB jZB�r ) where

ZA�r = fZ(�) : � 2 A�rg and ZB�r = fZ(�) : � 2 B�rg are independent. Thus YW n

(@W )�r and YW cn(@W )�r are independent since dist(W n(@W )�r;W
cn(@W )�r) > 2r.

Hence, since C and Y are independent, conditional on C, we have that YW n(C[@W )�r

and YW c n (C [ @W )�r are independent. The results follow then immediately from

Proposition 8 with B = @W .

By (38){(39) the conditional distribution of XW n C given C depends only on C

through C \W , and the conditional distribution of XW c nC given C depends only on

C through C nW . We call C the splitting set, C \W the inner splitting set, and C nW

the outer splitting set for W . It seems plausible to claim that these splitting sets are

minimal, i.e. that for example C \W is the smallest random closed set A � W with

the property that D(XW jA;XA; XW c) = D(XW jA;XA) (note that C = XC). We shall

not attempt to verify this here.

Acknowledgements

This research was supported by the Centre for Mathematical Physics and Stochastics

(MaPhySto), funded by a grant from the Danish National Research Foundation, and

by the Danish Natural Science Research Council. Helpful discussions with Hans-Otto

Georgii, Bjarne H�jgaard, Joseph Mecke, Rasmus P. Waagepetersen, and Sergei Zuyev

are acknowledged.



30 J. M�ller

References

[1] Ambartzumian, R. V. (1966). On an equation for stationary point processes.

Dokl. Akad. Nauk Armjanskoi SSR 42, 141{147.

[2] Baddeley, A. and M�ller, J. (1989). Nearest-neighbour Markov point

processes and random sets. International Statistical Review 2, 89{121.

[3] Baddeley, A., M�ller, J. and Waagepetersen, R. (2000). Non- and semi-

parametric estimation of interaction in inhomogeneous point patterns. Statistica

Neerlandica 54, 329{350.

[4] Baddeley, A. J. and van Lieshout, M. N. M. (1993). Stochastic geometry

models in high-level vision. In Statistics and Images, Advances in Applied

Statistics, a supplement to the Journal of Applied Statistics. ed. K. V. Mardia

and G. K. Kanji. vol. 20. Carfax Publishing, Abingdon ch. 11, pp. 235{256.

[5] Baddeley, A. J., van Lieshout, M. N. M. and M�ller, J. (1996). Markov

properties of cluster processes. Advances in Applied Probability (SGSA) 28, 346{

355.

[6] Benes, V., Bodlak, K., M�ller, J. and Waagepetersen, R. P. (2002).

Bayesian analysis of log Gaussian Cox process models for disease mapping.

Technical report R-02-2001. Department of Mathematical Sciences, Aalborg

University.

[7] Best, N. G., Ickstadt, K. and Wolpert, R. (2000). Spatial Poisson

regression for health and exposure data measured at disparate resolutions. Journal

of the American Statistical Association 95, 1076{1088.

[8] Brix, A. (1999). Generalized gamma measures and shot-noise Cox processes.

Advances in Applied Probability 31, 929{953.

[9] Brix, A. and Chadoeuf, J. Spatio-temporal modeling of weeds and shot-noise

G Cox processes 2000. Submitted.

[10] Brix, A. and Diggle, P. J. (2001). Spatio-temporal prediction for log-Gaussian

Cox processes. Journal of the Royal Statistical Society Series B 63, 823{841.



Shot noise Cox processes 31

[11] Brix, A. and Kendall, W. S. (2001). Simulation of cluster point processes

without edge e�ects. Research Report 382, Department of Statistics, University

of Warwick.

[12] Brix, A. and M�ller, J. (2001). Space-time multitype log Gaussian Cox

processes with a view to modelling weed data. Scandinavian Journal of Statistics

28, 471{488.

[13] Chin, Y. C. and Baddeley, A. (2000). Markov interacting component

processes. Advances in Applied Probability 32, 597{619.

[14] Daley, D. J. and Vere-Jones, D. (1988). An Introduction to the Theory of

Point Processes. Springer-Verlag, New York.

[15] Diggle, P. J. (1983). Statistical Analysis of Spatial Point Patterns. Academic

Press, London.

[16] Georgii, H.-O. (1976). Canonical and grand canonical Gibbs states for

continuum systems. Communications of Mathematical Physics 48, 31{51.

[17] Geyer, C. J. (1999). Likelihood inference for spatial point processes. In

Stochastic Geometry: Likelihood and Computation. ed. O. E. Barndor�-Nielsen,

W. S. Kendall, and M. N. M. van Lieshout. Chapman and Hall/CRC, London,

Boca Raton. pp. 79{140.

[18] Geyer, C. J. and M�ller, J. (1994). Simulation procedures and likelihood

inference for spatial point processes. Scandinavian Journal of Statistics 21, 359{

373.

[19] Heikkinen, J. and Arjas, E. (1998). Non-parametric Bayesian estimation of a

spatial Poisson intensity. Scandinavian Journal of Statistics 25, 435{450.

[20] Kallenberg, O. (1984). An informal guide to the theory of conditioning in point

processes. International Statistical Review 52, 151{164.

[21] Kendall, W. S. (1990). A spatial Markov property for nearest-neighbourMarkov

point processes. Journal of Applied Probability 28, 767{778.



32 J. M�ller

[22] Kerstan, J. and Matthes, K. (1964). Verallgemeinerung eines Satzes von

Sliwnjak. Rev. Roumaine Math. Pures Appl. IX, 811{829.

[23] Lawson, A. B. (1993). Discussion contribution. Journal of the Royal Statistical

Society B 55, 61{62.

[24] Lieshout, M. N. M. van and Baddeley, A. J. (1995). Markov chain Monte

Carlo methods for clustering of image features. In Proceedings of the 5th IEE

International Conference on Image Processing and its Applications. vol. 410 of

IEE Conference Publication. IEE Press, London. pp. 241{245.

[25] Lieshout, M. N. M. van and Baddeley, A. J. (1996). A nonparametric

measure of spatial interaction in point patterns. Statistica Neerlandica 50, 344{

361.

[26] Lieshout, M. N. M. van and Baddeley, A. J. (2001). Extrapolating and

interpolating spatial patterns. Technical report PNA-RO117. Centrum voor

Wiskunde en Informatica. To appear in Spatial Cluster Modelling, eds. Andrew

B. Lawson and David Denison, Chapman and Hall.

[27] Mat�ern, B. (1960). Spatial Variation. Meddelanden fran Statens Skogforskn-

ingsinstitut, Band 49, No. 5.

[28] Mat�ern, B. (1986). Spatial Variation. Lecture Notes in Statistics. Springer-

Verlag, Berlin.

[29] Mecke, J. (1967). Station�are zuf�allige Ma�e auf lokalkompakten Abelschen

Gruppen. Zeitschrift f�ur Wahrscheinlichkeitstheorie und verwandte Gebiete 9,

36{58.

[30] Meester, R. and Roy, R. (1996). Continuum Percolation. Cambridge

University Press, New York.

[31] Meyn, S. P. and Tweedie, R. L. (1993). Markov Chains and Stochastic

Stability. Springer-Verlag, London.



Shot noise Cox processes 33

[32] M�ller, J. (1994). Contribution to the discussion of N.L. Hjort and H. Omre

(1994): Topics in spatial statistics. Scandinavian Journal of Statistics 21, 346{

349.

[33] M�ller, J. (1999). Markov chain Monte Carlo and spatial point processes. In

Stochastic Geometry: Likelihood and Computations. ed. O. E. Barndor�-Nielsen,

W. S. Kendall, and M. N. M. van Lieshout. No. 80 in Monographs on Statistics

and Applied Probability. Chapman and Hall/CRC, Boca Raton. pp. 141{172.

[34] M�ller, J. (2001). A comparison of spatial point process models in epidemiolog-

ical applications. In Highly Structured Stochastic Systems. ed. P. J. Green, N. L.

Hjort, and S. Richardson. Oxford University Press, Oxford. To appear.

[35] M�ller, J., Syversveen, A. R. and Waagepetersen, R. P. (1998). Log

Gaussian Cox processes. Scandinavian Journal of Statistics 25, 451{482.

[36] M�ller, J. and Waagepetersen, R. P. (1998). Markov connected component

�elds. Advances in Applied Probability (SGSA) 30, 1{35.

[37] M�ller, J. and Waagepetersen, R. P. (2001). Simulation based inference

for spatial point processes. In Spatial Statistics and Computational Methods. ed.

M. B. Hansen and J. M�ller. Lecture Notes in Statistics. Springer-Verlag. To

appear.

[38] M�ller, J. and Waagepetersen, R. P. (2001). Statistical inference for Cox

processes. Technical report R-01-2024. Department of Mathematical Sciences,

Aalborg University. To appear in Spatial Cluster Modelling, eds. Andrew B.

Lawson and David Denison, Chapman and Hall.

[39] Neyman, J. and Scott, E. L. (1958). Statistical approach to problems of

cosmology. Journal of the Royal Statistical Society Series B 20, 1{43.

[40] Nguyen, X. X. and Zessin, H. (1979). Integral and di�erential characterizations

of Gibbs processes. Mathematische Nachrichten 88, 105{115.

[41] Ripley, B. D. (1976). The second-order analysis of stationary point processes.

Journal of Applied Probability 13, 255{266.



34 J. M�ller

[42] Ripley, B. D. (1977). Modelling spatial patterns (with discussion). Journal of

the Royal Statistical Society Series B 39, 172{212.

[43] Ripley, B. D. (1987). Stochastic Simulation. Wiley, New York.

[44] Ripley, B. D. and Kelly, F. P. (1977). Markov point processes. Journal of

the London Mathematical Society 15, 188{192.

[45] Ruelle, D. (1969). Statistical Mechanics: Rigorous Results. W.A. Benjamin,

Reading, Massachusetts.

[46] Santal�o, L. (1976). Integral Geometry and Geometric Probability. Addison{

Wesley, Reading, MA.

[47] Stoyan, D., Kendall, W. S. and Mecke, J. (1995). Stochastic Geometry and

Its Applications second ed. Wiley, Chichester.

[48] Stoyan, D. and Stoyan, H. (1994). Fractals, Random Shapes and Point Fields.

Wiley, Chichester.

[49] Thomas, M. (1949). A generalization of Poisson's binomial limit for use in

ecology. Biometrika 36, 18{25.

[50] Wolpert, R. L. and Ickstadt, K. (1998). Poisson/gamma random �eld models

for spatial statistics. Biometrika 85, 251{267.


