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Abstract

Estimation methods for the directional measure of a stationary planar random
set Z, based only on discretized realizations of Z, are discussed. Properties of
the discretized set that can be derived by comparing neighbouring grid points are
used. Larger grid con�gurations of more than two grid points are considered. It is
shown that the probabilities of observing the various types of con�gurations can
be expressed in terms of the �rst contact distribution function of Z (with a �nite
structuring element). An important prerequisite result concerning deterministic
dilation areas is also established. The inference on the mean normal measure
based on 2� 2 con�gurations is discussed in detail.
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1. Introduction

The mean normal measure S(Z; �) of a stationary random closed set Z in R
d can

be used for detecting and quantifying anisotropy of Z. It is de�ned under suitable
regularity conditions on Z. Its normalized version, the so called directional distribu-
tion or (oriented) rose of normal directions, can be interpreted as the distribution of
the outer unit normal at a 'typical' boundary point of Z. The mean normal measure,
also called directional measure, has been introduced in Weil [16] and [17].

In the present paper we will focus on the planar case (d = 2) and discuss estimation
methods for S(Z; �) using only discretized realizations of Z. A discretization of a set is
its intersection with a scaled regular grid in R2 ; we will only consider the intersection
with the scaled standard grid tZ2, t > 0, as this is often used in applications.
Typically, the grid has to be re�ned (t! 0+), in order to obtain information about the
boundary behaviour of Z. We will only use properties of the discretized set that can
be derived by comparing neighbouring grid points, because this information is easily
accessible in applications by �ltering the discretized set (see Ohser & M�ucklich

[9]).

A classical result (Serra [14]) states that the information obtained by comparing
pairs of neighbouring grid points can be used to estimate the mean length of total
projection in directions associated to the discretization. This, in turn, yields certain
information about the directional measure. Clearly, the intersection of Z with a pair of
points can not yield more information than the intersection of Z with the line passing
through these points can do. Therefore the above mentioned procedure cannot yield
more information about Z than all intersections of Z with lines do. It is well known
(see Kiderlen [3]) that in general the family of intersections fZ \ g j g line in R2g
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only determines the un-oriented or symmetrized directional measure

1

2
(S(Z; �) + S

�
(Z; �))

but not the directional measure itself. (Here S
�
(Z; �) is the re
ection of S(Z; �) at the

origin 0.) This shows that comparison of pairs of grid points is not suÆcient for the
estimation of S(Z; �). We will therefore consider con�gurations of more than two grid
points. Larger con�gurations, such as grid{squares of size 2�2 or 3�3, have also been
used in Ohser & M�ucklich [9] and Ohser et al. [8] to estimate the three Quermass
densities of Z (area density, length density and density of the Euler number of Z). It
appears that the present paper describes for the �rst time estimation methods of the
(oriented) mean normal measure from larger grid neighbourhood con�gurations. A
related result is mentioned by Rataj in [10]: It states that the mean normal measure
of Z is determined, and can be estimated, by a suitable three{point test set and its
rotations.
In the present paper, we consider larger grid con�gurations which carry more precise

information about the directional measure. Events of the type tB � Z; tW � ZC

are observed, where tB and tW are �nite subsets of the scaled standard grid tZ2. For
instance, tB [ tW may be a grid square of size 2 � 2 or 3 � 3. The probabilities of
such events can be expressed in terms of the �rst contact distribution function FM
of Z

FM (t) := P(Z \ tM 6= ;); t � 0;

where M � R
2 is a suitably chosen �nite structuring element. A formula for the

derivative of FM at the origin is derived, which holds for stationary random sets
with values in the extended convex ring. An important prerequisite result concerning
deterministic dilation areas is also established.
The paper is organized as follows. Preliminaries concerning convex geometry, ran-

dom sets and contact distribution functions are given in section 2. Results concerning
dilation areas for deterministic sets (which are either convex, or �nite unions of convex
sets) are presented in section 3. First contact distribution functions are presented in
section 4. The main result is stated in Theorem 4 in section 5. It concerns the
probabilities of observing di�erent types of grid con�gurations. In section 6 this
result is applied to 2 � 2 con�gurations and used to obtain (parametric) estimators
of S(Z; �). Perspectives on n� n con�gurations for n > 2 are given in section 7.

2. Preliminaries

The standard scalar product in R
2 will be denoted by h�; �i. B2 � R

2 is the unit
ball with respect to the induced Euclidean norm k � k and S1 is the unit circle. We
recall some basic facts from convex geometry, details can be found in Schneider's
book [12]. The set of convex bodies (compact convex subset of R2 ) will be denoted
by K. The support function h(K; �) = maxfhx; �i jx 2 Kg of a non{empty set K 2 K
is a function on the unit circle S1. Formally, we put h(;; �) � 0 on S1. The support
function is Minkowski additive, i.e.

h(K +K 0; �) = h(K; �) + h(K 0; �)
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for any convex bodies K and K 0 (here and in the following, the addition of subsets
in R2 is understood pointwise). If M � R

2 we will write convM for its convex hull.
�d will always denote Lebesgue measure in R

d . For K and K 0 in K, the area of the
sum K + tK 0 obeys a generalization of Steiner's formula

(2.1) �2(K + tK 0) = �2(K) + 2tA(K;K 0) + t2�2(K
0); t � 0:

The mixed area A(K;K 0) occurring here as a coeÆcient, is symmetric, A(K;K 0)
= A(K 0;K), and has the homogeneity property

A(tK;K 0) = tA(K;K 0); t � 0:

We will write S(K; �) for the usual surface area measure on S1 (as it is of order one,
it is often denoted by S1(K; �), but we omit the subscript as no other surface area
measures will occur here). The mixed area obeys

(2.2) 2A(K;K 0) =
Z
S1
h(K 0; w)S(K; dw) =

Z
S1
h(K;w)S(K 0; dw):

The line segment convfx; yg with endpoints x and y in R2 will be denoted by [x; y],
for short. (2.2) implies

(2.3) 2A(K; [0; u]) = �1(Kju?);
where u 2 S1 and Kju? is the orthogonal projection of K on the line through 0,
orthogonal to u.
As both, the support function and the surface area measure are additive and

continuous on K (with respect to the Hausdor� metric), they have a unique additive
extension to the convex ring R (the family of �nite unions of convex bodies). We
will use the same notation for these extensions as we used for the corresponding
functionals on K. Using these extensions, (2.2) de�nes the mixed area on R � R,
which is additive in each of its arguments.

Let Z be a stationary random set in R
2 with values in the extended convex ring

(i.e. the intersection of Z with a convex body is almost surely an element of R). For
this and further notions from stochastic geometry we refer to Schneider & Weil

[13]. We assume throughout the following that Z satis�es the integrability condition

(2.4) E2N(Z\K) <1
for all K 2 K, where N(L) of a nonempty set L 2 R is the minimal number k 2 N

such that L =
Sk
i=1Ki with Ki 2 K and N(;) = 0.

The mean normal measure of Z is de�ned by

S(Z; �) = lim
r!1

S(Z \ rK; �)
�2(rK)

:

This de�nition is independent of the choice of the convex body K 2 K0 := fK 2
K j intK 6= ;g. As

(2.5)

Z
S1
uS(Z; du) = 0;
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Minkowski's existence Theorem shows that there is a non-empty convex body B(Z) 2
K with

(2.6) S(Z; �) = S(B(Z); �):
Under the additional assumption that this body is centered (i.e. its Steiner point
coincides with 0), B(Z) is uniquely determined and called the mean Blaschke body of
Z. This convex body can be used to visualize the mean normal measure.
A standard example of a random set Z is the stationary Boolean model. It is

obtained as follows: First, an ordinary Poisson point process (the germ{process) with
intensity 
 > 0 is generated. It is characterized by the fact that the number of
points in any bounded Borel set B � R

2 is Poisson distributed, with mean 
�2(B).
Then, convex grains are attached to the germs. They are independent copies of a
random convex body K0 and independent of the germ-process. The distribution of
the typical grain K0 is assumed to be concentrated on the family of centered convex
bodies (e.g. those with Steiner point in 0). The union set of this particle process is
called a Boolean model (with convex grains). Its distribution is uniquely determined
by the intensity 
 and the typical grain K0. More geometrically, it is also determined
by the capacity functional TZ , where

TZ(M) := P(Z \M 6= ;); for compact M � R
2 :

Due to the independence properties of a Boolean model, we have

(2.7) TZ(M) = 1� exp
��
E�2 (K0 + �M)

�
;

where �M is the set M re
ected at the origin.
The mean normal measure of a Boolean model with intensity 
 and typical convex

grain K0 obeys
S(Z; �) = 
(1�A(Z))ES(K0 ; �);

where A(Z) is the area density of Z. If the mean typical particle EK0 2 K (a set
valued mean), is de�ned by

S(EK0 ; �) = ES(K0 ; �);
with the additional condition that this body is centered, the last equation and (2.6)
imply

(2.8) B(Z) = 
(1�A(Z))EK0 ;

which shows that B(Z) equals the mean typical particle up to scaling.

We return to general random sets and recall the de�nition of the �rst contact
distribution function FM of Z with respect to the compact structuring element M :

(2.9) FM (t) := P(Z \ tM 6= ;) = TZ(tM); t � 0:

Under the assumption 0 2M , this function is closely related to the contact distribu-
tion function HM (t) := P(Z \ tM 6= ; j 0 62 Z):

(1� FM (0))(1�HM (t)) = 1� FM (t); t � 0:
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If the set M is star{shaped with respect to 0, we have

(2.10) FM (t) = P(dM (Z) � t); HM (t) = P(dM (Z) � t j 0 62 Z)

and hence FM and HM are (usual resp. conditioned) distribution functions of the
random variable dM (Z) := inffs � 0 jZ \ sM 6= ;g. Usually, M is assumed to
be a convex body with 0 2 M (see the survey Hug et al. [2] on contact distribution
functions). In this setting, (2.10) can be used equivalently as de�nition. For arbitrary
nonempty compact structuring elements M , however, (2.10) does not hold. We have
dM (Z) = dstarM (Z), where

starM :=
[
x2M

[0; x]

is the star{hull of M (with respect to 0). Hence

(2.11) P(dM(Z) � t) = FstarM (t); P(dM (Z) � t j 0 62 Z) = HstarM (t):

In present context, we will consider �nite structuring elements M , more precisely,
�nite subsets of Z2. As a consequence, FM and HM need not be distribution functions
{ they need not even be monotonic.
Due to the stationarity of Z, we have for arbitrary compact M and t � 0

FM (t) = P(0 2 Z + t �M) = E�2 ((Z + t �M) \ [0; 1]2):

We will therefore examine dilation areas more closely. In the next section we will
consider the deterministic setting for elements of K and R. In section 4, the obtained
results will be extended to random sets.

3. The deterministic dilation area

3.1. Results for convex bodies. As a basic tool, we will use the dilation area of a
convex body K which is a function on the family of Borel sets in R2 given by

M 7! �2(K +M):

If M = f0; xg, this function depends on x 2 R
2 only and is called the variogram of

K. We will be interested in 'directional derivatives' of the dilation area at f0g and
therefore we introduce the function

(3.1)  K(M; t) := �2(K + tM); t � 0:

Math�eron [5] showed that the directional derivative of the variogram in direction
u 2 S1 in the point x = 0 is equal to �1(Kju?). Equivalently we have according to
(2.1) and (2.3)

 0K(f0; ug; 0+) = 2A(K; [0; u]) =  0K([0; u]; 0+);

where  0K(M; 0+) denotes the right sided derivative of t 7!  K(M; t) at t = 0. This
shows that for small t, the function  K(f0; ug; t) can approximately be calculated
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by replacing the two point set f0; ug with its convex hull [0; u]. In the following,
this result will by generalized by replacing the set f0; ug with some �nite set M . In
addition, an error estimate will be given. For its formulation, two constants c0; cM
associated to a �nite set M � R

2 with at least two elements are needed. Put

c0 := minf
p
3

diamM
;
2

l
g;

where l is the length of the longest edge of the convex polygon convM . Furthermore
let cM be the sum of all squared lengths of edges of convM (if convM is a line segment
of length l, we set cM := 2l2).

Theorem 1 Let K 2 K with rB2 � K � RB2, 0 < r � R, and a �nite set M � R
2

with at least two points be given. Then

(3.2)  K(convM; t)� cM
4

R

r
t2 �  K(M; t) �  K(convM; t); 0 � t � c0r:

In particular, this implies

(3.3)  0K(M; 0+) =  0K(convM; 0+) = 2A(K; convM):

Proof. (3.3) is a direct consequence of (3.2) and (2.1). As K + tM � K + tconvM ,
we only have to show the �rst inequality in (3.2). The convex polygon convM will
be denoted by P in the following. As rB2 � K we have tP � K + tM as long as

0 � t �
p
3r

diamM .
We restrict to these t{values from here on excluding moreover the trivial case t = 0.

Let NorP be the set of all outer unit normals of boundary segments of the polygon
P . For u 2 NorP let zu; z

0
u 2M be the endpoints of this boundary segment and Hu

the closed half plane with bdHu = a�fzu; z0ug and zu + u 2 Hu. We will now show

(3.4) (K + tP )n(tP ) �
[

u2NorP
(tHu \ (K + t[zu; z

0
u])) :

If x 2 (K + tP )n(tP ), then
(x+ s �K) \ (tP ) 6= ;

for s = 1. Let s0 > 0 be the minimal number such that this intersection is nonempty
and let y be in (x+s0 �K)\(tP ). The point y is a boundary point of tP . If y lies in the
relative interior of some boundary segment of tP , we have y 2 t[zu; z0u] for a suitable
u 2 NorP . It is easily seen that x 2 tHu. But x 2 y + s0K � y +K � K + t[zu; z

0
u]

and (3.4) is shown in this case. If y is a vertex of tP , then y 2M and x 2 y+K. As
s0 is minimal, one of the normals u of the two boundary segments with endpoint y
ful�ls x 2 tHu. This completes the proof of (3.4).
Using (3.4) we get

(3.5) �2(K + tconvM)� �2(K + tM) �
X

u2NorP
�2(Du):
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where Du = tHu \ (K + t[zu; z
0
u])n(K + tfzu; z0ug). The set Du is sketched in Figure

1. Let the point y be an element of the support set of K + tzu in direction u. Then
y0 = y � tzu + tz0u is an element of the corresponding support set of K + tz0u in the
same direction.

K + tzu K + tz0u

Du

tHu

tzu tz0u
�
�
�
�
�
�

�
�
�
�
�
�

y y0

Figure 1: Two translated versions of K and the region Du (dashed).

As rB2 is a subset of the convex bodyK, the triangle convftzu; y; wg lies in tzu+K,

where w := tzu + r
z0

u
�zu

kz0

u
�zuk . Similarly we have convftz0u; y0; w0g � tz0u + K, where

w0 := tz0u � r
z0

u
�zu

kz0

u
�zuk . If 2r � t k zu � z0u k, then there is a point x 2 [y; w] \ [y0; w0]

and Du � Tu, where the triangle Tu is the convex hull of x; y; y0 (see Figure 2).

Tu

l1

w

-� r

-�
r

w0

x

tzu tz0u
�
�
�
�
�
�

�
�
�
�
�
�

y y0

Figure 2: The triangle Tu.

Without loss of generality we can assume that the line l1 := t bdHu through tzu
and tz0u is perpendicular to the line l2 through y and tzu. (Otherwise an aÆne
transformation with determinant 1 can be applied which leaves l1 pointwise �xed and
maps l2 to a line perpendicular to l1.) Planar geometry now easily yields

�2(Du) � �2(Tu) =
k y � tzu k

4r
k tzu � tz0u k2� t2

R

4r
k zu � z0u k2;

where we used K � RB2 for the last inequality. Substituting this into (3.5) yields
the desired result (3.2).

The quality of the left hand estimate in (3.2) depends on the quotient R=r. Mini-
mization of this quotient naturally leads to the following shape ratio q(K) of a convex
body K. To de�ne it, put R(K) := minft � 0 jK � tB2g and r(K) := supft �
0 j tB2 � Kg (with sup ; := �1). The shape ratio

(3.6) q(K) := inffR(K � z)

r(K � z)
j z 2 intKg
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(inf ; := 1) describes the deviation of K from circular shape: 1 � q(K) � 1, with
1 = q(K) if and only if K is a circular disc. Note that q(K) <1 if and only if K has
interior points. For suÆciently small t > 0, the ratio R=r in (3.2) can be replaced by
q(K).
Even if (3.2) is formulated with q(K), the lower bound gives reasonable estimates

only in the case where the body K is not too elongated. It is therefore worth
mentioning the following estimate in the case where the convex body K is known
to be "-smooth for some " > 0 (i.e. for every boundary point x of K there is a disc
B with radius " such that x 2 B � K). With the notation of the foregoing proof we
�x u 2NorP and assume 2" � t k zu � z0u k=: s. Then Du is included in a triangle
~Tu with basis length s and height "�p"2 � (s=2)2. This implies

�2(Du) � �2( ~Tu) =
s

2
("�

p
"2 � (s=2)2) � s2

4
:

Thus,

 K(convM; t)� cM
4
t2 �  K(M; t) �  K(convM; t)(3.7)

holds for all 0 � t � c0". The constants c0 and cM are de�ned before Theorem 1.
The estimate in (3.7) is independent of " and is therefore better than (3.2). Note,
however, that (3.2) holds for arbitrary convex bodies, in particular for polygons.
Due to (2.2), formula (3.3) can be reformulated as follows:

(3.8)  0K(M; 0+) =

Z
S1
h(convM;w)S(K; dw):

3.2. Extension to the convex ring. The de�nition (3.1) of  K(M; �) is also valid for
K 2 R. We now show that (3.3) extends to the convex ring, using an idea of Rataj
[11]. It is clear that (3.3) does not hold for arbitraryM in the case of a line segment
K. More generally, an extension of (3.3) to the convex ring can only be true, if K can
be written as a �nite union of full dimensional convex bodies. The latter condition is
equivalent to saying that K is topologically regular, which means K = cl(intK).

Theorem 2 Let K 2 R be topologically regular and ; 6=M � R
2 a �nite set. Then

(3.9)  0K(M; 0+) = 2A(K; convM):

Proof. Let K 2 R be topologically regular and M a �nite set with at least two
elements. Without loss of generality we may assume 0 2M . In a �rst step, we show

(3.10) lim
t!0+

1

t
�2((K + tL)nK) = 2A(K;L)

for any convex body L with 0 2 L. In the case of strictly convex L 2 K, (3.10) is
a consequence of Theorem 3.3 in [1], which states a local Steiner-type formula for
sets in the extended convex ring in Minkowski space. Also, Theorems 3.9 and 2.3
of this work are used, to simplify the obtained expression. Both sides of (3.10) are
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monotonic in L with respect to set inclusion, so (3.10) can be shown for all convex
bodies L with interior points by approximation. To proof (3.10) for line segments L,
we may assume �1(L) = 1 and 0 2 L � u? for u 2 S1. Fubini's Theorem implies

1

t
�2((K + tL)nK) =

=

Z 1

�1
1=t

�
�1
�
K \ (su+ u?) + tL

�� �1
�
K \ (su+ u?)

��
�1(ds):

For every s 2 R, the integrand is majorized by, and converges to the Euler character-
istic �(K \ (su+ u?)) of K \ (su+ u?). This shows

lim
t!0+

1

t
�2((K + tL)nK) =

Z 1

�1
�(K \ (su+ u?))�1(ds)

= 2A(K;L):

The last equality follows for convex K from (2.3) and for arbitrary K 2 R by
additivity. Thus, (3.10) is shown.
Due to (3.10), it is enough to proof

(3.11) �2((K + tconvM)n(K + tM)) = o(t); t! 0 + :

Consider a representationK =
Sn
i=1Ki ofK with topologically regular convex bodies

K1; : : : ;Kn. Assume

0 < t < minfdiam(K1); : : : ; diam(Kn)g=diam(M);

which implies Ki 6� x+ t conv �M for all x 2 R
2 and i 2 f1; : : : ; ng. Consider x in the

set of the left hand side of (3.11), which means that x+ tconv �M hits one of the sets
Ki, whereas x+ t �M hits none of them. Due to the topological regularity of Ki, one
of the sides of the polygon x+ tconv �M must be hit twice by bdKi. Lemma 1 in [11]
now yields the assertion, as bdKi is H

1{recti�able and H1{measurable.

4. First contact distribution with �nite structuring element

In this section, we �rst transfer Theorem 2 to random sets. Afterwards, a stronger
result for Boolean models will be presented, which is based on Theorem 1.

Theorem 3 Let Z be an (almost surely topologically regular) stationary random set
in R2 satisfying (2.4). Then, its �rst contact distribution function with respect to the
�nite set M � R

2 obeys

F 0M (0+) =

Z
S1
h(convM;�v)S(Z; dv):

Proof. We may assume that 0 2M . We will show for a convex body K with interior
points that

(4.1) E

Z
S1
h(convM;�v)S(Z \K; dv) = �2(K)F 0M (0+) + f(K);
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where f(rK)=r2 tends to 0 as r ! 1. The de�nition of S(Z; �) then yields the
assertion.
(2.4) and the inclusion{ exclusion formula allow us to interchange limit and expec-

tation in what follows. Using (2.2), Theorem 2 and Fubini's Theorem, we get

E

Z
S1
h(convM;�v)S(Z \K; dv) =

= 2EA(Z \K; conv �M)

= E 0Z\K (conv �M; 0+)

= E lim
t!0+

1=t
�
�2((Z \K) + t �M)� �2(Z \K)

�

= lim
t!0+

1=t

Z
R2

[P((Z \K \ (tM + x) 6= ;)� P(x 2 Z \K)]�2(dx):

We can assume that the Minkowski-di�erence

Lt(K) = Lt := fx 2 R2 jx+ tconvM � Kg � K

of K and tconvM is nonempty. Note that Lt increases (in the sense of set inclusion)
to K, as t decreases to 0. The de�nition of Lt and the stationarity of Z imply
P(Z\K\(tM+x) 6= ;) = FM (t) for x 2 Lt. Splitting the integral over R2 = Lt [ LCt
gives (4.1) with

f(K) = lim
t!0+

1=t

Z
LC
t

[P(Z \K \ (tM + x) 6= ;)� P(x 2 Z \K)]�2(dx):

The stationarity of Z implies

P(Z \K \ (tM + x) 6= ;) = P(Z \ tM \ (K � x) 6= ;)
= P(�x 2 (Z \ tM) + �K)

� P(Z \ tM 6= ;)1�x2tM+ �K

= FM (t)1x2K+t �M :

Hence,

f(K) � lim
t!0+

1=t
�
FM (t)�2(K + t �MnLt)� FM (0)�2(KnLt)

�
= 2A(K; conv �M)FM (0) + lim

t!0+
1=t�2(KnLt) [FM (t)� FM (0)] :

Here, again, we used Theorem 2. As 1=t�2(KnLt) remains bounded (see the 'con-
vexity lemma' in [6]), we �nd 0 � f(rK) � 2rA(K; conv �M)FM (0), r � 0, and the
assertion is shown.

Now consider a stationary Boolean model Z with intensity 
 and convex typical
grain K0. Clearly, Theorem 3 holds for Z. But due to the independence properties
of a Boolean model, Theorem 1 yields a stronger result, namely estimates on the
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error. To compare the �rst contact distributions of a Boolean model with varying
structuring elements M � R

2 , it is convenient to consider the function

IM (t) := � 1



log(1� FM (t)):

Note that

(4.2) IM (t) = E�2 (K0 + t �M) = E K0
( �M; t)

due to the de�nition of FM (t) and (2.7). IfM is a convex body, this and (2.1) implies
that IM (t) is a polynomial in t � 0 of degree at most 2:

(4.3) IM (t) = E�2 (K0) + 2tEA(K0 ; �M) + t2�2(M):

This formula is the basis of the classical minimum contrast method (see e.g. Mol-

chanov [7]): From estimates of FM (t) for several di�erent t � 0 the coeÆcients of
the quadratic polynomial 
IM (t) can be estimated. This yields estimators for 
, the
mean area of the typical particle and EA(K0 ; �M) (in the isotropic case, the latter is
proportional to the mean boundary length of K0). If M is replaced by a �nite set,
(4.3) is no longer true. But the following proposition shows that the deviation of
IconvM (t) from IM (t) is of quadratic order in t. Thus, in the cases where the constant
of the quadratic error term is small, an application of the minimum contrast method
with �nite structuring elementM allows to estimate 
E�2 (K0) and 
EA(K0 ; conv �M).

Proposition 1 Let Z be a stationary Boolean model and M � R
2 a �nite set of at

least two points. Then

0 � IconvM (t)� IM (t) � t2CK0;M ; t � 0;

with

CK0;M := Eq(K0)

�
cM
4

+
6 + L(convM)c0

c20

�
+ �2(convM);

where cM and c0 are de�ned before Theorem 1 and L(convM) is the boundary length
of convM .

Proof. Due to (4.2), it is enough to show the right inequality. Only for this proof, we
write �(K) = r(K � z), where z 2 intK is the minimizer in the de�nition (3.6) of
q(K) (and, again, �(K) = 1, if intK = ;). According to (4.2) and Theorem 1, we
have

IM (t) � E K0
( �M; t)1�(K0)�t=c0

� E

�
 K0

(conv �M; t)� cM
4
q(K0)t

2
�
1�(K0)�t=c0

� IconvM (t)� g(t)� cM
4
Eq(K0 )t

2;

where, according to (2.1),

g(t) = E
�
 K0

(conv �M; t)1�(K0)<t=c0

�
� E

�
�2(K0)1�(K0)<t=c0

�
+ tE

�
A(K0; conv �M)1�(K0)<t=c0

�
+ t2�2(convM):
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But, due to an elementary geometric argument (which does not yield an optimal
bound), �2(K0) � 6�2(K0)q(K0). Evidently, a suitable ball of radius q(K0)�(K0)
contains K0, and so,

g(t) � t2
�
6Eq(K0 )

c20
+
Eq(K0 )L(convM)

c0
+ �2(convM)

�
;

which gives the assertion.

Note that the estimate of the error in the last Proposition is global in t � 0, and
hence is useful in the cases where Eq(K0 ) or an upper bound for this mean is known.
In the case where M consists of two points, say M = f0; ug, u 2 S1, Proposition 1
and (2.3) imply

0 � E�2 (K0) + tE�1 (K0ju?)� If0;ug(t) � 3:1 � Eq(K0 )t
2; 0 � t:

This formula can be used to estimate the expected width of K0 in direction u?.

5. General point con�gurations

Let t > 0, the compact set W � R
2 and the �nite set B � R

2 be given. (B stands
for 'black' points belonging to the random set Z, W for `white' points.) By induction
on the number of elements of B we obtain

P(tB � Z ; tW � ZC) =
X
M�B

(�1)jMj(1� FW[M (t)):

For nonempty B this implies

(5.1) P(tB � Z ; tW � ZC) =
X
M�B

(�1)jMj+1FW[M (t):

We therefore obtain the following Theorem as a consequence of Theorem 3.

Theorem 4 Let Z be an (almost surely topologically regular) stationary random set
ful�ling (2.4). If B and W are two nonempty �nite subsets of R2 , then

(5.2) lim
t!0+

1

t
P(tB � Z ; tW � ZC) =

Z
S1
h(�v)S(Z; dv);

where

h = [min
x2B

hx; �i �max
x2W

hx; �i]+(5.3)

= h
�
conv

�
(W + �B) [ fog� ; ��� h

�
conv(W + �B); ��

(Here f+ := maxff; 0g denotes the positive part of a function f). Equivalently

lim
t!0+

1

t
P(tB � Z ; tW � ZC) =

Z
S1
h(B(Z);�v)S(dv);

where the (signed and discrete) measure S is given by

S := S(conv
�
(W + �B) [ fog� ; �)� S(conv(W + �B); �):
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Proof. Theorem 3 and (5.1) imply (5.2) with

h =
X
M�B

(�1)jMj+1h(conv(W [M); �):

In the following, for �xed u 2 S1, an induction argument in the number of points
in B will lead to the alternative representations of h(u) according to (5.3): As B is
nonempty, there is a support element x 2 B in direction u, i.e. hx; ui = h(convB; u).
If jBj > 1, then X

M�B;x2M
(�1)jM j+1h(conv(W [M); u) = 0;

as all the summands are up to sign equal to h(conv(W [fxg); u). If y 2 B is a support
element of convB in direction �u, hy;�ui = h(convB;�u), we get by induction

h(u) =
X

M�fyg
(�1)jMj+1h(conv(W [M); u) = [�h(convB;�u)� h(convW;u)]+:

This directly yields the �rst equality in (5.3) and, as

�h(convB;�u)� h(convW;u) = �h(conv(W + �B); u);

the second equality in (5.3) follows. The reformulation in terms of the mean Blaschke
body now is a consequence of (2.6) and (2.2).

The �rst representation of h(u), u 2 S1, in (5.3) has the following geometric
interpretation: Let S(u) be the (possibly empty) union of all lines orthogonal to
u, separating the sets W and B, in such a way that W lies in the negative half plane
with respect to u. Then h(u) is equal to the width of the strip S(u).

6. 2� 2 point con�gurations

We will now apply (5.2) in the case, where B andW are subsets of the unit cell in the
standard grid tZ2. Let e1; e2 be the standard basis of R2 and V = f0; e1; e2; e1 + e2g
the set of vertices of the unit cell [0; 1]2. For t > 0, a 2� 2-point con�guration (with
scaling-factor t) is a subset of tV . As an example, consider the con�guration

Ct =
�
Æ Æ
� �

�
t

:= f0; te1g:

Note that Z \ tV = Ct is the event that f0; te1g � Z and fte2; te1 + te2g � ZC .
Similar notations in what follows will be self explaining. (In subsequent sections the
notion of a con�guration will be extended to all translations of a subset of tV , thus
allowing to count the number of con�gurations of a given type in Z\Z2 in a sampling
window.) Con�gurations di�erent from�

Æ Æ
Æ Æ

�
t

and

�
� �
� �

�
t

will be called boundary con�gurations, as they contain information about the bound-
ary of Z. This will be made precise in the following Corollary of Theorem 4.
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Corollary 1 Let Z be an (almost surely topologically regular) stationary random
set ful�ling (2.4). Then for every boundary con�guration Ct there are a; b 2 R

2 such
that

(6.1) lim
t!0+

1

t
P(Z \ tV = Ct) =

Z
S1
ha;b(v)S(Z; dv);

where
ha;b(v) := minfha; vi+; hb; vi+g:

Equivalently we have

(6.2) lim
t!0+

1

t
P(Z \ tV = Ct) = h(B(Z); a) + h(B(Z); b)� h(B(Z); a+ b):

The values of a and b are listed in Table 1.

To derive Table 1 from Theorem 4, it is convenient to write hB;W for the function
h in (5.3) to indicate its dependence on B and W . As hW;B(v) = hB;W (�v) and
h#B;#W (#v) = hB;W (v) for all v 2 S1 and all rotations # of R2 (�xing the origin),
the calculations can be reduced to three boundary con�gurations to be considered,

e.g. C(i)t ; i = 1; 3; 6, in Table 1 below.

i C(i)t a b

0

�
Æ Æ
Æ Æ

�
t

{ {

1

�
Æ Æ
� Æ

�
t

e1 e2

2

�
Æ Æ
Æ �

�
t

�e1 e2

3

�
Æ Æ
� �

�
t

e1 + e2 �e1 + e2

4

�
� Æ
Æ Æ

�
t

e1 �e2

5

�
� Æ
� Æ

�
t

e1 + e2 e1 � e2

6

�
� Æ
Æ �

�
t

0 0

7

�
� Æ
� �

�
t

e1 e2

i C(i)t a b

8

�
Æ �
Æ Æ

�
t

�e1 �e2

9

�
Æ �
� Æ

�
t

0 0

10

�
Æ �
Æ �

�
t

�e1 + e2 �e1 � e2

11

�
Æ �
� �

�
t

�e1 e2

12

�
� �
Æ Æ

�
t

e1 � e2 �e1 � e2

13

�
� �
� Æ

�
t

e1 �e2

14

�
� �
Æ �

�
t

�e1 �e2

15

�
� �
� �

�
t

{ {

Table 1: The values of a and b for the con�guration Ct.

Remark 1 The integrals corresponding to the con�gurations C(6)t and C(9)t are 0.
The number of these con�gurations in a digitized image can therefore be used as
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an indicator for non-suÆcient resolution t. Note that four of the twelve remaining
integrals occur twice, so, in fact, the 2 � 2 point con�gurations yield at most eight
nontrivial di�erent integrals of S(Z; �).

6.1. Inference on the mean normal measure. We will now discuss di�erent possi-
bilities to obtain estimators for S(Z; �) using Corollary 1. Set vi := (cos( i8 �2�); sin( i8 �
2�))>; i 2 N0 , and let

T := fv0; v1; : : : ; v7g
be the set of all directions de�ned by sides and diagonals of the unit square [0; e1]�
[0; e2]. For convenience we put

Iv :=

Z
S1
ha(v);b(v)(w)S(Z; dw);

where (a(v); b(v)) is the pair of neighbours of v 2 T in S1 \ T (multiplied by
p
2 if

v 2 f�e1;�e2g). So, up to normalization, we have (a(vi); b(vi)) = (vi�1; vi+1), where
cyclic indexing is used. Note that the numbers Ivi can be estimated by counting the
corresponding con�guration in a discretized image, if the resolution t is small enough.
See also section 6.2 below.
It is clear that the eight di�erent integrals (Iv0 ; : : : ; Iv7) do not determine S(Z; �)

uniquely. We will therefore impose on S(Z; �) the additional assumption to belong
to some subclass of the space of measures. The choice of the appropriate class in
applications must then be adapted to the situation. Let us suppose that the mean
normal measure belongs to a parametrized class of measures, parametrized by � 2 �,
where � is a subset of Rp , say. Let S�(Z; �) be the notation for the mean normal
measure with parameter �. The parameter � is said to be identi�able in � if the
mapping � 7! (Ivi (�))

7
i=0 is injective on �, where

(6.3) Iv(�) :=

Z
S1
ha(v);b(v)(w)S�(Z; dw)

for v 2 T . The following examples will illustrate this approach:
Example 1 The discrete case.

Assume that the mean normal measure belongs to the class

M(T ) := f
7X
i=0

�iÆvi j �i 2 R+g

of all measures supported by T , where Æv is the probability measure supported by
fvg � S1. We have � = R

8
+ . As S�(Z; �) =

P7
i=0 �iÆvi , we obtain

Ivi(�) = �i � ha(vi);b(vi)(vi);
for i = 0; : : : ; 7. Therefore

S�(Z; �) =
7X
i=0

Ivi(�)

ha(vi);b(vi)(vi)
Ævi ;

and � is identi�able in �.
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Example 2 The case of a piecewise constant density.
Assume that the mean normal measure has a piecewise constant density with respect to
the ordinary length measure !1 on S1 (spherical Lebesgue measure). More precisely,
assume that this density is constant on Di where Di � S1 is the arc of length �=4
centered at vi for i = 0; : : : ; 7. This means

S�(Z; �) =
7X
i=0

�i � !1( � \Di)

with � = (�0; �1; : : : ; �7)
> 2 � := R

8
+ . We have

(6.4) A � � =

0
BBBBBBBBB@

Iv0(�)=
p
2

Iv1(�)

Iv2(�)=
p
2

Iv3(�)
...

Iv6(�)=
p
2

Iv7(�)

1
CCCCCCCCCA
;

with the matrix

A :=

0
BBBBBBBBBB@

2
 � 0 0 0 0 0 �
� 2
 � 0 0 0 0 0
0 � 2
 � 0 0 0 0
0 0 � 2
 � 0 0 0
0 0 0 � 2
 � 0 0
0 0 0 0 � 2
 � 0
0 0 0 0 0 � 2
 �
� 0 0 0 0 0 � 2


1
CCCCCCCCCCA
;

where 
 = cos(�=8)�cos(�=4) and � = 1�cos(�=8). As A is invertible, the parameter
� 2 R

8
+ is identi�able and can be obtained solving the linear system (6.4). The

advantage of this model over the discrete model in Example 1 is that it includes the
case where Z is isotropic (then, the mean normal measure is a multiple of !1).

Example 3 Other parametric families.
It is also possible to use standard parametric families in the analysis. The mean
normal measure is then parametrized by � = (�t; �d) where �t is the total mass and
�d is the parameter of a !1�probability density p( � ; �d) on S1. Then,

S�(Z;A) = �t

Z
A

p(v; �d)d!1(v); A 2 B(S1):

For each speci�c choice of a density family it must be checked whether � is identi�able
in �.

We have already seen that the mean Blaschke body and the mean normal measure
of Z are in one-to-one correspondence (see 2.6). For visualization it might therefore
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be useful to 'estimate' the mean Blaschke body instead of S(Z; �). This procedure is
well-known in the context of stationary �bre processes, where the associated zonoid
(the Steiner compact) is estimated from the rose of intersection. The key observation
is that

Q :=

7\
i=0

fh � ; vii � h(B(Z); vi)g

is a polygonal approximation of B(Z) from outside, only based on the support values
of B(Z) in the directions v0; : : : ; v7. To construct this polygon, we need to determine
(h(B(Z); vi))

7
i=0 from Ivi , i = 0; : : : ; 7. In view of (6.2), we have

Ivi = h(B(Z); a(vi)) + h(B(Z); b(vi))� h(B(Z); a(vi) + b(vi)); i = 0; : : : ; 7:

More explicitly,

(6.5) D �

0
B@

h(B(Z); v0)
...

h(B(Z); v7)

1
CA =

0
BBBBBBBBB@

Iv0=
p
2

Iv1
Iv2=

p
2

Iv3
...

Iv6=
p
2

Iv7

1
CCCCCCCCCA

with

D =

0
BBBBBBBBBB@

�p2 1 0 0 0 0 0 1

1 �p2 1 0 0 0 0 0

0 1 �p2 1 0 0 0 0

0 0 1 �p2 1 0 0 0

0 0 0 1 �p2 1 0 0

0 0 0 0 1 �p2 1 0

0 0 0 0 0 1 �p2 1

1 0 0 0 0 0 1 �p2

1
CCCCCCCCCCA
:

Note that rank(D) = 6. Thus, the vector � = (h(B(Z); vi))
7
i=0 is determined by the

integrals Iv ; v 2 T , only up to addition of a vector (hx; vii)7i=0 (which corresponds
to a translation of B(Z) by x 2 R

2 ). So, any solution of (6.5) will yield a polygon Q
which is an approximation of a translate of B(Z). Note, however that the described
procedure is suÆcient to get information about the shape of B(Z), which determines
S(Z; �). If the underlying set Z is a Boolean model, then the obtained polygon Q is
an approximation of the mean typical grain (up to homothety), due to (2.8).

6.2. Statistical considerations. In this section, we will discuss how to estimate the
mean normal measure from observations of the di�erent types of 2 � 2 con�gura-
tions in a sampling window. Among 2 � 2 con�gurations, there are 12 informative
con�gurations (those di�erent from No.s 0; 6; 9 and 15, see Table 1). We will not
distinguish between informative con�gurations having the same probability of being
observed. This leaves us with 8 di�erent types of informative con�gurations which
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can be indexed by T . Other con�gurations than the informative ones will be called
type 0 con�gurations. As in the previous section we assume that the mean normal
measure belongs to a parametrized class of measures, parametrized by � 2 �. Ac-
cording to Corollary 1, the probability of observing a con�guration of type v 2 T is,
approximately,

pv(�) = tmvIv(�):

Here, mv is the number of con�gurations that are combined in type v (mv = 1 for v 2
fe1; e2;�e1;�e2g and mv = 2 otherwise) and Iv(�) is de�ned in (6.3). Furthermore,
we let

p0(�) = 1�
X
v2T

pv(�)

and T = T [ f0g.
Let us suppose that we have observed nv con�gurations of type v 2 T in a

discretization of Z in a sampling window. Let n =
P

v2T nv be the total number
of observed con�gurations. We suggest to base the estimation of � on the function `,
de�ned by

(6.6) `(�) :=
X
v2T

nv ln pv(�); � 2 �:

The value `(�) is closely related to the Kullback-Leibler divergence of the observed
frequencies f = (nv=n)v2T from the probability function p(�) = (pv(�))v2T . Recall
that for general probability functions p = (pv)v2T and q = (qv)v2T , the divergence of
p from q is de�ned as

D(p; q) =
X
v2T

pv ln
pv
qv
;

cf. e.g. Lauritzen [4], p. 238-239, and references therein. The divergence ful�ls
D(p; q) � 0 and D(p; q) = 0 if and only if p = q. The mentioned relation between `
and D is

(6.7) `(�) =
X
v2T

nv ln(
nv
n
)� nD(f; p(�)):

Note also that in the case of independent observed con�gurations `(�) is the log{
likelihood function (up to an additive term which is independent of �).

As an estimate of � we will use a value �̂ 2 � at which (6.6) is maximal, if such
a value exists. Equivalently, we use a value of � at which the divergence D(f; p(�))

is minimal. Usually, �̂ has to be found by an iterative procedure. However, if there
exists ~� 2 � such that

(6.8) pv(~�) =
nv
n
; v 2 T ;

then, due to (6.7) and the properties of the divergence, ~� is a solution of the max-
imization problem. Thus, a parameter value for which the theoretical probabilities
coincide with observed frequencies is always a solution to the estimation problem. If
~� in (6.8) is unique, �̂ = ~� is the only solution of (6.6).
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This remark is relevant for the discrete case and the case of a piecewise constant
density mentioned in section 6.1. In the discrete case, (6.8) is always ful�lled. Here,
� = R

8
+ and

pvi(�) = tmvi�iha(vi);b(vi))(vi); i = 0; : : : ; 7:

Accordingly,

�̂i =
nvi

ntmviha(vi);b(vi)(vi)
; i = 0; : : : ; 7:

In the case of a piecewise constant density,

pvi(�) = t ~mvi(A�)vi ; i = 0; : : : ; 7;

where ~mvi := 2 for even i and ~mvi :=
p
2 for odd i. Let � = (nvi=nt ~mvi)

7
i=0. If

A�1� 2 R8+ ;

then (6.8) has the unique solution �̂ = ~� = A�1�. Otherwise, �̂ has to be found using
an iterative procedure.
Note that if the main interest is in the directional distribution

R = S(Z; �)=L(Z);

we may instead use the conditional probability of observing a type v con�guration,
v 2 T , given the con�guration is informative. If R is parametrized by �d then the
conditional probabilities take the form

pvjT (�d) =
mv

R
S1 ha(v);b(v)(w)R�d(dw)P

v2T mv

R
S1
ha(v);b(v)(w)R�d(dw)

:

In analogy with (6.6) the parameter �d may be estimated by maximizing

`(�d) :=
X
v2T

nv ln pvjT (�d):

6.3. Related approaches. Our approach coincides essentially with a known method
if S(Z; �) is even. In this case we obtain at most four nontrivial di�erent integrals of
S(Z; �) due to symmetry.
According to Theorem 4, we have for x 2 R

2

(6.9) lim
t!0+

1

t
P(0 2 Z; tx 62 Z) = 1

2

Z
S1
jhv; xijS(Z; dv);

where we used (2.5). Formula (6.9) is well known, its right hand side can be in-
terpreted as speci�c length of total projection of Z on the line x?. This result has
been used for the analysis of planar digitized images by assuming that x is a point
of the grid, see e.g. Ohser et al. [8]. If we restrict attention to a point in the 8-
neighbourhood of 0, then x 2 f�e1;�e2;�(e1+e2);�(e1�e2)g. As (6.9) is invariant
under re
ection of x, only four directions have to be considered. For example, if
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x = e1, we have to consider the event that 0 2 Z but te1 2 ZC , which can be written
more descriptive as

Z \ tV 2
�
� �
� Æ

�
t

;

if we set �
� �
� Æ

�
t

:=

��
Æ Æ
� Æ

�
t

;

�
Æ �
� Æ

�
t

;

�
� Æ
� Æ

�
t

;

�
� �
� Æ

�
t

�
:

With a self explaining use of notation, the four directions mentioned above correspond
to the four events

(6.10) Z \ tV 2
�
� �
� Æ

�
t

; Z \ tV 2
�
� Æ
� �

�
t

; Z \ tV 2
�
Æ �
� �

�
t

; Z \ tV 2
�
� �
Æ �

�
t

:

Clearly, the four events in (6.10) can be expressed as (disjoint) unions of events in the

family fZ \ tV = C(i)t j i = 1; : : : ; 14g. On the other hand, the probability of any of
the boundary con�gurations can, in the case of a symmetric mean normal measure,
be expressed in terms of probabilities of events in (6.10). This shows that the events
in (6.10) contain the same information as all boundary con�gurations. Therefore, in
the case of a symmetric mean normal measure, there is no gain of information using
our approach. Yet, in the general case, our procedure yields eight di�erent integrals
and hence more information on S(Z; �).
We also note the following consequence for the determination of the length density

L(Z) := S(Z; S1) from the integrals in (6.1). Only in this paragraph, we will use the
abbreviation

�i := lim
t!0+

1

t
P(Z \ tV = C(i)t ); i = 1; : : : ; 14:

If Cauchy's formula for the length density is discretized with the rectangular rule (in
the present setting one could equivalently work with the trapezoidal rule), then

~L :=
�

8
p
2

2
4(1 +p

2)

14X
i=1

�i +
X

i2f3;5;10;12g
�i

3
5

is obtained as an approximation of L(Z) (seeOhser & M�ucklich [9], formula (4.9)).
If the values �i are replaced by estimators, ~L becomes a (biased) estimator of L(Z).
Corollary 1 yields

~L =

Z
S1
g(v)S(Z; dv);

where

g =
(1 +

p
2)�

4
p
2

�
minfjhe1; �ij; jhe2; �ijg+ 1p

2
minfjhe1 + e2; �ij; jhe1 � e2; �ijg

�
:

Put u�=8 := (cos(�=8); sin(�=8))>. We have g(e1) � g � g(u�=8) on S
1; with

g(e1) = (1 +
p
2)
�

8
� 0:95 and g(u�=8) = g(e1) � 2

p
2 sin(

�

8
) � 1:03:
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Hence

(6.11) g(e1)L(Z) � ~L � g(u�=8)L(Z)

and these estimates are sharp. In particular, this shows that ~L can deviate maximally
5% from L(Z). This maximal deviation is attained if and only if Z is a polygonal
random set for which the directions of all boundary segments are parallel to sides or
diagonals of the unit square (almost surely). We note that these estimates could as
well be derived without application of Corollary 1, using the well known fact that
total projections of Z are cosine transforms of S(Z; �). Therefore, (6.11) is also valid
in the context of general stationary �bre processes, if it is interpreted according to
this setting.

7. On n� n con�gurations

In section 6 , we have concentrated on 2�2 con�gurations and shown how they can
be used for making inference about the mean normal measure. Clearly, Theorem 4
can be used for developing corresponding results for n�n con�gurations with n > 2.
The crucial step is to �nd explicit integral representations for

(7.1) lim
t!0+

1

t
P(tB � Z; tW � ZC)

for disjoint, non-empty sets B andW such that tB[tW is a scaled grid square of size
n� n. For positive t small enough, t � t0, say, the probability P(tB � Z; tW � ZC)
can be used as an approximation of t times the limit in (7.1), as previously used for
2 � 2 con�gurations. Note, however, that t0 is expected to depend on n: the larger
n, the smaller t0.
Let S(u) be the union of all lines orthogonal to u 2 S1, separating B and W as

explained just after the proof of Theorem 4. Let

S =
[
u2S1

S(u)

be the set of all separating lines. If S = ;, such that B and W cannot be separated
by a line (in the above sense), then Theorem 4 implies that the limit (7.1) is zero
and the corresponding n � n con�guration is not informative. If S 6= ;, then it is
possible to �nd a separating line spanned by two points in the n � n grid square

tB [ tW . Since at most
�
n2

2

�
= n2(n2 � 1)=2 such lines exist, there are less than

n4 informative con�gurations. Thus, although the number of n � n con�gurations
increases exponentially in n, the estimation of the mean normal measure from n� n
con�gurations is only a polynomial problem.
The thorough study of these aspects, including an extension to rectangular grids,

is part of our future research plans.
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