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Abstract. A substantial portion of E. Lutwak's dual Brunn-Minkowski theory, originally
applicable only to star-shaped sets, is extended to the class of bounded Borel sets. The exten-
sion is motivated by an important application to local stereology, a collection of stereological
designs based on sections through a �xed reference point that has achieved signi�cant medical
results in neuroscience and cancer grading.

1. Introduction

The classical Brunn-Minkowski theory, born just over a century ago, provides the techniques
for solving many problems in geometry concerning metric quantities such as volume, surface
area, and mean width. The usual framework is the class of convex bodies in Rn . The theory
employs quantities called mixed volumes, of which volume, surface area, and mean width
are examples. In fact, these are special mixed volumes called intrinsic volumes. It turns
out that any intrinsic volume of a convex body can be represented as an average of volumes
of its projections onto subspaces. This fact (called the Kubota integral recursion; see, for
example, Schneider's book [33, p. 295] for this and a wealth of information about the Brunn-
Minkowski theory) is one of many integral formulas that also form part of integral geometry.
Such formulas have found an important application in stereology, de�ned in 1961 by H. Elias
as the exploration of three-dimensional space from two-dimensional sections or projections
of solid bodies. Applications of stereology include metallurgy and biology, where inferences
about the structure of a three-dimensional mineral sample or biological tissue can be made
via appropriate measurements of a sample of their two-dimensional slices.
In 1975, E. Lutwak [27] initiated the dual Brunn-Minkowski theory, in which the intersec-

tions of star bodies with subspaces replace the projections of convex bodies onto subspaces in
the classical theory. Lutwak discovered that integrals over Sn�1 of products of radial functions
(see Section 2 for de�nitions and notation) behave like mixed volumes, and called them dual
mixed volumes. Special cases of dual mixed volumes analogous to the intrinsic volumes are
called dual volumes, and it can be shown that a dual Kubota integral recursion holds for these;
instead of averaging volumes of projections, this involves averaging volumes of intersections
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with subspaces. In 1990, one of the authors (R.G.) introduced the term geometric tomog-
raphy for the area of mathematics concerning the retrieval of information about a geometric
object from data concerning its sections by subspaces or projections onto subspaces. Both
the Brunn-Minkowski theory and its dual are useful in geometric tomography, and [11] also
explains the nature of the duality between the two (insofar as it is understood).
In the late 1980's, a new branch of stereology called local stereology was pioneered by

one of the authors (E.V.J.) and H. J. G. Gundersen, and has already achieved signi�cant
medical results in neuroscience and cancer grading. Local stereology, surveyed in [17], is a
collection of stereological designs based on sections through a �xed reference point. As such,
it relates especially with the part of geometric tomography that concerns intersections with
subspaces, and in particular, with the dual Brunn-Minkowski theory. The �rst Summer School
on Stereology and Geometric Tomography, held at Sandbjerg Manor, Denmark on May 20{25,
2000, was devoted to the interplay between geometric tomography and local stereology.
Many of the biological structures encountered in local stereology are far from being star

shaped. (See Section 8 below for speci�c examples and an introduction to the methodology of
local stereology.) This is the principal motivation for the �rst part of this paper, which provides
a signi�cant extension of the dual Brunn-Minkowski theory. In fact, it was always clear that
the star bodies considered by Lutwak, bodies star-shaped at the origin and with a continuous
radial function (and hence containing the origin), is unnaturally restrictive; for example, a
convex body not containing the origin is not a star body according to this de�nition. Two of
the authors (R.G. and A.V.) gave a more general de�nition of the term star body (the one
used below), and in [12] extended part of Lutwak's theory to the wider class. However, even
this class is much too small for the application to local stereology. The present paper �nally
gives a fully satisfactory extension of the main part of the dual Brunn-Minkowski theory, that
involving dual volumes, to the class of bounded Borel sets, the largest class of sets for which
measurability and convergence issues do not arise.
Though one theme of the paper points towards the application to local stereology, our ex-

tension of the dual Brunn-Minkowski theory includes other concepts and results. For example,
we de�ne the intersection body of a bounded Borel set and give the corresponding extension
of Lutwak's theorem that pertains to the celebrated Busemann-Petty problem: If the central
hyperplane sections of an origin-symmetric convex body in R

n are always smaller in volume
than those of another such body, is its volume also smaller? The problem was stated in 1956,
and solved in [9], [10], [38], and [39] only after the crucial notion of the intersection body of
a star body was introduced by Lutwak [28]. (The answer is aÆrmative if n � 4 and nega-
tive otherwise.) Lutwak's theorem says that the answer to the Busemann-Petty problem is
aÆrmative for any n if the body with the smaller sections is an intersection body.
The paper is organized as follows. After some basics and a summary of Lutwak's dual

Brunn-Minkowski theory, we extend the part concerning dual volumes to the class of bounded
Borel sets in Section 4. Two key ingredients are an integral transform called the point X-ray
of order i and the Blaschke-Petkantschin formula from integral geometry. Once these are used
to supply the correct de�nitions, some of the proofs follow quite closely those from the original
theory. For certain inequalities and Lutwak's theorem on intersection bodies, however, more is
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needed. We require variants of Jensen's inequality for means that apply to Lebesgue-Stieltjes
measures (Lemmas 4.7 and 4.8) and which may be of independent interest. Section 5 represents
the �rst systematic e�ort to perform a similar extension of general dual mixed volumes. The
results are rather inconclusive, not surprising since attempts to generalize mixed volumes
in the classical Brunn-Minkowski theory much beyond the class of convex bodies have also
been less than satisfactory. The remainder of the paper outlines the application to local
stereology. This focuses on the local stereological volume estimators, which are de�ned in
Section 6. In Section 7 we discuss various classes of sets that might be used as models for the
objects encountered in practise, and derive corresponding practical formulas for the volume
estimators. The �nal Section 8 is a brief overview of local stereology as it is practised today.

2. Definitions and notation

As usual, Sn�1 denotes the unit sphere, B the unit ball, and o the origin in Euclidean
n-space Rn . By a direction, we mean a unit vector, that is, an element of Sn�1. If u is a
direction, we denote by u? the (n � 1)-dimensional subspace orthogonal to u and by lu the
line through the origin parallel to u.
The characteristic function of a set A is denoted by 1A.
We write Vk for k-dimensional Lebesgue measure in R

n , where k 2 f0; : : : ; ng, and where
we identify Vk with k-dimensional Hausdor� measure (V0 is the counting measure). We also
generally write V instead of Vn. We let �n = V (B) and note that Vn�1(S

n�1) = !n = n�n.
The notation dz will always mean dVk(z) for the appropriate k with k 2 f0; : : : ; ng. The
notation dS will denote integration on the Grassmannian G(n; k) of k-dimensional subspaces
in Rn with respect to the canonical invariant probability measure, usually referred to as Haar
measure in G(n; k).
We say that a set is o-symmetric if it is centrally symmetric, with center at the origin.
A set L is star-shaped at o if L \ lu is either empty or a (possibly degenerate) closed line

segment for each u 2 Sn�1. If L is star-shaped at o, we de�ne its radial function �L by

�L(u) =

�
maxfc : cu 2 Lg if L \ lu 6= ;,
0 otherwise.

This de�nition is a slight modi�cation of [11, (0.28)]; as de�ned here, the domain of �L is
always Sn�1.
A body is a compact set equal to the closure of its interior. By a star body in Rn we mean a

body L star-shaped at o such that �L, restricted to its support, is continuous. This de�nition,
introduced in [12] (see also [11, Section 0.7]), allows bodies not containing o, unlike previous
de�nitions; in particular, every convex body is a star body in this sense. (Other de�nitions,
for example that of Klain [24], [25] are not relevant for our purposes, since we only require
bounded sets.) We denote the class of star bodies in Rn by Ln, and the subclass of star bodies
containing o by Lno . We write Bn for the class of bounded Borel sets in Rn , Bns for the class of
sets in Bn that are star-shaped at o, and Bnso for the members of Bns that also contain o.
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We denote by R the spherical Radon transform, de�ned by

(Rf)(u) =

Z
Sn�1\u?

f(v)dv;

for bounded Borel functions f on Sn�1. The transform R is self-adjoint, that is,

(1)

Z
Sn�1

f(u)(Rg)(u) du =

Z
Sn�1

(Rf)(u)g(u) du

for bounded Borel functions f and g on Sn�1; see, for example, [11, Theorem C.2.6]. On
the right-hand side of (1), Rf is integrated with respect to the �nite Borel measure in Sn�1

de�ned for Borel subsets of Sn�1 by

�(E) =

Z
E

g(u) du:

This suggests (see, for example, [13, p. 304]) the extension of R to a linear mapping from the
space M(Sn�1) of signed �nite Borel measures in Sn�1 into itself by

(2)

Z
Sn�1

f(u) d(R�)(u) =

Z
Sn�1

(Rf)(u) d�(u) =

Z
Sn�1

Z
Sn�1\u?

f(v) dv d�(u);

for each bounded Borel function f on Sn�1. This de�nition preserves the self-adjoint property
of R.
We shall need the following version of the Blaschke-Petkantschin formula; see, for example,

[17, Proposition 4.5], with p = k, q = 1, and r = 0.

Proposition 2.1. Let k 2 f1; : : : ; n� 1g and let g be a nonnegative bounded Borel function
on R

n . Then

(3)

Z
Rn

g(x)dx =
!n
!k

Z
G(n;k)

Z
S

g(x)kxkn�k dx dS:

3. Lutwak's dual Brunn-Minkowski theory for the class Bnso

In this section we recall the basics of Lutwak's dual Brunn-Minkowski theory. Lutwak [27]
worked with star bodies containing o in their interiors, but we note here that with appropriate
minor modi�cations, his results extend immediately to the class Bnso.

The dual mixed volume eV (L1; : : : ; Ln) of sets L1; : : : ; Ln 2 Bnso is de�ned by

(4) eV (L1; : : : ; Ln) =
1

n

Z
Sn�1

�L1
(u)�L2

(u) � � ��Ln(u) du:

For i 2 f1; : : : ; ng, the dual volume eVi(L) is
(5) eVi(L) = eV (L; i;B; n� i) =

1

n

Z
Sn�1

�L(u)
i du;

the dual mixed volume of i copies of L and (n� i) copies of B. In particular, eVn(L) = V (L).
Lutwak observed that dual volumes have properties analogous to the intrinsic volumes of the
Brunn-Minkowski theory.
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If x; y 2 R
n , then the radial sum xe+y of x and y is de�ned to be the usual vector sum x+ y

if x and y are contained in a line through o, and o otherwise. If L;M 2 Bnso and s; t � 0, then
the radial linear combination sLe+tM can be de�ned by

sLe+tM = fsxe+ty : x 2 L; y 2Mg;

or, equivalently, by

(6) �sLe+tM = s�L + t�M :

Lutwak [27] (see also [11, Theorem A.6.1]) found the following analogue of Minkowski's
theorem on mixed volumes.

Proposition 3.1. Let Lj 2 Bnso, j 2 f1; : : : ; mg. The volume of the radial linear combination

L = t1L1e+ � � � e+tmLm;
where tj � 0, is a homogeneous polynomial of degree n in the variables tj, whose coeÆcients
are dual mixed volumes. Speci�cally,

V (L) =
mX

j1=1

� � �
mX

jn=1

eV (Lj1 ; : : : ; Ljn)tj1 � � � tjn :
Of course, Lutwak's de�nition (4) of the dual mixed volume eV (L1; : : : ; Ln) is compatible

with the previous theorem, and in particular

(7) eV (L; : : : ; L) = V (L):

Lutwak noted that dual mixed volumes enjoy basic properties analogous to those of mixed
volumes. They are (see [11, Section A.6]) nonnegative, invariant under volume-preserving
linear transformations, monotonic, and positively multilinear; the latter property means that

(8) eV (sL1e+tL01; L2; : : : ; Ln) = seV (L1; L2; : : : ; Ln) + teV (L01; L2; : : : ; Ln)

when s; t � 0.
Let Lj 2 Bnso, j 2 f1; : : : ; ng, and let i 2 f1; : : : ; ng. Lutwak proved the dual Aleksandrov-

Fenchel inequality (see [11, Section B.4]):

(9) eV (L1; L2; : : : ; Ln)
i �

iY
j=1

eV (Lj; i;Li+1; : : : ; Ln);

with equality if and only if L1; : : : ; Ln are dilatates of each other, modulo sets of measure
zero. The inequality has the same form as the classical Aleksandrov-Fenchel inequality. Two
special cases of (9) are worthy of note. For L;M 2 Bnso, de�ne

(10) eV1(L;M) = eV (L; n� 1;M) =
1

n

Z
Sn�1

�L(u)
n�1�M(u) du:

Note that

(11) eV1(L; L) = V (L)
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for L 2 Bnso.
The dual Minkowski inequality (see [11, (B.23)]) states that

(12) eV1(L;M)n � V (L)n�1V (M);

with equality if and only if L is a dilatate of M , modulo a set of measure zero. Let i 2
f1; : : : ; n� 1g. The extended dual isoperimetric inequality (see [11, (B.26)]) is

(13)

 eVi(L)eVi(B)
!n

�

�
Vn(L)

Vn(B)

�i

;

with equality if and only if L is an o-symmetric ball, modulo a set of measure zero.

4. Dual volumes for bounded Borel sets

Gardner and Vol�ci�c [12] (see also [11, Section A.6]) extended the de�nition of the dual

volumes eVi(L) to the class Ln by replacing the integrand in (5) by half the i-chord function
�i;L of L, de�ned for real i > 0 and u 2 Sn�1 by

�i;L(u) =

�
�L(u)

i + �L(�u)
i if o 2 L,��j�L(u)ji � j�L(�u)ji�� if o 62 L.

Note that it remains true that eVn(L) = V (L), for example. Clearly the same de�nition can be
used for sets in the larger class Bns ; the paper [12] focused on the class Ln because it is more
amenable to uniqueness results.
In this section we further extend a signi�cant part of the dual Brunn-Minkowski theory to

the class Bn. A key ingredient is the following generalization of the i-chord function.
Let C 2 Bn and let i > 0. The point X-ray of C of order i at o is de�ned by

(14) Xi;oC(u) =

Z
R

1C(tu)jtj
i�1 dt:

If C 2 Bns , it is easy to see that

(15) Xi;oC =
1

i
�i;C ;

the proof is the same as in [11, Lemma 5.2.2], where the more restrictive assumption that
C 2 Ln is not necessary.
Let k 2 f1; : : : ; ng and let C 2 Bn be a subset of S 2 G(n; k). We de�ne the dual volumeeVi;k(C) by

(16) eVi;k(C) = i

2k

Z
Sn�1\S

Xi;oC(u) du:

When k = n, we call eVi;n(C) the ith dual volume of C and denote it by eVi(C). When C 2 Ln,
these de�nitions coincide with the ones given in [11, (A.55), (A.57)]. Note also thateVi;1(C \ lu) = iXi;oC(u);
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for all u 2 Sn�1.

Theorem 4.1. Let i > 0, let k 2 f1; : : : ; ng, and let C 2 Bn be a subset of S 2 G(n; k). Then

eVi;k(C) = i

k

Z
C

kxki�k dx:

Proof. Using (14) and (16), we obtain

eVi;k(C) =
i

2k

Z
Sn�1\S

Xi;oC(u) du

=
i

2k

Z
Sn�1\S

Z
R

1C(tu)jtj
i�1 dt du

=
i

2k

Z
Sn�1\S

Z
lu

1C(x)kxk
i�kkxkk�1 dx du

=
i

k

Z
C

kxki�k dx;

the �nal equality following from the Blaschke-Petkantschin formula (3) with n replaced by
k and k replaced by 1 (or [11, Lemma 9.4.1] with n replaced by k, S identi�ed with R

k , i
replaced by 1, and f(x) = 1C(x)kxk

i�k). �

Corollary 4.2. Let i 2 f1; : : : ; ng and let C 2 Bn be a subset of S 2 G(n; i). Then

eVi;i(C) = Vi(C):

Proof. Set i = k in Theorem 4.1. �

Many of the results that follow in this section were previously proved by various authors in
varying degrees of generality. We generally con�ne references to the relevant results in [11],
where detailed historical remarks may be found.
The following theorem is a generalization of the dual Kubota integral recursion (see [11,

Theorem A.6.2]).

Theorem 4.3. Let C 2 Bn, let i > 0, and let k1; k2 2 f1; : : : ; ng with k1 � k2. If S 2 G(n; k2),
then eVi;k2(C \ S) =

�k2
�k1

Z
G(k2;k1)

eVi;k1(C \ T ) dT:

Proof. Using the fact that Vn�1 is the unique Borel-regular, rotation-invariant measure in Sn�1

such that Sn�1 has measure n�n, we see that for any bounded Borel function f on Sn�1,Z
Sn�1\S

f(u) du =
k2�k2
k1�k1

Z
G(k2;k1)

Z
Sn�1\T

f(u) du dT:
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We apply this with f = Xi;oC to obtain

eVi;k2(C \ S) =
i

2k2

Z
Sn�1\S

Xi;oC(u) du

=
i�k2
2k1�k1

Z
G(k2;k1)

Z
Sn�1\T

Xi;oC(u) du dT

=
�k2
�k1

Z
G(k2;k1)

eVi;k1(C \ T ) dT:

�

Taking k2 = n in the previous theorem, we see that if C 2 Bn, the ith dual volume eVi(C)
is an average of dual volumes of its sections by subspaces of a �xed dimension.

Lemma 4.4. Let f be a bounded even Borel function on Sn�1 such that (Rf)(u) = 0 for
almost all u 2 Sn�1. Then f(u) = 0 for almost all u 2 Sn�1.

Proof. Let g be an arbitrary even function in C1(Sn�1). Then (see, for example, [11, Theo-
rem C.2.5]) there is an even function h in C1(Sn�1) such that g = Rh. By (1),Z

Sn�1
f(u)g(u) du =

Z
Sn�1

f(u)(Rh)(u) du =

Z
Sn�1

(Rf)(u)h(u) du = 0:

Since g is arbitrary, f(u) = 0 for almost all u 2 Sn�1. �

The next result extends the case i > 0 of [11, Theorem 7.2.3], whose statement contains a
hypothesis on the sets that allows it to hold for all nonzero real i. An analogous extension for
negative values of i, again containing an appropriate extra hypothesis on the sets, would be
possible, but we do not need it here.

Theorem 4.5. Let C;D 2 Bn, let i > 0, and let k 2 f1; : : : ; n� 1g. TheneVi;k(C \ S) = eVi;k(D \ S)

for almost all S 2 G(n; k) if and only if

Xi;oC(u) = Xi;oD(u)

for almost all u 2 Sn�1.

Proof. If the second equation holds, the �rst follows directly from the de�nition of eVi;k.
Assume that the �rst equation holds for some k 2 f1; : : : ; n � 1g. If k < n � 1, then the

dual Kubota recursion, Theorem 4.3, implies that it also holds for k = n� 1. In every case,
therefore, we have eVi;n�1(C \ u?) = eVi;n�1(D \ u?)

for almost all u 2 Sn�1. Let f = Xi;oC � Xi;oD, and note that f is a bounded even Borel
function on Sn�1 such that Z

Sn�1\u?
f(v) dv = 0
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for almost all u 2 Sn�1. By Lemma 4.4, f = 0 for almost all u 2 Sn�1, and hence the second
equation holds for such u. �

Let C 2 Bn and let i > 0. We de�ne the i-chordal symmetral eriC of C by

(17) �
eriC

(u)i =
i

2
Xi;oC(u);

for all u 2 Sn�1. We also de�ne the intersection body IC of the bounded Borel set C by

(18) �IC(u) = Vn�1(C \ u?);

for all u 2 Sn�1. (There is a slight abuse of terminology here, since IC need not be a body.)

Both eriC and IC are o-symmetric sets in Bnso. When C 2 Ln, de�nition (17) of the i-chordal
symmetral coincides with [11, De�nition 6.1.2], and when C 2 Lno has a continuous radial
function, de�nition (18) of the intersection body agrees with [11, De�nition 8.1.1].
In [11, Theorem 8.1.16], it is shown that an origin-symmetric cylinder in R

4 is not the
intersection body of a star body with a continuous radial function, but it is clear from the
argument presented there that it is the intersection body of a bounded Borel set. This shows
that the notion we introduce here is genuinely di�erent, even in the class of origin-symmetric
convex bodies.
From (17) we see that if S 2 G(n; k), then

(19) eVi;k(C \ S) = eVi;k(eriC \ S):

If K is a convex body in R
n containing o in its interior, IK need not be convex (see [11,

Theorem 8.1.8]), but an important theorem of Busemann [11, Theorem 8.1.10] implies that
IK is convex if K is also o-symmetric. While IK is clearly not convex if o 62 K, it is true
that for each S 2 G(n; 2), IK \ S = L [ (�L), where L is a convex body in S such that
L \ (�L) = fog. We omit the proof, but note that this is a straightforward consequence of a
generalization of Busemann's theorem called the Busemann-Barthel-Franz inequality (see [11,
p. 303]).
Let C 2 Bn and let D be an o-symmetric set in Bnso. De�ne

(20) eV1(C;D) =
n� 1

2n

Z
Sn�1

Xn�1;oC(u)�D(u) du:

When C = L 2 Bnso and D =M is an o-symmetric set in Bnso, de�nition (20) agrees with (10),
by (15) with i = n � 1. Also, when in addition C;D 2 Lno , (20) agrees with [11, (A.54)], for
i = 1; it would be possible to extend the de�nition to other values of i, but we shall not do
this here. Note that eV1(C;B) = eVn�1(C) and that

(21) eV1(C;D) = eV1(ern�1C;D):

The next theorem is a generalization of [11, Theorem 8.1.3].

Theorem 4.6. Let C;D 2 Bn. The following are equivalent:
(i) �IC(u) = �ID(u) for almost all u 2 Sn�1.
(ii) �

ern�1C
(u) = �

ern�1D
(u) for almost all u 2 Sn�1.
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(iii) eV1(C;E) = eV1(D;E) for all o-symmetric sets E 2 Bnso.

Proof. Theorem 4.5 immediately yields (i),(ii). If (ii) holds, then (iii) follows from (21).
Suppose that (iii) holds, let f 2 C(Sn�1) be nonnegative, and let E be the o-symmetric set
in Lno such that �E = (Rf)=(n� 1). Then, using (20) and (1),

eV1(C;E) =
n� 1

2n

Z
Sn�1

Xn�1;oC(u)�E(u) du

=
1

2n

Z
Sn�1

Xn�1;oC(u)(Rf)(u) du

=
1

2n

Z
Sn�1

(RXn�1;oC)(u)f(u) du:

Since f was arbitrary, (iii) implies that (RXn�1;oC)(u) = (RXn�1;oD)(u) for almost all u 2
Sn�1, and the injectivity of R on even functions then gives Xn�1;oC(u) = Xn�1;oD(u) for
almost all u 2 Sn�1. Then (ii) follows from (17) with i = n� 1. �

We now prove a strengthening of [11, Theorem 7.2.2]. We need a result related to Jensen's
inequality for means that we shall derive from the following lemma.

Lemma 4.7. Let E be a bounded Borel subset of [0;1), and for i > 0, let �i denote the
Lebesgue-Stieltjes measure induced by the function f(t) = ti. Then �i(E)

1=i increases with i.
Moreover, it increases strictly unless E = [0; a] for some a � 0, modulo a set of Lebesgue
measure zero.

Proof. Suppose that V1(E) = a > 0. We shall assume that V1(E n [0; a]) > 0 and prove that

F (i) = �i(E)
1=i =

�
i

Z
E

ti�1 dt

�1=i

is strictly increasing for i > 0. Let 0 < i < j, let f(t) = ti, and let f(E) denote the
image of E under the map f . If V1(f(E)) = b, then since f is strictly increasing, we have
V1 (f(E) n [0; b]) > 0. With s = ti below, we obtain

F (j)j � F (i)j = j

Z
E

tj�1 dt�

�
i

Z
E

ti�1 dt

�j=i

=
j

i

Z
f(E)

sj=i�1 ds�

�Z
f(E)

ds

�j=i

=
j

i

Z
f(E)

sj=i�1 ds� bj=i

=
j

i

Z
f(E)

sj=i�1 ds�
j

i

Z b

0

sj=i�1 ds

=
j

i

Z
f(E)n[0;b]

sj=i�1 ds�
j

i

Z
[0;b]nf(E)

sj=i�1 ds:
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Now the last expression is positive, since the integrand sj=i�1 is strictly increasing for s > 0,
and

V1 (f(E) n [0; b]) = V1 ([0; b] n f(E)) > 0:

�

Lemma 4.8. Let E 2 B1 and for i > 0, let

G(i) =

�
i

2

Z
E

jtji�1 dt

�1=i

:

Then G is an increasing function, strictly increasing unless E = [�a; a] for some a � 0,
modulo a set of measure zero.

Proof. Let E 2 B1, and let

E+ = E \ [0;1) and E� = (�E) \ [0;1):

Then

G(i) =

�
�i(E

+) + �i(E
�)

2

�1=i

=

�
F+(i)i + F�(i)i

2

�1=i

;

where F+(i) = �i(E
+)1=i, F�(i) = �i(E

�)1=i, and �i is the Lebesgue-Stieltjes measure induced
by the function f(t) = ti. By Lemma 4.7, for 0 < i < j we have�

F+(i)i + F�(i)i

2

�1=i

�

�
F+(j)i + F�(j)i

2

�1=i

�

�
F+(j)j + F�(j)j

2

�1=j

;

the last inequality following from Jensen's inequality for means (see, for example, [11, (B.3)]).
If equality holds in the previous inequality, then the �nal statement of Lemma 4.7 shows
that E+ = [0; a] and E� = [0; b] for some a; b � 0, modulo sets of measure zero. However,
we must also have equality in Jensen's inequality for means, from which we conclude that
F+(j) = F�(j) and hence that a = b and E = [�a; a], modulo a set of measure zero. �

The following result generalizes [11, Theorem 7.2.2].

Theorem 4.9. Let C 2 Bn and let i; j > 0. If i � j, theneVj(eriC) � eVj(C);
whereas the reverse inequality holds when i � j. Equality holds when i 6= j if and only if
C = eriC, modulo a set of measure zero.

Proof. Suppose that 0 < i � j. We have

eVj(eriC) =
1

n

Z
Sn�1

�
eriC

(u)j du =
1

n

Z
Sn�1

�
i

2
Xi;oC(u)

�j=i

du

and eVj(C) = j

2n

Z
Sn�1

Xj;oC(u) du:
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Therefore it suÆces to show that for all u 2 Sn�1,�
i

2
Xi;oC(u)

�j=i

�
j

2
Xj;oC(u):

The proof is completed by Lemma 4.8 with E = C \ lu and lu identi�ed with R, since this
shows that strict inequality occurs unless i = j, C \ lu = ;, or C \ lu = [�a; a] for some
a(u) � 0, modulo a set of V1-measure zero. By Fubini's theorem, the latter condition implies

that C is a o-symmetric set in Bnso, modulo a set of Vn-measure zero, and hence that C = eriC,
modulo a set of measure zero. The proof for i � j is similar. �

For the next result, we shall need the following de�nition. An intersection body in Rn is an
origin-symmetric set E in Bns such that �E = R� for some (positive) �nite Borel measure � in
Sn�1. (This is a slight weakening of Lutwak's de�nition (see [11, p. 304]), which is restricted
to star bodies with continuous radial functions.) In this de�nition, a function is identi�ed
with the measure generated by it via integration over Sn�1, so that

(22) (R�)(D) =

Z
D

�E(u) du;

for all D 2 Bn. Observe that if E is the intersection body of a bounded Borel set C, then E
is an intersection body; indeed, by (16) with i = k = n� 1, we then have

�E(u) = Vn�1(C \ u?) =

�
R

�
1

2
Xn�1;oC

��
(u);

for all u 2 Sn�1; this means that (22) is satis�ed with � de�ned by

�(D) =
1

2

Z
D

Xn�1;oC(u) du;

for all D 2 Bn. On the other hand, there are intersection bodies that are not intersection
bodies of any bounded Borel set. Any origin-symmetric convex polytope in R3 or R4 has these
properties, since such polytopes have radial functions of the form Rf for some nonnegative
unbounded integrable function f on Sn�1; see [5].
The next theorem generalizes the case i = n� 1 of [11, Lemma 8.2.7]. (A full extension of

[11, Lemma 8.2.7] along these lines would be routine.)

Theorem 4.10. Let C;D 2 Bn be such that

Vn�1(C \ u?) � Vn�1(D \ u?);

for almost all u 2 Sn�1, and let E be an intersection body in R
n . TheneV1(C;E) � eV1(D;E):

Proof. The �rst hypothesis of the theorem is equivalent to

(RXn�1;oC)(u) � (RXn�1;oD)(u);
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for almost all u 2 Sn�1. If E is an intersection body, then �E = R� for some �nite Borel
measure � in Sn�1. Then, by (2), we have

eV1(C;E) =
n� 1

2n

Z
Sn�1

Xn�1;oC(u)�E(u) du

=
n� 1

2n

Z
Sn�1

Xn�1;oC(u) d(R�)(u)

=
n� 1

2n

Z
Sn�1

(RXn�1;oC)(u) d�(u)

�
n� 1

2n

Z
Sn�1

(RXn�1;oD)(u) d�(u) = eV1(D;E):
�

The following result is a generalization of Lutwak's theorem (see [28] or [11, Theorem 8.2.8]).

Corollary 4.11. Let C;D 2 Bn be such that

Vn�1(C \ u?) � Vn�1(D \ u?);

for almost all u 2 Sn�1. If C is an intersection body in R
n , then V (C) � V (D). Equality

holds if and only if C = D, modulo a set of measure zero.

Proof. Taking E = C in Theorem 4.10 and applying (11), (21), the dual Minkowski inequality
(12), and Theorem 4.9, we obtain

V (C) = eV1(C;C) � eV1(D;C)
= eV1(ern�1D;C)

� V (ern�1D)(n�1)=nV (C)1=n

� V (D)(n�1)=nV (C)1=n:

This shows that V (C) � V (D). If V (C) = V (D), then equality must hold in the previous

displayed inequality, so either V (C) = 0 or V (ern�1D) = V (D). Equality must also hold in
the dual Minkowski inequality, so C is a dilatate of D, modulo a set of measure zero. Finally,
since we must also have eV1(C;C) = eV1(D;C), the dilatation factor must be one, so C = D,
modulo a set of measure zero. �

The next result was proved for convex bodies independently by Busemann and Straus and
by Grinberg; see [11, Theorem 9.4.4] and the references given there. It relies on another
inequality [11, Corollary 9.2.5] concerning certain averages of volumes of simplices, one of
whose vertices is at the origin and the others lie in the body. An inequality similar to the
latter, but in which the simplices do not necessarily have one vertex �xed at the origin, was
extended to compact sets by P�efer [32, Theorem 2]. In [31, p. 70], P�efer notes that the
same methods prove the corresponding extension of [11, Corollary 9.2.5]. The extension goes
routinely from compact sets to bounded Borel sets, and combining the equality conditions
from P�efer's extension with those of [11, Theorem 9.4.4], we have the following result.
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Proposition 4.12. Let C 2 Bn and let i 2 f1; : : : ; n� 1g. Then

�n
�i

�Z
G(n;i)

Vi(C \ S)n dS

�1=n

� �(n�i)=nn Vn(C)
i=n:

Equality holds when i > 1 if and only if C is an o-symmetric ellipsoid, modulo a set of measure
zero, and when i = 1 if and only if C is an o-symmetric convex body, modulo a set of measure
zero.

The case i = n � 1 of Proposition 4.12 gives a general form of the Busemann intersection
inequality (see, for example, [11, Corollary 9.4.5]).

Corollary 4.13. If C 2 Bn, then

V (IC) �
�nn�1
�n�2n

V (C)n�1:

Equality holds if and only if C is an o-symmetric ellipsoid, modulo a set of measure zero.

We can now prove a general form of the extended dual isoperimetric inequality (13).

Corollary 4.14. Let C 2 Bn and let i 2 f1; : : : ; n� 1g. Then eVi(C)eVi(B)
!n

�

�
Vn(C)

Vn(B)

�i

:

Equality holds if and only if C is an o-symmetric ball, modulo a set of measure zero.

Proof. By Theorem 4.3 with k1 = i and k2 = n, Jensen's inequality for integrals (see, for
example, [11, (B.8)]), and Proposition 4.12, we have

eVi(C) =
�n
�i

Z
G(n;i)

Vi(C \ S) dS

�
�n
�i

�Z
G(n;i)

Vi(C \ S)n dS

�1=n

� �(n�i)=nn Vn(C)
i=n:

Noting that eVi(B) = �n for all i > 0, we see that the required inequality is just a rearrangement
of the previous one.
Suppose that equality holds. Then equality holds in Proposition 4.12, so C must be an

o-symmetric convex body, K, say, modulo a set of measure zero. Since equality also holds in
Jensen's inequality for integrals, the integrand Vi(C \ S) = Vi(K \ S) is constant for almost
all S 2 G(n; i). By Theorem 4.5 with k = i and D an o-symmetric ball of suitable radius,
we conclude that Xi;oK = �i;K=i is constant almost everywhere in Sn�1. The symmetry of K
implies that �K is also constant almost everywhere in Sn�1 and so C is an o-symmetric ball,
modulo a set of measure zero. �
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5. Extending dual mixed volumes

With the results of the previous section in hand, it is natural to attempt a similar extension
of other parts of the dual Brunn-Minkowski theory. The �rst result is a negative one.

Theorem 5.1. Let radial addition e+ be de�ned for the class Ln by (6). There is no functioneV : (Ln)n ! R that satis�es (7) and (8).

Proof. Let Lj 2 L
n, j 2 f1; : : : ; ng, and let L = t1L1e+ � � � e+tnLn, where tj � 0. Suppose that

o 2 L. Then, by (6),

V (L) =
1

n

Z
Sn�1

�L(u)
n du =

1

n

Z
Sn�1

(t1�L1
(u) + � � �+ tn�Ln(u))

n du:

On the other hand, by (7) and (8),

V (L) =
nX

j1=1

� � �
nX

jn=1

eV (Lj1 ; : : : ; Ljn)tj1 � � � tjn :
Comparing coeÆcients of t1 � � � tn in these two expressions for V (L), we conclude that (4) must
hold under our assumptions. Let n = 2, and suppose that L1; L2 2 L

2 are such that o 62 L1,
o 2 L2, and o 2 L1e+L2. Then, by (4),

eV (L1; L1) =
1

2

Z
S1
�L1

(u)2 du 6= V (L1);

since o 62 L1. Therefore (7) cannot hold, and this contradiction proves the theorem. �

Let Bns (+) be the class of sets in Bns not containing o and contained in the half-space
Hn = fxn � 0g in Rn .
If L1; : : : ; Ln 2 Bns (+), de�ne the dual mixed volume

(23) eV (L1; : : : ; Ln) =
1

2n

Z
Sn�1

��j�L1
(u) � � ��Ln(u)j � j�L1

(�u) � � ��Ln(�u)j
�� du:

Note that these quantities are nonnegative. Note also that

(24) eV (L1; : : : ; Ln) =
1

n

Z
Sn�1\Hn

�L1
(u) � � ��Ln(u)� (�1)n (�L1

(�u) � � � �Ln(�u)) du:

Using (24), it is easy to see that the other basic properties of dual mixed volumes|invariance
under volume-preserving linear transformations � such that �Lj 2 Hn for j 2 f1; : : : ; ng,
monotonicity, and positive multilinearity|are retained. If L 2 Bns (+) and i 2 f1; : : : ; n� 1g,
the usual dual volume eVi(L) = 1

2n

Z
Sn�1

��j�L(u)ji � j�L(�u)ji�� du
can be obtained from (23) by setting L1 = � � � = Li = L and �Lj (u) = �Lj (�u) = 1 for all
u 2 Sn�1 and j 2 fi + 1; : : : ; ng. We can achieve this by taking Lj = B0 = Sn�1 \ Hn for
j 2 fi+ 1; : : : ; ng; so B0 plays the role of the unit ball for the class Bns (+).
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Theorem 5.2. Let Lj 2 B
n
s (+), j 2 f1; : : : ; mg and let L = t1L1e+ � � � e+tmLm, where tj � 0

and where e+ is de�ned by (6). Then

V (L) =
mX

j1=1

� � �
mX

jn=1

eV (Lj1 ; : : : ; Ljn)tj1 � � � tjn ;
where the dual mixed volumes are de�ned by (23).

Proof. We have

V (L) =
1

2n

Z
Sn�1

��j�L(u)nj � j�L(�u)nj�� du
=

1

n

Z
Sn�1\Hn

�L(u)
n � (�1)n�L(�u)

n du

=
1

n

Z
Sn�1\Hn

(t1�L1
(u) + � � �+ tm�Lm(u))

n � (�1)n (t1�L1
(�u) + � � �+ tm�Lm(�u))

n du

=
1

n

Z
Sn�1\Hn

mX
j1=1

� � �
mX

jn=1

�
�Lj1 (u) � � ��Ljn (u)� (�1)n�Lj1 (�u) � � ��Ljn (�u)

�
tj1 � � � tjn du

=
1

2n

Z
Sn�1

mX
j1=1

� � �
mX

jn=1

��j�Lj1 (u) � � ��Ljn (u)j � j�Lj1 (�u) � � � �Ljn (�u)j�� tj1 � � � tjn du
=

mX
j1=1

� � �
mX

jn=1

eV (Lj1; : : : ; Ljn)tj1 � � � tjn :
�

While the previous theorem appears encouraging, we note that the basic inequalities no
longer hold. Consider, for example, the dual Minkowski inequality (12) for n = 2:

(25) eV (L1; L2)
2 � V (L1)V (L2);

which holds for L1; L2 2 B2
so. Let Lj 2 B2

s(+), j = 1; 2 be the sectors of annuli de�ned by
�Lj (�) = aj and ��Lj (��) = bj, where 0 < bj < aj, 0 � � � �=4, and �Lj (�) = 0, otherwise.
Then, by (24), (25) becomes

(a1a2 � b1b2)
2 � (a21 � b21)(a

2
2 � b22);

which is false unless a1=a2 = b1=b2. On the other hand one can also see that the reverse of
inequality (25) does not generally hold either. For if we let " > 0, �Lj (�) = fj(�) > " and
��Lj (��) = ", 0 � � � �=4, and �Lj (�) = 0, otherwise, j = 1; 2, then as " ! 0 the reverse
inequality reads  Z �=4

0

f1(�)f2(�) d�

!2

�

Z �=4

0

f1(�)
2 d�

Z �=4

0

f2(�)
2 d�;
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which, by H�older's inequality, is false unless f1 = cf2 for some constant c.
Finally, we observe that a modi�ed notion of radial addition does permit an extension of

dual mixed volumes to the class Bns . Denote by l+u the ray (half-in�nite line) extending from
o in the direction u, and for L;M 2 Bns , de�ne L+̂M by

(L+̂M) \ l+u =
�
L \ l+u

�
+
�
M \ l+u

�
;

for each u 2 Sn�1. This new addition may also be de�ned as follows. For u 2 Sn�1, let

�+L (u) = maxf�L(u); 0g and ��L(u) = maxf��L(�u); 0g;

and for s; t � 0, let
��
sL+̂tM

= s��L + t��M :

For any L 2 Bns we have

V (L) =
1

n

Z
Sn�1

�
�+L (u)

n � ��L(u)
n
�
du:

Using this, it is easy to see that if we de�ne

eV (L1; : : : ; Ln) =
1

n

Z
Sn�1

�
�+L1

(u) � � ��+Ln(u)� ��L1
(u) � � ���Ln(u)

�
du;

then Theorem 5.2 holds in the class Bns with e+ replaced by +̂. However, this concept of dual
mixed volume is incompatible with the ith dual volumes de�ned above. For example, with
n = 2, i = 1, and o 62 L, the de�nition above gives

eV1(L) = 1

2

Z
S1

�
�+L (u)� ��L(u)

�
du:

But there is no set C such that eV1(L) = eV (L;C), since it is impossible that �+C(u) = ��C(u) = 1
for all u 2 S1.
In conclusion, the situation is reminiscent of that for the classical mixed volumes, in that

all attempts to extend the de�nition to larger classes of sets lose some desirable property;
compare, for example, the discussion in [4, Section 26].

6. Local stereological volume estimators

In this section, we present the local stereological volume estimators and establish the close
connection to central concepts in the dual Brunn-Minkowski theory. Local stereological volume
estimators are based on measurements in random sections through a �xed point which can
be taken to be the origin o. We thus consider random subspaces in G(n; k) for some k 2
f1; : : : ; n � 1g. The random subspaces are assumed to be isotropic, that is, their common
probability distribution is the unique rotation invariant probability measure (Haar measure)
in G(n; k).
Local stereological volume estimators can be derived by using the Horvitz-Thompson pro-

cedure from sampling theory; see [35]. The key step is to determine the so-called sampling
probabilities. For C 2 Bn, this involves �nding the probability that an isotropic subspace
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meets an arbitrary volume element of C. The calculation of these sampling probabilities can
be done by using the Blaschke-Petkantschin formula (3).
For C 2 Bn, this Horvitz-Thompson procedure leads to the following estimator of V (C),

based on an isotropic subspace S 2 G(n; k) (see [17, (4.12)] with p = k and r = 0):

(26) bVn;k(C \ S) =
!n
!k

Z
C\S

kxkn�k dx:

This is called the local volume estimator of order k. By (26) and Theorem 4.1 with i = n, an

alternative formula for bVn;k(C \ S) is

(27) bVn;k(C \ S) =
�n
�k
eVn;k(C \ S);

so the local volume estimator is proportional to the corresponding dual volume. The local
volume estimators are unbiased, that is, the mean value of bVn;k(C \ S) with respect to the
distribution of S is equal to V (C). This follows directly from the dual Kubota integral
recursion, Theorem 4.3, with i = k2 = n and k1 = k.
Local volume estimators based on subspaces of di�erent dimensions are related. Indeed,

the dual Kubota integral recursion, Theorem 4.3 shows that for k1 � k2,

(28) bVn;k2(C \ S) =

Z
G(k2;k1)

bVn;k1(C \ T ) dT:

If k1 � k2, an isotropic subspace T 2 G(n; k1) can be generated by �rst generating an isotropic
S 2 G(n; k2) and then an isotropic T 2 G(n; k1) with T � S (see, for instance, [17, Proposition
3.15]). Therefore (28) can be interpreted as a conditional mean value resultbVn;k2(C \ S) = E(bVn;k1(C \ T )jS):

This implies the following relation for the variances (see [17, Proposition 4.8]):

VarbVn;k1(C \ T ) = VarE(bVn;k1(C \ T )jS) + EVar(bVn;k1(C \ T )jS)

= VarbVn;k2(C \ S) + EVar(bVn;k1(C \ T )jS)

� VarbVn;k2(C \ S):(29)

(The �rst equality in (29) is well known and easily proved from the de�nition of conditional
variance; see, for example, [2, p. 217].) The variance thus decreases with increasing dimension
of the subspace, an intuitively appealing property.
By (19), the probability distribution of bVn;k(C \S) remains the same if C is replaced by the

n-chordal symmetrical ernC of C. Therefore the shape of ernC determines the distribution
of bVn;k(C \ S), up to a constant factor. In particular, if ernC is a ball then bVn;k(C \ S) is

a constant multiple of V (C) for all S 2 G(n; k). Since bVn;k(C \ S) is unbiased we then havebVn;k(C \ S) = V (C) for all S 2 G(n; k).
Let j 2 f0; : : : ; n� 1g and let T 2 G(n; j) be �xed. For k 2 f1; : : : ; n� 1g with k > j it is

possible, using the Horvitz-Thompson procedure, to construct a local volume estimator based
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on an isotropic S 2 G(n; k) containing T . This takes the form

(30) bVn;k(j)(C \ S) =
!n�j
!k�j

Z
C\S

d(x; T )n�k dx;

where d(x; T ) denotes the distance from x to T ; see [17, (4.12)] with p = k and r = j. Note

that bVn;k(0) = bVn;k. Using a decomposition of Lebesgue measure, it is not diÆcult to see that

bVn;k(j)(C \ S) =

Z
T

bVn�j;k�j((C � y) \ S \ T?) dy;

see [17, Proposition 4.6].

7. Mathematical set model and practical estimation

Standard stereology has employed two classes of compact sets to model the sets encountered
in practise. The convex ring (sometimes called the Hadwiger convexity ring), introduced by
Hadwiger in 1956, is the class of �nite unions of convex bodies. Later, in 1959, Federer de�ned
the sets of positive reach. A compact subset C of Rn is of positive reach if there is an r > 0
such that for each x 2 R

n whose distance from C is less than r, there is a unique point in C
that is nearest to x. Weil [36] discusses the two classes from the point of view of standard
stereology.
It seems appropriate to expect any physical object viewed in the context of stereology

(standard or local) to have the property that it is a body that meets any line in a bounded
number of (possibly degenerate) line segments. Any member of the convex ring clearly has this
property, but this class is too restrictive. A solid torus, for example, is a perfectly reasonable
physical object that does not belong to the convex ring. On the other hand, a solid torus
is a set of positive reach, and is also a member of the star ring, the class of �nite unions of
star bodies. The class of �nite unions of bodies of positive reach and the star ring both seem
general enough to include all objects of practical interest.
However, there are sets that are both star bodies and sets of positive reach, and yet do not

meet every line in a �nite number of line segments. Such a set can be obtained as follows. Fix
r > 0 and consider a sequence of open disks of radius r in R2 , situated so that they meet the
top edge of the unit square [0; 1]2 and intersect it in a disjoint sequence of progressively (and
suÆciently) small segments of the disks with a single limit point at (1; 1). The unit square
with these segments removed is the required set; its intersection with the line y = 1 comprises
an in�nite union of disjoint line segments.
There are also star bodies that meet every line in a �nite set of line segments and yet are

not sets of positive reach. An example can be constructed as follows. Let D be a disk of
radius less than 1, contained in the unit disk and containing the point (0; 1) in its boundary.
Let Dn, n 2 N be a sequence of disjoint nonempty open disks with a single limit point at
(0; 1), each of which is disjoint from D and has center in the boundary of the unit disk. Let
E be the unit disk with the set [nDn removed. Since each line meets at most �nitely many
of the disks Dn, it meets E in a �nite set of line segments, and since the radii of the disks Dn

approach zero, E is not of positive reach.
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Let us combine ideas from the previous two examples, and remove from the unit disk its
nonempty, disjoint, and suÆciently small intersections with a sequence of open disks of �xed
radius r > 0, where these intersections have a single limit point at (0; 1). In this way we can
obtain a star body that is also a set of positive reach and which meets every line in a bounded
number of (possibly degenerate) line segments, yet which is not a physically reasonable object
in the context of stereology.
In view of this situation, and since the dual Brunn-Minkowski theory above provides the

mathematical tools for local stereology to consider bounded Borel sets, we shall simply consider
here the class In of bodies in R

n that meet every line in a bounded number of (possibly
degenerate) line segments, and revisit the previous section to obtain formulas useful in practise.

In R
3 , we have three di�erent local volume estimators, namely bV3;1, bV3;2, and bV3;2(1), with

the notation of the previous section.

Figure 1. Numbering of intersection points in two perpendicular directions,
used in the nucleator. Outline from an epithelial cell nucleus in a rat kidney
glomerulus.

The estimator bV3;1 is based on information along an isotropic line l through o and by (26)
with n = 3 and k = 1 is given by

bV3;1(C \ l) = 2�

Z
C\l

kxk2 dx:

Now suppose that C 2 I3 and u 2 S2, and let Eu be the �nite set of endpoints of the
nondegenerate line segments in C \ lu. Order the points in Eu \ l+u according to decreasing
distance from o, and let �(x) 2 N be the position of x 2 Eu \ l+u in this order. See Figure 1.
Similarly, order the points in Eu\l�u according to decreasing distance from o, and let �(x) 2 N

be the position of x 2 Eu \ l
�
u in this order. Then (see also [17, Proposition 4.7]) the previous
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equation becomes

(31) bV3;1(C \ lu) =
2�

3

X
x2Eu

(�1)�(x)+1kxk3:

Often, measurements along two perpendicular directions in a section plane are combined. In
that case, the estimator is called the nucleator; see [14].

The estimator bV3;2 is based on information in an isotropic plane S through o. From (26)
with n = 3 and k = 2, we �nd

bV3;2(C \ S) = 2

Z
C\S

kxkdx:

For interactive collection of stereological measurements it is useful to discretize the planar
integral using a line grid in the plane S. To be more speci�c, let l0 be an arbitrarily chosen
line in S through o, and let G be a grid of lines perpendicular to l0 and spaced a distance h
apart. See Figure 2.

Figure 2. Numbering of intersection points with grid G, used in the rotator.
The perpendicular dotted line is l0.

Suppose that C 2 I3; then C \ l consists of a �nite number of line segments for any line l.
Let EG be the set of endpoints of the �nite number of line segments of C \ G. If l is a grid
line in G and x 2 C \ l, we de�ne �(x) as we did above for (31) but with o replaced by l \ l0;

see Figure 1. A routine calculation shows that bV3;2(C \ S) may be approximated by

(32) 2h
X
x2EG

(�1)�(x)+1

 
1

2
d(x; l0)kxk+

kxk2 � d(x; l0)
2

2
log

 
d(x; l0) + kxkp
kxk2 � d(x; l0)2

!!
;
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where d(x; l0) is the distance from x to l0. See [21]; (32) is called the isotropic rotator in the
stereological literature.
The estimator bV3;2(1) is based on an isotropic plane S, containing a �xed line l0 through o.

From (30) with n = 3, k = 2, and j = 1, we obtain

bV3;2(1)(C \ S) = �

Z
C\S

d(x; l0) dx:

Assuming that C 2 I3, a discretized version of bV3;2(1) can be found as in the previous para-
graph. With the notation introduced there, this takes the form

(33)
�

2
h
X
x2EG

(�1)�(x)+1d(x; l0)
2:

This is called the vertical rotator; see [21].
The three practical formulas (31), (32), and (33) have been implemented in a computer-

assisted software package called the C.A.S.T.-GRID, developed for the interactive collection
of stereological measurements; see [1]. We stress that this discussion of volume estimators
represents only a fraction of the available techniques in local stereology. The next section
supplies references that give an idea of the scope of the subject.

8. Methodology and applications of local stereology

Local stereological methods have been developed for the microscopical study of biological
tissue in cases where the tissue is transparent and physical sections can be replaced by optical
sections. Main parts of the local theory were presented in the early paper [20]. The procedure
in the laboratory is typically as follows. The tissue sample of interest (for example, kidney,
brain, or skin) is cut into a small number of blocks. Each block is subsequently cut isotropically
into slabs of thickness 50-100 �m. A subset of the slabs is selected for microscopic analysis.
When such a slab is transparent it is possible to focus down through the slab and thereby
generate optical sections which can be displayed on a video screen. By moving the focal plane
up and down in the slab, a whole continuum of optical sections is generated.
The general aim of local stereology is to estimate from optical sections quantitative prop-

erties of spatial structures which can be regarded as neighborhoods of points, called reference
points. The model example is a cell population where each cell can be regarded as the neigh-
borhood of its nucleus. Local stereological estimators of cell volume, surface area, etc. are
based on optical sections through the cell nuclei, which are usually centrally placed in the
cells. From a technical point of view, central sections are of better quality than sections from
the peripheral part of the cell, where the optical section plane is often almost tangential to
the cell boundary and accordingly the cell outline appears fuzzy; see [34]. That is why local
methods are superior to global methods that require exhaustive sectioning of the cells. Prior
to sections through �xed points, sections through uniform random points were also considered;
see, for example, [6] and [18].
The main applied problem solved by local stereology is that of estimating moments in the

cell-size distribution without speci�c assumptions of cell shape; see, for example, [16]. The
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emphasis has been on the estimation of mean size, where size is typically volume or surface
area. Previous methods were based on shape assumptions such as that of spherical shape
or ellipsoidal shape. (Note that if the cells are actually of spherical shape then with optical
sectioning the diameters of the cells can be observed directly and a solution of the famous ill-
posed problem of estimating the distribution of sphere diameters from the distribution of the
diameters of circular disks in a section plane ([37]) is not needed anymore.) Cells have varying
shape, however, and need not be convex or even star shaped with respect to their nucleus.
Examples are endothel cells, epithelial cell nuclei, and podocytes; some extreme examples are
shown in [15]. Also, most smooth muscle cells are far from star shaped. Another practical
reason for developing the theory for general shapes is that one cannot judge from a section
whether the cell is actually star shaped in R3 .
Local stereological methods have been generalized in various directions. Surface area,

length, and number can also be estimated using local techniques. For an early reference
concerning surface area, see [19]. A more comprehensive account can be found in [17, Chap-
ters 5 and 6]. Random slabs centered at the origin have been considered in [22] and [23]. Some
of the measurements in the slabs are collected using spatial line grids and the estimators can
in that case, under regularity conditions, be expressed in terms of alternating sums, as in (31).
A rich collection of local stereological methods has been developed for the estimation of

cell sizes. Available are 14 local techniques (see [17, Tables 7.1-7.4]) of which we have only
discussed in detail above three volume estimators.
The most signi�cant medical results obtained by local stereological methods are in neuro-

science and cancer grading. The structure of the human brain and its changes due to diseases
such as Alzheimer's disease and HIV infection have been studied by local methods; see, for
example, [3], [7], [8], and [29]. In particular, it has been possible by local methods to quantify
the phenomenon called satellitosis where small glia cells are distributed around neurons in the
brain; see [7]. In [8], the severe loss of neocortical neurons associated with HIV infection has
been studied in detail by local methods. A preferential loss of large neocortical neurons was
found. In [26] and [30], it was demonstrated that mean cell nuclear volume, estimated by local
stereological methods at the time of diagnosis of cancer, has a signi�cant prognostic value and
may therefore be an important supplement to the subjective judgment of the pathologists.
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