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Summary: Recall that a probability measurg: on the real line with finite
moments of all orders is called determinate jf = v for any probability
measurer with the same moments ag . There are three classical criteria for
determinacy due to O. Perron, M. Riesz and T. Carleman. The Perron condition
states that the Laplace transform @f is finite in an open interval around

and it is the most commonly criteria used in probability theory. However, the
Riesz and Carleman conditions are weaker than the Perron condition but difficult
to apply due to the fact that they require precise estimates of the moments. The
objective of this paper is to provide equivalent forms of the Riesz and Carleman
conditions which are easier to apply. In particular, | shall show that each of
the two conditions are equivalent to integrability of at least one function in a
specified class of functions.

1. Introduction If (T,B,u) is a measure space, we ldt?(;) denote the
usual L?-space with its usual?-norm || - ||, whenever0 < ¢ < co (see [8; (3.22)
p.184-188]). If f : T — [0,00] is a non-negative function, we lef - di denote the
measure given byB ~ [, fdu for B € B and if (S,.A) is a measurable space
and ¢ : T — S is apu-measurable function, we let,(A) := fi(¢~1(A)) for A€ A
denotethe image measurdf ¢ € T is a given point, we leté;(B) := 15(t) denote
the Dirac measurat ¢ . Recall that p is discreteif and only if p = >""", p, 6,
for some and some sequencés,) C 7' and (p,) C [0,00) .

Let Pr(R) denote the set of all Borel probability measures on the real ke
If 1€ Pr(R),welet M,(q) = [g |#|?n(dz) denote itsabsolute moment function
forall ¢ > 0 and we let ‘B., denote the set of all probability measures withite
moment of all ordersthat is, the set ofy 1 € Pr(R) satisfying M,(¢) < oo for all
q>0.1f pe P, welet pn] = [ 2" pu(dr) denotethe momentsf 1 for all
n=1,2,... and we say thaty is determinataf ; = v for any probability measure
v € Po satisfying v[n] = p[n] forall n e N .

Recall thatthe Hamburger moment problem the problem of finding necessary
and/or sufficient conditions for determinacy of a given probability measure ‘B .
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Let Pp denote the set of all determinate probability measures ‘B., . Then we
have the following classical sufficient condition for determinacy (see [7]):

(P) limsup <M"(2”))ﬁ <oo = puePp (O. Perron)

T
o (2n)!

3|~

—

(R) liminf <M;ibf" ) <o = u€Pp (M. Riesz)

< > Mu(2n)_% =00 = pucPp (T.Carleman)

n=1
Let Ppr, Pr and P denote the set of all probability measurgs € Pr(R)
satisfying the conditions (P), (R) and (C), respectively, and 1%, denote the set
of all probability measures;, € Pr(R) with bounded support. Evidently, we have
Pp C Pr and sinceM,(¢)'/? is increasing on(0, oc) , it follows easily that we have
Pr C Ve . So by Carleman’s theorem (see [5]) we have the following inclusions:

(1.1) P € Pr € Pr € Po € Pp € P

Let P denote the of polynomials in the real variable with real coefficients. Then
PC L) foral pePsr andall 0 < g < oo and we let P denote the set all
1 € Poo for which P is dense in (L9(p), || - ||;) . Evidently, we have

(1.2) Pra CPrr € Pro =P VO<7r<g< o0

and since L el?l < coshz < Il for all = € R, we have the following equivalent
form of the Perron condition (P):

(1.3) pe Pp ifand only if el e L1(x) for some a > 0

The latter fact means that the Perron condition is easy to verify and it is the most
commonly used criterion for determinacy used in probability theory. However, the Riesz
and Carleman conditions are weaker than the Perron condition but they are difficult to
apply to special cases. The objective of this paper is to provide equivalent forms of the
Riesz and Carleman conditions which are easier to apply. In particular, | shall show
that each of the two conditions are equivalent to a certain integrability condition of

the form (1.3).

More precisely, letB, (R) denote the set of all Borel functions : R — [0, oo] .
If w e B,(R) is a given function, we letPr,, denote the set of all probability
measuresy € Pr(R) satisfying w € L*(u) , and if 93 C Pr(R) is a given set of
probability measures, we say that is atest functionfor B3 if Pr, C ‘B ; thatis, if
pn€Pr(R) and [ wdp < oo implies pe P . Let P C Pr, and W C B, (R)
be given sets. Then we lef3* denote the set of all test functions fég ; that is,

e  P*:={weB,(R)|Pr, C P}



and we say thatV is acomplete set of test functiofer P if p € P & [z wdp < oo
for some w € W . Note, that we have

(1.4) W is a complete set of test functions fd8 if and only if W C B* and
W LYy #0 foral p e andif so, then P* is a complete set of
test functions for P

Hence, if B admits a complete set of test functions, thé* is the maximal
complete set of test functions fof® .

Note that (1.3) states thaBp := {¢**l | o > 0} is a complete set of test functions
for Ppr and the objective of this paper can now be restated as follows: Find decent
complete set of test functions for the sef3z and ‘B and characterize the sets of
all test function for Pp , Pr and P . Of course there exists sets of probability
measures which daot admit any complete set of test functions; for instance, the set
Bp - In [2] it shown that there exists a probability measufe € L. \ Pp of
the form p = > <, Pnd., Where zp =0 < 21 < 29 < --- and such that the
probability measurésuk = 1%” Zn# pn 0z, belong to Pp forall £>0. Since
LY(n) = LY(uz) , we see thatBp doesnot admit any complete set of test functions.
However, in Section 3 | shall show that a large class of sets of probability measures
(including Prs » Pr, PBr, Be and P ) do admit a complete set of test functions.

Let me at this point recall the following cardinal results from the current state of
the moment problem:

Theorem 1.1: (Riesz & Krein & Berg; see [14], [9], [2], [4] and [1] Let px be a
given Borel probability measure ol . If % := [p 7 p(dx) and f:= - denotes
the Radon-Nikodym derivative of. with respect to the Lebesgue measuke, then
we have

@ nePo = Py o pePp - [ -
2 PP CPpCPrr CPo VO<7r<2<g< 0
(3) If u is non-discrete, thery € Bp if and only if u € Pyo

where log™ z := —log(x A1) for all x > 0 with the conventionlog™ 0 := oo .
The last condition in (1) goes under name Krein’s condition.

2. Log-convex functions their dual functions Let I C R be a given
interval and let f : I — [0,00] be a non-negative function. Then we ldd(f) :=
{z € I] f(x) < oo} denotethe domainof f . Recall that f is log-convexif
flar + (1 —a)y) < fla)*f(y)i=> foral z,y € I andal 0 < a <1 or
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equivalently, if log f is convex where we use the following conventions:

0coo=2=9.=0, ¢ =1V0<a<oo, log0:=—00 , log co:=00

=0 Vli<a<ow , =0V —co<a<0, e*:=0, e:=x

and we definelog™ 2 := log(z v 1) forall » € R. If I C (0,00) , we say
that f is log-exp-convexf f(z®y'=®) < f(a)® f(y)!= forall 2,y € I and
all 0 < a <1 orequivalently if the functiony ~ f(e¥) is log-convex on the
interval J:={y € R |e¥ €I} . Since ¢* is increasing and convex, we see that any
log-convex function f : I — [0, 00] is log-exp-convex on/ N (0, 00) .

We let M denote the set all lower semicontinuous, log-convex functiovis:
(0,00) — [0,00] such that ¢ ~ M(q)'/9 is increasing on (0,00) . Since z¢ is
concave on [0,00) if 0 < a <1 and convex on[0,00) if a > 1, it follows
easily that we have

(2.1) An arbitrary supremum of log-convex (resp. log-exp-convex) functions is
log-convex (resp. log-exp-convex) and ifi, fa,..., fn : I — [0,00] are
log-convex (resp. log-exp-convex) functions and,...,a, > 0 are given
numbers, then the functiony_"_; «; f;(x) and []i—, fi(z)* are log-convex
(resp. log-exp-convex)

(2.2) If f is log-convex or log-exp-convex, thenD(f) is an interval and if
f(zg) =0 for some zp € I , then f(x) =0 forall = in the interior of I

(2.3)  An arbitrary supremum of functions belonging t®1 belongs to M and if
My, Ms,....,M,, ¢ M and ay,0...,a,, 3, > 0 are given non-negative
numbers such thatay + -+ + a,, < 1, then the functions > ", a; M;(x)

and []~, M;(x)% belong to M

If 1 ePr(R),welet R,(s):=p(x€R||z|>s) denotethe tail distributionof
p forall s >0 and we let p,(s) := R,(]s|)~! denotethe inverse tail distribution
of p forall s € R. Then we have

(2.4) p,: R — [0,00] is an even function such thap, is increasing and left
continuous on(0, oo] with p,(0) =1 and lim,_.. pu(z) = oo . Conversely,
if p:R — [1,00] is an given even function such that is increasing and
left continuous on (0,00) with lim, .. pu(z) = oo , then exists a unique
probability measureu € Pr(R) satisfying ;([0,00)) =1 and p,(z) = p(|z])
forall = # 0

and if M,(q) denote the absolute moment function pf for ¢ > 0, it is well-known
(and an easy consequence aflter's inequality) that M/, € M .

Let w: R — [0,00] be a given function. Then we letv.(z) := w(x) A w(—2)
denotethe even envelopef w . Note that w. is the largest even function oR



dominated by w . We let w® : R — [0,00] denotethe log-exp-convex envelopé
we V1 ; that is:

(2.5) w®(0):=w0)v1 , wx):=sup{f(|z]) ]| f € Ly} Yax#0

where L,, denotes the set of all log-convex functiorfs: (0,00) — [0, 00| satisfying
f(z) <w (xz)v1 foral z>0. Welet @w: (0,00) — [0,00] denotethe first
log-dual functionof w v 1, and we let w* : R — R denotethe second log-dual
function of w Vv 1 ; that is:

S |y () Jzl*
(2.6) w(q) := Slelg Vi Ve>0 and w*(x) := 2218 o) Ve eR

We let Vw : R — [0,00] denotethe log-derivateof w, V 1 ; that is:

(2.7) Vuw(z) := inf log

Lemma 2.1: Let x € Pr(R) be a given probability measure and let : R — [0, o]
be a non-negative Borel function. Then we have

(1) [2|? < pu(z) Mu(q) and pu(q) < Mu(q) Vo € RVg >0

2) /Rpﬂ(x)a pldr) < = Vo<a<1

@) M) < @lg) /R () p(de) Yq > 0

Proof: (1): Let x € R and ¢ > 0 be given. By Markov’'s inequality, we have
R,(|z|) < |z|7*M,(q) and since p,(x) > 1, we see that (1) follows from the
definition of p, .

(2): Let 0 < @ < 1 be given, let i denote the image measure gf under
the function = ~ |z| and let F(x) := ji(—o0,z] denote the distribution function
of . Since R,(z) =1— F(z—) forall 2 >0 and i(Ry) =1, we have
Jr pu(x)® pdr) = [ (1= F(t—))"* i(dr) and sincet ~ (1 —1t)~* is increasing
on [0,1] , we see that (2) follows from [8; (3.29.6) p.205].

(3): Since w(q) w*(x) > |z|? , we see that (3) holds. O

Lemma 2.2: Let w:R — [0,00] and v: R — [0, 00] be non-negative functions. If
D,, denote the set of al(«, 3) € R? satisfyinga >0, >0 and f2% < w(z)V1
for all > 0, then we have

(1) we M and w* and w® are even functions such that® is log-exp-convex
on (0,00) and w* is increasing, log-exp-convex and left continuous [@)oc)
with w*(0) = 0



(2) w*(r) =supppep, Blr|® Ve € R (sup 0 :=0)

B) wrx)vl<w(zr) <wd (zx)vVi<wx)vl VreR

(4) Vw is an increasing, upper semicontinuous and right continuous function from

R into [0,00] andif 2 € R and y > 0 are given numbers, then we have
@ Vwx) >y & x> élog w(y) < @(y)l/y < et

(5) If a € R is a given number satisfying*(z) < ve(x) V1 < w(x)v 1 for all
|z| > a , then we have

(@ Vw(x) =Vu(r) Yz >a
() Y ver =ay)ver Vy >0

(6) Vw(x)=Vw*(r)=Vw’(z) VzeR w(q) V¢ >0

g
—~
3
S—

I

g

*

—~
=

S—
I

(7)) w*”(x) =w(z) and w™(z) = w*(z) Yz eR

(8) limsup w®(z) =00 = dc>0 sothat w®(z) < cw*(z) Y|z| > ¢

|z —o0

Proof: (1): Since ¢ ~ |y|? belong to M forall y € R and z ~ «fz|?
is continuous on R \ {0} and increasing and log-exp-convex o, cc) for all
0<g¢g<oo andall 0 <a< oo, we see that (1) follows from (2.1) and (2.3).

(2): Let ¢(x) denote the supremum on the left hand side of (2)Dif = 0 , then
¢(x) = 0 by convention and by the definition oft we see thatw(q) = oo for all
q>0;thatis, w*(x) =0=¢(x) forall x € R. So suppose thatD,, # ) and let
(o, 3) € Dy, be given. Sincew, is even andw. < w , we have f|y|* < w(y) V1
forall y € R . Hence, we see thai(«) < 4 and so we haves|z|* < |¢|* @(a)™"
forall x € R . Thus, we see thatp(z) < w*(z) forall z € R. Let x € R be
given. If w*(z) = 0, then we have ¢(x) = w*(x) . So suppose thatw*(z) > 0
and let 0 < v < w*w(x) be given. Sincew*(0) = 0 < w*(x) , we have = # 0
and there exists¢ > 0 such that |z|? > yw(q) . Hence, by the definition ofw ,
we have v |z|77y? < w(y)Vv 1 forall y > 0 ;thatis, (¢,v|x|7%) € D, and so
we have ¢(x) > v |z|79|x|? = v . Letting v T w*(z) , we see thato(z) > w*(z)
which completes the proof of (2).

(3): By the definition of w® , we have w®* < w.Vv1<wV1 andhby (2), we see
that w*Vv1<w:V1. Since w*V1 isevenonR and log-exp-convex ono, co)
with w*(0) = 0, we have w* Vv 1 < w® .

(4+5): Let t > 0 be given and let us definéy;(x) := 1olg0;tw:£t) for x <logt

and h(x):=o0 for x >logt. Then h; : R — [0,00] is an increasing continuous
function for all ¢ > 0 such thatVw(z) = inf;s¢ h¢(x) forall = € R . Hence, we see
that Vw is an increasing, upper semicontinuous function frdn into [0, cc] and
consequently right continuous. Let € R and y > 0 be given. Sincelogt w. > 0
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and tYe " <1 forall 0 <t <e”, we have
xZ%log@(y) & 6“’2#9)\/1 Vi>0 & w(t)V1i>t'e ™™ Vi >0

log™ w.(t)

S we(t) 2tV e Vi > e & P

>y Vt>e® & Vw(r) >y
which proves (4.a) and by (2) we have
Vw(x) >y < w(t)V1i>tVe ™™ V>0 & (y,e”Y) € Dy
S wt)>te™ V>0 & Vuw(z) >y

Hence, we see thaVw = Vw* and since w*(z) < ve(x) V1 < we(x) Vv 1 for all
x> a , we see thatVw(zr) = Vw*(z) < Vu(x) forall x > a . Thus, we see that
(5.a) holds and (5.b) follows easily from (4.a) and (5.a).

(6) is an immediate consequence of (3) and (5). The first equality in (7) follows
from (1) and the second equality in (7) follows from (6).

(8): By (1) and (2.2), we have that/ := {z > 0 | w®(z) < oo} is an interval.
Suppose thatJ is bounded. Then there exists> 0 such that w°(z) = oo for all
x > ¢ . Hence, we havew(z) = co for all |z| > ¢ and so we havew(q) < ¢?
and |z|?@(q)~t > ¢79|z|? forall ¢ >0 and all + € R . Hence, we see that
w*(x) = oo forall |z| > ¢ ;thatis (8) holds. Suppose that is unbounded and let
us define f(s) :=log w®(e®) forall s € R . Since w® is log-exp-convex and.J
is an unbounded interval, then by (3) there exist& R such that f is finite and
non-negative and convex ofh, o0) . Let f/(s) denote the right hand derivative of
forall s >0b. Then f’ is increasing on(b, o) and sincelimsup,_,., w®(z) = oo,
there exists ¢ > b such that f(¢) > 0 and f'(¢) > 0. Let y > ¢° be given
and let us definet :=log y and « := f/(t) . Since t > ¢, we have a > 0 and
since f s finite and convex on(b,c0) , we have f(s) > a(s —t)+ f(t) for
all s > b, In particular, we havef(c) > a(c—t)+ f(t) and since f > 0 on
R , we have f(s) > a(s—t)+ f(t) — f(c) forall s € R . Hence, if we define
f = exp(f(t) — f(c) — at) , then by (3) we have

we(x) V1> w(x) =exp(f(log z)) > exp(a(log x —t) + f(t) — f(c)) = fa“

forall = >0 ;thatis, (a,3) € D, and sincet = log y , then by (2) we have

w(y) > By* = explat+ f(t) — f(c) — at) = e/ w(y)

for all y > ¢“ which proves (8). O
Lemma 2.3: Let w: R — [0,00] be a non-negative function. Then we have
@ [ o Fa= [ e (Tu - prde ve 20

Jé) —00

(2) liminf e7* Vw(z) = liminf t@(t)_l/t

T—00 t—o0



(3) limsup e Vw(x) = limsup t@(t)_l/t

T—00 t—oo

(4) liminf e™*Vw(z) >0 < 3Ja >0 sothat liminf =5l w(s) > 0

T—00 |s|—o0

(5) limsup e™*Vw(x) >0 = Ja >0 sothat limsup e w.(s) >0

T— 00 §—00
Let « > 0 is a given number and leb : (a,00) — [0, 0] is a log-exp convex function
such that ¢(x) < we(z) v 1 forall =z > a . Then we have

(6) limsup e ¢(s) >0 for some « > 0, then we havelim sup e *Vw(z) > 0

S— 00 Tr—00

2

(7) /de:oo\w>a = / e~ Vw(r)dr = oo VeeR
ﬁ C

Proof: (1): Let § > 0 be given and let us definep(y) := %log w(y) for all
y > 0. Then @(y)~Y¥ = e=¢® forall y > 0 and by Lem.2.2.4 and Fubini’s

theorem we have

/ P gy — / dy / e_xdxz/ dm/ ¢ 1(0,vu(w) (v) dy
3 3 $(y) —co  Jf

— [ (Vute) - o) ds

which proves (1).

(2+3): Let x € R and y > 0 be given and let us defing := ye* . Since
¢" = L, then by Lem.2.1.4 we have ™ Vw(z) > y if and only if t@(t)™/" >y
and since x ~ ye” is continuous, strictly increasing and tends o as = — oo ,
we see that (2) and (3) hold.

(4): Let us define f := liminf, . e”* Vw(x) . Suppose thats > 0 and let
0 < v < [ be given. Then there exists; > 0 such that Vw(z) > ve* for all
x> xg. Let t > et pe given. Sincex :=log t — 1 > xg , then by the definition
of Vw(z) , we have

log* we(t) > ve® (logt —x) = 2t = at where a =2

Hence, we see thaty(s) > e®l*l for all |s| > ¢t ; that is, the first condition in (4)
implies the last condition. So suppose that the last condition in (4) holds. Then there
exist positive humbersa, 5 > 0 such that w(s) > ¢®*l for all |s| > 3. Since

we(t) > e > 1 foral t>p and t ~ —2L— attains its minimum on (e*, 0o)

logt—=x
at t = ¢*t1 | we have

— 3 log* we(t) ; ot z+1
Vuw(z) = tlglefz ozt~ 2 tlglefm ogi—z = (€ Va > log

and so we see that the last condition in (4) implies the first condition.



(5): By assumption, there exist positive numbeys> 0 and 0 < 2y < 23 < ---
such that z, — oo and Vw(z,) > ye*™ for all n > 1. Hence, if we define
tn = e and « := 1, then we have

logT we(tn) > ve™ (log tn — xn) = Lt, = at,

o |2

that is, w.(t,) > e*'» forall n > 1 and since t, — oo , we see that the last
condition in (5) holds.

(6): If there exists ¢ > a such that w.(x) = oo for all = > ¢, then we have
Vw(z) = oo for all z > ¢ and so we see that (6) holds. So suppose that the set
L :={x > a | w(r) < oo} is unbounded and let us define(t) := log™ ¢(e)
forall ¢t > b :=1loga . Since ¢ V1 is log-convex on (a,o0) , we have that
Y : (b,00) — [0,00] is a convex function. Hence, we have thét > b | ¢¥(z) < oo}
is an interval and sincel is unbounded andy(x) < we(x) VvV 1, there existsc > b
such that 0 < ¢(2) < oo for all o > ¢ . By assumption, there exist numbers> 0
and e < s; < s3 < --- such thats, 1 oo and ¢(s,) > e** forall n>1 or
equivalently v(t,) > ae! forall n > 1. Let us definek; :=1 and uy :=t; .
Since ae* < (u;) < oo and t, T oo, there exists an integek, > k; such that
ae™ < (ur) < ae™ where uy :=tg, . Since ae*? < (uz) < oo and t, T oo,
there exists an integeks > ky such that a e < ¥(uz) < ae™ where usz := ty, .
Proceeding like this, we may inductively define a sequehee k) < ky < k3 < --- of
integers satisfyinga e < ¥(u,) < ae'+ forall n>1 where u, :=t;, . Since
1 is convex and finite on(c, co) , we have thaty) is absolutely continuous ofc, co)
with a.e. derivativey where ¢/(x) denotes the right hand derivative of at = for
all x> c. Since ¢(x) <we(r)Vv1 forall x> a,then by convexity ofyy we have

Vw(x) = inf log™ we(t) > inf (—ux) > inf Mf(m) =¢'(x) Vo >c

Ser logi—z u>x U u>T L

and since ae' < YP(uy,) < ae't' , we have

Un41
a/ el dt = ae'ntt — et < ¢(Un+1) - ZD(Un)
Un

Un+1

- /u o Y(t)dt < / Vuw(t)dt

Un

Hence, there exist numbers, € [u,, u,+1] such thatVw(r,) > ae™ forall n > 1.
Since t, T oo and uw, =t , we see thatu, T oo and since u, < 7, < up41 ,
we see thatr, T oo . Thus we see that (6) holds.

(7): Let us defineb := log a and v (t) := log ¢(e') forall ¢t > a . Asin the proof
of (6), it suffices to consider the case where there existsb such thaty(t) < oo for
all t>c.Let v> e begiven and let us defing :=log v . Then > c¢>a and
as in the proof of (6), we have that'(x) < Vw(x) for all = > ¢ where ¢/ denotes
the right hand derivative ofy) . Since ¢ is absolutely continuous or{c, co0) with



a.e. derivativev’ , then by Fubini’'s theorem and the substitution= ¢* , we have

/ 1og+t;z>(t) dt — / e~ o (x) dx:@ + / du / e~ (y) dy
8 v B

By assumption, we have that the first integral is infinite and sif¢e) < co and Vw
is increasing, we see that (7) holds. O

3. Moment functions and test functions Recall that the set M of
all lower semicontinuous, log-convex functiond/ : (0,00) — [0,00] such that
q ~ M(q)"/7 is increasing on (0,00) contains every moment functionV/, and
every dual functionw . The following sets of “moment function” and “test functions”
will play a crucial role in the succeeding discussion:

. Ebd::{MeM

lim sup M(q)% < oo} , Weg :={w e B,.(R) | W € Lpg}

q—00

. Ep::{MEM

limsuleq§<oo , Wp:={weB,(R)|weLp
q

q—0

© Lp={MeMm \ liminf 2 M(g)7 <o}, Wii={weB,(R)| € Lr}

q—00 q
. LZC::{MEM ‘/ M(q)—%:oo} , We={weB,(R)| e L)

. Loo ={MeM|M@<oo Vg>0}, Weo:={weB,(R)|wELx}

. W[(::{wEB ‘/ logsz x:oo}

. W["’;::{wEBJr(R)‘/ bg;wdx:oo Va>0}

. Wexp := {w € B( ‘ Ja > 0 so that limsup e”** w(s) > 0}

S— 00

. Ws, = {w € B,(R) | 3a > 0 so that liminf e=l*lw(z) > 0}

exp |x|_)oo

In the next section, we shall see thgt* = W, whenever %" stands for any of the
of the following five symbols: #d” or “P” or “R” or “C” or “ oo”. Note that we have

B1) Wg, C WepnW;i and Wx C W

exp
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(3.2) If w islocally integrable or ifw is even onR and increasing on(0, oo) ,
then w € Wy if and only if w € W

Let C denotethe complex planand let ' : C — C be anentire function
Recall that ' is of finite exponential typ# e—I*| |F(z)| is bounded onC for some
a > 0, and that ' of minimal exponential typ& e~ [F(2)| is bounded onC
forall a >0 (see [10] and [11]). We letEg, denote the set of entire functions of
finite exponential type and we leE.,;, denote the set of entire functions of minimal
exponential type. Recall thtte Cartwright classwhich | shall denoteCw , is set of all
entire functions F' € Eg,, satisfying f ¢ Wy where f(z) := |F(z)| forall z € R .
Let ap,a;,...> 0 be a given sequence. Then we say tliat) is log-concavef
0 < ap_1an41 < a2 forall n>1 or equivalently if there exists a convex function
¢ :[0,00) — R satisfying a, = e~ forall n > 0. Note that the sequence
(ay) is log-concave if and only ifa, > 0 for all » > 0 and the quotient sequence
qn = 5 s decreasing and if and only if only ifp > 0 and there exists a decreasing
sequenceq; > ¢2 > --- > 0 of positive numbers satisfyingi,, = ag [y ¢ for
all n>1.1f ay,as,...> 0 is a an arbitrary sequence of non-negative humbers, we
let (a;) denotethe log-concave hulbf (a,) ; thatis, a;, = inf., )cc ¢ Where C

n

denotes the set of all log-concave sequenc¢eg satisfying a;, < ¢; forall £ >1

Theorem 3.1: Let M € M be a given function. If0 < ¢; < ¢ < --- is any given
increasing sequence of positive numbers satisfying,,~ qg—j < oo and ¢, — oo
Then we have the following characterizations of the séts and Ly :

1 1
1) MeLp < limsup(%)q <00 @hmsup(%)qn < o0
q—00 n—o0
< lim sup qinM(qn)an < 00
1 1
2) MeLp ¢ lminf (M0)7 < oo & liminf (X))o < o0
Gg—00 4 n—00 qn:

& liminf qiM(qn)an < 00

n—oo

where ¢! :=T(¢+ 1) forall ¢ >0 and I' is the gamma function. Ilfa, 5 > 0
are given positive numbers and < ry < r; < --- IS any given increasing sequence
of positive numbers satisfying,, — oo and sup,,>; ;"2 < oo , then we have the
following characterizations of the set :

n=1

B) Mels & / ]M(qu)_al_q dg=o00 < > (rn—7Tn-1) jM(rn)_% = 00
g
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Proof: (1+2): Let us define F(q) := %M(q)l/q for all ¢ > 0. By assumption,
there exists a finite constan€ > 0 such that ¢,+1 < C¢q, forall n > 1. Let

n>1 and ¢ € [¢n, ¢n+1] be given. Sincey n~ M(y)l/y is increasing on (0, co) ,

we have F(q) < 22 F(gni1) < C F(gnv1) and F(g,) < L F(q) < CF(g) and
since ¢, T oo , see that

limsup F(q) < C limsup F(q,) , hm 1nf F(qn) < C liminf F(q)

g—00 n—oo q—0o0
Hence, we see that the first and last conditions in (1) or (2) are equivalent and by
Stirling’s formula, we haveq - (¢!)~Y4 — ¢ as ¢ — oo . Hence, we see that the
remaining equivalences in (1) and (2) holds.

(3): Let us define f(q) := M(q)~'/7 forall ¢ > 0. Since M € M , we see
that f is decreasing and non-negative di¥,cc) and by (2.2) we see thatf is
either finite on (0,00) or identically equal tooco on (0,00) . Hence, we see that
the first equivalence in (3) holds and if = ~ , then all three statements in (3) hold
trivially. So suppose thatf(y) < oo for all y > 0. By assumption, there exists a
finite constant C' > 0 such that r,,1 1 —r, < C (1, — rp,—1) foral n >1 and
since f is decreasing, we have

S (rn = rnct) F(r) /f dq<Z(Tn+1—7"n)f(Tn)

n=1
<C 2231 (Tn - Tn—1> f(Tn>

and so we see that the last equivalence in (3) follows from the first equivalends.

Corollary 3.2: Let w,v € B,(R) be given functions and leu > 0 be a given
number satisfyinguw*(z) < v.(z) < w(z) v 1 forall |z| > a . If “2” stands for one
of the five symbolstid” or “ oo” or “P” or “R” or “C”, then we have

1) PBo={nePr(R)| M, eL,}

2 weW, & veW, & weW, & weWw,

(B) L € Lp C LrC Lo C L

4) PuCPrCPrREPeCPp S P , Wea CWp CWRrC We C Wy
Proof: (1): If “2” equals “P” or “R” or “C”, then (1) follows from Thm.3.1 and if2*"
equals 0" then (1) is evident. If &” equals ‘bd”, then (1) follows from [8; Exc.3.16
p.235]. (2) is an immediate consequence of Lem.2.2.5+6. et M be given. Since
y ~ M(y)~'/¥ is decreasing on(0, o) , we have fq2q M(y)= v dy > q M(q)=/1

forall ¢ > 0. Hence, we see thatCp C L~ and the remaining inclusions in (3)
follow directly and the definition of£, . (4) is an immediate consequence of (3}

12



Theorem 3.3: Let w € B,(R) be a given non-negative Borel function. Letp > 0
be a given numbers, let) : (a,00) — [0,00] be a log-exp-convex function and let
F : (a,0) — [0,00] be a non-negative Borel function satisfying

(1) ox) <w(@)Vvl Vi|z|>a and w(z) < F(z)(1+¢(x))’ Va>a
If ¢ € R is any given number. Then we have
2 weWy < dJece Ry sothat w(z) =00 Y|z > ¢

B) weWyx & lim |z[%w(xr) =00 Yg>0

|| —o0

4 weWp & weWs, < liminfe ™ Vw(xz) >0

€xp T— 00

(5) weWr e limsup e " Vuw(z) > 06 w® € Wep © w* € Wegp = w € Weyp

T—00

(6) If lim e F(z)=0 Va>0,then we Wy ifand only if w, € Wexp

T— 00

(7) wEWC<:>/ e " Vu(z)dr =00 o w® e Wi & w e Wy = weW;

/ ™ log* F(a) - - s
8 If ————dr < oo, then w € W¢ if and only if w. € W
Proof: (2): Suppose thatw € W;,; . Then there existsc > 1 such that @w(q) < ¢
for all ¢ > ¢ . Hence, we havew(z) > ¢ ?|z|? forall x € R and all ¢ > ¢ .
Let |z| > 2¢ be given. Sincew(x) > ¢ ?|z|? > 29 for all ¢ > ¢, we see that
w(x) = oo for all |z| > 2¢ . Conversely, if c € R4 is a given number such that
w(x) = oo forall |z] > ¢, then we havew(q) < ¢? for all ¢ > 0. In particular,
we see thatw € L;; or equivalently w € Wy, .

(3): Let x € R and ¢ > 0 be given. Since |z|! < w(q) (w(z) V1) and
w(q) < ¢4V suppy s, [yl (w(y) v 1)~! forall ¢ >0, we see that (2) holds.

(4): Follows from Lem.2.3.2+4.

(5+6): By Lem.2.3.3, we see that the first equivalence in (5) holds and by Lem.2.3.5
we see thatw € Wgr implies w € Wgr implies w € Wey, . Suppose thatv, € Wey,
and that e=** F(z) — 0 for all o > 0. Then there exista,b > 0 such that
limsup,_ ., e~ we(z) >0 and F(z) < e’ forall »>b where §:= 5. So
by (1) we have

0 < limsup e~ 7* we(x)l/p < limsup e P (14 ¢(z)) = limsup e~ ¢()
and since ¢ is log-exp-convex, then by (1), and Lem.2.3.6 we have
limsup,_... e * Vw(xz) > 0 or equivalently w € Wy . Since ¢ := w® and
¢ = w* satisfy condition (1) with F' = 1 , we see that the remaining implications
in (5) and (6) follows from Cor.3.2.2 and Lem.2.2.1.
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(7+8): SinceVw Iis increasing, we see that the first equivalence in (7) follows from
Lem.2.3.1 and Thm.3.1.3. Suppose that the second condition in (7) holds afid-lex
be given. Since Vw is increasing, we see that the integral in (7) is infinite for all
¢ € R ; in particular for ¢ := (log 3) — 1 and sinc&w(x) < log® w,(e**1) , we have

00 = / e " Vuw(x)dr < / e logT w(e* ™) do = e/ t72 log™ w(t) dt
c ¢ &)

Since 72 < 1;52 (1+¢*)~! forall ¢t > j, we see thatw € W;. . Suppose that
we. € Wi andlet 3 > a be given. Sincel +¢(z) < 2(¢(z)Vv1), then by (1) we have

00 = / 170g+;§f(m) dz < / lioglf(x) dx +p/ 710g(1;¢(m)) dx
B B B

< /OO 1og+;(x) der%er/oo log';;ﬁ(oc) d
a 5]

Hence, if the first integral in the last expression is finite, we see that the last integral

is infinite for all # > « and since ¢ is log-exp-convex, then by (1) and Lem.2.3.7

we see that [~ e *Vw(z)dz = co or equivalently w € W . Since ¢ := w® and

¢ = w* satisfy condition (1) with F = 1 , we see that the remaining implications (7)

and (8) follows from Cor.3.2.2, Lem.2.2.1 and (3.2). O

Theorem 3.4: Let ag,a;,... € Ry be non-negative numbers such tha}/” — 0
and a, > 0 for infinitely manyn > 0. Let f(z):=>_,2, a, 2" for 2 € C denote
the associated entire function and let us define

w(x) = f(Jz]) = > anlz|™ and v(x) :=sup aylz|” Vo e R
n=0 n>1

Then w and v are finite and even functions oR such that w,v € W, and w
and v are log-exp-convex on0,oc) . Moreover, we have

Q) weWp & welW? &S veWp & veW?

exp exp
(2) weWrp & weWy & veEWr & vEWy & f¢&Enn

B) weWeg © weWg S weWi veWeg & veWr & veWi

(4) / %dx<oo S wéEgWe & feCwnEyy & felw
0

Let (bo,b1,...) denote the log-concave hull of the sequerid¢ea;, aq,...) and let us
define ¢,, := SUPL>p, ai/k forall » > 1. Then we have

(5) (b,) is a strictly positive log-concave sequence satisfying

mn
@ b=1, bn:i}\(n)_l and a, < ¢ <b, <[ Yn>1
=1
(b) limsup n = lim sup n® a}/n = limsup n%c, Va >0
n—oo n—oo n—oo

aby”
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6) weWp < wveWp < liminfnd/" >0

n—oo

(7) If limsup na}/n < oo ,then w e Wp ifand only if liminf ne¢, > 0

n—oo

B8 weWirp & veWrp & limsupnb}/n>0 & limsupna}/n>0

n—oo n—oo

© weWe & veWe & Y 0/"=x

n=1

Proof: (1)—(3): Since a}/” — 0 and a, > 0 for infinitely many n > 0, we
see that v and w are finite, even functions belonging tdV,, . Since a, 2" is
increasing and log-exp-convex off), o) , we see thatw and v are increasing and
log-exp-convex on (0,00) . Since ay|z[" < f"v(F) forall >0, al = €R
and all » > 1, we have

v(r) < w(r) < cuH—%v(%) VreRVO< <1
Since w(z) = f(x) forall = >0 and |f(z)| < w(|z]) forall z € C, we see
that (1)—(3) follow from Thm.3.3.

(4): Let us number the four conditions in (4) by (a), (b), (c) and (d). Sinceis
even andw(x) = f(x) forall = > 0, then by (3) we see that (a) implies (b). Suppose
that (b) holds. By Cor.3.3.3 we havél’y C W . Hence, we see thatv ¢ Wy .

So by (2) we have f € Eyi, and since |f(x)] < w(z) forall = > 0, then by
(3) we see thatf € Cw N E, ; that is (b) implies (c). The implication: “(c)=
(d) = (a)” are evident.

(5): Sincev € W, and v is finite, we have0 < v(¢) < oo forall ¢ > 0. Hence,
if define do := 1 and d,, :=v(n)~! for n=1,2,..., then (dy,dy,...) is a sequence
of positive numbers. Since; ~ (¢)'/¢ is increasing, we havei(1) < 7(2)'/? and
since 7 is log-convex, we haved(n) < o(n — 1)"/2v(n +1)/% forall n > 2.
Hence, we see thatd,) is a log-concave sequence witlly = 1 . Let n > 1 be
a given integer. Sincex|™"v(x) > a, for all » € R, we see thati(n) < a;*
or equivalently d,, > a,, forall » > 1. Thus, we conclude that/,, > b,, for all
n > 0 . To prove the converse inequality, l€t:;) be a given log-concave sequence
satisfying @p > 1 and x; > «; forall ¢ > 1. Then we havex, = x [[/~; ¢
forall n > 1 where ¢ := xf’jl is decreasing. Letk,n > 0 be given integers.
Since (¢;) is decreasing, we have

n n
-1
k<n = sp=x0]la [l ¢ < T gy
i=1 i=k+1

k

n
ke
k>n = wp=x0[la [l @ <vnq 7
i=1 i=n+1
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and sincexg > 1 and x;, > a;, forall &> 1, we have

-1 —k —k -
v(gp)V1I=1V SUD 04 G5 < SUD T G < n g,

-~ — —1 —1 —1
U(TL) Z qn—cl (v(qn—l—l) \ 1) Z Ty

forall » >1 and sincedy =1 < zg , we see thatd,, < z,, forall n > 0. Taking
infimum over (z;) and recalling thatd,, > b,, , we see thatd,, = b,, forall n >0;
which proves of the first two equalities in (5.a) and sin¢&,) is log-concave, then
sois (b,) . Since b, > a, foral n>1 and pi/m — o(n)~Y" is decreasing, we
see thata, < ¢,” < b, . Let us defineyy :=1 and y, :=[[/_; &; for n > 1.
Since (¢;) is decreasing, we have thay,,) is log-concave and since; > ¢, > a}/”
forall 1 <i<mn, wehavey, >a, forall n>1. Hence, we see thay, > b,
for all » > 1 which completes of (5.a).
(6): Follows directly from (1), (5) and Thm.3.1.1.

(7): Suppose thatw € Wp . By (1) there exist positive numbers, 5 > 0 such
that v(x) > e™** forall = > 3 and since lim sup,,_. . na}/” < 00, then by (5.b)
there exists v > ea such that ¢, < % forall £ > 1. Let us define z,, = é
and f(0):=0 and f(t):=tlog} forall ¢>0. Observe thatf is continuous
and strictly increasing on the intervah, e=!] with f(0) =0 and f(e7!) =e7t.
Since 0 < ¢ < ¢!, there exists a unique numbér< \ < e~! solving the equation
f(A) = < and since ¢, — 0, there exists an integern > 1 such thatxz, > 3 for
all n>m . Let n>m be a given integer satisfyingic,, < % . If £ >n,then we
have a,2f < cfak <1 andif 1 <k <n, we have ke, < nc, < and

log (ax k) <k log (&) <k log(£%) = wcnf(k%) < ngnf<”7ﬁ)

Since z, > [, we have

kcn n
an < log v(wn) < 9wn max f(52) < ven f (%)

that is, % = f(\) < f(%) and since % < e~! and f is strictly increasing on

(0,e~1], we conclude thatnc, > Ay for all »n > m satisfying nc, < 1. Since
My < £, we conclude thatne, > Ay for all » > m and consequently, we have

liminf ne, > Ay > 0 . The converse implication follows from (5.a) and (6).
(8) and (9) follow directly from (2), (3), (5) and Thm.3.1.2+3. O
L]

Examples 3.5: (1): Let us define w(z) := eVI*l if 2 <0 and w(z) := el*l if
x> 0. Then we havew € W, N W3 and since w®(z) < w,(z) = elFMVIEL we
have we ¢ Wep UWie , w® & Wep UWg . So by Thm.3.3.5+7 we see that ¢ W,
and w ¢ We but w € Wegy N Wi

(2): Let us definew(0) =1, w(z) := e/l if 0< |z <1 and w(z)=e
if |x| > 1. Then w is an even and finite function such that is log-convex and
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log-exp-convex on(0,o0) . Hence, we havew® = w and so we see that® € Wy
but w ¢ W and w ¢ We

(3): Let >0 and p,q € R be given numbers and let us consider the function:

o oz
w(z) = eXp{ (1+log™ [z])? (1+log™ log ™ [z]) } VeeR

Then a straight forward computation shows that is increasing and log-exp-convex
on [a,00) for some sufficiently largea > 1 . Hence, by Thm.3.3 we have

1) weWes < eitherp<1 or p=1 and ¢ <1

2 weWp & weWrp < p<0and¢<0

(4): Let L C Ny be a given infinite set of non-negative integers and let

0 <ni <mnyg < --- denote the elements irl. in increasing order. If we define
— [z T i f
w(x) = an:L - VreR and p:= hnnlloréf e

then we are in the setting of Thm.3.4 with,, = (n!)_l/” if neL and a, =0
if n¢ L. Since (n)~Y" is decreasing inn we have ¢, = (n;!))~Y/™ for
all ny_1 <n <ng . So by Stirling’s formula, we see thalim sup na}/” =e¢ and

liminf ne¢, = ep . Hence, by Thm.3.4 we have

(3 If p>0,then we havew € Wp C Wi C We

(4) If p=0,then we havew € Wr \ Wp

4. Complete sets of test functions With the provision of the previous sec-
tions, we can now proceed to the general solution of specifying a class of sets of
probability measures admitting a complete set of test functions. To do this we need
the following preorderings on the setd1 , B, (R) and Pr(R) : If L,M € M
and v,w € B, (R) are given functions andu,» € Pr(R) are given probability
measures, we define

. LM & Ja>0 sothatlimsup{lfﬁf;)a} < 00
q—00

. vEw & wkv

« v=pu & M, kM,
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Then the reader easily verifies the three relations are preorderings (i.e. transitive and
reflexive relations) on the respective spaces. &f C M , W C B (R) and
B C Pr(R)P C Pr(R) are given sets, we say that

)-

. L is lower (F)-directedif M € £ implies Le L YLe M with LF M
. W is upper(=)-directedif w € W implies v € W Vv € B, (R) with w = v

. B is lower (=)-directedif p € P implies v € P Vv e Pr(R) with v < p

Lemma 4.1: Let v,w € B_(R) be given functions. Then we have
1) If we Wy orif v ¢ Wy, then v = w
2 w'E w EwlE w*

and the following three statements are equivalent

B) v EFw
(4) There exist positive number§’, ¢, 5, v, 6 > 0 satisfying
@ %) < C(1+ |z +w*(2)?) Vi|z| > ¢

(5) There exist non-negative numbers, ¢, 5, v > 0 and functions f : R — R
and h : R — [0,00] satisfying
(@) liminf |fgc)| >0 and limsup |z h(z) < oo

B) (@) < Cho) (1+w@)) Vil > o

Proof: (1): Suppose thatw € W;,; . Since w € Ly, , there existsc > 0 such that
w(g) <c?<c?(1+79(q)) forall ¢>c. Hence, we see thatv -7 or equivalently
v = w . Suppose thatv ¢ W, . Since v ¢ L, , there existsr > 0 such that
9(r) = oo and since 7(¢)'/? is increasing, we havei(q) = oo forall ¢ > r.
Hence, we see thatv - v or equivalently v = w .

(2): Immediate consequence of Lem.2.2.6.

(3) = (4): Suppose thatv = w . Then there exist positive numbers > 0 and
>0 such that w(kq) < p7(1+79(q)") forall ¢ > 3. If ve W, there exists
a > 0 such that 7(¢q) < a? for all ¢ > 0 and so we havew(rq) < (%(1 + a*?)
forall ¢ > 3 . Hence, we see thatv € L;; or equivalently w € W,; . Hence, by
Cor.3.2.2 we havew* € W, and so by Thm.3.3.2 we see that (4.a) holds trivially.
So suppose that ¢ W,; . By Thm.3.3.2 there existsty € R such that |zo| > 1
and v(zg) < oo . Hence, if we define) := v(zg) V1 ,then 1 < A < oo and we
have ¥(q) > |ag|? (v(zo) vV 1)~t > A7t forall ¢ > 0. In particular, we see that
1+79(q)" <2X*0(q)" forall ¢ >0. Let x € R be given. By Lem.2.2.6, we have

bt < sg) < B7(1+73(g)") < 287N 5(g)" Vg > f

w* (z)V1
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Let us definey := % and ¢ := 377 . Since v(¢q) > A\~! forall ¢ >0, we have

% <2'N (1Vwr(z) <27A (1+w*(2)") V¢>pVYzeR

EEL < Moal” < Alpal” VO<q<fVe] = §

and so we have’*(6x) < A (1+|z|’+w*(x)?) forall |z| >  where A =27 \4+69\.
Thus, we see that (4.a) follows from Lem.2.2.8.

(4) = (5): Take f(x) := 6z and h(z) := 1+ |z|° .

(5) = (3): Suppose that (5) holds. Ifv ¢ W, , then (3) follows from (1). So
suppose thaw € W, and let ¢ > 0 be given. By (5.a), there exist > 0 and b > ¢
such that |f(z)| > 6|z| and h(x) < blz|? for all |z| > b and sincev € W, ,
then by Lem.2.2.3 and Cor.3.2.2 we see thate W, . Let ¢ > 0 be given. Then
by (5.b) we have

62|71 Pu*(62) < C 6P 2|~ F h(z)(1 + w(x)Y) < bC 6P~z |71(1 4 w(z)?)

for all |z| > b and since v* € W, , then by Thm.3.3.3 we see that € W, .
Hence, by Thm.3.3.3 there exisis > b such thatw(z) > 1+ |2|® for all |z| > a .
Let |z| > a and ¢ > 0 be given. Sincew(x) > 1+ |z’ and w* is even onR
and increasing on[0, cc) , then by (5.b) we have

% < v*(6x) < bC |2)? (14 w(x)?) < 26C |2]7 w(x)? < 2bC w ()™

<

Hence, if we definea := 1= and Cp := (2bc)* 677 , then we have

| * |[*

w(z)V1 w(z)

IN

Cod(g)/" < Co(1+3(q)*) Vx| >a

| *

avt < 0 <a® (1+0(g)%) Ve <a

and so we see thati(aq) < (Co VvV a*) (1 +v(q)*) for all ¢ > 0. Thus, we have
w v orequivalently v = w . O

Corollary 4.2: Let W C B, (R) be a non-empty uppél=)-directed set of functions
and let w € B, (R) be a given function. Then we have

(1) Wy €W andif W # BL(R), then we havelWW C W,

2 weW < weW < wew
Let f: R — R and h:[0,00] — [0,00] be given Borel functions satisfying
(3) liminf @ >0 and liminf 277 h(z) > 0 for some 3 > 0
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If v,v1,...v, € W and w € B4(R) are given functions andvy, 31, ..., ap, 3, >0
are positive numbers, then we have

~ v (f(2))
4 If hinfo%p A e < X for some numberg,q > 0 ,then w e W
(5) If 1|ir|ninf w(x) >0, then v-w e W

6) o(f(x)eWwW | h(v(z))eW |, é Bivi(x)™ e W | ﬁ vi()" e W

Proof: (1)-(5) are easy consequences of (3) and Lem.4.1¥1= B, (R) , then (6)
holds trivially, and if W # B, (R) , then by (1) we havel’’ C W, . Hence, we see
that (6) follows from (3)—(5) and Thm.3.3.3. O

Lemma 4.3: Let u,v € Pr(R) be given probability measures and lgt: R — R
be ap-measurable function. Then we have

1) M, +p, and p, - M,
(2) v = ifandonlyif p, = p,
(38) Ifthere existsa, f > 0 such that |f(z)] < o+ f|z| p-a.s., thenpy < p

(4) |Ifthere existsa, 3 > 0 such that |z| < a4+ F|f(x)| p-a.s., thenp < puy

Proof: (1): By Lem.2.1.1, we see tha, - A, and if we defineu(x) := /p.(x) ,
then by Lem.2.1.2+3 and Lem.2.2.3, we see thaf, - v . By Lem.4.1, we have
py =u? | u orequivalently @ + p, and since M, + 4 , we conclude thatd,, - p,,
and p, = M, .

(2): Immediate consequence of (1).

@) If [f(z)| £ a+ Blz| p-as., thenp,(a+ Bx) < py(v) foral zeR .
Hence, by Lem.4.1, we see that, = p,, and so by (2) we conclude thai; < 5 .

(4): If |z| <a+p0|f(x)| p-as., thenp,(a+Bz) > p, () foral »<c R and
so by (2) and Lem.4.1 we conclude that; < 4 . O

Proposition 4.4: Let w € B, (R) be a given function such thatv(zo) < oo for
at least one 2y € R . Then there exist a probability measure € Pr(R) such that
w e LYp) and @ - M, .

Proof: Let us first suppose thalim,|_., w(z) = co and let us defineh(z) :=
we(x)v1 foral z >0 and

up(z) = inf h(y) Yo >0 and u(x) := sup wuo(y) =lm ug(y) Ya >0
y2z O<y<=z ylz
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Then & : (0,00) — [1,00] is a Borel function andug and « are increasing functions
on (0,00) such thatl < u(z) < ug(x) < h(xz) forall z >0 and « is left continuous

on (0,00) . Since lim,—,, w(z) = oo, we havelim,|_, h(z) = oo and so we see
that lim,_. u(r) = oo . Hence, by (2.4) there exists a unique probability measure
v € Pr(R) suchthatv(Ry) =1 and p,(x) = u(]z|)? forall z # 0. Since u

and h are Borel functions, we see that the set:

D:={(z,y)|y>5>0 and h(y) <1+u(x)}

is a Borel subset ofR? . Let = > 0 be given. Then there exists > 5 such that
up(z) < &+ u(x) and since ug(z) = inf,>. h(y) , there existsy > z > £ such that
h(y) < +4uo(z) < 1+u(x) . Hence, we see that the sectiolis, := {y | (x,y) € D}

are non-empty for allz > 0 . So by the measurable selection theorem (see [15;
Thm.2.2.11 p.348]) there exists a universally measurable functioni0, co) — (0, co)
such that (z,¢(x)) € D for all = > 0 or equivalently ¢(x) > 7 and
h(gp(x)) <14 u(x) forall o >0. Let o € R be chosen such that(zg) < oo

and let us define

0 if xt=20
() = { (|]) if «#0 and w(¢(|z|)) < w(—o¢(|z]))
—o(lz|) if x#0 and w(o(|z])) > w(—d(|z]))

Since w is a Borel function andy is universally measurable, we see that R — R
is universally measurable and by the definition of and ¢ we have [¢(x)| =
o(lz]) > % forall = # 0 and

w(h(x)) = we(o(lx])) < h(o(|x])) < T+ ullz]) =1+ V/pu(x) Va0

Since w((0)) = w(xg) < oo , then by Lem.2.1.2, we havev(y(x)) € L'(v) or

equivalently w € L'(u) where p := v, denotes the image measure of under
the universally measurable functio . Since |z| < 2|¢(x)| for all =z € R, then

by Lem.4.3.4 we haver < ;. So by Lem.4.3.1+2 we havep, - M, and since
pu(2) = u(|z))? < 1+ we(x)? <1+ w(x)? foral z #0, then by Lem.4.1 we
have p, = w or equivalently @ - p, . Recalling that p, - M, , we conclude that
we LY(p) and @+ M, .

Suppose thatlim inf|,|_., w(z) < oo . Then there exist numbers > 0 and
x1,x9,... € R such that |z,| > 2" and w(x,) < c¢ foral n=1,2,.... Let
us define p:= 1 3>, n=26,, where a:= 37", n~? . Since w(z,) < ¢ and
|z, > 2" forall n > 1, we have

oo oo
[wduns s and M) = £ 5 n el 2 £ 5 07t < oo
R n=1

n=1

for all ¢ >0 . Hence, we see thatv € L' (1) and that M, (q) = 0o forall ¢ >0
Thus, we havew - M, . O
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Theorem 4.5: Let ‘B C Pr(R) be a given non-empty set lowér)-directed of
probability measures and let us define

Lp:={LeM|IpeP : LM} , Wp:={weB,(R)|we Ly}

Ag = {w€B+(R) JueP : w) = ioz Mu(n)_1 |x|"™ V:CER}

n=

1
Then Ly is lower (=)-directed, Wy is upper(f=)-directed and we have
(1) P CP={nePr(R)| M, €Ly} , Lg T Ly and Wiy C Wy
(2) Ay and Wy are complete sets of tests functions fff and Ayp C Wy = P~

Let « > 0 be any given positive number and let € Pr(R) be a given probability
measure. IfA C B, (R) is any complete set of test function f&8, then A C Wy
and we have the following equivalence scheme:

(3) peEP & Wyenl(uw #0 & AnLY(p)#0 & pu(2)* € Wy

& Jw e Wy so that limsup w(z)® R,(|z]) < oo

|| =00

Proof: By the definition of Ly and Wy , we see thatLy is lower (-)-directed,
and that Wy is upper(}=)-directed.

(1): Since Wy is upper(|=)-directed, then by Cor.4.2.1, we hav&,; C Wy and
Lyg C Ly and sinceP is lower (<)-directed, we have’3,; € P . Let 1 € Pr(R)
be a given probability measure satisfyinty,, € Ly . Then there existsy € P such
that A/, = M, or equivalently < v and since B is lower (<)-directed, we have
p € P and since M, € Ly forall p € P, we have proved (1).

(2): Let w € Wy and u € Pr,, be given. Sincew € LY(u) , then by Lem.2.1.3
and Lem.2.2.3 there exists” > 0 such that M,(¢) < Cw(q) forall ¢ > 0.
Hence, we have M, - @ and since w € Ly and Ly is lower directed, we
conclude that M, € Ly . So by (1) we havep € ‘B for all n € Pr, ; that s,

Wy C P* . Let w € P* be given. If w € Wy, , then by (1) we havew € Wy . So
suppose thatw ¢ W, . By Thm.3.3.2 and Prop.4.4, there exists a probability measure
p € Pr,, such thatw + M, . Since w € B* and p € Pr,, , we have p € B and

M, € Ly and sincew + M, and Ly is lower (--)-directed, we see thatv € Ly

or equivalently w € Wy for all w € B*. In view of the inclusion proved above,
we conclude that PB* = Wy .

Let w € Agp be given. Then there existsy € 9P such that w(z) =
Soor i My(n)7Hz|® forall x € R. Let n > 1 be a given integer. Since
w(z) v 1> |z[*M,(n)~! forall » € R, we see thatw(n) < M,(n) for all
n € N. Let ¢ > 1 be agiven number and lekz > 1 denote the unique integer
satisfying n < ¢ <n+1. Since n+1 < 2n < 2¢ and M, and w belong
to M , we have

1

Bg)t < @(n+1)™ < My(n+1)71 < M,(2q)%
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forall ¢ > 1. Hence, we havew - M, € Ly and since Ly is lower directed, we
have w € Ly or equivalently w € Wig ; thatis, Ay C Wy =P~ . Let n€ P be
a given and letr denote the image measure pof under the functionz ~ 2z . Since
B is lower (<X)-directed, then by Lem.4.3.3 we have € B . Hence, if we define
w(z) =302 M,(n)"tz|", then w € Ay and sincel, (¢) = 29 M,(q) , we have

[ wdn= 55 0,0 M, 07! < 32 =
R n=1 n=1

So we havew € Ag N L(p) and since Ay C Wy = P*, then by (1.4) we conclude
that A and Wyq are complete set of test functions fd8 which completes the
proof of (2).

(3): Since A C B, (R) is a complete set of tests functions fég , then by (2)
we have A C Wy and since Wy is upper(j=)-directed, then by Cor.4.2 we see
that Wi N LY (u) # 0 if and only if Wy n L¥(i) # 0. Hence, we see that the first
equivalence in (3) follows from (2), and the second equivalence follows directly from
the definition of completeness. SincEy is upper(}=)-directed and Ly is lower
(F)-directed, then by (1), Cor.4.2 and Lem.4.3.1 we have

*) @) eWg & pula)eWg © puely & Myely & peP

which proves the third equivalence in (3). Ifp,(x)" € Wy , then by Lem.4.1 we

have pﬂ(x)l/a € Wy and so we the last condition in (3) holds. Suppose that the last
condition in (3) holds. By Lem.4.1 we have(x)® |= p,(x) and since Wy is upper
directed, then by (*) and Cor.4.2 we see thate ‘B which completes the proof of
(3). O

Theorem 4.6: Let £ C M be a non-empty lowet-)-directed set and let us define
Pe={pePr(R)| M, eL} , We={weB,(R)|weL}

Ap = {w eEB,(R) | 3uePr : wx)= >, Mu(n)_1 |z|" Vo e R}
n=1
Then B, is lower (<)-directed, W, is upper(k)-directed and we have
1) BuCPr, LyCL={LeM|IpecP,: L+ M,} and W, C W,
(2) A, and W, are complete sets of tests functions f; and A; C W, =P

Let « > 0 be any given positive number and let € Pr(R) be a given probability
measure. IfA C B (R) is any complete set of test function fg8. , then A C W,
and we have the following equivalence scheme:

(3 wueEPr e Wenl*(p)#0 & ANL'(W#0 & pu(2)* €W,
< Jw e W, so that limsup w(x)® R,(|z]) < oo

|z[—o0
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Proof: Since £ is lower (F)-directed, we see that, is non-empty and lower
(=%)-directed. Lety € B, and L € M be given such that’ - M,, . Since M, € £
and £ is lower (-)-directed, we haveL € £ . Let L € £ be given and let me show
that L - M, for some € P, . If L(¢) =0 for some ¢ > 0, then by (2.2) we see
that this holds trivially. If L ¢ L., , then there exists: > 0 such thatL(q) = oo for
all ¢ > r and since”L is lower()-directed, we haveC = M and B, = Pr(R) and
so the claim holds trivially (take: to be any probability measure with/, = o~ ). So
suppose thatd < L(q) < oo forall ¢ >0 let us define v(z) := sup,sq |2|? L(q)~"
forall 2 € R . Since v(z)™! < |2|77 L(q) forall z € R, we see thatv(q) < L(q)
forall ¢ >0. Let ¢ >0 be given. Since f(r) := log L(r) is finite and convex
on (0,00), we have f(r) > ar+ 3 forall »r >0 and f(¢) = ag+ [ where
a:= f'(¢) the right hand derivative off at ¢ and = f(¢) — aq . Since % f(r)
is increasing on(0, c0) , we have f(r) — f(q) > %f(q) forall » > ¢ . Hence, we
have aq > f(q) or equivalently 3 < 0 and so we havee " > 1 and

v(e®) = sup e L(T)_1 = sup e /() < =
>0 >0

Bg) > e (u(e) v 1) > 20+ = /9 = [(g) > ()

Thus, we see thati(¢) = L(q) forall ¢ > 0. Since L(¢)~™* >0 forall ¢ >0,
we have lim,_.., v(x) = co and since v is even lower semicontinuous oR and
increasing on [0,00) with v(0) = 0, then by (2.4) there exists: € Pr(R) such
that p,(z) = v(x) v 1 forall = € R . Hence, we havep,(q) = v(¢q) = L(q) for
all ¢ >0 and so by Lem.4.3.1 we havé - M, and M, L . Since L is lower
(F)-directed, we haveM, € £ or equivalently 1 € B, which proves the claim.
Hence, we see thafd is a non-empty lowe(=)-directed set of probability measures
such that L € M ifand only if L M, for some i € B, . Hence, we see that the
remaining parts of the theorem follows from Thm.4.5 applied the‘Set=""V, . U

Theorem 4.7: Let W C B, (R) be a non-empty uppdt=)-directed set and let us
define

Ly ={LeM|FweW : Lrw} , Byw:={pePr(R)| M, € Ly}

Aw = {weB,R) | 3uePy : wlx)= i_'fl My(n)™ o] V€ R}

Then By is lower (<X)-directed, Ly is lower (F)-directed and we have

(1) Boa CPBw , Loa S Lw and Wy CW ={w e B, (R) | ¥ € Ly}

(2) Aw and W are complete sets of tests functions 8 and Ay C W = Py,
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Let « > 0 be any given positive number and let € Pr(R) be a given probability
measure. IfA C B, (R) is any complete set of test function f@8y , then A C W
and we have the following equivalence scheme:

B wePw & WNL () #0 & AnL'(w)#0 & pulx)" €W

< Jwe W sothat limsup w(x)” R,(|z]) < oo

|| —o0

Proof: By the definition of Ly , we see that Ly is non-empty and lowe(t)-
directed. Letw € B, (R) be a given function such thati € Ly . Then there exists

v €W suchthatw v or equivalently v = w and sinceW is upper()-directed,
we see thatw € W . Hence, we see thaly; is a non-empty loweft)-directed set
such thatw € Ly if and only if w € W and so we see that the remaining parts of
theorem follows from Thm.4.6 withl := Ly . O

Theorem 4.8: If “ 2" stands for one of the five symbol$d” or * ~” or “P” or “R”
or “C”and A, is defined as follows:

A, = {w €eB.(R) |FpeP, sothat w(z) = > Mu(n)_1|x|” Ve R}
n=1

then £, is lower(I-)-directed, B, is lower(=<)-directed, W, is upper(}=)-directed
and we have

(1) A, and W, are complete sets of test functions f@¢, and A, C W, = ‘B>
(2) The setBp := {e**l | o > 0} is a complete set of test functions @8 p

(8) The setBg of all functions of the formw(z) = > ., |‘“ni,|n for some o > 0

and some infinite se. C N is a complete set of test functions g8

Let « > 0 be any given positive number and let € Pr(R) be a given probability
measure. IfA C B, (R) is any complete set of test function f@8,. , then A C W,
and we have the following equivalence scheme:

4 peP, o Wonl(w#0 & ANLp) #0 & pu(x)* €W,

< Jw e W, so that limsup w(x)” R,(|x]) < 0o

|| —o0

Remarks: Note that Thm.4.5-4.8 meets our objective classifying sets of probability
measures which admits a complete set of test functions and of finding decent complete
sets of test function for the set§3, for P, when “” equals one of the symbols

"bd” or “oo” or “P” or “R” or “C”. Recall that Lp C Pr C P and by (1) and by
Example 3.5 we see that each of these inclusions are strict.
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Proof: Let M,L € M be given functions such that. - M . Then there exist
positive numbersa >0, ¢ >1 and r > ++1 such thatL(ag) < C* (1+M(q)®)
forall ¢ > r . Since ar > 1, we have L(ag)'/(®? < C (14 M(q)"/) for all

¢ > r and since L(q)'/¢ is increasing on (0, ) , we see thatM € £, implies
L € £, whenever &” equals 'bd” or “o0” or “P” or “R”. Hence, we see that the sets
Lpg, Lo, Lp and Lp are lower(F)-directed. So suppose that/ € Lo . If
M € Ly, , then by Cor.3.2.3 we havd. € L,; C L . So suppose thatV ¢ Ly, .
Since M(q)'/7 is increasing and unbounded di, co) there existsu > 147 such
that M(q) > 1 forall ¢ > u . Hence, we haveL(aq)'/(®?) < 20 M(q)'/? for all

g > u and since M € L , then by Thm.3.1.3 we have

a/ L(aq aqdq> / M(q qu—

Applying Thm.3.1.3 once more, we see thdt € £~ and so we see thatl. is
lower (+)-directed.

Thus, we see that£, is lower (-)-directed and by Cor.3.1.1 we have that
P, ={nePr(R)| M, € L.} . Hence, we see that (1) and (4) follow from Thm.4.6,
and that W, is upper(f=)-directed and B, is lower (<)-directed.

(2): Follows from (1.3).

(3): By (1) and Example 3.5.3+4, we see thBlz C Wi = P} . Let p € Pr
be given. SinceM, € Lp , then by Lem.3.1.2 there exist a positive number> 0
and an infinite setL, C Ny such that M,(n) < a™"n! forall n € L . Hence, if we

define w(z) := 3, 22 | then w € By and we have

[win=S M%< T he<o
R

nel nel

Thus, we see thatw € B N L' (1) which completes the proof of (3). O

Theorem 4.9: Let P C Pr(R) be a non-empty lowe=)-directed set of probability
measures and let us defin®’ := P~ . Let ¢ € Pr(R) be a probability measure
and let v be a Borel measure oR such that dy = ¢ - dv for some Borel function
¢: R — [0,00] . If we defineS :={xr € R |0 < ¢(x) < oo} , then we have

1) peP & Ja,epg>03eRIweW s w(ff';_ﬁ)qu(dx)<oo

(2 If ¢(x)~ € L'(u) and ¢(z)~F € W for somea, 3 > 0, then p € P

(3) If 1g(zx)(1+|z)7? € LY(v) and ¢(x)~" € W for somep, 3 > 0, then p € B

(4) If vePB and limsup |z|7Po(x) < oo for somep > 0, then p € P

|z[—o0
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Let (J, | € R) be a family of Borel subsets dR andlet C', a, p, ¢, 6 >0 and
be positive numbers satisfying

(5) Jy Cléx,00) Vo >0, J, C(—o0,6z] Yo <0 and liminf |z[Pv(J,) >0

|z|—o0

x q
6 (22) <Coly) Vye Sl Vi >a

Then we have
7 peB = oé@) " eW VYVa>0

Remarks: (a): Suppose thatr is the Lebesgue measure oR . Then we have
(1+|2))™ € L'(v) forall p>1 andif 0 < é < 1 is any given number and
Jp = [oz,x] if x>0 and J, :=[z,é6z| if 2 <0, then v satisfies condition (5)
forall p> 0. Hence, if o(x)™” € W for some > 0, then by (2) we haveu € B
and if ¢ satisfies condition (6) with this choice of.J,) (for instance, there exists
b > 0 such that ¢ is decreasing on[b, cc) and increasing on(—oo, —b| ), then by
(7) we have thaty € B implies ¢(x)™ ¢ W forall a > 0.

(b): Let D C R be a countable set and let := > __; ¢, denote the counting
measure onD . Then we have) ., é(x) =1 and p =) _.p o(x)o, . If
Ssep (L+|z))7P < oo for somep >0 andg(z)=% € W for some g > 0, then by
(3) we havey € B . Suppose thatD = {a,, | n € Z} where (a, | n=10,+1,+2,...)
is a strictly increasing sequence satisfying

(7) lim a,=o00, lim a,=—o0, limsup a2:1 < 00, limsup

=00 n——00 N—00 n——oo

Un

P < 0

Then it follows easily that condition (5) holds for sonte< 6 <1 with p =1 and
Jy = [bx,x] if x>0 and J, := [¢,6x] if = < 0. Hence, if the density¢
satisfies condition (6) with this choice ofJ,) (for instance, there exist$ > 0 such
that ¢ is decreasing on[b, co) and increasing on(—oo, —b] ), then by (7) we have
that 1 € P implies ¢(x)™@ € W forall a > 0.

(c): If P := P, where " denotes on of the symbolshd” or “P” or “R” or
“C” or “o0”, then by Thm.4.8 we have’3* = W, . In particular, we see thatV,
satisfies stability conditions of Cor.4.2 and in view of the remarks above and the and
results of Section 3, we see that the theorem provide a powerful method of verifying
or falsifying the statement 7. € B, .

Proof: (1): Let a,c,p,q >0, € R and w € W be given and let us define
v(x) = (1+ |2|P) L w(az + )7 for |z| > ¢ and v(z) =0 for |z| < c. Since
w(az+ f) = (1 + |z[P)Y4v(z)"/e forall |z| > ¢, then by Lem.4.1 we havev = v
and since ‘B is lower (<)-directed, then by Thm.4.5 we have th& is an upper
(E)-directed complete set of test functions f§8 . Hence, we see that € W and
that (1) holds.

(2): Immediate consequence of (1).
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(3): Since 1g(x) (1+ |z])7? € LY(v) , we have (1 + |z|)™P ¢(x)~ € L'(x) and
since ¢(z)~" € W, we see that (3) follows from (1).

(4): Suppose thatM,(r) = co for some » > 0. Then M,(q) = oo for all
g > r and so we see thatl - M, forall L € M . Hence, by Thm.4.5.1 we have
B =Pr(R) and so we haveu € B . Suppose thatM,(r) < oo forall » > 0. By
assumption, there exist,p > 0 such that ¢(x) < c¢|z? for all |z|] > ¢ . Hence,
by Cauchy-Schwartz’ inequality, we have

W< |

|z1>c¢

|z p(x) v(dr) < ¢t + c/ |z|P*9 v (dx)

|z1>c¢

<t + e M, (29)Y% M, (p)/?

forall ¢ > 0 and since M,(p) < oo , there exists C' > 1 such that M,(q) <
C7(1 + M,(2¢)"/?) forall ¢ > 1. Hence, we see that\l, - M, or equivalently
p =<v andsincer € B and P is lower (<)-directed, we conclude that € .

(7): Let us define ¢g(x) = 1%@&) and (z) := ¢o(x)? + ¢o(—x)? for all

x € R . By (5), there existy > 0 and b > a such that v(.J,) > ~|z|7P for all
|z| > b . Let x > b be given. By (5) and (6) we have

C Ry(b2) > /J Codv + /J Codv > do(x) () + do(—2) ()

> a7 (¢o(2)? + do(=2)?) =y 2P ()

and since ¢ is an even function such thatr > ¢, , we have

pu(6x) = Ryu(joa) ™ < S da) ™" < S lal? go(x) 7
= S (14 o)) <27 Jaf” (1 + () ~)

for all |z| > b. So by Lem.4.1 we see that, = ¢(z)™ forall a >0 and since
p e P and P is lower (<)-directed, then by Thm.4.5 we have, € W and that
W is upper(}=)-directed. Hence, we see that(x)" ¢ W forall a > 0. O

Corollary 4.10: Let i € Pr(R) be a given probability measure and let be a Borel
measure onR such that du = ¢ - dv  for some Borel function¢ : R — [0, x|
and (1+ |z])™" € L'Y(v) forsomer > 0. Let a > 0 be a given number and let
f :]a,00) — [0,00] be a log-exp-convex function satisfying

(1) f(a) < oo and log" /(#) 1y = o0
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Let ¢, p,q,a>0 and § € R be given numbers. Then we have

(2) If / w(ﬁﬁ;’ﬁ)q p(dr) < oo for some w € W¢ , then € Bp
|z|>c

) If ¢(x)™ € W, then € P C Pp
4) If o)Al <c(1+|z|?) f(|x])~P forall |z| >a,then p€ P C Pp

Suppose that:([0,00)) =1 and let & : [a,00) — [0,00) be a log-exp-convex function
satisfying

(6) h(a) < co and log;h(fr) dor = oo

Then we have

7 If > Mu(n)"2 = oo, then u € Pp
n=1

8) If / wﬁﬂz p(dr) < oo for somew € We , then € Bp

9 If ¢($2)_p € We , then € Pp
(10) If ¢(2®) A1 < c(1+ |2]9) f(z)7P forall 2 >a,then u € Pp

(11) If ¢p(x) A1 < c(1+ |z|?) h(x)™? forall o > a,then p e Pp

Remark: Let a > 0 be given number and letf : (a,00) — (0,00) be given
function. Since f is log-exp-convex on(a,oco) if and only if log f(e”) is convex
on (loga,o0) , it follows easily that f is log-exp-convex on(a,cc) if and only if f
is absolutely continuous with an a.e. derivatiyé satisfying z ~ x}f('f)”) IS increasing

on (a,o0) . In particular, we see the so-calléih conditionin [18] is equivalent to
log-exp-convexity of ¢(x)~! on (a,c0) for some « > 0 . Since (4) and (10) hold
with f(x) = h(x) := ¢(x)~1 and the Lebesgue measure satisfies the integrability
condition (1 + |x|)~" € L'()\) forall » > 1, we see that the corollary extends the
results in [18]. Moreover, we see that the results in [18] holds whenever the density is
taken with respect to a Borel measute satisfying (1 + |2|)™" € L'(v) for some

r > 0 and the density¢(z) satisfies one of the hypotheses of (2)-(4) or (7)—(10).
In particular, we see that the results of the corollary (and of [18]) applies to discrete
probability measures supported by a countableBesatisfying > . H(1+x|)™" < oo

for some r > 0 (see [12] and [13] for more information about determinacy of discrete
measures).

Proof: (1) and (2) are immediate consequences of Thm.4.8 and Thm.4.9.1+2. Let us
define v(x) := f(|z|) if |z| > a and v(x):=0 if |z|] <a . By (1) and (2.2),
we see that0 < f(z) < oo forall @ >« andthat J:={z >a| f(z) < oo} is
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an interval containinga . Suppose that is unbounded and leb > a be given. If
a <z <b,then we havexr = o'~ " for some 0 < A < 1 and since J = [a, o0)
and f is log-exp-convex, we have

0< fx) < f(@) ) < 1+ f(a) 1+ f(B) <00 Va<w<b

Hence, if J is unbounded, then by (1) we havj%OO log;;;gx) der =00 forall g>a

and if J is bounded this holds trivially. So, by Lem.2.5.7 and Thm.3.3.7 we see that
veWe andif ¢p(z) A1 <c(1+ |x|9) f(|«])~P forall |z| > a ,then we have

v(@)’ = fle)? <+ fl?) (ul@) V1) <c(l+[x|?) (1+u() V[ >a
where u(z) := ¢(z)~1 . Since W, is (F)-directed (see Thm.4.8), then by Lem.4.1
we have v € W and so we see that (3) follows from (2).

(7): Suppose that 11([0,00)) = 1 and that >°°, M,(n) 2 = oo . Let
pi1(B) = u(B — 1) denote image measure ofi under the mapz ~ =z + 1 . If
1w € Py , then (7) holds trivially. So suppose that ¢ ‘B;,; . Then we have
limg_—oo M,(q) = oo and so there existsk > 1 such that M,(¢) > 1 for all
g>1. Let n>Fk be a given integer. Sincec ~ (1 + z)" is convex on [0, 0) ,
we have (1 +2)" < 2" 1(1+2") forall = > 0 and since M,(n) > 1 and
u([0,00)) = 1, we have

Myun) = [ @) ndn) = [ () n(dn) £ 27404 M) < 27 My (o)

Hence, we have

1 oo

5 M 07F 2 S M) F 2 5 5 M0 F = o0

So by Thm.1.11 in [16; p.20] we have that; is Stielties determined and since
pi([1,00)) = 1, then by [6; Corollary p.481] we have that; € Pp but then it
follows easily that 1 € ‘Bp .

(8)—(11): Suppose thatu([0,00)) = 1 . Then we havedy = ¢ - dvy where
w(B) == v(BnJ0,00)) forall B e B(R). Let x and ¢ denote the image
measures ofy and vy under the mapz ~ \/m . Since du = ¢ - dvy , we have
k(dx) = ¢(2?)&(dx) and since (1 + |z|)™P € Li(v) , it follows easily that we have
(1 +|z))™?" € LY¢) . Since

/Ru(:c) k(dr) = /OOO w(x) k(de) = /Ooou(\/E) p(dx) YVu € B, (R)

then by (1)—(3) we see that € ‘B~ under each of the hypotheses in (8)-(10). Since
h is log-exp-convex onfa, o), then so is g(x) := h(x?) on [\/a,c0) and a simple
substitution shows thay satisfies (1) witha replaced by./a . Hence, by (3) we see
that x € B~ under each of the hypotheses in (8)—(11) and sindg(q) = M,(2q)

for all ¢ > 0, then by Thm.3.1.3 we have

S My(n) "2 = 3 My(20) 7% = o0
n=1

n=1

So by (7) we conclude thaj: € B under each of the hypotheses in (8)—(11). I
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