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1 Introduction

Generalised linear mixed models (GLMMs) (see e.g. Breslow and Clayton, 1993) with
correlated random e�ects are important for modelling of many types of correlated data.
In particular Diggle et al. (1998) use GLMMs to model spatially correlated binary and
count data, and this is the main inspiration for our work. Conditional simulation of the
random e�ects given observed data from a GLMM is useful in connection with prediction
and Monte Carlo maximum likelihood estimation, see Diggle et al. (1998) and McCulloch
(1997), respectively.



In this paper we consider random walk Metropolis and Langevin-Hastings algorithms for
conditional simulation in a GLMM with correlated Gaussian random e�ects. In particular,
we study the desirable property of geometric ergodicity. Geometric ergodicity ensures
the validity of central limit theorems for Monte Carlo estimates, and justi�es assessment
of the precision of a Monte Carlo estimate by estimation of the asymptotic variance in
the limiting normal distribution (see e.g. Roberts and Rosenthal, 1998a). In an empirical
study we compare asymptotic variances for random walk Metropolis and Langevin-Hastings
algorithms and demonstrate the advantage of using the Langevin-Hastings algorithm.

The paper builds upon results on geometric ergodicity of Langevin-Hastings and random
walk Metropolis algorithms in Roberts and Tweedie (1996a) and Jarner and Hansen (2000),
respectively. The examples of target densities considered in these papers are useful to
illustrate the results, but do not relate much to applications in statistics where Markov
chain Monte Carlo (MCMC) methods are used. In contrast, we consider a speci�c class of
target densities, which is useful in practice for many types of data.

Section 2 outlines generalised linear mixed models and describes the random walk
Metropolis and Langevin-Hastings algorithms. Our results on geometric ergodicity are
presented in Section 3. Section 4 contains an empirical comparison between the two algo-
rithms. A discussion of other Langevin-type algorithms is given in Section 5.

2 Background

2.1 Generalised linear mixed models with correlated random ef-

fects

Generalised linear mixed models (GLMMs) (Breslow and Clayton, 1993; Lee and Nelder,
1996) are extensions of generalised linear models (GLMs) (McCullagh and Nelder, 1989)
that allow additional sources of variability due to unobservable random e�ects. In this
article we consider GLMMs where the joint distribution of the random e�ects is multivariate
Gaussian. Such models and the notation used throughout this paper are brie
y described
below.

Suppose y = (y1; : : : ; yn)
T is a realisation of an n-dimensional random vector Y =

(Y1; : : : ; Yn)
T, Si is an unobserved random variable associated with Yi, i = 1; : : : ; n, and

Sn+1; : : : ; Sq are additional unobserved variables | in a spatial setting the additional
variables may correspond to locations chosen for prediction, or they may be auxiliary
variables introduced for computational convenience. We assume the following: S =
(S1; : : : ; Sn; Sn+1; : : : ; Sq)

T follows a q-dimensional normal distribution with mean zero and
covariance matrix �; the conditional distribution of Yi given S has a density f(yi;Mi) with
respect to counting or Lebesgue measure, which only depends on the conditional mean
Mi = E[YijSi], i = 1; : : : ; n; and Y1; : : : ; Yn are conditionally independent given S. So the



conditional density of Y jS is

f(yjS) =
nY
i=1

f(yi;Mi): (1)

We restrict attention to the case where the density f(�;�) is of an exponential family
form

f(z;�) = exp (zgc(�) + b(z)� a(gc(�))) ; z 2 
; (2)

where 
 � R is the support of the density, � is the mean parameter, and a; b; gc are real
functions; gc is called the canonical link function. We assume that Mi is related to Si by
a link function g so that

g(Mi) = Si + dTi �; (3)

where di 2 R
p is a vector of covariates, � 2 R

p is a vector of regression parameters, and
the superscript T denotes transposition of vectors and matrices. Note that g is part of
the model speci�cation. We assume that g is strictly increasing, continuous and two times
di�erentiable; these conditions are satis�ed in the special case where g = gc. By (3), the
range of g(Mi) must be the entire real line. So the mean parameter space g�1(R) is an
open interval denoted M =]m1;m2[.

GLMMs form a 
exible class of models for many types of non-Gaussian data including
count, binary and positive data. Many types of non-linear dependencies between the con-
ditional means Mi and the linear predictors Si+d

T
i �, i = 1; : : : ; n, can further be speci�ed

through the link function g. We consider in particular the three following cases:

(i) The Poisson-log normal model where

f(z;�) = exp (z log�� log(z!)� �) ; z = 0; 1; : : : ; (4)

is a Poisson density, M =]0;1[, and g(�) = gc(�) = log� is the canonical log-link.

(ii) The binomial-logit model where

f(z;�) = exp

�
z log(�=(N � �)) + log

�
N�N

�
N

z

��
+N log(N � �)

�
; z = 0; : : : ; N;

is a binomial density, N > 0 is a given integer,M =]0;N [, and g(�) = gc(�) = log(�=(N�
�)) is the canonical logit-link.

(iii) The exponential-log model where

f(z;�) = exp(�z=�� log�); z > 0;

is an exponential density, M =]0;1[ and g(�) = log� is the log-link. Here the link
function g = gc would not have been valid, since the range of gc(�) = �1=� is strictly
contained in R.

In a Bayesian analysis one would introduce priors for � and �, but throughout this
paper we consider � and � as �xed.



2.2 Description of algorithms

Diggle et al. (1998) use a so-called single-site updating algorithm for their posterior simula-
tions. This is computationally demanding since each update of a random e�ect involves the
computation of the conditional variance given the other random e�ects. Here we consider
two algorithms where all the random e�ects are updated simultaneously.

Suppose that � = KKT where K is a q � d matrix, and let S = K� where � follows a
d-dimensional standard normal distribution. For example, in a spatial setting we typically
have d = q andK equal to a square root matrix of � (see Section 4 for further details), while
in a variance component model, K = Ediagf�1; : : : ; �dg where E is a design matrix and
�i > 0; i = 1; : : : ; d. Simulations of SjY = y can be obtained by transforming simulations
from the distribution of � j Y = y, and this may be advantageous when � is not strictly
positive de�nite.

Note that by (1), the log density of �jY = y is

log f(
jy) = const(y)� 1

2
k
k2 +

nX
i=1

log f(yi;�i); (5)

with
�i = �i(s) = g�1(si + dTi �) (6)

where s = (s1; : : : ; sn)
T = Q
 and Q denotes the upper n� d submatrix of K.

2.2.1 Gaussian random walk Metropolis algorithm

The updates in this algorithm are given by two steps. Suppose that 
 is the current state.
First, a proposal 
0 is generated from a multivariate normal distribution with mean 
 and
covariance matrix hI, where h > 0 is a user-speci�ed parameter. Secondly, we return 
0

with probability

�(
; 
0) = 1 ^ f(
0jy)
f(
jy) ;

otherwise the state 
 is retained.

Using Lemmas 1.1. and 1.2. in Mengersen and Tweedie (1996) and Corollary 2 in
Tierney (1994) one can verify that the algorithm produces an ergodic Markov chain with
stationary distribution given by f(�jy).

2.2.2 Langevin-Hastings algorithm

More eÆcient algorithms can be obtained by adapting the proposal density to the target
distribution. Consider the Langevin di�usion given by the stochastic di�erential equation

d�t =
1

2
r(�t)dt+ dWt; t > 0; (7)



where (Wt)t�0 is a multidimensional Wiener process and

r(
) = @

@

log f(
jy) = �
 +QT

�
(yi � �i)

g0c(�i)

g0(�i)

�n
i=1

(8)

is the gradient of the log target density. Under weak conditions, the Langevin di�usion has
f(�jy) as equilibrium density. This is the initial motivation for constructing Metropolis-
Hastings algorithms based on introducing Metropolis-Hastings accept/reject steps in dis-
cretisations of the Langevin di�usion.

The Langevin-Hastings algorithm considered in this paper is based on a �rst-order
discretisation of the Langevin di�usion, the so-called Euler-discretisation (see Roberts and
Tweedie, 1996a). The proposal distribution is thus a multivariate normal distribution
with mean �(
) = 
 + (h=2)r(
) and covariance matrix hI; h > 0, and the acceptance
probability is

�(
; 
0) = 1 ^ f(
0jy) exp(� 1
2h
k
 � �(
0)k2)

f(
jy) exp(� 1
2h
k
0 � �(
)k2) : (9)

By the Lemmas 1.1. and 1.2. in Mengersen and Tweedie (1996) and Corollary 2 in Tierney
(1994), the resulting Markov chain is ergodic with stationary distribution f(�jy).

Using the gradient to adapt the proposal kernel to the target density may lead to much
better convergence and mixing properties than for an ordinary random walk Metropolis
chain, see Roberts and Rosenthal (1998b) and Section 4. By Roberts et al. (1997) and
Roberts and Rosenthal (1998b), the number of iterations required to obtain convergence is
O(d�1) for the random walk algorithm and O(d�1=3) for the Langevin-Hastings algorithm,
so the bene�t of using Langevin-Hastings increases as the dimension increases.

3 Geometric ergodicity

An MCMC algorithm is geometrically ergodic if there exist a nonnegative function V and
constants 0 < r <1, 0 < � < 1, such that for any state 
,

supj�j�V
��R �(
0)P (m)(
; d
0)� E[�(�)jy]�� � V (
)r�m; m = 1; 2; : : : (10)

where P (m) is the m-step transition kernel for the Markov chain. An important implication
of geometric ergodicity is that a central limit theorem (CLT) holds for the ergodic averages
(Roberts and Tweedie, 1996b). Let �(j); j � 0 be the Markov chain started at an arbitrary
initial state �(0), and suppose that  is a function with  2 � V . Then there exist a number
�2 > 0 such that

p
m

 
1

m

mX
j=1

 (�(j))� E[ (�)jy]
!f! N(0; �2 ): (11)



In Section 3.1 below we verify that the random walk Metropolis algorithm is geometrically
ergodic for a large class of GLMMs including the models (i)-(iii). The situation is di�erent
for the Langevin-Hastings algorithm which is not geometrically ergodic for the Poisson-log
normal model (i) and the exponential-log normal model (iii). In Section 3.2 we show that
a truncated version of the Langevin-Hastings algorithm is geometrically ergodic for any
GLMM.

The log-density (5) di�ers from the types of densities considered in Roberts and Tweedie
(1996a) and Jarner and Hansen (2000) by the likelihood term

Pn
i=1 log f(yi;�i). The

geometric ergodicity results rely much on the term �1
2
k
k2 in (5), i.e. on � being a priori

Gaussian, while the main e�ort in the proofs of geometric ergodicity is to control the
likelihood term.

3.1 Geometric ergodicity of random walk Metropolis

In the following we letr(�) be as in (8) and de�ne n(
) = 
=k
k andm(
) = r(
)=kr(
)k.
Geometric ergodicity of random walk Metropolis algorithms is studied in Jarner and

Hansen (2000) for target densities which are `super-exponential', i.e. densities for which

n(
) � r(
)! �1 as k
k ! 1: (12)

Theorem 4.3 in Jarner and Hansen (2000) states that the random walk Metropolis algo-
rithm is geometrically ergodic if, in addition to (12),

lim sup
k
k!1

n(
) �m(
) < 0: (13)

Using (8) we see that

n(
) � r(
) = �k
k+ 1

k
k
nX
i=1

si(yi � g�1(si + dTi �))
g0c(g

�1(si + dTi �))

g0(g�1(si + dTi �))
:

Combining this with the fact that gc is increasing, it can be seen that f(�jy) is super-
exponential when g = gc as in the models (i) and (ii). Also for the model (iii) where g
is not the canonical link function, f(�jy) is super-exponential. Condition (13) holds for
model (ii), but not for the models (i) and (iii). The following theorem, however, ensures
geometric ergodicity in any of the cases (i){(iii), see Remark 1 below.

Theorem 1. Assume that

lim sup
�!m1;m2

1

g0(�)

���� 1

�� yi
+
g00c (�)

g0c(�)
� g00(�)

g0(�)

���� <1; (14)

and

lim sup
�!m1;m2

yi � �

g(�)

g0c(�)

g0(�)
� 0; (15)



hold for i = 1; : : : ; n (where lim sup�!m1;m2
� � � = maxflim sup�!m1

� � � ; lim sup�!m2
� � � g).

Assume also that the covariance matrix QQT of (S1; : : : ; Sn) is invertible. Then the Gaus-
sian random walk Metropolis algorithm for conditional simulation of �jY = y is geometri-
cally ergodic, with V in (10) equal to V (
) = f(
jy)�1=2.

Proof. Geometric ergodicity follows from Theorem 4.1 in Jarner and Hansen (2000) pro-
vided (I) f(� j y) is super-exponential and (II)

lim inf
k
k!1

Z
A(
)

q(
0; 
; h)d
0 > 0; (16)

where q(
0; 
; h) / exp(�k
0 � 
k2=(2h)) denotes the Gaussian proposal density and

A(
) = f
0 2 R
d j f(
0jy) � f(
jy)g

is the acceptance region for 
 2 R
d .

Re (I) De�ne R(
) to be equal to f� � � g in (8). Super-exponentiality is then implied by
the inequality

lim sup
k
k!1

(Q
)TR(
)=k
k2 � 0: (17)

To verify (17) we �x i 2 f1; : : : ; ng and let ri(si) = R(
)i, where s = Q
. From (8) it
follows that

siri(si) =
yi � �i
g(�i)

g0c(�i)

g0(�i)

g(�i)

si
s2i ;

where �i = g�1(si + dTi �). By (15) and the fact that g(�i)=si ! 1 when jsij ! 1, we see
that for a given � > 0, siri(si) < �s2i , when jsij is suÆciently large. Hence, by continuity of
si 7! siri(si), there exists a k

i
1 > 0 such that siri(si) < �s2i + ki1 for all si. Therefore,

(Q
)TR(
) � �ksk2 +
nX
i=1

ki1 � �~�dk
k2 +
nX
i=1

ki1;

where ~�d is the maximal eigenvalue of QTQ. Since � > 0 is arbitrary, (17) holds.

Re (II) The main part of the proof is to show that there exists a Æ > 0 such that

lim inf
k
k!1

inf

02B(
;Æ)

m(
0) �m(
) > 1=5; (18)

where B(
; Æ) = f
0 2 R
d jk
0 � 
k < Æg. Using this result we can construct a �xed size

cone
W (
) = f
 + a� j � 2 R

d ; k�k = 1; k� �m(
)k < 1=10; 0 � a < Æg;
which by arguments similar to the proof of Theorem 4.3 in Jarner and Hansen (2000) is
contained in A(
) for k
k suÆciently large; see also the discussion on page 354 in Jarner
and Hansen (2000). Equation (16) then holds since

lim inf
k
k!1

Z
A(
)

q(
0; 
; h)d
0 � lim inf
k
k!1

Z
W (
)

q(
0; 
; h)d
0 =

Z
W (0)

q(
0; 0; h)d
0 > 0:



Now we verify that there exists a Æ > 0 such that (18) holds. Let the eigenvalues of
�1 = QQT be 0 < �1 � : : : � �n, �x i 2 f1; : : : ; ng, and observe that

log

� jri(si)j
jri(s0i)j

�
=

�
log(jyi � �ij) + log

�
g0c(�i)

g0(�i)

��
�
�
log(jyi � �0ij) + log

�
g0c(�

0
i)

g0(�0i)

��
;

(19)
where g(�0i) = s0i+d

T
i �. Since gc and g are increasing, ri(si) and ri(s

0
i) must have the same

sign when jsij is suÆciently large and jsi � s0ij < k2 for some k2 > 0. So by di�erentiating
log(jri(si)j) with respect to si for jsij suÆciently large, and using the mean-value theorem
on (19), it follows that

lim sup
jsij!1

sup
jsi�s0ij<k2

����log�ri(si)ri(s0i)

����� � k2 lim sup
~�i!m1;m2

1

g0(~�i)

���� 1

~�i � yi
+
g00c ( ~�i)

g0c( ~�i)
� g00( ~�i)

g0( ~�i)

���� :
By (14) we can choose k2 so small that the right hand side of the above inequality is less
than log(1 +

p
�1=�n), and obtain

(ri(si)� ri(s
0
i))

2
=
�p

ri(si)=ri(s0i)�
p
ri(s0i)=ri(si)

�2
ri(si)ri(s

0
i)

<

�q
1 +

p
�1=�n �

q
1=(1 +

p
�1=�n)

�2

ri(si)ri(s
0
i) < (�1=�n)

�
ri(si)

2 + ri(s
0
i)
2
�
=2

when jsij is suÆciently large and jsi � s0ij < k2.

Therefore, by continuity of ri(si), there exists a ki3 > 0 such that (ri(si) � ri(s
0
i))

2 <
(�1=�n)(ri(si)

2+ri(s
0
i)
2)=2+ki3 when jsi�s0ij < k2 for all si. Using this and the following two

inequalities: (R(
)� R(
0))T�1(R(
)�R(
0)) � �nkR(
)�R(
0)k2 and R(
)T�1R(
) �
�1kR(
)k2, we see that

(R(
)� R(
0))T�1(R(
)�R(
0)) � (R(
)T�1R(
) +R(
0)T�1R(

0))=2 + 2k0; (20)

when 
0 2 B(
; Æ), where k0 =
Pn

i=1 k
i
3=2 and Æ = k2=

p
~�d.

Let 
0 2 B(
; Æ). By (20) it follows that

R(
)T�1R(

0) = (R(
)T�1R(
) +R(
0)T�1R(


0)� (R(
)�R(
))T�1(R(
)�R(
0)))=2
� (R(
)T�1R(
) +R(
0)T�1R(


0))=4� k0:

Using this and the inequality
p
v � v=(8Æ) + 2Æ, we obtain

r(
) �r(
0) = (k
k2+k
0k2�k
�
0k2)=2+R(
)T�1R(

0)� (Q
)TR(
0)� (Q
0)TR(
)

� k
k2=2 + k
0k2=2� Æ2=2 + (R(
)T�1R(
) +R(
0)T�1R(

0))=4� k0

� (Q
0)TR(
0)� Æ
p
R(
0)T�1R(
0)� (Q
)TR(
)� Æ

p
R(
)T�1R(
)

� kr(
)k2=8 + (3=8)(k
k2 � 2(Q
)TR(
))

+ kr(
0)k2=8 + (3=8)(k
0k2 � 2(Q
0)TR(
0))� k0 � 9Æ2=2:



By (17), we see that k
k2 � 2(Q
)TR(
) > 0, when k
k is large. Therefore,

m(
) �m(
0) >

 
kr(
)k
kr(
0)k +

� kr(
)k
kr(
0)k

��1!
=8� k0 � 9Æ2=2

kr(
)kkr(
0)k �
2

8
� k0 � 9Æ2=2

kr(
)kkr(
0)k :

Consequently (18) follows, since kr(
)k ! 1 when k
k ! 1.

Remark 1: When the canonical link g = gc is used, condition (15) is always satis�ed and
condition (14) simpli�es to lim sup�!m1;m2

g0c(�)j� � yij > 0 for i = 1; : : : ; n. The latter
condition is easily veri�ed for models (i) and (ii). For model (iii), condition (14) follows
by using that g00c (�)=g

0
c(�) = g00(�)=g0(�), and condition (15) is easily veri�ed.

Remark 2: If f(�j
) is super-exponential, then for any t > 0 there exists a ct > 0 such
that f(
jy)�1=2 � ct exp(tk
k), 
 2 R

d . Under the conditions of Theorem 1, the CLT (11)
therefore holds for functions  satisfying  (
)2 � exp(tk
k) for some t > 0.

3.2 Geometric ergodicity of Langevin-Hastings

General conditions assuring geometric ergodicity of the Langevin-Hastings algorithm are
given in Roberts and Tweedie (1996a). However, as shown in Roberts and Tweedie (1996a)
and in the following proposition, the Langevin-Hastings algorithm is not always geometri-
cally ergodic.

Proposition 1. Suppose that the covariance matrix QQT of (S1; : : : ; Sn) is invertible. The
Langevin-Hastings algorithm is not geometrically ergodic for any h 2]0;1[ in the case of
the model (i) or the model (iii).

Proof. See Appendix B.

The reason why the Langevin-Hastings algorithm is not geometrically ergodic for the
models (i) and (iii) is that components of the gradient r(
) may increase at an exponential
rate as a function of 
. For certain values of 
 the algorithm therefore proposes extremely
large jumps which are rejected. In the sequel we discuss a modi�cation of the Langevin-
Hastings algorithm where r(
) is replaced by

r(
)trunc = �
 +QTR(
) (21)

and R(
) is a bounded function. We refer to this modi�ed algorithm as the truncated
Langevin-Hastings algorithm. In general, we choose the function R so that r(
)trunc =
r(
) for most values of 
 in the `center' of the target distribution f(� j y). For instance, if
the canonical link function is used, then (8) simpli�es to

r(
) = �
 +QT fyi � �igni=1 ; (22)



so for model (i), for example, we can take R(
) = fyi � (�i ^H)gni=1, where 0 < H < 1
is a truncation constant (for the model (ii), M =]0;N [ is bounded, so here truncation
is actually not needed). For the model (iii) we can let R(
) = fyi=(�i _ H) � 1gni=1. In
Theorem 2 below we establish geometric ergodicity for the truncated Langevin-Hastings
algorithm.

Theorem 2. Assume that 0 < h < 2 and R(
) is bounded. Then the truncated Langevin-
Hastings algorithm is geometrically ergodic, with V in (10) equal to V (
) = exp(tk
k) for
an arbitrary t > 0.

Proof. Below we give only a sketch of the proof as it follows the same line as the proof of
Theorem 4 in M�ller et al. (1998).

Let
q(
; 
0) = (2�h)�d=2 exp(�k
0 � �(
)k2=(2h))

denote the proposal density. For a given � > 0, set B�(
) = f
0 : k
0 � �(
)k < S�g, where
S� > 0 is chosen so that

R
RdnB�(
)

q(
; 
0)d
0 < �.

Consider a proposal 
0 2 B�(
). Since 

0��(
) is bounded and �(
) = (1�h=2)
+O(1),

we have that
k
0k=k
k ! (1� h=2) < 1 as k
k ! 1: (23)

Hence B�(
) � f
0 : k
0k < k
kg as k
k ! 1.

As in M�ller et al. (1998) we now obtain geometric ergodicity from Theorem 4.1 in
Roberts and Tweedie (1996a) by showing that a proposal 
0 2 B�(
) is always accepted
when k
k ! 1. Let

J1 =
�k
k2 � k
0k2�h=8;

J2 =
�kQTR(
)k2 � kQTR(
0)k2� h=8;

J3 =
nX
i=1

(log f(yi;�
0
i)� log f(yi;�i)) ;

J4 =
�
(Q
)TR(
)� (Q
0)TR(
0)

�
(1� h=2) =2 +

�
(Q
)TR(
0)� (Q
0)TR(
)

�
=2;

where �i = �i(Q
) and �0i = �i(Q

0) are given by (6). The proposal 
0 is accepted if

J1 + J2 + J3 + J4 � 0. In the sequel we verify this condition in the case where k
k ! 1
and 
0 2 B�(
).

Combining (23) with the boundedness of R(
0), the terms J2 and J4 are seen to be
o(J1), where J1 ! 1. Now let i 2 f1; : : : ; ng be �xed, and consider the i'th term in J3.
Note that if k
k ! 1 in such a way that j(Q
)ij ! 1 then (Q
0)i = (1�h=2)(Q
)i+O(1).
Therefore, there exist functions li and ui such that either

(I) �i ! m1, �
0
i 2 [li(�i); ui(�i)], ui(�i) ! m1, and �i < li(�i) < ui(�i) when �i is

suÆciently close to m1,



(II) �i ! m2, �
0
i 2 [li(�i); ui(�i)], li(�i) ! m2, and li(�i) < ui(�i) < �i when �i is

suÆciently close to m2, or

(III) both �i and �
0
i stays inside a compact subset of M.

Using (24) in case (I), (25) in case (II) (see the Appendix), and the continuity of f(yi; �) in
case (III), we see that log f(yi;�

0
i) � log f(yi;�i) is bounded below. Hence J3 is bounded

below. Therefore J1 + J2 + J3 + J4 � 0 when k
k is suÆciently large and 
0 2 B�(
).

4 Empirical study of algorithms

In this section we study the performance of the random walk Metropolis and the truncated
Langevin-Hastings algorithms applied to conditional simulation in the Poisson-log normal
model (i) given weed count data y observed at n = 250 locations placed in a 20� 14 grid;
see Figure 1. We assume that the covariance matrix � is speci�ed by the exponential
correlation function so that E[SiSj] = �2 exp(�dij=�), where dij is the distance between
the locations i and j. In Christensen et al. (2000) a full Bayesian analysis of the data set
is performed. Below we �x the regression parameters � and the covariance parameters �
and �2 at values equal to the posterior means computed in Christensen et al. (2000).

Roberts et al. (1997), Roberts and Rosenthal (1998b), and Breyer and Roberts (2000)
show for certain classes of target densities that the proposal variance h should be tuned to
obtain acceptance rates close to 0:23 for the random walk Metropolis algorithm and 0:57
for the Langevin-Hastings algorithm. Strictly speaking these results do not cover truncated
Langevin-Hastings and the type of target densities considered here, but we �nd the rates
0:23 and 0:57 useful as guidelines. The truncation constant in Section 3.2 is chosen to be
H = 50, which is roughly two times the maximal observed count.

The matrix K in the decomposition � = KKT is calculated using either Cholesky
factorisation or the circulant embedding technique (Wood and Chan, 1994; Dietrich and
Newsam, 1993) based on the two-dimensional fast Fourier transform (FFT). In the latter
case (S1; : : : ; S250) is embedded in a circulant stationary �eld (S1; : : : ; S250; S251; : : : ; S2048)
de�ned on a 64� 32 extended grid containing the original 20� 14 grid.

4.1 Comparison of asymptotic variances for truncated Langevin-

Hastings and random walk Metropolis

By Theorem 1 and Theorem 2 the algorithms are geometrically ergodic. For a MCMC
estimate �Si of the conditional expectation E[Sijy], we thus have a central limit theorem:p
m( �Si � E[Sijy)]) f! N(0; �2i ) (see (11)), where m is the size of the MCMC sample used

to calculate �Si, and �
2
i is the asymptotic variance. We use the initial monotone sequence

estimate in Geyer (1992) to estimate �2i at four representative locations; see Table 1.
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Figure 1: Counts of weed plants.

Algorithm Accept. Asymp. var. CPU/
rates (200,240) (20,280) (200,140) (320,60) 1000 itr.

Chol. LH 0.57 0.05 7.20 0.70 6.05 3.0
Chol. RW 0.23 0.46 188.32 15.70 131.55 1.8
FFT LH 0.56 1.41 6.92 5.37 7.23 9.1
FFT RW 0.23 126.52 400.88 309.68 510.89 5.1

Table 1: Results for Langevin-Hastings (LH) and random walk Metropolis (RW) algorithms using
Cholesky (Chol.) or FFT implementations. For each case, acceptance rates and asymptotic

variances for MCMC estimates are based on each 10th of 500000 iterations, while CPU times are

for generation of 1000 iterations. The coordinates of the four locations refer to Figure 1.

If we consider e.g. the location (320; 60) and the Cholesky implementation, then the
estimated asymptotic variance is 22 times larger when using random walk Metropolis in-
stead of Langevin-Hastings. For a given required precision of the Monte Carlo estimate
one thus need a 22 times larger sample size with the random walk Metropolis algorithm
than with the Langevin-Hastings algorithm. With the reported computing times on a 400
Mhz workstation, one would need to run the random walk Metropolis algorithm 13 times
longer than the Langevin-Hastings algorithm. Considering the FFT implementation, the
asymptotic variance for location (320; 60) is 71 times larger for random walk Metropolis
than for Langevin-Hastings.



With the FFT implementation we simulate a random �eld of dimension q = 2048
whereas the dimension for the Cholesky implementation is only q = 250. The improvement,
when comparing Langevin-Hastings with random walk Metropolis, being largest for the
FFT implementation is thus in accordance with the theoretical results in Roberts and
Rosenthal (1998b), c.f. the end of Section 2.2.2.

4.2 E�ect of truncation

The untruncated Langevin-Hastings algorithm is not geometrically ergodic (see Proposi-
tion 1). Therefore, the performance of the algorithm may depend much on the choice of
initial value. Considering the Cholesky implementation, a sensible initial value 
(1) is the
solution to s(1) = Q
, where

s
(1)
i = log(yi + 0:01)� dTi �; i = 1; : : : ; 250;

in which case f(yjs(1)) approximates the maximum of f(yj�). Another obvious initial value

(2) is the unconditional mean 
(2) = 0. With these initial values for 
 both the untruncated
and the truncated algorithm converges quickly to equilibrium (and the generated output is
in fact identical for the two algorithms when the same seed is used for the random number
generator). If we on the other hand choose a less sensible starting value and for example

let 
(3) solve s(3) = Q
 where s
(3)
i = 10; i = 1; : : : ; 250, then the untruncated algorithm

gets stuck in the initial value (no accept in the �rst 100000 iterations). The truncated
algorithm however still converges quickly to equilibrium, see Figure 2.
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Figure 2: Timeseries of kSk when the starting value 
(3) solves s(3) = Q
 where s
(3)
i = 10; i =

1; : : : ; 250. The initial state of the timeseries ks(3)k = 10
p
250 � 158 is omitted on the plot. The

�rst two states after s(3) are marked with 1 and 2 in the plot.



5 Discussion

An alternative to the Langevin-Hastings algorithm, which is based on the Euler-discretisation,
is to construct a proposal kernel based on a more re�ned discretisation of the Langevin
di�usion as suggested in Stramer and Tweedie (1999) and further studied in the multi-
dimensional case in Roberts and Stramer (2000). As in Section 2.2.2, let r(
) denote
the gradient of the log target density. Further, let J(
) be the second derivative of the
log target density. The so-called local linearisation scheme (Ozaki, 1992; Shoji and Ozaki,
1998; Stramer and Tweedie, 1999) applied to the Langevin di�usion gives rise to a proposal
kernel of the form N(�
; K
) where

�
 = 
 + J(
)�1(exp(hJ(
)=2)� I)r(
)

and
K
 = J(
)�1(exp(hJ(
))� I):

The examples studied in Stramer and Tweedie (1999) and Roberts and Stramer (2000)
show that much faster convergence to the equilibrium distribution may be obtained when
using an algorithm based on local linearisation instead of the simple Euler-discretisation.
However, we can verify that local linearisation applied to the Langevin di�usion for the
Poisson-log normal model (i) does not yield a geometrically ergodic algorithm in the one-
dimensional case. Moreover, in the multidimensional case, the conditions of Theorem 4.1
in Roberts and Stramer (2000) for geometric ergodicity are rather restrictive, and are not
satis�ed for either of the models (i) and (iii). The calculation of �
 and K
 may �nally be
very time consuming when the dimension of 
 is high.

A second alternative to the truncated Langevin-Hastings is to use a mixture of random
walk Metropolis and Langevin-Hastings. A practical problem is that the proposal variance
needs to be tuned for both the random walk Metropolis and the Langevin-Hastings updates.
We prefer truncated Langevin-Hastings due to its �ne convergence properties.

The results in this paper are restricted to situations where the regression parameter �
and the covariance matrix � are �xed as e.g. when MCMC is used for likelihood computa-
tion, see Geyer and Thompson (1992) and McCulloch (1997). At present we do not know
how to handle geometric ergodicity in the much more complicated situation where priors
are imposed on � and �. However, in the case where a Gaussian prior is used for �, and
� is �xed, our results on geometric ergodicity are still valid for random walk or truncated
Langevin-Hastings algorithms with simultaneous updating of � and 
.
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Appendix A

In the proof of Theorem 2 we need the following lemma, where we recall thatM =]m1;m2[
is an open interval.

Lemma 1. Consider any z0 2 
, and any functions l; u : ]m1;m2[7!]m1;m2[ such that
as � ! m1, � < l(�) < u(�) and u(�) ! m1, while as � ! m2, l(�) < u(�) < � and
l(�)! m2. Then

lim inf
�!m1

inf
�02[l(�);u(�)]

flog f(z0;�0)� log f(z0;�)g > �1 (24)

and
lim inf
�!m2

inf
�02[l(�);u(�)]

flog f(z0;�0)� log f(z0;�)g > �1: (25)

Proof. Since gc is strictly monotone and continuous, gc(M) =]�1; �2[ is an open interval
and we can reformulate (24) and (25) to conditions concerning the asymptotic behaviour
of e(�0)� e(�), where e(�) = z0��a(�). Observe that e(�) is continuous and gc([l(�); u(�)])
is a compact interval. Thereby we obtain that (24) and (25) hold if

lim inf
�!�1

fe(t(�))� e(�)g > �1 (26)

and
lim inf
�!�2

fe(t(�))� e(�)g > �1 (27)

hold for any function t : ]�1; �2[7!]�1; �2[ such that as � ! �1, t(�) > � and t(�)! �1, while
as � ! �2, t(�) < � and t(�)! �2.

Assume that (26) is false. Then there exists a strictly decreasing sequence f�kg so that
�k ! �1 and e(t(�k)) � e(�k) ! �1 as k ! 1. Note that by thinning of the sequence
f�kg, we can assume that ft(�k)g is strictly decreasing.

On one hand, for suÆciently large k,

@e(t(�k))=@� � (e(t(�k))� e(�k))=(t(�k)� �k) < 0;

where the �rst inequality follows by concavity of e(�).



On the other hand, let � denote the counting or Lebesgue reference measure used in
(2), let �0 2]�1; �2[ and observe that

lim sup
�!�1

e(�) = lim sup
�!�1

�
� log

�Z



exp(�(z � z0) + b(z))�(dz)

��
� lim sup

�!�1

�
� log

�Z
]�1;z0]\


exp(�(z � z0) + b(z))�(dz)

��
� � log

�Z
]�1;z0]\


exp(�0(z � z0) + b(z))�(dz)

�
<1:

Hence, fe(�k)g is bounded above. Consequently, e(t(�k)) = (e(t(�k))�e(�k))+e(�k)! �1
as k !1. So by thinning further the sequence f�kg, we can assume that both sequences
fe(t(�k))g and ft(�k)g are strictly decreasing. Using the concavity of e(�) we now obtain
that

@e(t(�k))=@� � (e(t(�k�1))� e(t(�k)))=(t(�k�1)� t(�k)) > 0:

This gives a contradiction. Hence (26) is true. By similar arguments we see that (27)
holds.

Appendix B

Theorem 4.2 in Roberts and Tweedie (1996a) gives a general condition which implies that
the Langevin-Hastings algorithm is not geometrically ergodic. However, this condition
does not cover the situation considered in Proposition 1.

Proof of Proposition 1. It follows from Proposition 5.1 in Roberts and Tweedie (1996b)
that the algorithm is not geometrically ergodic, if there exists a sequence of Borel sets
fMkg in Rd with Lebesgue measure �(Mk) > 0 so that

lim sup
k!1

sup

2Mk

Acc(
) = 0; (28)

where

Acc(
) =

Z
Rd

�
1 ^ q(
0; 
)f(
0jy)

q(
; 
0)f(
jy)
�
q(
; 
0)d
0:

For a given � > 0, letting B�(
) be de�ned as in the proof of Theorem 2, then
q(
0; 
)=q(
; 
0) � exp(S2

� =(2h)) if 

0 2 B�(
), since q(
; 


0) � (2�h)�d=2 exp(�S2
� =(2h))



and q(
0; 
) � (2�h)�d=2. Hence

Acc(
) < � +

Z
B�(
)

�
1 ^ q(
0; 
)f(
0jy)

q(
; 
0)f(
jy)
�
q(
; 
0)d
0

� �+ sup

02B�(
)

fq(
0; 
)f(
0jy)=(q(
; 
0)f(
jy))g

� �+ exp

 
sup


02B�(
)

flog f(
0jy)� log f(
jy)g
!
exp(S2

� =(2h)):

(29)

Inserting (5) in (29), it follows easily that (28) holds if there exists fMkg with �(Mk) > 0
so that for all � > 0,

lim sup
k!1

sup

2Mk

sup

02B�(
)

��(k
0k2 � k
k2)=2 + J3(
; 

0)
	
= �1; (30)

where J3(
; 

0) is de�ned as J3 in the proof of Theorem 2.

We consider �rst the Poisson case where R(
) =
�
yi � exp(si + dTi �)

	n
i=1

.

De�ne

Mk = f
jk
k < kÆ0; s = Q
; (ki� 1=2) < si < ki; i = 1; : : : ; ng;
where Æ0 is a constant which is determined below, so that Mk becomes a nonempty open
subset of Rd | this ensures that �(Mk) > 0. The openness follows by noticing that Mk is
of the formMk = f
jQ
 2 Akg\Ck, where Ak is an open box, Ck is an open ball, and the
function 
 7! Q
 is obviously continuous. The nonemptyness is veri�ed by constructing
a ~
 2 Mk as follows. Since Q has full row rank we can without loss of generality assume
that Q = [ ~Q �Q], where ~Q is an invertible n � n matrix. For a given ~s 2 Ak, de�ne
~
 = (( ~Q�1~s)T; 0; : : : ; 0)T and observe that

k~
k = k ~Q�1~sk � k~sk=
q
~�0 � n3=2k=

q
~�0 ;

where ~�0 > 0 is the smallest eigenvalue in ~Q ~QT. Letting Æ0 > n3=2=
p
~�0 in the de�nition

of Mk, we see that ~
 2Mk.

We now study the asymptotic behaviour of the term J3(
; 

0) in (30), which consist

of terms log f(yi;�
0
i) � log f(yi;�i), where �i = exp(si + dTi �) and �0i = exp(s0i + dTi �)

with s0 = Q
0. Let 
 2 Mk, 

0 2 B�(
) and k ! 1. Then �i ! 1. Since �(
) =

(1� h=2)
 +QTR(
)h=2,


0 = (1� h=2)
 +QTR(
)h=2 + �(
0; 
); (31)

where k�(
0; 
)k � S�. Using this we see that

s0 = (1� h=2)s+QQTR(
)h=2 +Q�(
0; 
);



and consequently, for each i = 1; : : : ; n,

�0i =
~�i(


0; 
)(�i)
1�h=2 exp((QQTR(
))ih=2);

where ~�i(

0; 
) is bounded. By de�nition of Mk, (QQ

TR(
))i behaves asymptotically as
a real constant Ci 6= 0 times exp(sji), where ji = maxfjj(QQT)ij 6= 0g. Hence for each
i = 1; : : : ; n, either (I) or (II) hold (according to whether Ci is positive or negative), where

(I) �i !1 and �0i > �i, when k is suÆciently large,

(II) �i !1 and �0i ! 0.

In case (I), log f(yi;�
0
i)�log f(yi;�i) is bounded above, which follows from (25) with � = �0i

and �0 = �i. In case (II) we observe from (4) that

log f(yi;�
0
i)� log f(yi;�i) = yi log�

0
i � �0i � yi log�i + �i � �i � exp(dTi �) exp(ki=n);

where the inequalities hold for k being suÆciently large. Thereby

lim sup
k!1

sup

2Mk

sup

02B�(
)

J3(
; 

0)= exp(kn) <1: (32)

We next pay attention to the other term k
0k2�k
k2 in (30). Let 
 2Mk and 

0 2 B�(
)

be given. Combining (31) with the inequality (a+ b+ c)2 � 3(a2+ b2+ c2) and the positive
de�niteness of QQT,

k
0k2 � k
k2 � �0kR(
)k2h2=12� (1 + (1� h=2)2)k
k2 � S2
� ;

where �0 > 0 is the smallest eigenvalue of QQT. Then by de�nitions of R(
) and Mk,

k
0k2 � k
k2 �
nX
i=1

�0
�
exp(2(dTi � + si))� 2yi exp(d

T
i � + si) + y2i

� h2
12

� (1 + (1� h=2)2)k2Æ20 � S2
�

�c0 + c1

nX
i=1

exp(2ki)� c2

nX
i=1

exp(ki)� c3k
2;

where c0 2 R, c1 > 0, c2 > 0 and c3 > 0 are constants (more precisely, they do not depend
on (
; 
0; k)). Hence

lim sup
k!1

sup

2Mk

sup

02B�(
)

f�(k
0k2 � k
k2)=2g= exp(2kn) < 0: (33)

Combining (33) and (32) we see that (30) holds for all � > 0 and hence the proposition
is veri�ed in the Poisson case.

For the exponential error distribution the proof follows the same line as above, except
that we now de�ne

Mk = f
jk
k < kÆ0; s = Q
; (�ki� 1=2) < si < �ki; i = 1; : : : ; ng:
We therefore omit the details. �
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