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Summary

In the present paper we propose a 
exible continuous parametric

shape model for a star-shaped planar object. The model is based on

a polar Fourier expansion of the normalized radius-vector function of

the object. The expected phase amplitudes are modelled by a sim-

ple regression with parameters having simple geometric interpretations.

The model is a generalization of �rst- and second-order Gaussian shape

models and is called the generalized p�order model. In particular, non-

Gaussian errors are allowed. The statistical analysis is straightforward,

as demonstrated on a data set concerning shape discrimination of two

cell populations.

Some key words: Cancer diagnostics; Featureless objects; Fourier descriptors;
Radius-vector function; Shape; Star-shaped objects.

1 Introduction

Recently, shape modelling of featureless objects has attracted a lot of atten-
tion in the statistical literature. The Gaussian model with cyclic invariance
properties, described by Grenander & Miller (1994), has played a predominant
role.

One line of research has been concerned with the application of the Gaus-
sian model as a prior model in Bayesian object recognition. Such an appli-
cation has been discussed in Grenander & Miller (1994). The group around
H�avard Rue has also contributed signi�cantly to this research, cf. e.g. Rue &
Syversveen (1998) and Rue & Hurn (1999). In Hansen et al. (2000) a similar
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Bayesian analysis is performed where also the time aspect has been taken into
account.

Another line of research has dealt with likelihood analysis of the Gaussian
model. This approach is useful for describing rather than �nding the objects.
A very important contribution is the paper by Kent et al. (2000) where the
model is used for modelling the standardized edge transformation vector, see
also Kent et al. (1996). (The standardized edge transformation vector only
contains shape information.) In particular, the eigendecomposition of the
circulant covariance matrix is described. In the follow-up paper Hobolth et
al. (1999) the corresponding theory is developed for the standardized vertex
transformation vector. Likelihood analysis has also been considered in Hurn
et al. (1999).

In Hobolth & Jensen (2000) a continuous approach is used, which may
have a general appeal because the model and its parameters do not relate to
a particular choice of the number of landmarks. Apart from that it appears
natural to represent the boundary of an object continuously. The continuous
counterpart of the standardized vertex transformation vector is the so-called
normalized residual process, as introduced in Hobolth & Jensen (2000). Con-
tinuous models have also been mentioned in Hobolth et al. (1999) and Kent
et al. (2000).

In the present paper we represent the shape of a random planar star-shaped
object in terms of the normalized radius-vector function R = (R(t))t2[0;1]. A

exible continuous statistical model is proposed forR. GenerallyR need not be
Gaussian. The main reason for choosing a speci�c representation of the object
is that this allows us to analyse in detail the relationship between the model
assumed for the normalized radius-vector function and the random geometry
of the object.

Our approach rely on a polar Fourier expansion of the normalized radius-
vector function

R(t) = 1 + 2
p
c1 cos(2�(t� d1)) + 2

1X
s=2

p
Cs cos(2�s(t�Ds)); t 2 [0; 1]:

We show that the �rst phase amplitude c1 and the �rst phase angle d1 play
a special role as parameters of asymmetry and discuss in detail how the re-
maining random phase amplitudes Cs and phase angles Ds in
uence the shape
of the random object. The model proposed is called the generalized p�order
model. Under this model the expected phase amplitudes �s = E(Cs) satisfy
the simple regression equation

��1s = � + �(s2p � 22p); s � 2;

where � > 0, � > 0 and p > 1=2. It will be shown that p determines the
smoothness of the boundary of the object while the parameters � and � de-
termine the `global' and the `local' shape, respectively.
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The phase angles Ds are assumed to be uniformly distributed. There are,
however, no restrictions on the distributions of the phase amplitudesCs. Expo-
nentially distributed amplitudes correspond to a Gaussian normalized radius-
vector function. Generalized gamma distributed amplitudes o�er a simple
extension which allows for both heavier and lighter tails than the exponential
ones.

In Section 2, the geometry of the radius-vector function is analysed in
detail. This analysis is the basis for the construction of the generalized p-
order model in Section 3. Its statistical inference is discussed in Section 4.
The model is applied in Section 5 to a data set of normal mantle cell nuclei
and cell nuclei from a mantle lymphoma. It turns out that the cell nuclei from
the mantle lymphoma are more `irregular' than the normals cells (signi�cantly
di�erent �-values in the two groups). Shape discrimination of these two cell
nuclei types was our original motivation for studying the continuous shape
model. Section 6 contains some ideas for future research.

2 The geometry of the radius-vector function

Let K be a compact subset of R2. Let us suppose that K is star-shaped with
respect to z 2 K, i.e. the intersection between every line through z and K
is a line segment. We will describe K in terms of its radius-vector function
(rK(t; z))t2[0;1] with respect to z, where

rK(t; z) = maxfr : z + r(cos 2�t; sin 2�t) 2 Kg; t 2 [0; 1]:

The value rK(t; z) is the distance from z to the boundary of K along the
ray, starting at z and with angle 2�t relative to a �xed axis. Because K is
star-shaped we can reconstruct K from rK(�; z).

The radius-vector function is well-known in the shape literature, cf. e.g.
Stoyan & Stoyan (1994, p. 63), Lestrel (1997), Loncaric (1998) and references
therein. It is also an important quantity in local stereology and geometric
tomography, cf. Jensen (1998, Chapters 4 and 5) and Gardner (1995, Section
0.7). The radius-vector function is in geometric tomography called the radial
function.

Using Hobolth & Jensen (2000, Proposition 1) it can be seen that the
derivative (if it exists) of the radius-vector function contains interesting geo-
metric information

r0K(t; z) = 2� cot('K(t; z)� 2�t)rK(t; z);

where 'K(t; z) is the angle that the tangent of the boundary point of K at
position t makes with a �xed axis. The tangent-angle function 'K(�; z) is
therefore obtainable from the radius-vector function. The reverse statement
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is also true, but then the radius-vector function is only determined up to a
multiplicative constant. The second derivative of rK(�; z) involves the local
curvature of K.

The area and boundary length of K can be expressed in terms of the
radius-vector function

A(K) = �

Z 1

0

rK(t; z)
2dt

B(K) = 2�

Z 1

0

frK(t; z)2 + (2�)�2r0K(t; z)
2g1=2dt

= 2�

Z 1

0

rK(t; z)=j sin('K(t; z)� 2�t)jdt:

The formula for area holds without further assumptions, while the formula
for boundary length holds under mild assumptions about K, including that
the boundary of K is smooth, cf. Stoyan & Stoyan (1994, p. 64) and Jensen
(1998, Proposition 5.4). It is also possible to express the total curvature of K
in terms of rK(�; z).

The de�nition of the radius-vector function can be extended to not-necessarily
star-shaped sets K, cf. Gardner et al. (1995). The extended function is the
radius-vector function of a star-shaped set associated with K, called the di-
rected chordal symmetrical.

The radius-vector function is invariant under translation and rotation. To
be more speci�c, let z0 2 R2 and

A =

�
cos 2�t0 � sin 2�t0
sin 2�t0 cos 2�t0

�
; t0 2 [0; 1]:

Then,
rAK+z0(t;Az + z0) = rK((t� t0) mod 1; z); t 2 [0; 1]:

A scaling transformation yields

r�K(t;�z) = �rK(t; z); t 2 [0; 1]; � > 0:

The shape of K is thus, up to shifts in t, represented by the normalized radius-
vector function erK(t; z) = rK(t; z)R 1

0
rK(u; z)du

; t 2 [0; 1]:

Note that the normalized radius-vector function is a continuous analogue of a
standardized vertex transformation vector, cf. Hobolth et al. (1999). Below
we will simply write r(�) for erK(�; z) in cases where it will cause no confusion.
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A more detailed description of the shape of K can be obtained from a
Fourier series expansion of the normalized radius-vector function r, cf. e.g.
Stoyan & Stoyan (1994, p. 80-88) and Lestrel (1997),

r(t) = 1 +
p
2

1X
s=1

as cos(2�st) +
p
2

1X
s=1

bs sin(2�st); t 2 [0; 1];

where the Fourier coeÆcients are

as =
p
2

Z 1

0

r(t) cos(2�st)dt; bs =
p
2

Z 1

0

r(t) sin(2�st)dt; s � 1: (2.1)

The Fourier coeÆcient at phase 0 is 1 because of the normalization of the
radius-vector function. Letting

as =
p
2cs cos(2�sds); bs =

p
2cs sin(2�sds); s � 1;

we obtain the polar form

r(t) = 1 + 2
1X
s=1

p
cs cos(2�s(t� ds)); t 2 [0; 1]; (2.2)

where cs = (a2s + b2s)=2 � 0 and ds 2 [0; 1
s
[, s � 1. (If as = bs = 0, let ds = 0.)

The coeÆcient cs is called the sth phase amplitude and ds the sth phase angle.
It is immediate from (2.2) that the css are invariant under shifts in t.

Figure 1: The values of the phase amplitudes cs are shown as a function of s
for an asymmetric object (left) and a fairly symmetric object (right).

Writing z = (z1; z2), the boundary of K can be represented as

(f1(t); f2(t)) = (z1; z2) + qr(t) (cos(2�t); sin(2�t)) ; t 2 [0; 1];

where q is the integral of the radius-vector function. Combining this with (2.1)
it follows that

(a1; b1) =

p
2

q

�Z 1

0

[f1(t)� z1]dt;

Z 1

0

[f2(t)� z2]dt

�
:
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Thus, if K is symmetric (with respect to z) then a1 = b1 = c1 = 0. Conversely,
a high value of c1 indicates a high degree of asymmetry relative to z, cf.
Figure 1. The left object in Figure 1 is an example of an object which is
symmetric around the x�axis, but rather asymmetric around the y�axis. If
the angle 2�t is measured relative to the x�axis this means that a1 is rather
large while b1 = 0. In the Appendix we show that the Fourier coeÆcients a1
and b1 can also be expressed as integrals on the interior of K.

To analyse the geometry of the higher order phase amplitudes let us con-
sider an object for which all but the sth phase amplitude are zero such that

r(t) = 1 + 2
p
cs cos(2�s(t� ds)): (2.3)

For such an object we have that z is the centre of gravity, cf. the Appendix.
Moreover, r(t) possesses an s-fold symmetry,

r(t) = r(t+
1

s
) = � � � = r(t+

s� 1

s
); t 2 [0;

1

s
[:

The 2-fold symmetry is the usual type of symmetry. In Figure 2 we have
plotted objects with radius-vector function of the form (2.3), corresponding
to di�erent values of s, ds = 0 and varying values of cs. In Figure 3 we have

Figure 2: Objects with radius-vector function of the form (2.3) with ds = 0:
In each row the value of s is constant (s = 2; 3; 4; 5). The value of log cs is
indicated in the interior of the object.

illustrated how the s�fold symmetric objects contribute for small s to the
`global' shape of a given object K and for large s to the `local' shape.
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Figure 3: The upper row shows the objects of the form (2.3) for s = 1; : : : ; 6
(left to right) associated with the object K shown in the lower row. The values
of log cs are indicated in their interior. In the lower row, the reconstruction of
K from the �rst s Fourier coeÆcients is also shown.

To sum up, we can interpret cs; s � 1; as shape parameters. For s = 1, cs
is an asymmetry parameter. For s � 2 small, cs determines the `global' shape
of K while for s large cs a�ects the `roughness' of the boundary of K. Up to
a shift in t, ds, s � 1; are also shape parameters. For s � 2, they determine
the relative orientation of the s�fold symmetric objects associated with K:

In Zahn & Roskies (1972) the geometric interpretation of a Fourier expan-
sion of the tangent-angle function is studied in a similar way.

Let us conclude this section by discussing how z can be chosen. In some
applications z is `given by nature'. An important example comes from local
stereology where K is actually a planar section through a biological cell, pass-
ing through the nucleus or nucleolus of the cell, cf. Jensen (1998, Chapter 7).
In other cases z is de�ned from K, typically as the centre of mass, cf. Loncaric
(1998) and Hobolth et al. (1999). In the latter paper it is used that with z
equal to the centre of gravity the �rst phase amplitude of rK(�; z) is approx-
imately zero when K is a small deformation of a circle. In the Appendix it
is shown that the centre of mass of K can in fact be characterized by the
property that the �rst phase amplitude of rK(�; z)3 is zero.

3 The generalized p-order model

We will now consider a random planar object K with normalized radius-vector
function (R(t))t2[0;1]. Below we introduce the parametric statistical model to
be used for R.

The starting point is the polar expansion (2.2) of the normalized radius-
vector function. As argued in the previous section the �rst phase angle d1 and
phase amplitude c1 play a special role as asymmetry parameters. We shall
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treat c1 and d1 as non-random nuisance parameters. The expansion of the
normalized radius-vector function in polar form therefore becomes

R(t) = 1 + 2
p
c1 cos(2�(t� d1)) + 2

1X
s=2

p
Cs cos(2�s(t�Ds)); t 2 [0; 1]:(3.1)

The remaining amplitudes Cs and angles Ds, s � 2, will be modelled by
distributions on R+ and [0; 1=s], respectively.

The expansion (3.1) makes it possible to construct a variety of shape mod-
els. A generalized p�order model is a parametric model which satis�es that

Cs � �sZs; Ds � U [0; 1=s]; s � 2; (3.2)

where the error variables Zs have mean 1 and U [0; 1=s] is the uniform distribu-
tion on the indicated interval. Furthermore, Cs; Ds; s � 2; are all independent
and the expected phase amplitudes �s = E(Cs) decrease as

��1s = �0 + �s2p; s � 2:

The parameters satisfy �0 > ��22p and � > 0 such that �s > 0 for all s � 2.
We further assume p > 1=2, which implies that R has �nite variance, as will
be discussed below.

In order to facilitate a geometric interpretation of the regression parameters
we use the reparametrization

��1s = � + �(s2p � 22p); s � 2; (3.3)

where � > 0; � > 0; p > 1=2. The parameter � determines the `global' shape of
the object. If � is high objects of circular shape are expected while a low value
corresponds to an elongated or, in the extreme, a `peanut-shell' shape. The
reason is that under (3.3), � determines the expected phase amplitudes �s =
E(Cs) for small s and Cs governs the global shape for small s, cf. Section 2.
As discussed below p determines the smoothness of the boundary of K. For
�xed p the parameter � determines the `local' shape of the object since it
controls the behaviour of �s when s is high. Precisely, as s ! 1, we have
that (log s; log��1s ) behaves as a line with slope 2p and intercept log�. For
small values of � rather irregular objects are expected while high values yield
regular objects.

The random phase angles Ds determine the relative orientation of the
s�fold symmetric objects associated with K, cf. Section 2. The uniform
distribution on the angles implies that these objects do not have a `preferred
orientation'. A generalized p�order model is therefore expected to be appro-
priate for describing a population of objects which does not have a predominant
non-circular shape. The shape variability of K is in
uenced by the variation
of the error variables Zs.
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In Figure 4 simulations from the model (3.1)-(3.3) with exponentially dis-
tributed error variables, p = 2 and c1 = 0 are shown. The values of � and
� are typical for the objects studied in the data section. It is seen that in
the corner corresponding to high values of � and � the simulated objects are
smooth and `circle'-like, while in the opposite corner the simulated objects are
irregular.

Figure 4: Simulated objects under the second-order model with c1 = 0, expo-
nentially distributed error variables and the indicated values of � and �:

To study the distribution of the radius-vector function let

R1(t) = 2
1X
s=2

p
Cs cos(2�s(t�Ds)); t 2 [0; 1];

contain all the random Fourier terms of R(t). Using (3.2) and independence
of the phase angles and amplitudes it follows that R1 is a stationary process
with covariance function

�(t) = cov(R1(t); R1(0)) = 2
1X
s=2

�s cos(2�st); t 2 [0; 1]: (3.4)

The process R1 has zero Fourier coeÆcients at phases 0 and 1. Similar con-
straints were used by Hobolth et al. (1999) and Kent et al. (2000) in a
discrete time model. Properties such as continuity and di�erentiability of R1
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(and hence also of R) are determined by the parameter p as follows from
Cram�er & Leadbetter (1967, Section 4.2 and 4.3).

Equation (3.4) gives the relation between the expected amplitudes and
the covariance function. As an alternative to parametric speci�cation of the
�ss as in (3.3) one may suggest a simple parametric form of the covariance
function �, cf. e.g. Rue & Syversveen (1998). Since the amplitudes relate
to the random geometry of the object we believe it is more natural to specify
directly a parametric model for the expected amplitudes. Furthermore, the
constraints on R1 are easier to handle and interpret in the spectral domain.

In the shape literature a random object is often modelled by a multivariate
normal distribution with a circulant covariance matrix or by a stationary Gaus-
sian process in continuous time, cf. Grenander & Miller (1994), Hobolth et al.
(1999), Rue & Hurn (1999), Hobolth & Jensen (2000), Kent et al. (2000). We
now show that a Gaussian model is obtained by letting the error variables Zs

be exponentially distributed. This model will therefore be called the normal
p�order model. Using (2.2) and (3.2) it follows that if Zs is exponentially
distributed then

R1(t) =
p
2

1X
s=2

As cos(2�st) +
p
2

1X
s=2

Bs sin(2�st); t 2 [0; 1];

where As; Bs; s � 2; are all mutually independent and As � Bs � N(0; �s).
This representation shows that R1 is a stationary Gaussian process. By (3.3)
and Rogers & Williams (1994, Theorem I.25.10), it follows that for the normal
p�order model the sample paths of R1, and hence also of R, are k times
continuously di�erentiable where k is the integer satisfying p 2]k�1=2; k+1=2].
In particular, if p is an integer then p = k. In the normal �rst-order model,
the sample paths of R are continuous while in the normal second-order model
the sample paths are continuously di�erentiable.

The �rst- and second-order normal models have been studied in the liter-
ature (most often without the constraint �0 = �1 = 0): In particular, these
models appear as limits of discrete time �rst- and second-order Markov models,
cf. e.g. Grenander (1993, p. 476 and 484).

4 Some remarks on statistical inference

Maximum likelihood estimation of the parameters of the normal p�order
model, based on a continuously observed normalized radius-vector function,
has been discussed in an unpublished research report by two of us (A. Hobolth
and J. Pedersen) from Laboratory for Computational Stochastics, University
of Aarhus, 1999. (In this report, we also suggest the regression equation (3.3),
which was later used in Hobolth et al. (1999).) For the �rst- and second-order
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normal models it is shown that with continuous observations � is determined
with certainty from observable quantities. Thus, only � has to be estimated
and a closed-form equation for the maximum likelihood estimate of � is given
in the research report.

Although the likelihood-based estimates have several good properties in
theory, they may perform poorly in practice. Thus, as expected from the
interpretation of the parameter � as a local shape parameter, � is determined
from di�erences between observations very close together at the boundary of
the object under study. If only a digitized version of the object is available
such di�erences cannot be determined accurately.

To avoid this obstacle one can use a so-called low-pass �lter, cf. e.g. Bloom-
�eld (1976). The idea is to determine the parameter estimates from the low
frequency Fourier coeÆcients only which are robust against digitization e�ects.
For the normal p�order model, the analysis is particularly simple. Recall that
in this case the phase angles Ds are uniform in [0; 1=s] and the phase ampli-
tudes Cs are exponentially distributed with mean �s. Note in particular that
the distribution of the phase angles does not depend on unknown parameters.
Using the �rst S phase amplitudes the likelihood function becomes

L(�s; cs) =
SY

s=2

��1s e��
�1
s cs: (4.1)

De�ning the expected amplitudes by (3.3) the maximum likelihood estimates
for (�; �; p) can be found by standard numerical methods. A likelihood func-
tion of the same form has been considered in Hobolth et al. (1999) and Kent
et al. (2000).

If the normalized radius-vector function is only known at the data points
t = 0=n; 1=n; : : : ; (n � 1)=n, the phase amplitudes cs = (a2s + b2s)=2 can be
approximated by using discretized versions of the integrals (2.1). The speci�c
value of n is not important, just as long as it is reasonably high. That is,
di�erent values of n give approximately the same value of cs.

5 Data analysis

The data set consists of 50 normal mantle cell nuclei and 50 cell nuclei from a
mantle lymphoma (tumour in the mantle zone of a lymph node), cf. Figure 5.
The nuclei from each of the groups were sampled from a microscopic section
among those with sectioned boundary in focus. The normalized radius-vector
function r(t) with respect to the centre of mass was for each nucleus deter-
mined at t = 0; 1=n; : : : ; (n� 1)=n. Unless otherwise stated we used n = 100:
The nuclei are rather homogeneous in size (about 15�m in diameter), so the
normalization factor was almost the same for all the nuclei.
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Figure 5: The 50 normal mantle cell nuclei (upper panel) and the 50 cell nuclei
from a mantle lymphoma (lower panel).

5.1 Analysing each nuclear pro�le individually

First, each nuclear pro�le was analysed individually using the likelihood func-
tion (4.1). The choice of cut-o� value S is important. If S is too small we
are not using important shape information; if on the other hand S is too large
the results will be in
uenced by digitization e�ects, see also Figure 3. Unless
otherwise stated we used S = 15:

For each object we found the estimates of (�; �; p). In both samples the
estimates of p were close to 2 for all nuclei. For the normal sample the average
was 2:07 with a standard deviation of 0:21 while for the lymphoma sample the
average was 2:02 and the standard deviation 0:28. Therefore we �xed p = 2
and considered the normal second-order model only.

The estimates of (�; �) under the second-order model are shown for each
nucleus in Figure 6 and summarized in Table 1. The estimates of the local
shape parameter � are on average lowest in the lymphoma sample. This was to
be expected from the geometric interpretation of � given in Section 3. A t-test
for identical �s, based on the distribution of log �̂, shows a signi�cant di�erence
between the two samples (p-value less than 0.05%). On average the estimates
of the global shape parameter � are also lowest in the lymphoma sample, but
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Figure 6: The estimates of (�; �) under the normal second-order model. The
hatched nuclei are from the normal mantle cells while the white nuclei are
from cells in the mantle lymphoma.

log �̂ log �̂
av. s.d. av. s.d. corr.

normal 5.35 0.84 2.26 0.72 0.27
lymphoma 4.94 1.11 1.09 0.81 0.03

Table 1: The average, standard deviation and correlation of (log �̂; log �̂) for
each sample.

the di�erence is not as signi�cant (p-value close to 5%). Furthermore we see
that the estimates of � from the lymphoma sample vary over a somewhat
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larger range than the estimates from the normal sample.
We also investigated how the choice of cut-o� value S in
uences the anal-

ysis. Since the estimate of � is determined by the �rst few amplitudes the
estimate of this parameter only changes slightly when S is larger than 8, say.
From Figure 7 it is seen that the estimate of � does change with S, but the
changes are rather small.

Figure 7: The estimates of � as a function of S for the 11 nuclei shown.

The number of data points n should be high compared to S, but otherwise
the speci�c choice is less important. In Figure 8 we see that for S = 15 the
estimates are stable, and the analysis is robust to the speci�c choice of n � 50:

5.2 Analysing the pro�les under an iid-assumption

We now investigate whether the pro�les within each of the groups can be
regarded as independent and identically distributed realizations from a normal
p�order model. Let the indices (i; j) denote the jth nucleus (j = 1; : : : ; N =
50) in the normal sample (i = 1) or the lymphoma sample (i = 2) and let csij be
the corresponding phase amplitudes of the normalized radius-vector function.
If we let Exp(�) be the notation used for the exponential distribution with
mean �, we then want to investigate whether

Csij � Exp(�si); j = 1; : : : ; N; (5.1)

for each s = 2; : : : ; S and i = 1; 2.
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Figure 8: The estimates of � as a function of n for the 7 nuclei shown.

We will examine (5.1) by considering the more general model

Csij � �(
si; �si; Æsi); j = 1; : : : ; N;

where �(
; �; Æ) is the notation used for the generalized gamma distribution
with density

f(y) =
ÆyÆ
�1

�(
)�Æ

expf�(y

�
)Æg; y > 0:

Here, 
; Æ > 0 are shape parameters while � > 0 is a scale parameter. The
ordinary gamma distribution is obtained for Æ = 1, the Weibull distribution
for 
 = 1, while the exponential distribution corresponds to Æ = 
 = 1.

The class of generalized gamma distributions is in fact rather 
exible.
When Æ < 1 (> 1) the tails are heavier (lighter) than the exponential tails.
When Æ
 � 1 the density f(y) is strictly decreasing in y. Moreover limy!0 f(y)
exists and is �nite if and only if Æ
 � 1. When Æ
 > 1 the density has a mode.

Plots of the empirical survival functions of csij for �xed s and i showed
that the distributions of the phase amplitudes had somewhat heavier tails
than expected under (5.1) (the estimated values of Æ were less than 1). In
each sample the tendency was only signi�cant for a few high values of s. Thus
it seems reasonable to consider exponentially distributed error variables, at
least for low frequencies. The same conclusion was obtained by testing (5.1)
by Bartlett tests.

Assuming that the phase amplitudes csij are Exp(�si)-distributed, the next
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step in the analysis is to �t a p�order model within each group,

��1si = �i + �i
�
s2pi � 22pi

�
; s = 2; : : : ; S; i = 1; 2: (5.2)

The likelihood function is given by

L(�si; csij) =

NY
j=1

SY
s=2

��1si exp(���1si csij) = f
SY

s=2

��1si exp(���1si �csi�)gN ;

where �csi� = N�1
PN

j=1 csij is the average of the amplitudes within the ith
group at phase s and �si is given by (5.2). As expected the estimated value
of p is close to 2 in both samples (2.0 in the normal and 1.8 in the lymphoma
sample), and again we consider the second-order model. The estimated regres-
sion lines are shown in Figure 9 and in Table 2 the estimates and approximate
standard errors and correlation coeÆcients based on the observed information
are summarized.

Figure 9: The estimated regression �̂s = [�̂ + �̂(s2p̂ � 22p̂)]�1 in the normal
p-order model (solid) and the estimated regression under the normal second-
order model (dashed) is shown together with the average phase amplitudes as
a function of s for the normal sample (lower curve) and the lymphoma sample
(upper curve). The vertical lines are the 95% con�dence limits.

As in the previous subsection we observe a signi�cant di�erence between
the two samples in the value of �. The di�erence in � is not as signi�cant.

5.3 Simulations from the normal second-order model

In the normal second-order model truncated at S = 15 we have

Cs � Exp(�s); s = 2; : : : ; 15; independent;
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log �̂ log �̂
est. conf.int. s.e. est. conf.int. s.e. corr

normal 5.08 4.81-5.35 0.14 1.97 1.89-2.05 0.04 -0.10
lymphoma 4.52 4.27-4.77 0.13 0.82 0.74-0.90 0.04 -0.13

Table 2: The estimates and approximate con�dence intervals, standard errors
and correlation of (log �̂; log �̂).

with

��1s = � + �(s4 � 24): (5.3)

In order to investigate the model more closely we made the following sim-
ulation study. For each sample we calculated �s according to (5.3) with
(�; �) replaced by the average estimated value from Table 1 and simulated
Cs � Exp(�s); s = 2; : : : ; 15. From the values of Cs we calculated the maxi-
mum likelihood estimates of � and �. This procedure was repeated 500 times
for each of the samples and the results are shown in Figure 10 and summarized
in Table 3.

log �̂ log �̂
av. s.d. av. s.d. corr.

normal 5.36 1.01 2.28 0.30 -0.14
lymphoma 4.89 0.95 1.10 0.30 0.03

Table 3: The average, standard deviation and correlation of (log �̂; log �̂) for
each sample.

When we compare Figures 6 and 10 it is seen that the variation in log �̂
is almost the same for the observed and simulated data for both groups. The
variation range of log �̂ is smaller in the simulation study than in the samples.
One explanation is that the local shape variability in the data is somewhat
higher than predicted from the normal model, i.e. the assumption that the er-
ror variables are exponential is not appropriate at high phases. Another reason
might be that a well located `blob' results in many high phase amplitudes.

6 Perspectives

The generalized p-order model is expected to be useful for describing a popu-
lation which does not have a predominant non-circular shape. Let us stress,
though, that the Fourier expansion (3.1) of the normalized radius-vector func-
tion makes it possible to construct a variety of shape models. If, for instance,
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Figure 10: Simulated distribution of (�̂; �̂) under the normal second-order
model is shown for the normal sample (�) and the lymphoma sample (Æ).

one considers a population with a dominant triangular shape, it would be nat-
ural to use a model where on average C3 is the highest amplitude. A more
challenging task is to model objects with a dominant elliptical shape. An
ellipse has vanishing amplitudes at odd phases and decreasing amplitudes at
even phases. Thus, to model elliptical shape one should probably let the odd
and even amplitudes decrease at di�erent rates. Moreover, the even phase
angles should have approximately the same values. Elliptical models were
studied by Hobolth & Jensen (2000). We leave a concrete model as a topic for
future research.
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Appendix

Characterization of asymmetry and centre of mass

Let x = (x1; x2) denote a generic point in R2 and let jjxjj = (x21 + x22)
1

2 .

Proposition Let z = (z1; z2) be an interior point of a compact subset K of
R2. Let K be star-shaped with respect to z and let the radius-vector function
rK(t; z) be continuously di�erentiable in t.

(i) We have Z
K

x1 � z1
jjx� zjj2dx1dx2 = 2�

Z 1

0

rK(t; z) cos(2�t)dt (A.1)Z
K

x2 � z2
jjx� zjj2dx1dx2 = 2�

Z 1

0

rK(t; z) sin(2�t)dt: (A.2)

(ii) If z is the centre of mass of K thenZ 1

0

rK(t; z)
3 cos(2�t)dt =

Z 1

0

rK(t; z)
3 sin(2�t)dt = 0: (A.3)

Conversely, if z is such that (A.3) is satis�ed then z is the centre of mass
of K.

(iii) Let rK(t; z) = 1 + 2
p
cs cos (2�s(t� ds)), where s � 2; 0 � cs � 1=4 and

ds 2 [0; 1
s
[. Then z is the centre of mass of K.

Proof. Let F : [0; 1]2 ! R2 be de�ned by

F (v; t) = (z1; z2) + vrK(t; z)(cos(2�t); sin(2�t)) :

Then F is onto K and
��det�F 0(v; t)

��� = 2�vrK(t; z)
2. In order to prove (A.1)

note that if x = (x1; x2) 2 K is such that x = F (v; t) then

x1 � z1
jjx� zjj2 =

cos(2�t)

vrK(t; z)
;
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and from the transformation theorem we getZ
K

x1 � z1
jjx� zjj2dx1dx2 = 2�

Z 1

0

rK(t; z) cos(2�t)dt:

The result (A.2) is proved similarly.
The same kind of arguments show that�Z

K

(x1 � z1)dx1dx2;

Z
K

(x2 � z2)dx1dx2

�
(A.4)

=
2�

3

�Z 1

0

rK(t; z)
3 cos(2�t)dt;

Z 1

0

rK(t; z)
3 sin(2�t)dt

�
:

The left-hand side is zero if and only if z is the centre of mass of K. Therefore
(ii) is an immediate consequence of (A.4).

To prove (iii) one has to show that rK(t; z) = 1 + 2
p
cs cos(2�s(t � ds))

satis�es the condition (A.3). This follows from elementary calculations, and
is left to the reader.
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