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ABSTRACT: A new 
exible prior for Bayesian image analysis and reservoir modelling
is de�ned in terms of interacting coloured Voronoi cells described by a certain nearest-
neighbour Markov point process. This prior can be de�ned in both 2 and 3 (as well as
higher) dimensions, and simple MCMC algorithms can be used for drawing inference from
the posterior distribution. Various 2D and 3D applications are considered.
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1. Introduction

The purpose of this paper is to construct simple and 
exible 2D and 3D priors in
Bayesian image analysis and reservoir characterisation, where data are typically very
sparse or obtained by indirect observations, and where the posterior is explored by means
of Markov chain Monte Carlo (MCMC) methods. Careful speci�cation of such priors
is particularly important when Bayesian methods are used in oil reservoir applications,
since 
uid 
ow is described by large-scale properties, while reservoir-speci�c information
about geology, e.g. from wells and seismic data, is limited (Damsleth, Tj�lsen, Omre &
Haldorsen 1990, Hjort & Omre 1994). General geological knowledge about the reservoir is
usually available and may assist us in choosing realistic priors.
Various priors have been used in Bayesian image analysis and reservoir modelling. Pixel-

based models such as Markov random �elds often lead to slow MCMC algorithms due to
the high dimensionality of the problem, particularly in 3D applications, while 
exible tes-
sellation models such as the 2D triangulation models in Nicholls (1998) are diÆcult to
extend to the 3D case. Such and other priors are reviewed in Section 2. We consider next
an alternative prior model based on a marked point process for a coloured Voronoi tessella-
tion, which we model in Section 3 as a nearest-neighbour Markov point process (Baddeley
& M�ller 1989). This prior model can be easily de�ned in both 2 and 3 (as well as higher)
dimensions. Compared to the pixel-based models and the triangulation models, our use of
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marked point processes for coloured Voronoi tessellations provides a parsimonious param-
eterisation, which is convenient when dealing with various posterior distributions based on
sparsely observed data. Some other advantages compared to Nicholls triangulation models
are that Voronoi cells are in one-to-one correspondence with their generating points (called
nuclei in this paper), and we do not need to include border points, as we can truncate
Voronoi cells that are partly outside the image area or reservoir volume. In particular
the MCMC algorithm described in Section 4 become much simpler than those considered
in Nicholls (1998). However, the advantages of our model are most clear in 3 dimensions,
as Nicholls triangulation models are much more 
exible in 2 dimensions.
Convergence properties of our MCMC algorithms are discussed in Section 4, while Sec-

tion 5 concerns parameter speci�cation for the prior and likelihood terms in the posterior
distribution. Empirical results are discussed in Section 6 for a 2D image analysis experi-
ment and for real well observations in a 3D north sea oil reservoir. Section 7 contains some
concluding remarks.

2. Background

One approach to Bayesian image analysis and reservoir modelling is to use marked point
processes for objects against a background (Baddeley & Van Lieshout 1993). This approach
has e.g. been used when the objects are sand bodies in 
uvial reservoirs (Holden, Hauge,
Skare & Skorstad 1998) or fault patterns (Munthe, Holden, Mostad & Townsend 1994).
A general marked point process model for reservoir modelling is given in Lia, Tjelmeland
& Kjellesvik (1997). However, detailed prior information is requested if marked point
processes for (possibly deformed) objects against a background are used in sparse data
situations, see e.g. Holden et al. (1998). The objects considered in Lia et al. (1997) and
Munthe et al. (1994) are modelled as simpli�ed geometric objects. Rue & Hurn (1999) com-
bine the marked point process approach with that of deformable templates (Grenander &
Miller 1994) for purposes in Bayesian object recognition, and where objects e.g. correspond
to di�erent types of biological cells.
Another category of models is pixel-based random �elds, particularly Markov random

�eld (MRF) models which have been extensively used as priors in Bayesian image anal-
ysis (Geman & Geman 1984, Besag 1986). They are particularly useful when we model
mosaic patterns where none of the components represent a background; or, more generally,
when modelling complex and irregular geometries which are diÆcult to represent by the
marked point process approach. Examples in reservoir modelling include reservoirs formed
by a mixture of sedimentary processes and reservoirs with a high packing of sedimentary
facies (rock types). Often simple pairwise interaction MRF priors with small neighbour-
hoods are used, but by allowing higher order interactions and larger neighbourhoods more
realistic priors can be constructed, see e.g. Tjelmeland & Besag (1998). An alternative to
MRF models is the Markov connected component �eld models of M�ller & Waagepetersen
(1998), where potentials are associated to each of the (maximal) connected components of
pixels with the same 'colour' in the image (or reservoir) so that global information about
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the components can be more easily incorporated than for MRFs with bounded neighbour-
hoods.
A problem with these pixel-based models is the high dimensionality of the state space

which can cause slowly converging simulation algorithms. This is particularly true in 3D
applications.
An alternative to pixel-based random �eld models is a polygonal partitioning (tessella-

tion) of the space (Arak, Cli�ord & Surgailis 1993, Nicholls 1997, Nicholls 1998). Nicholls
promotes the tessellation models as an approach for intermediate pattern analysis, where
the polygons serve as fundamental building blocks of structures in the image. An advan-
tage of this approach compared to that of pixel-based models is that we can obtain the
same resolution with a lower dimensionality of the state space, since in homogeneous areas
of the image or reservoir a few large polygons could suÆce. For instance, Voronoi cells (as
de�ned in the next section) can more easily than static grid cells follow the contours of
objects.
An appealing example of a 2D coloured triangulation model is found in Nicholls (1998).

First a natural base measure is speci�ed: in the interior and on the border of a simple
polygonal set S � R2, independent point con�gurations xI and xB are drawn from homo-
geneous Poisson point processes, and a �nite colouring c is then speci�ed for any possible
triangulation � of S with vertex set xI [ xB [ h, where h is the set of boundary vertices of
the polygon S. Secondly a general purpose prior is de�ned w.r.t. the base measure as an
exponential family type model with a two-dimensional canonical suÆcient statistic speci-
�ed by the number of triangles and the total length of edges separating regions of di�erent
colours. It seems diÆcult to extend such models to 3D, for example by using three kinds
of Poisson point processes de�ned in the interior, on the bounding surfaces and on the
edges of the set S (which is now assumed to be a 3D polyhedron). Moreover, extending
the updates for the MCMC algorithm in Nicholls (1998) would be rather intricate, and it
is not obvious how irreducibility will be ensured.

3. Coloured Voronoi tessellation models

The idea of using Voronoi tessellations in image analysis is not new, see for exam-
ple Ahuja & Schachter (1983) and Green (1995); for theoretical properties, applications and
further references on Voronoi tessellations, see Okabe, Boots & Sugihara (1992) and M�ller
(1994). Below we follow Baddeley &M�ller (1989) in de�ning a particular prior for coloured
Voronoi tessellations as a nearest-neighbour Markov point process with interactions be-
tween neighbouring Voronoi cells of di�erent colours. In contrast to the marked point
process approach for objects against a background, we will demonstrate that neither a
particular background colour nor a detailed prior information is requested. Instead of a
Voronoi tessellation, one could use a Delaunay tessellation, which also can be de�ned in
any dimension d � 1. This is the dual of a Voronoi tessellation with cells obtained by con-
sidering the convex hulls for neighbouring Voronoi nuclei; under regularity conditions, it
constitutes a triangulation (see M�ller 1994). However, using a Voronoi tessellation seems
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Figure 1. Left: A realisation of a Poisson-Voronoi tessellation of rate 50
on the unit square. Right: The same tessellation with a binary uniform
colouring of the cells.

more attractive for at least two reasons: it is convenient that Voronoi cells are in one-to-
one correspondence with their generating points, as a colouring of the Voronoi tessellation
can be speci�ed as a marked point process (see below); we do not need to include border
points.
Let S � Rd be a bounded Borel set of volume 0 < jSj <1. In our applications, S is a

d-dimensional box corresponding to the image area or the reservoir volume, and d 2 f2; 3g.
For �nite point con�gurations x = fx1; : : : ; xng � S, we associate the Voronoi tessellation
with cells

C(xijx) = fs 2 S : kxi � sk � kxj � sk for all j 6= ig ; i = 1; : : : ; n;

where k�k denotes Euclidean distance. Thus C(xijx) is the set of points in S that has xi as
nearest `nucleus' in x. For some applications it may be relevant to replace the Euclidean
distance k � k by another metric, see Scheike (2000) and Section 6.2.
To each nucleus xi we attach a mark mi 2 M , where M = f0; 1; : : : ; K � 1g is

a �nite set. We interpret mi as the colour of Voronoi cell C(xijx), and we let y =
f(x1; m1); : : : ; (xn; mn)g be the corresponding marked point pattern. Further, for � > 0,
let �� denote the Poisson process on S �M under which the nuclei follow a homogeneous
Poisson point process of rate � on S, and conditional on the nuclei, the colours of Voronoi
cells are independent and uniformly distributed onM . Figure 1 shows a typical realisation
under �� when K = 2, S = [0; 1]2 is the unit square, and � = 50 is the mean number of
nuclei.
Our prior has density proportional to exp(�� s(y)) with respect to ��, where � is a real

parameter and

s(y) =
X

i<j: xi�
x
xj

1[mi 6= mj](1)
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is the number of pairs of neighbouring Voronoi cells of di�erent colours. Here �
x
denotes

the neighbour relation on the points in x as de�ned by

(2) xi �
x
xj , C(xijx) \ C(xjjx) 6= ;

for xi; xj 2 x. Notice that the conditional distribution of the colouring of cells given the
nuclei x is an Ising (K = 2) or Potts (K > 2) model with neighbour relation �

x
and

coupling parameter �. It is convenient to express the density of the prior with respect to
the standard Poisson process � = �1:

(3) f(yj�; �) = �n(y) exp (��s(y)) =c(�; �)

where n(y) denotes the number of nuclei and c(�; �) is a normalising constant. The density
is well de�ned for all � > 0 and � 2 R, but in the sequel we assume that � � 0, re
ecting
our prior belief that neighbouring cells tend to be of the same colour. Clearly, if � = 0 we
just obtain the Poisson process ��.
In the sense of Baddeley & M�ller (1989), (3) de�nes a nearest-neighbour Markov point

process with respect to �
x
(or more precisely the relation on y as induced by the Voronoi

neighbour relation (2)). In fact, setting

N(x; �) = fxi 2 x : xi �
x[f�g

�g for � 2 S n x;

the Papangelou conditional intensity de�ned by

��;�(y; (�;m)) = f(y [ f(�;m)gj�; �)=f(yj�; �) for � 2 S n x; m 2M ,

reduces to

(4) ��;�(y; (�;m)) = � exp (��s(y; (�;m)))

where

(5) s(y; (�;m)) =
X

xi2N(x;�)

1[mi 6= m]�
X

fxi;xjg�N(x;�): xi�
x
xj ; xi 6�

x[f�g

xj

1[mi 6= mj]

depends only on y through the coloured neighbouring nuclei to �. This is advantageous
in the computations involved in the MCMC algorithm described in Section 4. Here, (5)
follows from the fact that xi �

x[f�g
xj implies that xi �

x
xj.

Figures 2, 3 and 4 show simulated realisations under the prior when S = [0; 1]2 and
di�erent values of K, � and � are used. While � speci�es the `resolution' in the image (see
Figure 2), � controls the degree of smoothing in the same way as the coupling parameter do
for pixel-based Ising/Potts models (see Figures 3 and 4). The realisations show some 
exi-
bility in our prior model, though for larger values of � realisations are typically dominated
by one component of the same colour and many small components of di�erent colours.
Possibly a phase transition happens for some some value �crit of � as S expands to in�nity:
Figures 3 and 4 may indicate that �crit 2 [0:4; 0:5] when K = 2 and �crit 2 [0:6; 0:7] when
K = 4, but we have not investigated this in any further detail.
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Figure 2. Realisations from the prior with K = 2, � = 0 (�rst row) and
� = 0:4 (second row), and � = 50; 100; 250; 1000 (left to right).

Obviously our prior (3) can be modi�ed in many ways. For example, the indicator func-
tion in (1) could be multiplied by the length of the common edge for C(xijx) and C(xjjx);
this would resemble the prior in Nicholls (1998) for triangulation models. One could also
be inspired by the ideas in M�ller & Waagepetersen (1998), attempting to model the size,
shape and other geometrical properties of the connected components of cells with the same
colour in the image. For instance, to avoid the many small components which occur in
Figures 3 and 4, the prior might be modi�ed to penalise the appearance of such small
components, cf. the penalised Ising model studied in M�ller & Waagepetersen (1998). Al-
ternatively, following Tjelmeland & Besag (1998) we could consider larger neighbourhoods,
though the irregular tessellation structure makes it diÆcult to have a similar detailed model
speci�cation. If the colours are not uniformly distributed, �n(y) in (3) could be replaced byQK�1

m=0 �
nm(y)
m , where nm(y) is the number of cells with colour m and �m > 0 is a parameter.

We could also consider other `reference measures' than ��. As an example, heterogeneities
in the image or reservoir might be better represented by replacing the parameter � by a
(possibly random) intensity function.
In reservoir modelling, available reservoir-speci�c data are often limited; hence, it may

be diÆcult to validate the prior and to estimate parameters. However, additional data
are usually available from other locations thought to have a similar geological structure.
For example, vertical cross sections of outcrops may be used to choose a prior and to esti-
mate the model parameters. In addition, geologists have knowledge about how geological
processes develop.

4. Bayesian inference and simulation

Using a Bayesian setting, inference is based on the posterior density obtained by multi-
plying our prior density with a likelihood function for the data given the coloured Voronoi
tessellation; speci�c examples are given in Section 6. The present section contains a more
general discussion on Bayesian inference and simulation as related to the applications of
our interest.
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Figure 3. Realisations from the prior with K = 2, � = 1000 and � =
0; 0:1; 0:2; 0:3; 0:4; 0:5; 0:6; 0:7 (left to right, top to bottom).

Figure 4. Realisations from the prior with K = 4, � = 1000 and � =
0; 0:1; 0:2; 0:3; 0:4; 0:5; 0:6; 0:7 (left to right, top to bottom).

Speci�cation of the likelihood term (the conditional density for the data given the `true
image') depends of course on the particular context of application. In Bayesian image anal-
ysis, data are most often available as a degraded image, corrupted by noise and (sometimes)
smoothed; see, for example, Geman & Geman (1984), Besag (1986) and Ripley (1988). In
oil, gas or ground water reservoirs, we have three main sources of reservoir-speci�c infor-
mation: observations in wells, seismic data and production tests and history; see Bj�rlykke
(1989), Tjelmeland & Omre (1997) and Tjelmeland (1996). Well observations give accurate
information about facies (rock types) at sparse locations. Seismic data are the result of
re
ected sound waves, where the seismic signals for each vertical trace can be represented
as a convolution of the re
ections at the boundaries between facies. The seismic data will
have a high degree of spatial dependence. Production tests and history result from 
uid

ow between wells and can be represented by a 
uid 
ow simulator.
As both the prior and the posterior are analytically intractable we shall use simula-

tions in both cases based on the Metropolis-Hastings algorithm studied in Geyer & M�ller
(1994), Geyer (1999) and M�ller (1999). At each update of the algorithm, either a birth
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or death or move is proposed, and the proposal is accepted with probability minf1; Hg,
where H is the Hastings ratio as de�ned below. More precisely, for simplicity a birth
and a death are each proposed with the same probability q � 0:5, so a move is proposed
with probability 1 � 2q. Further, in case of a birth proposal y ! y [ f(�;m)g we have
that � and m are independent and uniformly distributed in S and M , respectively, and
H = R(y; (�;m)) where

(6) R(y; (�;m)) =
�(y [ f(�;m)g)jSj

�(y)(n(y) + 1)
:

Here � denotes either the prior or posterior density. Furthermore, in case of a death
proposal y ! y n f(xi; mi)g, the marked point (xi; mi) is chosen at random from y (i.e.
with probability 1=n(y)), and H = 1=R(y n f(xi; mi)g; (xi; mi)). Finally, in case of a move
proposal y ! (y n f(xi; mi)g) [ f(x

0
i; m

0
i)g, we chose (xi; mi) at random from y, the d

coordinates in x0i�xi are independent and normally distributed with mean 0 and variance
�2
move > 0. We select m0

i 2 M at random and H = R(y n f(xi; mi)g; (x0i; m
0
i))=R(y n

f(x0i; m
0
i)g; (xi; mi)) (setting H = 0 if x0i 62 S). As noticed in Section 3, for simulation

of the prior and typically also for the posterior, the calculation of (6) and hence of the
Hastings ratio involves only local computations.
Using the techniques in Geyer & M�ller (1994) and Geyer (1999) we can under fairly

weak condition establish convergence of the Markov chain generated by this Metropolis-
Hastings algorithm. In fact, in all speci�c examples considered in this paper, we have
geometric ergodicity as the target distribution can be easily shown to be locally stable (see
Geyer (1999) and Kendall & M�ller (2000) for a discussion of the role of the local stability
condition). However, it is diÆcult exactly to quantify the convergence rates of the chain,
cf. Appendix B in M�ller (1999).
Figure 5 shows time series for the statistics n(y) and s(y) under the prior (3) with

S = [0; 1]2, � = 1000, (K; �) = (2; 0:4) or (K; �) = (4; 0:6), and when the chain is started
in one of three rather di�erent states. Note that (n(y); s(y)) is a minimal suÆcient statistic
for the parameter (�; �), and the values of � were chosen just below �crit, see Section 3. For
all initial values of the chain, the time series seem to be stable after about 25; 000 updates
of the Metropolis-Hastings algorithm. We estimated the integrated auto-covariance time
(IACT) from the samples of s(y) using methods as described in Geyer (1992). If the
chain y1; y2; : : : is in equilibrium, then IACT= limN!1NVar(�sN )=Var(s(y1)) is the ratio

between the asymptotic variance of the Monte Carlo estimate �sN =
PN

1 s(yi)=N of the
mean Es(y1) and the variance Var(s(y1))=N as obtained for the IID case. The estimates
were IACT= 6300 for (K; �) = (2; 0:4) and IACT= 6900 for (K; �) = (4; 0:6). Empirical
results when simulating posterior distributions are given in Section 6.
In the algorithm we construct the Delaunay tessellation and thereby obtain the dual

Voronoi tessellation. The main computational part of the algorithm is to update the
Delaunay cells for each point which is to be added, moved or removed. Two di�erent
algorithms are used in the 2D and 3D cases. In the 2D case we modi�ed the Hull software
by Ken Clarkson (see http://cm.bell-labs.com/netlib/voronoi/hull.html). This algorithm
uses an incremental method for building a convex hull; the Delaunay triangulation may
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then be found as the projection of this convex hull. In the 3D case we used an incremental
method for building a Delaunay tetrahedrisation, partly based on algorithm described
in M�ucke (1993). If a new point is added, we make �rst an initial tetrahedrisation by
searching for the tetrahedron, t, that contains the new point, and then adding four new
tetrahedras inside t while removing t. Second, a number of edge and face 
ip operations are
performed until the Delaunay property is restored: the circumsphere of each tetrahedron
does not contain any other points than those belonging to the tetrahedron. The remove
operations also involves edge and face 
ip operations, going in the reverse direction of the
add operation.
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Figure 5. Plots of n(yi) (�rst column) and s(yi) (second column) ver-
sus 200; 000 basic updates when � = 1000, (K; �) = (2; 0:4) (�rst row) or
(K; �) = (4; 0:6) (second row), and di�erent initial states are used: n(y1) = 0
(solid line); n(y1) = 2En(y1) (dotted line); n(y1) = En(y1) and all colours
in y1 are 0 (dashed line).

5. Parameter specification

We now address the question of how to choose or estimate the parameter (�; �) of the
prior (3) and an unknown parameter � of the likelihood function f(wjy; �), where w denotes
the data; see also Section 6 for speci�c examples. We assume for simplicity that (�; �) and
� vary independently of each other.
In reservoir modelling applications, parameter estimation may be a diÆcult task when

data are limited. A simple ad-hoc strategy for choosing the parameters in the prior is
as follows. We simulate from the prior for di�erent values of (�; �) and then choose a
value that produces realisations that correspond to expert experience of what the image
or reservoir should look like. A variant of this approach is adopted by Nicholls (1998).
He interactively varies the parameters as the run proceeds and then observes the e�ect on
sample appearance.
On the other hand there may often be training data available that may be used to tune

the model parameters. One method uses a MCMC run to estimate unknown normalising
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constants in the prior or likelihood function, whereby an approximate maximum likelihood
estimate (MCMCMLE) may be obtained (Geyer & Thompson 1992, Geyer 1999). This
method is used by Tjelmeland (1996) and Tjelmeland & Besag (1998) for higher order
Markov random �eld models, by M�ller & Waagepetersen (1998) for Markov connected
component �eld models, and by Syversveen & Omre (1997) in a simple 2D reservoir model
where the only available data are scarce well observations.
A much less computationally intensive method is maximum pseudo-likelihood estima-

tion (Besag 1975, Besag 1977, Jensen & M�ller 1991, Baddeley & Turner 2000); for models
with stronger interactions, this can be less eÆcient than the MCMCMLE. In the present
setting of a marked point process model for the prior parameter (�; �), the pseudo-likelihood
function is given by

PL(�; �; y) = exp

 
�

Z
S

X
m2M

��;�(y; (�;m)) d� =K

!Y
i

��;�(y; yi)

where ��;�(y; yi) := ��;�(y n yi; yi) for yi 2 y, and the maximum pseudo-likelihood estimate
is the value of (�; �) which maximises this function.
Another strategy is to put independent hyper-priors �(�; �) and �(�) on the parameters

and use a fully Bayesian approach. Adopting the approach in Besag (1986) and Heikkinen
& H�ogmander (1994), we can alternately update y, � and (�; �) using Metropolis-Hastings
updates. The update of (�; �) involves the unknown normalising constant c(�; �) of our
prior (3), so instead this prior term is replaced by the pseudo-likelihood approximation
when updating (�; �); or use the same approach as in MCMC MLE (Higdon 1994). To the
best of our knowledge the properties of such an approach for parameter estimation in a
point process setting has not yet been investigated.

6. Examples

6.1. Image analysis experiment. Consider the binary image A1 in Figure 6 showing
a horizontal cross-section from a 3D realisation of the marked point process of Lia et al.
(1997). It consists of 50 � 100 rectangular pixels of size 0:02 � 0:01 when the image is
identi�ed with a unit square. The noisy image A2 is obtained from A1 by adding IID
Gaussian white noise with mean 0 and variance �; for this simple experiment we consider
� = 1 as a known parameter. Let w = (w1; : : : ; w5000) denote the corresponding values.
Given a marked point pattern y = f(x1; m1); : : : ; (xn; mn))g, we let cj(y) 2 f0; 1g denote
the colour of the Voronoi cell containing the midpoint uj of pixel j, i.e. cj(y) = mi if
uj 2 C(xijx). In fact, cj is almost surely well de�ned under the prior (3). The likelihood
then takes the form

f(wjy) = (2�)�2500 exp

 
�
X
j

(wj � cj(y))
2=2

!
:(7)

The image A3 is the corresponding MLE reconstruction, which has an error rate of 30:6%
misclassi�ed pixels.
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Plot � � E(n(y)jw) E(s(y)jw) error accept
B1 250 0.0 85 (74) 105 (98) 6.0 13
B2 250 0.8 34 (29) 38 (29) 7.8 5
C1 1000 0.0 804 (795) 913 (879) 8.9 47
C2 1000 0.8 397 (399) 210 (226) 6.1 34

Table 1. Posterior means of n(y) and s(y), with the actual values of n(y)
and s(y) for the realisations in Figure 8 in parenthesis. The column "error"
shows the percentage of mis-classi�ed pixels when the MMP estimate is
used. The column "accept" shows estimated acceptance probabilities (in
percentage) of Metropolis-Hastings updates.

The MCMC algorithm described in Section 4 with q = 1=3 and �move = 0:05 was used
to obtain samples from the posterior of length 20,000,000 for each value of (�; �). Table 1
shows simulated results for various values of the parameter (�; �). Note that the posterior
means of the number of cells are considerably smaller than the corresponding prior means.
As expected the acceptance probabilities for the Metropolis-Hastings updates increases as
the `resolution-parameter' � increases or as the interaction parameter � decreases. Figure 7
shows the marginal posterior probabilities of the 5000 pixels. These grey level images are
noisy for � large and � small. At the other extreme, for � small and � large, we see instead
a stronger smoothing of the original image in Figure 6. Maximum marginal posterior
(MMP) estimates can be obtained from Figure 7; the corresponding misclassi�cation rates
are clearly smaller than the 30.6% for the MLE reconstruction, cf. Table 1.
Realisations from the posterior are shown in Figure 8, which may be compared with

Figure 6; see also the comparison of the actual values of the statistics n(y) and s(y) for
these realisations and their posterior means in Table 1. Figure 9 shows the underlying
structure of the Voronoi tessellations. Some of these tessellations have a variation in cell
size that partly re
ect the heterogeneity of the data image (which perhaps is more visible
in the original image). In any case, we note that with few Voronoi cells, we could represent
the large-scale structures and obtain realisations that were close to the original image. For
example, the image B2 in Figure 8 contains only 29 Voronoi cells. A �xed grid of the same
size would give a coarser resolution, in particular when estimating the marginal posterior
probabilities.
We have considered various diagnostics for convergence of the algorithm. Three natural

statistics to consider are n(y), s(y) and the residual sum of squares u(y) =
P

j(wj�cj(y))2

of the likelihood (7). The statistic u(y) converged more slowly than the others. The time
series for u(y) (not shown here) are most slowly mixing for combinations of � small and �
large corresponding to the small acceptance probabilities in Table 1.

11



Figure 6. A1: the true scene. A2: the true scene corrupted with Gaussian
white noise. A3: MLE reconstruction of the true scene.

B1 B2 C1 C2

Figure 7. Marginal posterior probabilities with values of � and � as given in Table 1.

B1 B2 C1 C2

Figure 8. Realisations from the posterior with values of � and � as given
in Table 1.

B1 B2 C1 C2

Figure 9. Voronoi cell structure of the realisations in Figure 8.
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6.2. A reservoir modelling example. In this section we model a part of the Hei-
drun/Tilje formation, which is situated in the north sea outside the coast of Norway.
This reservoir is represented as a regular box S of size 2000� 5800� 15 m3 in which the
original sedimentation has taken place. The reservoir facies result from tidal and 
uvial
sedimentary processes which have created a complex facies geometry. Four di�erent facies
are modelled: shoal, tidal channel sand, cement and background. The shoal facies consist
of large lateral continuous sand objects. The shoal facies and the tidal channel sand are
permeable and porous, and the oil and gas will mainly 
ow through these facies. The
calcite cemented facies act as barriers of 
ow. Furthermore, the background consist of het-
erolithic facies with low permeability. The data consist of seven (almost vertically) drilled
wells with horizontal locations and facies observations as shown in Figures 10 and 11, re-
spectively. The vertical positions of the facies observations are transformed to the interval
[0; 15], where 0 and 15 corresponds to top and bottom of S, respectively.
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7

Figure 10. The reservoir with the seven drilled wells.

1 2 3 4 5 6 7

Figure 11. The facies observations for each of the seven drilled wells: shoal
(dark shade), tidal channel sand (light shade), cemented facies (black) and
background facies (white).
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We use the following notation. Each well k 2 f1; : : : ; 7g is represented as a (piecewise
linear) line segment in 3D that is partitioned into intervals wk = f[wk

i ; w
k
i+1[: i = 1; : : : ; nkg

corresponding to the di�erent types of facies pki ; i = 1; : : : ; nk (so p
k
i 6= pk+1

i ), cf. Figure 11.
We assume here an ordering from top to bottom of S, such that wk

1 and wk
nk+1 are at

the top and bottom of S, respectively. The observation vector for well k is then zk =
f([wk

i ; w
k
i+1[; p

k
i ) : i = 1; : : : ; nkg. The coloured Voronoi tessellation de�ned by the marked

point pattern y = f(x1; m1); : : : ; (xn; mn)g will partition well k into intervals t
k = f[tki ; t

k
i+1[:

i = 1; : : : ; n�kg, and we let mk
i 2 f0; 1; 2; 3g denote the \true" facies type for the interval

[tki ; t
k
i+1[ (so mk

i 6= mk+1
i ). Let sk = f[ski ; s

k
i+1[: i = 1; : : : ; n��k g be the coarsest partition so

that each interval of tk and wk is a union of intervals from sk. Finally, for each interval
[ski ; s

k
i+1[, de�ne d

k
i = ski+1� ski ; the indicator D

k
i which is 1 if and only if observed and true

facies agree in this interval; the indicator Jki which is 1 if and only if qki 6= qki+1 where q
k
i

is the observed facies type in [ski ; s
k
i+1[. As we have observations of the facies below S, the

indicator Jki is de�ned also for i = n��k . For �ve of the wells we have Jkn��
k
= 0, while for

the two remaining wells we have Jkn��
k
= 1.

Our likelihood for the data z = fz1; : : : ; z7g given the coloured Voronoi tessellation y
is speci�ed as follows. Conditionally on y, the zk are mutually independent. Letting �0

and �1 denote two given positive parameters, the conditional distribution of zk given y is
speci�ed by considering each interval [ski ; s

k
i+1[: First, let 1 < i < n��k . If we also condition

on the observation for the previous intervals and on qki , suppose that �
k
i is exponentially

distributed with parameter �Dk
i
, so that we observe �ki = di if J

k
i = 1, while we only know

that �ki > di if J
k
i = 0 (conceptually one may think of the latter case as \censoring").

As we want to penalise discrepancies between observed and true facies values in wells, we
may require that �0 � �1. If we furthermore condition on the event Jki = 1, then qki+1 is
uniformly distributed on f0; 1; 2; 3g n fqki g. Next, specifying the conditional distribution in
a similar way for the cases where i = 1 or i = n��k , we obtain the likelihood

L(zjy) =
7Y

k=1

n��kY
i=1

(�Dk
i
=3)J

k
i expf��Dk

i
dki g = (�0=3)

N0(�1=3)
N1 expf�L0�0 � L1�1g

where

N0 = #f(k; i) : Dk
i = 0; Jki = 1g; N1 = #f(k; i) : Dk

i = 1; Jki = 1g

L0 =
X

(k;i):Dk
i =0

dki ; L1 =
X

(k;i):Dk
i =1

dki :

Since N0+N1 is the total number of observed facies changes and L0+L1 is the total length
of wells,

L(zjy) /

�
�0

�1

�N0

expf�L0(�0 � �1)g:
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This likelihood has the following appealing property. We can rede�ne the meaning of
true facies types by considering a �ner partioning tk (and then using this when de�ning
sk) by allowing mk

i and mk+1
i to be equal, since this will not in
uence the likelihood. We

found it computational convenient to use the �ner partioning as given by the intersection
of wells and Voronoi cells.
Note that under the prior (3), we have a uniform prior for the facies proportions, so the

posterior proportions will only di�er as a result of spatial correlation with observed facies
in wells; however, this can easily be modi�ed and other prior information about e.g. size
and shape of facies may be modelled as discussed in Section 3. Actually, as the sedimentary
facies have a larger vertical than horizontal variation, we modify the Euclidean distance
by scaling the z-distance by a factor of 400. We could also have included an anisotropy in
the x-y direction to take into account the assumed direction of the sedimentation due to
the position of the coastline at the time of deposition.
We used the MCMC algorithm described in Section 4 with q = 0:35 and �move = 100

to obtain samples from the posterior. A simulation of 10; 000; 000 iterations was run with
a burnin of 2; 000; 000 iterations. The likelihood parameters �0 and �1 were �xed to 10:0
and 0:5, respectively. Table 2 shows various results for four models I{IV with di�erent
values of the parameter (�; �). As expected, since the data are scarce, the posterior means
of n(y) and s(y) do not di�er much from that of the prior. Considering the IACT, we see
that the chains for models II and IV mix slowly. This may partly be due to large value
of � in models II and IV. This is also seen in time series plots for the statistic s(y) (not
shown here). The mean value of �L0 = L0=(L0+L1), the discrepancy ratio, is moderately
low, between 3% and 6%. This ratio is in
uenced by the likelihood parameters �0 and
�1: increasing �0 (or decreasing �1) will reduce �L0 and would cause slower mixing of
the Markov chain. We would also expect that more (well) data would result in slower
mixing. Then another MCMC algorithm, e.g. based on simulated tempering (Marinari &
Parisi 1992, Geyer & Thompson 1995, Mase, M�ller, Stoyan, Waagepetersen & D�oge 1999),
may be more appropriate.
We have also studied various plots of di�erent kinds of sectional realisations for the

models I{IV. Though such plots may be of geological interest, they are omitted here: as
expected, they show somewhat similar behaviour at the wells, and smoother realisations
are observed under model II and IV, as the colours of the Voronoi tessellation become
more correlated with the data when � increases. Similar features are seen in Figure 12,
where the averages of marginal probabilities at horisontal locations for occurence of the
tidal channel sand facies are shown.
Table 3 gives the posterior means of the facies proportions and the observed facies

proportions in the wells. For the models I and III, the posterior means are close to the
prior mean of 0:25, while for the models II and IV with high interaction the posterior
means agree better with the observed facies proportions in wells.
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model �jSj � E(n(y))jz) E(s(y)jz) E(�L0jz) IACT
I 1000 0.0 952 (1000) 5069 (5420) 0.036 9,900
II 1000 0.5 430 (337) 1172 (573) 0.028 77,600
III 4000 0.0 3931 (4000) 21974 (22463) 0.059 28,000
IV 4000 0.5 1425 (1161) 3094 (1389) 0.037 263,500

Table 2. Posterior means of n(y), s(y) and �L0 = L0=(L0 + L1). The
column \IACT" shows the computed integrated auto-covariance time for the
s(y) statistic. The corresponding results for the prior are given in parenthesis.

model shoal tidal cement background
I 0.2534 0.2297 0.2200 0.2969
II 0.2029 0.0615 0.0395 0.6961
III 0.2512 0.2423 0.2381 0.2684
IV 0.1526 0.0429 0.0320 0.7725
Well 0.3087 0.0848 0.0046 0.6019

Table 3. Posterior means of facies proportions and observed facies propor-
tions in the wells.
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Figure 12. Averages of marginal probabilities at horisontal locations for
occurence of the tidal channel sand facies, with values of � and � as given
in Table 2. The �gures at the seven well locations show the di�erence,
multiplied by 100, between these averages and the observed averages.
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7. Closing remarks

Our coloured Voronoi tessellation model serves as a general purpose prior model for ap-
plications in Bayesian image analysis and reservoir modelling. It may be particularly useful
when modelling complex and irregular geometries, which may be diÆcult to represent by
marked point processes for objects against a background. The advantage to pixel-based
random �eld models is that we may capture large-scale characteristics by a lower dimen-
sionality of the state space, particularly in the 3D case of applications. The model may
easily be elaborated, e.g. by using higher order interactions (Tjelmeland & Besag 1998) or
by introducing penalising terms (M�ller & Waagepetersen 1998). The examples discussed
in Section 6 show clearly the sensitivity and importance of the prior and the parameter
speci�cation part, particulaly in sparse data situations, and it remains to elaborate further
on this, possibly in combination with one or several of the methods mentioned in Section 5.
For reservoir characterisation with sparse data, it may be even more relevant to use the
geological knowledge when making an appropriate speci�cation.
The Metropolis-Hastings algorithm used in this paper can easily be re�ned to ensure

faster convergence towards the posterior, e.g. by generating points near locations where
data indicate shift in colour, by letting the colours of a Voronoi cell be drawn conditioned
on the neighbour colours, and by using simulated tempering as mentioned in Section 6.
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