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Abstract

Given a W �-algebra M with a W �-dynamics � , we prove the existence of the

perturbedW �-dynamics for a large class of unbounded perturbations. We compute

its Liouvillean. If � has a �-KMS state, and the perturbation satis�es some mild

assumptions related to the Golden-Thompson inequality, we prove the existence of a

�-KMS state for the perturbed W �-dynamics. These results extend the well known

constructions due to Araki valid for bounded perturbations.
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1 Introduction

1.1 W
�-dynamics and KMS states

LetM be aW �-algebra equipped with aW �-dynamics (a 1-parameter pointwise �-weakly
continuous group of �-automorphisms) R 3 t 7! � t. The pair (M; �) is often called a W �-
dynamical system. Let Q be a self-adjoint element ofM. A well known convergent power
series expansion, that can be traced back at least to Schwinger and Dyson, can be used
to de�ne the perturbed W �-dynamics which we denote by R 3 t 7! � tQ. The di�erence
of the generators of �Q and � equals i[Q; �]|in fact, the W �-dynamics �Q is uniquely
characterized by this property.

Suppose in addition that � > 0 and that � possesses a �-KMS state !. Araki proved
that in this case the dynamics �Q also possesses a canonical �-KMS state !Q. More
precisely, if !(A) = (
jA
), where 
 is the vector representative of the state ! in the
standard positive cone, and L is the so-called Liouvillean of � , then the vector 
Q :=
e��(L+Q)=2
 is well de�ned and the state !Q(A) := (
QjA
Q)=k
Qk

2 is �-KMS for the
W �-dynamics �Q.

The above two constructions play an important role in applications of operator algebras
to quantum statistical physics. Whereas the construction of the perturbed W �-dynamics
�Q is relatively easy and not very surprising, the construction of the perturbed KMS state
!Q is more subtle and has a far-reaching physical importance. The both constructions,
however, have one technical weakness which restricts the range of their applications: the
perturbation Q is assumed to be bounded. In many physical applications the operator Q
is unbounded and is only aÆliated to M.

In this paper we extend the construction of the perturbed W �-dynamics �Q and the
(�Q; �)-KMS state !Q to a large class of unbounded perturbations Q aÆliated to M. An
application of these results is discussed in [DJ2] and concerns spectral and ergodic theory
of Pauli-Fierz systems.

The proof of the �rst result|the construction of �Q|is again relatively simple and
does not involve much more than an application of the Trotter product formula. The
proof of the second result|the construction of !Q|is more involved. Its main idea is
the use of the so-called Golden-Thompson inequality. The Golden-Thompson inequality
in its original form says that if A, B are matrices, then

Tr eA+B � Tr eAeB:

Translated into the language of W �-algebras and KMS states, the Golden-Thompson
inequality can be put into the form

k
Qk � ke��Q
k: (1.1)

In our approach, the Golden-Thompson inequality is used to control the perturbed KMS-
states and gives an upper bound, which combined with a weak convergence argument
enables us to construct 
Q for a large class of unbounded Q.
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In the literature there exists a di�erent approach to the construction of the perturbed
KMS states for unbounded perturbations, which is restricted to perturbations bounded
from below. One of its versions has been developed by Sakai [Sa2]; another version
(applicable to generalized positive operators which may not have a dense domain) is due to
Donald [Don] (his method is also discussed in monograph [OP]). The Sakai-Donald theory
does not cover perturbations which are unbounded from both sides, and in particular is
not applicable to Pauli-Fierz systems.

The W �-algebraic form (1.1) of the Golden-Thompson inequality was �rst proven
by Araki [Ar2]. A di�erent proof, based on an application of Uhlmann's monotonicity
theorem for the relative entropy [Uh], was given in [Don].

1.2 Liouvilleans

The term Liouvillean has become quite popular in the recent literature on algebraic quan-
tum statistical physics. The meaning of this term can vary depending on the author.
Therefore, we would like to devote some space to a discussion of possible meanings of the
term Liouvillean in the context of W �-dynamical systems.

Let (M; �) be a W �-dynamical system. It is often important to construct a represen-
tation of M equipped with a unitary implementation of the W �-dynamics � . There are
two natural approaches to such construction.

The �rst approach presupposes that � has an invariant normal state !. In the cor-
responding GNS representation this state is represented by a cyclic vector 
. Then it is
easy to see that there exists a unique self-adjoint operator L such that

� t(A) = eitLAe�itL; L
 = 0:

The operator L de�ned this way can be called the 
-Liouvillean of � .
In the second approach one chooses the so-called standard representation of M on a

Hilbert space H. One of the objects that go together with the standard representation is
the so-called positive cone H+. A general theory of standard representations implies that
there exists a unique self-adjoint operator L such that

� t(A) = eitLAe�itL; eitLH+ � H+:

The operator L de�ned in this way can be called the standard Liouvillean of � , or simply
the Liouvillean of � .

The two setups overlap if the invariant state ! is faithful and 
 2 H+. In this case the

-Liouvillean of � coincides with the standard Liouvillean of � . This fact is important
for applications of W �-algebras to quantum statical physics.

If one is interested in the case of equilibrium, then the �rst approach to Liouvillean
suÆces. In non-equilibrium situations one needs the second approach.

The (standard) Liouvillean encodes in a particularly convenient way the properties
of the dynamics. This has been demonstrated in many places in the recent literature
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[BFS, DJ2, JP1, JP2, M]. The Liouvillean is also one of the main technical tools of our
paper.

If L is the Liouvillean for theW �-dynamics � , then one may ask what is the Liouvillean
for �Q. If Q is bounded, then the answer is LQ = L +Q� JQJ , where J is the modular
conjugation. We will establish the same result for unbounded Q under some mild technical
assumptions.

1.3 Organization of the paper

We start our paper with a concise review of some aspects of the theory of W �-algebras.
The choice of topics is motivated by some recent applications of W �-algebras to quantum
statistical mechanics [BFS, DJ1, DJ2, JP1, JP2, M]. Among other things, we will discuss
the two possible de�nitions of the Liouvillean. For most of the proofs in Section 2 the
reader is referred to the literature, especially [BR1, BR2].

In Section 3 we describe the perturbation theory of W �-dynamics and Liouvilleans.
We describe in particular the case of unbounded perturbations, which goes beyond what
we could �nd in the literature.

To make our paper more accessible, we have included in Section 4 the proof of the
Uhlmann's monotonicity theorem [Uh] and Donald's proof of the Golden-Thompson in-
equality [Don]. A somewhat di�erent presentation of this topic can be found in [OP].

Section 5 contains the perturbation theory of KMS states. The subject naturally
splits into three levels. The most restrictive level concerns analytic perturbations. In this
case the proofs are essentially algebraic and relatively simple. The next level concerns
bounded Q. This is the case considered by Araki [Ar1], see also [KL, BR2, Sa1, Si].
Finally, we develop perturbation theory for a class of unbounded Q. In all the cases we
prove a number of properties of 
Q, including the Peierls-Bogoliubov and the Golden-
Thompson inequalities. We stress that the Golden-Thompson inequality is at the same
time an important ingredient of our proof of the existence of 
Q. We also prove a number
of estimates that can be used to compare the vectors 
 and 
Q. Some of these estimates
appear to be new.

We have attempted to make the paper reasonably self-contained so that it can serve
as a brief introduction to some recent works on algebraic quantum statistical physics.
Our presentation is in some respects complementary to the presentation in the standard
literature such as [BR1, BR2, OP]. In particular, we tried to emphasize the use of the
standard representation and the Liouvillean.

Acknowledgments. The research of the �rst author was a part of the project Nr 2
P03A 019 15 �nanced by a grant of Komitet Bada�n Naukowych. A part of this work was
done during a visit of the �rst author at the Aarhus University supported by MaPhySto
funded by the Danish National Research Foundation and during a visit to University of
Montreal. The research of the second author was partly supported by NSERC.
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2 General facts about W �-algebras

In this section we recall some basic de�nitions and facts about W �-algebras which will
play a role in our paper. For additional information and proofs we refer the reader to
[Sa3, BR1, BR2, StZs, St].

There are two approaches to the theory of W �-algebras: the concrete and the abstract
approach. In the concrete approach one starts with the notion of a concrete W �-algebra
(called also a von Neumann algebra), de�ned as a �-algebra of bounded operators on a
Hilbert space which equals its own commutant. This is in fact the original de�nition that
dates back to the works of von Neumann. In the abstract approach, due to Sakai [Sa3],
one de�nes an abstract W �-algebra as a C�-algebra that possesses a predual.

These approaches are essentially equivalent: every abstract W �-algebra can be repre-
sented as a concreteW �-algebra and every concreteW �-algebra is an abstractW �-algebra.

The concrete approach is historically the �rst and is used in most monographs, eg.
[BR1, BR2, StZs]. The abstract approach has been developed in [Sa3]. In some respects
the abstract approach is more diÆcult from the pedagogical point of view|many ba-
sic properties of W �-algebras are more diÆcult to show starting from Sakai's de�nition
than starting from von Neumann's de�nition. Nevertheless, one can argue that Sakai's
approach is conceptually superior: it helps to distinguish the notions that are intrinsic
from the notions that are representation dependent. In our presentation we will stress the
abstract approach.

2.1 Abstract W �-algebras

If X is a Banach space, then Y is called a predual of X i� X is the dual of Y
M is an (abstract) W �-algebra if it is a C�-algebra which possesses a predual. It can

be shown that every W �-algebra M possesses a unique predual (up to isomorphism). It
will be denoted by M�. Elements of M� will be called normal functionals on M.

The topology onM generated by the seminorms j!(A)j, ! 2M�, is called the �-weak
topology. The topology onM generated by the seminorms j!(A�A)j1=2, ! 2M�, is called
the �-strong topology.
M+

� denotes the set of positive elements of M�. Elements of M
+
� satisfying !(1) = 1

are called normal states. The set of normal states is denoted M+;1
� .

Let ! 2 M+
� and let N be a W �-subalgebra of M. The support of ! with respect to

N is de�ned as

sN! := supfP 2 N : P is an orthogonal projection and !(1� P ) = 0g:

In particular, the support with respect to M will be called just the support of ! and
denoted s!. The support of ! wrt the center ofM will be called the central support of !
and denoted z!.
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! 2M+
� is called faithful i� s! = 1. A W �-algebra is called separable if it possesses a

faithful state.
LetM, N be W �-algebras and � :M! N a homomorphism. We say that � is normal

i� � is �-weakly continuous.

2.2 Concrete W �-algebras

If C � B(H), then the commutant of C will be denoted by C 0.
We will say thatM is a concreteW �-algebra (or a von Neumann algebra) i�M � B(H)

for some Hilbert space H andM00 =M. A concrete W �-algebra in B(H) is a W �-algebra
inside B(H) containing the identity. Every abstract W �-algebra is �-isomorphic to a
concrete W �-algebra.

Let M be an abstract W �-algebra and � : M 7! B(H) a representation. Then �(M)
is a concrete W �-algebra i� � is normal.

Given an injective normal representation � : M ! B(H), we will often identify M
with �(M).

2.3 Concrete aÆliations

In the following two subsections we recall the concept of operators aÆliated to a W �-
algebra. This concept is well-known in the case of concrete W �-algebras, see eg. [BR1].

LetM � B(H) be a concrete W �-algebra. Let A be a closed densely de�ned operator
on H and D(A) its domain. We say that A is aÆliated toM i� for all A0 2M0, A0D(A) �
D(A) and AA0 = A0A, on D(A). Let M(�) be the set of operators aÆliated to M.

Theorem 2.1 (1) If A is self-adjoint on H, then A is aÆliated to M i� all bounded
Borel functions of A belong to M.

(2) If A is a closed operator, then A is aÆliated to M i� A(1 + A�A)�1=2 2M.

2.4 Abstract aÆliations

The concept of aÆliation can be introduced for abstractW �-algebras in a fashion indepen-
dent of representations. Our de�nition of an operator aÆliated to an abstract W �-algebra
is directly inspired by the de�nition of the aÆliation in the context of C�-algebras due
originally to Baaj and Jungl [BaJu] and elaborated by Woronowicz [Wo]. We are grateful
to S. L. Woronowicz for a discussion of this issue.

LetM be an abstract W �-algebra. In this subsection we will consider linear operators
acting on M. The domain of an operator A on M will be denoted by Dom(A). (We
reserve the notation D(A) to denote the domain of an operator A acting on a Hilbert
space.)
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Let A be a linear mapping acting on M. We say that A is aÆliated to M and write
A 2M�, i� there exists B 2M such that kBk � 1, (1�BB�)M is �-weakly dense inM
and, for any C;D 2M,

C 2 Dom(A) and AC = D () BC = (1�BB�)1=2D:

If such B exists, then it is unique. We set z(A) := B. In [Wo], z(A) is called the
z-transform of A.

One can show that if A 2M�, then Dom(A) is �-weakly dense and A is closed, both
in the norm topology and in the �-weak topology.

Note that every A 2M may be identi�ed with a linear map onM with Dom(A) =M
(given by A(C) = AC) and thus it is an element ofM�. The z-transform of A 2M equals

z(A) = (1 + AA�)�1=2A:

The following theorem describes the relationship between abstract and concrete aÆl-
iations. It shows that in the case of an injective normal representation we can identify
abstract and concrete aÆliated operators.

Theorem 2.2 Let � : M ! B(H) be a normal representation preserving the identity.
Then there exists a unique extension of � to a surjective map � :M� ! �(M)(�) satisfying

(1 + �(A)�(A)�)�1=2 �(A) = �(z(A)):

If � is injective on M, then its extension on M� is injective as well.

2.5 Vector representatives of states

Let M � B(H) be a W �-algebra and 
 a vector in H. Then

!
(A) := (
j�(A)
)

de�nes a normal positive functional on M. We say that 
 is a vector representative of
!
. !
 is a state i� 
 is normalized.

The support and the central support of ! are also called the support and the central
support of 
 and denoted s
 and z
 respectively. We thus have

s!
 = s
; z!
 = z
:

The support of 
 wrt the W �-algebraM0 will be denoted s0
. One shows that

Ran s
 = (M0
)cl; Ran s0
 = (M
)cl;

where cl stands for the closure.
A vector 
 2 H is called cyclic if s0
 = 1. A vector 
 is called separating if s
 = 1, or

equivalently, if it is a vector representative of a faithful state.
The following construction, called after Gelfand, Naimark and Segal, associates to

every normal state a normal representation equipped with a cyclic vector.
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Theorem 2.3 (The GNS construction) Let ! be a normal state. Then there exist a
(unique up to a unitary equivalence) Hilbert space H, a normal representation � : M !
B(H) and a cyclic vector 
 2 H, such that

!(A) = (
j�(A)
):

The representation � is injective on z!M and zero on (1� z!)M.

2.6 Automorphisms of W �-algebras

Let Aut(M) denote the group of �-automorphisms of aW �-algebraM. We equip Aut(M)
with the following topology: if �� is a net in Aut(M) and � 2 Aut(M), then �� ! � i�
for all A 2 M, ��(A) ! �(A) �-weakly. This topology is called the pointwise �-weak
topology.

A one parameter pointwise �-weakly continuous group R 3 t 7! � t 2 Aut(M) is called
W �-dynamics on M. The pair (M; �) is called a W �-dynamical system.

Let M � B(H) be a concrete W �-algebra and � 2 Aut(M). We say that � is imple-
mented by U 2 U(H), where U(H) denotes the set of unitary operators on H, i�

�(A) = UAU�: (2.2)

Let t 7! � t be a W �-dynamics on M and t 7! U(t) 2 U(H) a strongly continuous group.
We say that � t is implemented by U(t) i�

� t(A) = U(t)AU(t)�: (2.3)

In general, neither �-automorphisms nor W �-dynamics need be implementable. If
they are, the implementation is not unique. In the next subsections we will describe two
situations where there exist distinguished implementations.

2.7 Automorphisms with a �xed invariant state

Let ! 2 M+
� and � 2 Aut(M). We de�ne ��! 2 M+

� by ��!(A) = !(�(A)). We say
that ! is �-invariant if ! = ��!. The automorphisms that leave ! invariant form a group
denoted Aut!(M).

If � 2 Aut!(M), then �(z!) = z! and �(s!) = s!. Thus � maps z!M and (1 � z!)M
into itself, and without loss of generality we may assume that z! = 1. By passing to
the GNS-representation we may assume that M � B(H) and that 
 is a cyclic vector
representative of !.

Proposition 2.4 There exists a unique representation

Aut!(M) 3 � 7! U
(�) 2 U(H)
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such that
U
(�)
 = 
; U
(�)AU
(�)� = �(A):

It is continuous if we equip Aut!(M) with the pointwise �-weak topology and U(H) with
the strong operator topology.

Proof. One just sets
U
(�)A
 = �(A)
; A 2M:

2

U
(�) will be called the 
-implementation of �.
Suppose now that t 7! � t is aW �-dynamics that leaves ! invariant. Then, by Theorem

2.4, � is implemented by a strongly continuous unitary group R 3 t 7! U
(� t) 2 U(H).
The self-adjoint generator of U
(� t) will be denoted L
 and called the 
-Liouvillean of
� t. (Thus U
(� t) = eitL




).
The following fact is a corollary of Proposition 2.4:

Proposition 2.5 The operator L
 is the unique self-adjoint operator such that

L

 = 0; eitL



Ae�itL



= � t(A); A 2M:

2.8 The Tomita-Takesaki theory

Let ! be a faithful state on M. By passing to the GNS representation we may assume
that M � B(H) and that ! has a vector representative 
 which is cyclic and separating.

The following theorem summarizes the results of the well-known Tomita-Takesaki
theory.

Theorem 2.6 (1) De�ne the operator S
 with the domain M
 by

S
A
 = A�
:

Then S
 is antilinear, closable, has a zero kernel and cokernel. Its closure will be
denoted also S
. Let S
 = J�

1=2

 be its polar decomposition;

(2) J is an antiunitary involution;

(3) �
 is a positive operator satisfying J�
J = ��1

 and �

 = 
;

(4) The map
� t!(A) := ��itA�it 2M; A 2M;

is a W �-dynamics on M and � log�
 is its 
-Liouvillean.

The W �-dynamics �! is called the modular dynamics.
We remark that in [BR1] the modular dynamics is de�ned by �t!(A) = �itA��it, so

�t! = ��t! . This de�nition has its roots in early mathematical works on Tomita-Takesaki
theory and is inconvenient for applications to quantum statistical physics.
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2.9 Standard form

One of the central notions of the theory of W �-algebras is the so-called standard form. It
has been introduced by Haagerup [Haa], following the work of Araki [Ar3] and Connes
[Co].

A W �-algebra in a standard form is a quadruple (M;H; J;H+), where H is a Hilbert
space, M � B(H) is a W �-algebra, J is an antiunitary involution on H (that is, J is
antilinear, J2 = 1, J� = J) and H+ is a self-dual cone in H such that:
(1) JMJ =M0;
(2) JAJ = A� for A in the center of M;
(3) J	 = 	 for 	 2 H+;
(4) AJAH+ � H+ for A 2M.

If M is an abstract W �-algebra, then we will say that (�;H; J;H+) is its standard
representation if � :M ! B(H) is an injective representation and (�(M);H; J;H+) is a
standard form.

Theorem 2.7 Let M be a W �-algebra with a faithful state !. Let � : M ! B(H)
be the corresponding GNS representation with the cyclic vector 
. Let J be the modular
conjugation obtained by the Tomita-Takesaki theory andH+ := f�(A)J�(A)
 : A 2Mgcl.
Then H+ is a self-dual cone and (�;H; J;H+) is a standard representation of M. If
(�;H; J1;H

+
1 ) is another standard representation of M and 
 2 H+

1 , then H
+
1 = H+

2 and
J1 = J2.

Theorem 2.8 Every W �-algebra M possesses a standard representation. Moreover, if
(�1;H1; J1;H

+
1 ) and (�2;H2; J2;H

+
2 ) are two standard representations of M, then there

exists a unique unitary operator W 0 : H1 !H2 such that

W 0�1(A) = �2(A)W
0;

W 0H+
1 = H+

2 :

We then automatically have W 0J1 = J2W
0.

IfM is separable, then Theorem 2.8 is proven eg. in [BR1]. In this case the existence
part follows from Theorem 2.7.

If M is non-separable, the theorem is proven using weights instead of states. The
details can be found in [Haa, St].

2.10 States and automorphisms in the standard representation

In this subsection we �x a W �-algebra in the standard form (M;H; J;H+).
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Theorem 2.9 (1)
H+ 3 
 7! !
 2M

+
�

is a bijection. Its inverse will be denoted

M+
� 3 ! 7! 
! 2 H

+:

(2) If 	;� 2 H+, then

k	� �k2 � k!	 � !�k � k	� �kk	+ �k:

(3) If 
 2 H+, then 
 is cyclic , 
 is separating , !
 is faithful.

(4) For 
 2 H+, s0
 = Js
J.

The vector 
! 2 H
+ will be called the standard vector representative of !.

A unitary operator U on H is called a standard unitary operator i�
(1) UH+ = H+,
(2) UMU� =M.

Theorem 2.10 (1) If U is a standard unitary operator, then JU = UJ and UM0U� =
M0.

(2) There exists a unique unitary representation

Aut(M) 3 � 7! U(�) 2 U(H) (2.4)

satisfying the following conditions:
(a) U(�)AU(�)� = �(A), A 2M;
(b) U(�)H+ � H+.

(3) The image of (2.4) is the group of standard unitary operators.

(4) (2.4) is continuous if Aut(M) is equipped with the pointwise �-weak topology and
U(H) with the strong operator topology.

(5) U(�)
! = 
��1�! for all ! 2M+
� .

U(�) will be called the standard implementation of �.
Suppose that t ! � t is a W �-dynamics on M and let U(� t) be as in Theorem 2.10.

Then there exists a unique self-adjoint L such that

U(� t) = eitL:

The operator L will be called the standard Liouvillean of the W �-dynamics � , or simply
the Liouvillean of � .
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Theorem 2.11 The Liouvillean of � is the unique self-adjoint operator L satisfying

eitLH+ � H+; eitLAe�itL = � t(A); A 2M;

for all t 2 R.

The �nal result we wish to mention follows easily from Theorems 2.9 and 2.10. It
has been a key tool in recent investigations of invariant states of a certain class of W �-
dynamical systems called Pauli-Fierz systems [BFS, DJ2, JP1, JP2, M].

Theorem 2.12 Let � be a W �-dynamics and L the corresponding Liouvillean. Then

f!� : � 2 H+ \KerLg = f! 2M+
� : ! is � t invariant g:

Consequently,

(1) dimKerL = 0 , there are no normal � -invariant states.

(2) dimKerL = 1 , there exists exactly one normal � -invariant state.

We will not make use of this result in our paper.

2.11 Comparison

In some circumstances the setups of Subsections 2.7 and 2.10 overlap. Recall that in
Subsection 2.7 we have a W �-algebra M with a faithful state !. We can assume that
M � B(H) and that ! has a cyclic vector representative 
.

By Theorem 2.7, we can construct J and H+ so that (M;H; J;H+) is a standard form
and 
 2 H+.

Proposition 2.13 Let � 2 Aut!(M). Suppose that U 2 U(H) implements �, that is
�(A) = UAU�, A 2M. Then the following conditions are equivalent:

(1) U
 = 
 (U = U
(�) is the 
-implementation of �);

(2) UH+ = H+ (U = U(�) is the standard implementation of �).

Proof. We know from Theorem 2.4 that the 
-implementation of � exists and is unique.
We also know from Theorem 2.10 that the standard implementation of � exists and is
unique. Hence, it is suÆcient to show the implication in one direction.

(2))(1). The vector U
 determines the state ��! = !. Hence the vectors U
, 

belong to the cone H+ and determine the same state. This implies U
 = 
. 2

As a corollary, if the invariant state ! is faithful, then the concepts of the 
-Liouvillean
and the standard Liouvillean coincide.
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Proposition 2.14 Let t 7! � t be a W �-dynamics on M that leaves invariant a faithful
state !. Suppose that L is a self-adjoint operator such that � t(A) = eitLAe�itL. Then the
following conditions are equivalent:

(1) L
 = 0 (L = L
 is the 
-Liouvillean of �);

(2) For t 2 R, eitLH+ � H+ (L is the standard Liouvillean of �).

2.12 KMS states

In this subsection we recall basic properties of KMS states. Let (M; � t) be aW �-dynamical
system.

De�nition 2.15 Let � � 0. ! 2M+;1
� is called a (�; �)-KMS state if for any A;B 2M

there exists a function FA;B(z), analytic in the strip fz : 0 < Imz < �g, continuous on its
closure, and satisfying the KMS boundary conditions for t 2 R:

FA;B(t) = !(A� t(B));

FA;B(t+ i�) = !(� t(B)A):

Theorem 2.16 Let ! be a (�; �)-KMS state and � > 0. Then

(1) ! is � -invariant.

(2) s! = z!. (In particular, ! is faithful on z!M).

(3) If B 2 z!Z, where Z is the center of M, then � t(B) = B.

(4) Let �! be the modular dynamics on z!M generated by !. Then

� t
��
z!M

= ��t! :

The Tomita-Takesaki theory and the KMS condition are in a way converse to one
another:

Theorem 2.17 Let ! be a faithful state on M and �! its modular dynamics. Then ! is
a (�!; 1)-KMS state.

Let (M;H; J;H+) be a standard form. We say that 
 is a standard (�; �)-KMS vector
i� it is a standard vector representative of a (�; �)-KMS state.

Suppose that L is the Liouvillean of � . The following theorem gives a criterium for
the KMS property expressed in terms of Hilbert spaces.

Theorem 2.18 Let 
 2 H+ be a unit vector. Then
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(1) 
 is a standard (�; �)-KMS vector i� M
 � D(e��L=2) and

e��L=2A
 = JA�
; A 2M:

(2) If in addition 
 is cyclic and �
 is the corresponding modular operator, then

�
 = e��L:

2.13 Convergence

It is often convenient to reduce the study of W �-dynamics and normal states to the study
of corresponding Liouvilleans and standard vector representatives. In this subsection we
apply this point of view to the convergence properties of W �-dynamics, invariant states
and KMS states.

Theorem 2.19 Assume that (M;H; J;H+) is a W �-algebra in the standard form.

(1) Suppose that �n is a sequence ofW
�-dynamics with Liouvilleans Ln, L is a self-adjoint

operator, and Ln ! L in the strong resolvent sense. Then

� t(A) := eitLAe�itL

is a W �-dynamics on M and L is its Liouvillean.

(2) Assume in addition that !n 2M
+
� are �n-invariant and 
n are their standard vector

representatives. Suppose also that w� limn 
n = 
. Then 
 2 H+ and the functional
!
 is � -invariant.

(3) Assume in addition that !n are (�n; �)-KMS states and that 
 6= 0. Then !
=k
k is
a (�; �)-KMS state.

Proof. (1) Let A 2M. We have s� limn!1 e�itLn = eitL, hence

s� lim
n!1

eitLnAe�itLn = eitLAe�itL 2M:

Therefore � is a W �-dynamics.
Since H+ is closed and eitLn preserve H+, eitL preserves H+. Hence L is the Liouvillean

of � .
(2) Since H+ is weakly closed, 
 2 H+. Moreover, since 
n 2 D(Ln) and Ln
n = 0,

by Proposition A.6, 
 2 D(L) and L
 = 0.
(3) Let A 2M. 
n are (�n; �)-KMS vectors, hence

exp(��Ln=2)A
n = JA�
n:

Since exp(��Ln=2)! exp(��L=2) in the strong resolvent sense, JA�
n ! JA�
 weakly,
and A
n ! A
 weakly, it follows from Proposition A.6 that A
 2 D(e��L=2) and

e��L=2A
 = JA�
: (2.5)

Hence 
=k
k is a (�; �)-KMS vector. 2
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2.14 Analytic elements

Let (M; �) be a W �-dynamical system. An element A 2 M is called � -analytic if there
exists a strip I(r) = fz : jImzj < rg and a function f : I(r) 7!M such that:
(1) f(t) = � t(A) for t 2 R;

(2) I(r) 3 z 7! �(f(z)) is analytic for all � 2M�.

Under these conditions we write f(z) = � z(A). A standard argument based on the
uniform boundedness theorem shows that f(z) is actually analytic in the norm of M.

If r =1, then we say that A is � -entire.
For A 2M and n 2 N let

An =
�n
�

� 1

2

Z
R

e�nt
2

� t(A)dt:

Theorem 2.20 An is � -entire and An % A in the �-strong topology. Thus the � -entire
elements form a �-strongly dense subspace of M. This subspace is denoted by M� .

For additional discussion of analytic elements we refer the reader to [BR1].

3 The perturbation theory of W �-dynamics

In this section, given a W �-dynamics � and a perturbation Q, we construct a perturbed
W �-dynamics �Q. We also construct the so-called Araki-Dyson expansionals E�Q(t) which
intertwine these two dynamics. We describe these objects in three cases: for analytic
perturbations, bounded perturbations, and for a large class of unbounded perturbations.
The constructions in the �rst two cases are well known, see [Ar6, BR2].

3.1 Bounded perturbations

Let (M; �) be a W �-dynamical system and Q a self-adjoint element of M. The following
formula de�nes the W �-dynamics �Q on M:

� tQ(A) =
X
n�0

in
Z
0�tn�:::t1�t

[� tn(Q); [� � � ; [� t1(Q); � t(A)] � � � ]]dt1 � � �dtn: (3.6)

If Æ is the generator of � , then the generator of � tQ has the same domain as Æ and
equals

ÆQ(A) = Æ(A) + i[Q;A]:

Let E�Q(t) be a one-parameter family of elements of M given by

E�Q(t) =
X
n�0

in
Z
0�tn�:::t1�t

� tn(Q) � � � � t1(Q)dt1 � � �dtn: (3.7)
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We will call E�Q(t) the Araki-Dyson expansionals. Whenever there is no danger of confu-
sion we will write EQ(t) for E

�
Q(t).

We remark that integrals in (3.6) and (3.7) converge in �-weak topology and de�ne a
norm-convergent series of bounded operators.

The expansions (3.6) and (3.7) played an important role in the works of Schwinger,
Tomonaga and Dyson on QED. The operators E�Q(t) are closely related to the so-called
Connes cocycles [Co].

Let us list some properties of Araki-Dyson expansionals:

Theorem 3.1 Let t; t1; t2 2 R. Then

(1) EQ(t) are unitary elements of M;

(2) � tQ(A) = E�Q(t)�
t(A)E�Q(t)

�1;

(3) EQ(t) = eit(L+Q)e�itL;

(4) EQ(t)
�1 = EQ(t)

� = � t(EQ(�t));

(5) EQ(t1 + t2) = EQ(t1)�
t1(EQ(t2)).

3.2 Analytic perturbations

In this subsection we assume that Q is � -entire. Then �Q extends to C by the formula

� zQ(A) =
X
n�0

(iz)n
Z
0�sn�:::s1�1

[� snz(Q); [� � � ; [� s1z(Q); � z(A)] � � � ]]ds1 � � �dsn; (3.8)

valid for A 2M� . Thus M� =M�Q.
For � -analytic Q, the Araki-Dyson expansionals can be de�ned for all complex z by

E�Q(z) =
X
n�0

(iz)n
Z
0�sn�:::s1�1

� snz(Q) � � � � s1z(Q)ds1 � � �dsn: (3.9)

The series (3.8) and (3.9) converge in norm uniformly for z in compact sets and de�ne
analytic functions with values in M.

Theorem 3.2 Let z; z1; z2 2 C . Then

(1) EQ(z) 2M� ;

(2) � zQ(A) = E�Q(z)�
z(A)E�Q(z)

�1;

(3) EQ(z)e
izL = eiz(L+Q);

(4) EQ(z)
�1 = EQ(z)

� = � z(EQ(�z));

(5) EQ(z1 + z2) = EQ(z1)�
z1(EQ(z2)).
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3.3 Unbounded perturbations

Let (M; �) be a W �-dynamical system on a Hilbert space H. Let Q be a self-adjoint
operator aÆliated to M. Assume that � is implemented by

� t(A) = eitLAe�itL

for some self-adjoint operator L. We formulate the following assumption on Q:

Assumption 3.A L+Q is essentially self-adjoint on D(L) \ D(Q).

Theorem 3.3 Suppose that Assumption 3.A holds and let

� tQ(A) = eit(L+Q)Ae�it(L+Q):

Then �Q is a W �-dynamics on M.

Proof. Let A 2M. The Trotter product formula (Theorem A.1) yields that

� tQ(A) = s� lim
n!1

�
eitL=neitQ=n

�n
A
�
e�itQ=ne�itL=n

�n
:

Since exp(�itQ=n) 2M, � tQ(A) 2M. Therefore, �Q is a W �-dynamics. 2

Under Assumption 3.A we set

E�Q(t) := eit(L+Q)e�itL: (3.10)

Again, for simplicity we will often write EQ(t) for E
�
Q(t). By the Trotter product formula

EQ(t) = s� lim
n!1

exp(itQ=n) exp(it� t=n(Q)=n) � � � exp(it� t(n�1)=n(Q)=n);

hence EQ(t) 2M.

Theorem 3.4 Suppose that Assumption 3.A holds. Then all the statements of Theorem
3.1 hold.

3.4 Perturbations of Liouvilleans

We continue with the setup of the previous subsection|we consider a W �-algebra M �
B(H) with a W �-dynamics � implemented by a self-adjoint operator L and assume that
Q is a selfadjoint operator aÆliated to M.

In addition, we suppose that (M;H; J;H+) is a standard form and that L is the
Liouvillean of � .

De�ne
LQ := L +Q� JQJ: (3.11)

We set an additional hypothesis:
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Assumption 3.B The operator LQ is essentially self-adjoint on D(L)\D(Q)\D(JQJ):

The main result of this section is:

Theorem 3.5 Assume that Assumptions 3.A and 3.B hold. Then LQ is the Liouvillian
for �Q.

Proof. We have to show that for t 2 R:
(1) � tQ(A) = eitLQAe�itLQ , A 2M;

(2) eitLQH+ � H+.
Clearly,

eitJQJ = Je�itQJ 2M0: (3.12)

By de�nition, D(L+Q) � D(L)\D(Q). Therefore, D(L+Q)\D(JQJ) � D(L)\D(Q)\
D(JQJ). Hence, by Hypothesis 3.B, LQ is essentially self-adjoint on D(L+Q)\D(JQJ),
and we can use the Trotter formula (Theorem A.1) to write

eitLQ = s� lim
n!1

�
e(itL+Q)=ne�itJQJ=n

�n
:

Therefore, for all A 2M,

� tQ(A) = eit(L+Q)Ae�it(L+Q)

= s� lim
n!1

�
eit(L+Q)=ne�itJQJ=n

�n
A
�
e�itJQJ=neit(L+Q)=n

�n
= eitLQAe�itLQ :

(3.13)

This yields (1).
To establish (2), note that since eitQ and eitJQJ commute

eit(Q�JQJ) = eitQJeitQJ:

Hence
eit(Q�JQJ)H+ � H+:

Moreover,
eitLH+ � H+:

By de�nition, D(Q) \ D(JQJ) � D(Q + JQJ). Therefore, D(L) \ D(Q � JQJ) �
D(L)\D(Q)\D(JQJ). Hence LQ is essentially self-adjoint on D(L)\D(Q� JQJ) and
it follows from Theorem A.1 that

eitLQ = s� lim
n!1

�
eitL=neit(Q�JQJ)=n

�n
:

This and the fact that H+ is a closed set imply (2). 2

The following formulas are sometimes useful:
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Theorem 3.6 (1) Assume that Assumptions 3.A and 3.B hold. Then for t 2 R,

EQ(t) = eitLQe�it(L�JQJ);

eitLQ = JEQ(t)Je
itLEQ(�t)

�1:

(2) Assume that Q is � -analytic. Then for z 2 C ,

EQ(z) = eizLQe�iz(L�JQJ);

eizLQ = JEQ(z)Je
izLEQ(�z)

�1:

4 Relative modular theory and relative entropy

One of the main tools used in our paper is the relative modular theory and relative entropy.
We devote this section to a concise introduction to this subject. Our presentation follows
partly [Ar4, Ar5, Don, Uh, OP].

4.1 Relative modular operator

Let M � B(H) be a W �-algebra. Let �;	 2 H. Following Araki [Ar5], we de�ne the
operator S�;	 on domainM	+ (1� s0	)H by

S�;	(A	+�) = s	A
��;

where A 2M and � 2 (1� s0	)H =M	?. It is easy to check that S�;	 is a well de�ned
antilinear closable operator. Its closure will be denoted by the same symbol.

It is useful to note that

M	 = fA	 : A 2M; As	 = Ag;

and that for A 2M satisfying As	 = A and � as above we have

S�;	(A	 +�) = A��: (4.14)

The positive operator
��;	 = S��;	S�;	

will be called the relative modular operator. The following facts are proven in [Ar5]:

Theorem 4.1 (1) Ker��;	 = Ker s0	s�;

(2) ���;�	 = �2

�2
��;	, �; � 2 R;
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(3) if B belongs to the center of M, then B commutes with ��;	.

In the remaining part of the theorem we assume that (M;H; J;H+) is a standard form
and �;	 2 H+. Then

(4) S�;	 = J�1=2
�;	;

(5) �
1=2
�;		 = �

1=2
�;	s�	 = s0	�;

(6) J�	;�J��;	 = ��;	J�	;�J = s0	s�:

The following convergence property of relative modular operators will be useful.

Theorem 4.2 Let (M;H; J;H+) be a standard form. Suppose that 	n;�n 2 H
+, that

��n;	n ! M in the strong resolvent sense, and that w� limn	n = 	, s� limn s	n = s	
and w� limn�n = �. Then M = ��;	.

Proof. For A 2M,
�

1=2
�n;	n

A	n = Js	nA
��n:

Note that A	n ! A	 weakly and Js	nA
��n ! Js	A

�� weakly. Hence, by Proposition
A.6 and remark after it, A	 2 D(M) and

MA	 = Js	A
��:

Now let � 2 (1 � s0	)H and �n := (1 � s0	n)�. Since s0	n ! s0	 strongly, �n ! �
strongly. Since ��n;	n�n = 0, � 2 D(M) and M� = 0. This yields M = ��;	. 2

4.2 Relative entropy

Let M be a W �-algebra. The relative entropy of two functionals  ; � 2 M+
� , denoted

Ent( j�), is de�ned as follows. Choose a standard form (�;H; J;H+) ofM and let 	, �,
be the standard vector representatives of  , �. Then

Ent( j�) =

8<
:
(	j log��;		) if s � s�;

�1 otherwise:

The relative entropy was introduced by Araki in fundamental papers [Ar4, Ar5]. In the
above de�nition we used the sign and ordering convention of [BR2]. The relative entropy
is discussed in detail in the monograph [OP].

We will need the following well-known facts [Ar4, Ar5, OP, Don].

Theorem 4.3 (1)

Ent( j�) = lim
t#0

t�1
�
k�

t=2
�;		k

2 � k	k2
�
; (4.15)
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(2) for �; � 2 R
+ ,

Ent(� j��) = �Ent( j�) + � (1)(log�� log�);

(3)
Ent( j�) �  (1)(log�(s )� log (1));

in particular, if �(s ) =  (1) then

Ent( j�) � 0;

(4) if Q is a self-adjoint element in the center of M and  (1) = 1, then

Ent( j�) +  (Q) � log�(eQ):

Proof. (1) Assume �rst that s	 � s�. Then the statement follows from the spectral
theorem, monotone convergence theorem and the fact that

lim
t#0

t�1(xt � 1) = log x;

monotonically on the intervals 0 � x � 1, x � 1. If s�	 6= 	, then 	 = 	1 + 	2, where
	1 6= 0, 	1 ? 	2 and 	1 2 Ker��;	, and one easily shows that the limit in (4.15) is �1.

Scaling property of Theorem 4.1 yields (2).
We �rst prove the part (3) under the assumption �(s ) =  (1) = 1. Using

log x � x� 1; x > 0; (4.16)

we get
log��;	 � ��;	 � 1:

Thus
Ent( j�) � k�

1=2
�;		k

2 � k	k2 = �(s )�  (1) = 0:

(We used �
1=2
�;		 = s0	� = Js	�).

To extend (3) to arbitrary �,  , use (2).
To prove (4), note that since eQ commutes with ��;	

log��;	 +Q� log�(eQs ) = log
�
��;	e

Q=�(eQs )
�

The inequality (4.16) yields

log
�
��;	e

Q=�(eQs )
�
� ��;	e

Q=�(eQs )� 1:

Hence

Ent( j�) +  (Q)� log�(eQs ) � k�
1=2
�;	e

Q=2	k2=�(eQs )� 1

= keQ=2s0 �k
2=�(eQs )� 1 = 0;

where we used keQ=2s0 �k = keQ=2Js J�k = kJeQ=2s �k = keQ=2s �k. 2
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4.3 Uhlmann's monotonicity theorem

In this subsection we prove a relative entropy inequality due to Uhlmann [Uh]. Our proof
follows the steps of an argument in [OP] and is based on an interpolation theorem for
self-adjoint operators (Theorem A.7 in the appendix). A di�erent proof can be found in
[PuWo].

Let M1 and M2 be W
�-algebras. A map  : M1 7! M2 is called a Schwartz map i�

(1) = 1 and (A�A) � (A)�(A).

Theorem 4.4 (Uhlmann's monotonicity theorem) Let  i; �i 2M
+
i;�, i = 1; 2, and

let  :M1 7!M2 be a Schwartz map such that

 2 Æ  �  1; (4.17)

�2 Æ  � �1: (4.18)

Then
Ent( 2j�2) � Ent( 1j�1):

The following inequality is a consequence of Uhlmann's theorem:

Corollary 4.5 Let N �M be W �-algebras and  ; � 2M+;1
� . Then

EntM( j�) � Ent( 
��
N
j�
��
N
):

Proof. The inclusion map  : N!M is Schwartz and satis�es the conditions of Theorem
4.4 with respect to  ; � and the restricted states  

��
N
, �
��
N
. 2

To prove Uhlmann's theorem it is convenient to work in the standard representation
and to translate the problem into the language of operators on Hilbert spaces. Hence we
assume thatMi � B(Hi) and that (Mi;Hi; Ji;H

+
i ) is a standard form. Let  :M1 !M2

be a Schwartz map. Let  i 2 M
+
i;� satisfy (4.17) and let 	i be the standard vector

representatives of  i. Set D1 :=M1	1 + (M1	1)
?. We de�ne a linear map T : D1 7! H2

by
T (A	1 +�1) := (A)	2

for A 2M1 and �1 2 (M1	1)
?. Since (1) = 1, T	1 = 	2.

Lemma 4.6 The map T is well-de�ned and extends to a contraction from H1 to H2.
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Proof.

k(A)	2k
2 =  2((A)

�(A))

�  2((A
�A))

�  1(A
�A) = kA	1k

2:

(4.19)

Hence if (A � B)	1 = 0, then ((A) � (B))	2 = 0. Therefore, T is well de�ned. By
(4.19), T is a contraction. 2

Let �i be the standard vector representative of �i. The main step of the proof of
Theorem 4.4 is the following interpolation estimate for the relative modular operator:

Lemma 4.7 For 0 � t � 1,

k�
t=2
�2;	2

	2k � k�
t=2
�1;	1

	1k:

Proof. The space D1, de�ned above, is a core for �
1=2
�1;	1

. Let A 2 M with A = As	1
.

For 
1 = A	1 +�1 2 D1 we get

�1=2
�2;	2

T
1 = �1=2
�2;	2

(A)	2 = Js	2
(A)��2;

�
1=2
�1;	1


1 = �
1=2
�1;	1

A	1 = JA��1:

By (4.18)

kJs	2
(A)��2k

2 � �2((A)(A)
�) � �2((AA

�)) � �1(AA
�) = kJA��1k

2:

Hence
k�1=2

�2;	2
T
1k � k�1=2

�1;	1

1k:

By Lemma 4.6, T is a contraction. Hence, by Theorem A.7, for t 2 [0; 1]

k�
t=2
�2;	2

T
1k � k�
t=2
�1;	1


1k:

Setting 
1 = 	1 we derive the statement. 2

Proof of Theorem 4.4. Using Theorem 4.3 (1) and Lemma 4.7 we obtain

Ent( 2j�2) = lim
t#0

t�1
�
k�

t=2
�2;	2

	2k
2 � k	2k

2
�

� lim
t#0

t�1
�
k�

t=2
�1;	1

	1k
2 � k	1k

2
�

= Ent( 1j�1):

2
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5 Perturbation theory of KMS states

In this section, given a (�; �)-KMS state ! and a perturbationQ, we describe the construc-
tion of the perturbed �-KMS state !Q. We also prove various properties of this state,
including the Peierls-Bogoliubov and the Golden-Thompson inequalities. The Golden-
Thompson inequality plays an important role in our construction.

The construction is performed on three levels: for analytic perturbations, bounded
perturbations and a class of unbounded perturbations. Although the results on the �rst
two levels are well known, the method of the proof on the second level (bounded pertur-
bations) is new. The result concerning unbounded perturbations are new and they are
the main results of our paper.

5.1 Bounded perturbations

Let (M;H; J;H+) be a W �-algebra in the standard form. Let � be the W �-dynamics
on M with the standard Liouvillian L. Let ! be a faithful (�; �)-KMS state with the
standard vector representative 
.

Let Q 2 M be self-adjoint and �Q the perturbed W �-dynamics de�ned by (3.6). By
Theorem 3.5, LQ = L +Q� JQJ is the standard Liouvillean of �Q.

The following two theorems summarize the (bounded) perturbation theory of KMS
states developed by Araki.

Theorem 5.1 (1) 
 2 D(e��(L+Q)=2). Set


Q := e��(L+Q)=2
; !Q(A) = (
QjA
Q)=k
Qk
2:

(2) 
Q 2 H
+.

(3) 
Q is a cyclic and separating vector for M.

(4) The state !Q is a (�Q; �)-KMS state.

(5) log�
Q = ��LQ.

(6) For all self-adjoint Q1; Q2 2M,

(
Q1
)Q2

= 
Q1+Q2
; (!Q1

)Q2
= !Q1+Q2

:

(7) log�
Q;
 = log�
 � �Q.

(8) log�
;
Q = log�
Q + �Q.

(9) Ent(!j!Q) + �!(Q) = � log k
Qk
2.

(10) Ent(!Qj!)� �!Q(Q) = log k
Qk
2.

24



(11) The Peierls-Bogoliubov inequality holds:

e��(
jQ
)=2 � k
Qk:

(12) The Golden-Thompson inequality holds:

k
Qk � ke��Q=2
k:

(13) Assume that Qn 2 M are self-adjoint and Qn ! Q strongly. Then 
Qn ! 
Q and
!Qn ! !Q in norm.

Theorem 5.2 Let

T�;n = f(�1; � � � ; �n) 2 R
n : �i � 0; i = 1; : : : ; n; �1 + � � �+ �n � �=2g:

Then 
 2 D(e��1LQ � � � e��nLQ) for (�1; : : : ; �n) 2 T�;n, the function

T�;n 3 (�1; : : : ; �n) 7! e��1LQ � � � e��nLQ


is norm continuous,

sup
(�1;��� ;�n)2T�;n

ke��1LQ � � � e��nLQ
k � kQkn; (5.20)

and


Q =
1X
n=0

Z
� � �

Z
T�;n

e��1LQ � � � e��nLQ
d�1 � � �d�n: (5.21)

We have separated Theorem 5.2 from the other results of Araki's theory for several
reasons.

Theorem 5.2 contains the main idea of Araki's original proof of Theorem 5.1. In fact,
his proof was centered around the expansion (5.21). Our methods are in a certain sense
orthogonal to Araki's and we do not need Theorem 5.2 to prove Theorem 5.1.

The expansion (5.21) is an additional information about 
Q which, strictly speaking,
cannot be derived by our methods alone. Hence, for bounded perturbations our method
yields a slightly weaker result then the Araki method. On the other hand, our method is
simpler and easily extends to a large class of unbounded perturbations Q.

Both Araki and our method start with analytic perturbations. In this case, the proofs
of Theorems 5.1 and 5.2 are essentially algebraic and relatively easy. For a general
bounded Q one picks a sequence of analytic Qn with Qn ! Q and uses various limit
arguments to establish the theorems. The key di�erence between the two methods con-
cerns these limit arguments|we use weak limits while Araki uses strong limits. The use
of weak limits leads to some technical simpli�cations and the method naturally extends
to unbounded perturbations.

Finally, we mention some additional estimates which can be used to compare 
 with

Q.
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Theorem 5.3 (1) k
Q � 
k � (e�kQk=2 � 1):

(2)
�(
jQ
)=2 � k
k2 � (
j
Q) � �(
jQ
Q)=2

� (
j
Q)� k
Qk
2 � �(
QjQ
Q)=2:

(3)
�(
jQ
)=2 � k
k2 � k
Qk

2 � �(
QjQ
Q)=2:

(4)
k
Q � 
k2 � �(
jQ
)=2� �(
QjQ
Q)=2:

(5)
k
Q � 
k � �f(kQ
k; kQ
Qk)=2;

where, for x; y > 0, we set

f(x; y) :=

( x�y
log x�log y

; x 6= y;

x x = y:

The estimate (1) follows immediately from (5.20) and is of course well-known. The
estimates (2){(5) appear to be new.

5.2 Analytic perturbations|proofs

In this section we prove Theorem 5.1 for analytic perturbations Q 2M� . The proofs are
based on the algebraic arguments and are relatively easy.
Proof of Theorem 5.1 in the analytic case (1) For t real,

EQ(t)
 = eit(L+Q)e�itL
 = eit(L+Q)
:

Since EQ(t) has an analytic continuation to an entire function z 7! EQ(z), 
 2 D(e
iz(L+Q))

for all z 2 C and EQ(z)
 = eiz(L+Q)
: In particular,


Q = EQ(i�=2)
: (5.22)

(2) We have

EQ(i�=2) = EQ(i�=4)�
i�=4(EQ(i�=4))

= EQ(i�=4)�
i�=2(EQ(i�=4)

�):
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Hence, by (5.22),


Q = EQ(i�=4)e
��L=2EQ(i�=4)

�


= EQ(i�=4)JEQ(i�=4)


Therefore, 
Q 2 H
+.

(3) Since EQ(i�=2) is an invertible element of M, 
Q is obviously a cyclic and sepa-
rating vector for M.

(4) Theorem 3.6 yields

e��LQ=2 = JEQ(�i�=2)Je
��L=2EQ(�i�=2)

�1;

and so M
Q =M
 � D(e��LQ=2). Moreover, for A 2M,

e��LQ=2A
Q = JEQ(�i�=2)Je
��L=2EQ(�i�=2)

�1AEQ(i�=2)


= JEQ(�i�=2)EQ(i�=2)
�A�EQ(�i�=2)

�1�


= JEQ(�i�=2)EQ(�i�=2)
�1A�EQ(i�=2)
 = JA�
Q:

(5) By Theorem 3.5, we know that LQ := L +Q� JQJ is the Liouvillean of �Q. By
Theorem 2.18 we know that �
Q = e��LQ .

(6) follows from
E
�Q1
Q2

(i�=2)E�Q1
(i�=2) = E�Q1+Q2

(i�=2):

(7) The relation
S
EQ(i�=2)

�A
 = A�
Q = S
Q;
A


implies that
S
Q;
 = S
EQ(i�=2)

�:

Hence

�
;
Q = S�
;
QS
;
Q

= EQ(i�=2)�
E
�
Q(i�=2)

=
�
EQ(i�=2)e

��L=2
� �
e��L=2EQ(i�=2)

�
�

= e��(L+Q);

where we used �
 = e��L.
(8) follows from (7) if we note that, by (6), (
Q)�Q = 
.
(9) Set ~Q := Q + ��1 log k
Qk

2. Then !Q = ! ~Q and 
 ~Q := 
Q=k
Qk. Using (7) we
get

log�~
Q;

= log�
 � � ~Q;
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which implies
Ent(!j!Q) = ��!( ~Q):

(10) Similarly, using (8) we get

log�
;~
Q
= log�
 ~Q

+ � ~Q;

which implies
Ent(!Qj!) = �!Q( ~Q):

(11) Since Ent(!j!Q) � 0, (9) yields that

e��(
jQ
)=2 � k
Qk:

This is the Peierls-Bogoliubov inequality.
(12) Let N be the Abelian von Neumann subalgebra of M generated by Q. Then,

log k
Qk
2 = Ent(!Qj!)� �!Q(Q)

� Ent
�
!Q
��
N
j!
��
N

�
� �!Q(Q)

� log!(e��Q)

= log ke��Q=2
k2;

(5.23)

and so
k
Qk � ke��Q=2
k:

This is the Golden-Thompson inequality. In the �rst step of (5.23) we used (10), in the
second|Uhlmann's estimate of Corollary 4.5 and in the third|Theorem 4.3 (4) with Q
replaced by ��Q.

(13) is a general fact which has the same proof for analytic and bounded perturbations.
Its proof is given in the next section. 2

We remark that the Golden-Thompson inequality was �rst proven by Araki [Ar2]. The
proof described in (12) is due to Donald [Don].

5.3 Bounded perturbations|proofs

In this subsection we prove Theorem 5.1. We assume that Q is an arbitrary self-adjoint
element of M. By Theorem 2.20, we can �nd a sequence Qn of self-adjoint � -analytic
elements such that Qn ! Q �-strongly. This implies that Qn ! Q strongly and the
following lemma holds:

Lemma 5.4 (1) L+Qn ! L +Q in the strong resolvent sense.
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(2) LQn ! LQ in the strong resolvent sense.

Proof of Theorem 5.1. (1) Clearly, limn e
��Qn=2
 = e��Q=2
. Hence there exists C

such that for all n
ke��Qn=2
k � C:

By the Golden-Thompson inequality for analytic perturbations,

k
Qnk � ke��Qn=2
k:

Hence k
Qnk � C. Now by Proposition A.6, 
 2 D(e��(L+Q)=2) and

w� lim
n!1

e��(L+Qn)=2
 = e��(L+Q)=2
:

(2) follows from the analytic case of (2) and the fact that H+ is weakly closed.
(3) Let P := 1� s
Q. Clearly, P 2M, � tQ(P ) = P and P
Q = 0. Set


(z) = e�z(L+Q)
:

By Proposition A.2, the vector-valued function 
(z) is analytic inside the strip 0 < Rez <
�=2 and norm continuous on its closure. Moreover, 
(�=2) = 
Q and

eit(L+Q)P
(it+ �=2) = eit(L+Q)P e�it(L+Q)
(�=2)

= � tQ(P )
Q

= P
Q = 0:

Thus, for all real t, P
(it+ �=2) = 0. This implies that P
(z) = 0 for all z in the strip
0 � Rez � �=2. In particular, P
(0) = P
 = 0. Since 
 is a separating vector for M,
P = 0. Hence s
Q = 1 and 
Q is a separating vector for M.

(4) follows from the analytic case of (4) and Theorem 2.19.
(5), (7) and (8) follow from their analytic versions and Theorem 4.2.
(6) Let now Q1; Q2 be two self-adjoint elements and Q1;n, Q2;n the sequences of the

corresponding analytic approximations. Then, by the analytic case of (6)

(
Q1;m
)Q2;n

= 
Q1;m+Q2;n
:

As n!1, (
Q1;m
)Q2;n

! (
Q1;m
)Q2

weakly, 
Q1;m+Q2;n
! 
Q1;m+Q2

weakly, and so

(
Q1;m
)Q2

= 
Q1;m+Q2
: (5.24)

By the arguments of the proof of (1), as m ! 1, 
Q1;m+Q2
! 
Q1+Q2

weakly.
Moreover,

(
Q1;m
)Q2

= e��(L+Q1;m�JQ1;mJ+Q2)=2
Q1;m
;
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Q1;m
! 
Q1

weakly and L+Q1;m � JQ1;mJ +Q2 ! L+Q1 � JQ1J +Q2 in the strong
resolvent sense. Hence by Proposition A.6, 
Q1

2 D(e��(L+Q1�JQ1J+Q2)=2 and

(
Q1
)Q2

= e��(L+Q1�JQ1J+Q2)=2
Q1
= 
Q1+Q2

:

(9) and (10) follow from (7) and (8) precisely as in the analytic case.
(11) (The Peierls-Bogoliubov inequality) follows from (9) just as in the analytic case.
(12) limn e

��Qn=2
 = e��Q=2
 implies

lim
n!1

ke��Qn=2
k = ke��Q=2
k: (5.25)

Moreover, w� limn
Qn = 
Q implies

k
Qk � lim inf
n!1

k
Qnk: (5.26)

By the Golden-Thompson inequality for analytic perturbations,

k
Qnk � ke��Qn=2
k: (5.27)

Now (5.25), (5.26) and (5.27) imply the Golden-Thompson inequality:

k
Qk � ke��Q=2
k: (5.28)

(13) Let Qn 2 M be an arbitrary sequence of self-adjoint elements which converges
strongly to Q. The proof of (1) yields that 
Qn ! 
Q weakly. Using �rst the chain rule
and then the Golden-Thompson inequality we get

k
Qnk = k(
Q)Qn�Qk � ke��(Qn�Q)=2
Qk:

Hence, lim supn k
Qnk � k
Qk. Combining this estimate with (5.26) we get k
Qnk !
k
Qk, and so 
Qn ! 
Q in norm. By Theorem 2.9, this implies that !Qn ! !Q in norm.
2

5.4 Perturbative expansion of 
Q and the estimates

In this subsection we prove Theorems 5.2 and 5.3. The proof of Theorem 5.2 is based on
the following technical result of Araki.

Theorem 5.5 (1) Set

S�;n := f(z1; : : : ; zn) : Imzi � 0; i = 1; : : : ; n; Imz1 + � � �+ Imzn � �=2g:

Then for (z1; : : : ; zn) 2 S�;n, 
 belongs to D(eiznLQn � � � e
iz1LQ1), the function

S�;n 3 (zn; : : : ; z1) 7! eiznLQn � � � e
iz1LQ1
 (5.29)

is norm continuous on S�;n, analytic on its interior, and

sup
(z1;:::;zn)2S�;n

keiznLQn � � � e
iz1LQ1
k � kQnk � � � kQ1k: (5.30)
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(2) Let Qi;m !
m!1

Qi strongly, Q
�
i;m !

m!1
Q�
i strongly. Then

lim
m!1

eiznLQn;m � � � e
iz1LQ1;m
 = eiznLQn � � � e

iz1LQ1
; (5.31)

uniformly for (z1; : : : ; zn) in compact subsets of S�;n.

Proof. The proof follows by induction wrt n. For n = 1, the statement follows from the
Proposition A.2 and the KMS condition (Theorem 2.18).

Suppose that the statement is true for n� 1. Set


(z1; : : : ; zn�1) := Qne
izn�1LQn�1 � � � e

iz1LQ1
;


�(z1; : : : ; zn�1) := JQ�
1e
�iz1LQ�

2 � � � e
�izn�1LQ�

n�1
:

Consider � 2 D(e��L=2) and the function

F (z1; : : : ; zn�1) := (�j
�(z1; : : : ; zn�1)) :

By the induction assumption, the function F is continuous on S�;n�1, analytic on its
interior, and satis�es the estimate

jF (z1; � � � zn�1)j � k�kkQ1k � � � kQnk: (5.32)

The function

G(z1; : : : ; zn�1) :=
�
�je(�iz1�����izn�1��=2)L
(z1; : : : ; zn�1)

�
is also analytic and continuous on the same domain. (Here we used the induction assump-
tion, the assumption � 2 D(e��L=2) and Proposition A.2).

For z1; : : : ; zn�1 2 R, set s2 = z1, s3 := z2 + z1, : : : sn = zn�1 + � � �+ z1. Then

F (z1; � � � ; zn�1) = (�jJQ�
1�

�s2(Q�
2) � � � �

�sn(Q�
n)
)

= (�je��L=2��sn(Qn) � � � �
�s2(Q2)Q1
)

= G(z1; : : : ; zn�1);

and by the edge of wedge theorem, the functions F and G coincide on their whole domains.
Thus, by (5.32)

jG(z1; : : : ; zn�1)j � k�kkQ1k � � � kQnk:

This gives the estimate (5.30) for zn = i�=2� z1� � � �� zn�1. As a by-product we obtain
also the identity


�(z1; : : : ; zn�1) = e(�iz1�����izn�1��=2)L
(z1; : : : ; zn�1); (5.33)
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valid for (z1; : : : ; zn�1) 2 S�;n�1.
The estimate (5.30) for 0 � Imzn � �=2�Imz1�� � ��Imzn�1 follows from Proposition

A.2. We can also conclude that the function (5.29) is weakly analytic on the interior of
S�;n. Since the weak analyticity is equivalent to the norm analyticity, we have proven
all the statements of (1) except that (5.29) is norm continuous on the whole S�;n. Note
however that if we �x (z1; : : : ; zn�1) 2 S�;n�1, then by Proposition A.2 the function (5.29)
is norm continuous wrt zn for 0 � Imzn � �=2� Imz1 � � � � � Imzn�1.

Next we turn to the proof of (2) for n. Set


m(z1; : : : ; zn�1) := Qn;me
izn�1LQn�1;m � � � e

iz1LQ1;m
;


�m(z1; : : : ; zn�1) := JQ�
1;me

�iz1LQ�
2;m � � � e

�izn�1LQ�
n�1;m
:

By the uniform boundedness principle, independently of m, we have

kQi;mk � C; i = 1; : : : ; n: (5.34)

Now

k
�m(z1; : : : ; zn�1)� 
�(z1; : : : ; zn�1)k

� kQ1;mkke
�iz1LQ�

2;m � � � e
�izn�1LQ�

n�1;m
� e�iz1LQ�
2 � � � e

�izn�1LQ�
n�1
k

+k(Q�
1;m �Q�

1)e
�iz1LQ�

2 � � � e
�izn�1LQ�

n�1
k:

The �rst term on the right goes to zero uniformly on compact subsets of S�;n�1 by the
induction assumption and (5.34) for i = 1. The second term on the right goes to zero
uniformly on compact subsets of S�;n�1 by the induction assumption, Lemma A.3 and the
strong convergence Q�

1;m ! Q�
1.

By the proof of (1) (see the identity (5.33)), we have for z1; : : : ; zn�1 2 S�;n�1,


(z1; : : : ; zn�1)� 
m(z1; : : : ; zn�1) 2 D(e
(�iz1�����izn�1��=2)L);


�(z1; : : : ; zn�1)� 
�m(z1; : : : ; zn�1)

= e(�iz1�����izn�1��=2)L(
(z1; : : : ; zn�1)� 
m(z1; : : : ; zn�1)):

Hence,

lim
m!1

e(�iz1�����izn�1��=2)L(
(z1; : : : ; zn�1)� 
m(z1; : : : ; zn�1))
 = 0

uniformly on compact subsets of S�;n�1. By the induction assumption,

lim
m!1

k
(z1; : : : ; zn�1)� 
m(z1; : : : ; zn�1)k = 0
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uniformly on compact subsets of S�;n�1. Hence, by Proposition A.2

lim
m!1

eiznL�
(z1; : : : ; zn�1)� 
m(z1; : : : ; zn�1)
� = 0

uniformly for 0 � Imzn � �=2� Imz1�� � �� Imzn�1 and (z1; : : : ; zn�1) in compact subsets
of S�;n�1. In particular, the convergence is uniform on compact subsets of S�;n. This ends
the proof of (2) for n.

It remains to prove the norm continuity part of (1). LetQi;m 2M� such thatQi;m !
m!1

Qi strongly and Q
�
i;m !

m!1
Q�
i strongly. The function

C
n 3 (z1; : : : ; zn) 7! eiznLQn;m � � � e

iz1LQ1;m


is entire analytic and in particular, it is norm continuous. By the uniform convergence
on compact subsets of S�;n, proven in (2), and the local compactness of S�;n we conclude
that (5.29) is norm continuous on S�;n. 2

Proof of Theorem 5.2. Let Qn 2 M� be such that Qn ! Q strongly. Since 
Qn =
EQn(i�=2)
, the expansion (3.9) yields that Theorem 5.2 holds for Qn. Moreover,


Q = w� lim
n!1


Qn

= w� lim
n!1

1X
m=0

Z
� � �

Z
T�;m

e��1LQn � � � e
��mLQn 
d�1 � � �d�m

=
1X
m=0

Z
� � �

Z
T�;m

e��1LQ � � � e��mLQ
d�1 � � �d�m:

The �rst identity follows from Theorem 5.1 (recall the proof of (1) or use (13)), the second
is obvious, and the third follows from Theorem 5.5. 2

Proof of Theorem 5.3. Theorem 5.2 yields (1). By Theorem 5.1 (13) it suÆces to
prove (2){(5) for Q 2M� .

(2)-(3). Our proof is motivated by [Sa2]. By Theorem 3.2, 
 2 D(e�z(L+Q)) for all z
and

EQ(iz)
 = e�z(L+Q)


is an entire vector-valued function. Set

f(z) := (
je�z(L+Q)
) = (
jEQ(iz)
):
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Then f is an entire function, f 00(x) � 0 for x 2 R, and

f(0) = k
k2 = 1; f(�=2) = (
j
Q); f(�) = k
Qk
2;

f 0(0) = �(
j(L +Q)
) = �(
jQ
);

f 0(�=2) = �(
j(L +Q)
Q) = �(
jJQJ
Q) = �(
jQ
Q);

f 0(�) = �(
Qj(L+Q)
Q) = �(
QjJQJ
Q) = �(
QjQ
Q)

(we used L
 = 0 and (L + Q � JQJ)
Q = 0). These relations combined with the
mean-value theorem yield (2){(3).

(4) follows easily from (2).
To prove (5), consider the function

F (z) := � zQ(Q)EQ(z)
:

Since � zQ(Q) and EQ(z) are uniformly bounded on the strip 0 � Imz � �=2, F (z) is also
bounded on the this strip. Moreover,

kF (z)k �

8<
:
kQ
k if Imz = 0;

k�
i�=2
Q (Q)
Qk if Imz = �=2:

Since �
i�=2
Q (Q)
Q = e��LQ=2Q
Q = JQ
Q,

kF (z)k � kQ
Qk if Imz = �=2:

Hence, by the three-line theorem, for 0 � t � �=2,

kF (it)k � kQ
Qk
1�2t=�kQ
k2t=�:

Since


Q � 
 = �

Z �=2

0

� itQ(Q)EQ(it)
dt;

we derive

k
Q � 
k �
R �=2
0

kF (it)kdt

� �
2

R 1

0
kQ
k1�skQ
Qk

sds = �f(kQ
k; kQ
Qk)=2:

2
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5.5 Unbounded perturbations

This subsection contains our main results. It extends the construction of KMS states to
a large class of unbounded perturbations.

Let Q be a self-adjoint operator aÆliated to M satisfying Assumptions 3.A and 3.B.
Let �Q be the dynamics de�ned as in Subsection 3.3. Recall that by Theorem 3.5 its
Liouvillean equals

LQ = L+Q� JQJ:

In order to construct the perturbed KMS state we will need an additional assumption:

Assumption 5.A ke��Q=2
k <1.

Theorem 5.6 Assume 3.A, 3.B and 5.A. Then

(1) 
 2 D(e��(L+Q)=2). Set


Q := e��(L+Q)=2
; !Q(A) := (
QjA
Q)=k
k
2:

(2) 
Q 2 H
+.

(3) 
Q is separating.

(4) !Q is a (�Q; �)-KMS state.

(5) log�
Q = ��LQ.

(6) log�
Q;
 = ��L� �Q.

(7) Ent(!j!Q) = ��!(Q)� log k
Qk
2.

(8) The Peierls-Bogoliubov inequality holds

e��(
jQ
)=2 � k
Qk:

(9) The Golden-Thompson inequality holds:

k
Qk � ke��Q=2
k:

(10) For any 0 � � � 1, �Q satis�es the assumptions of the theorem, hence 
�Q is well
de�ned. Moreover, lim�#0 k
�Q � 
k = 0.

Remark. The formula for relative entropy of (7) requires a comment. Because of As-
sumption 5.A, !(Q�) is �nite, where Q� = 1]�1;0](Q)Q. Therefore, !(Q) is a �nite
number or +1.

Set
Qn := 1[�n;n](Q)Q;

where 1[�n;n](Q) is the spectral projection of Q on the interval [�n; n].
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Lemma 5.7 (1) L+Qn ! L +Q in the strong resolvent sense.

(2) LQn ! LQ in the strong resolvent sense.

Proof. We prove only (2) (the proof of (1) is similar). Let D0 = D(L)\D(Q)\D(JQJ).
By Assumption 3.B, LQ is essentially self-adjoint on D0. Moreover, LQn	 ! LQ	,
	 2 D0. Hence the statement follows from Proposition A.5. 2

Proof of Theorem 5.6. Given the approximating sequence Qn de�ned above and
Lemma 2, the parts (1)-(9) follow from Theorem 5.1 in the same way as the analogous
parts of Theorem 5.1 followed from the analytic case of Theorem 5.1.

The only part requiring a separate argument is (10). To prove it, note that L+�Q! L
in the strong resolvent sense as � # 0. This implies that 
�Q ! 
 weakly as � # 0. Thus,

k
k � lim inf
�#0

k
�Qk � lim sup
�#0

k
�Qk � lim
�#0

ke���Q=2
k = k
k;

and so k
�Qk ! k
k as � # 0. 2

5.6 Perturbations of Liouvilleans revisited

In Theorem 3.5 we have shown that LQ is the Liouvillean of �Q by invoking Theorem 2.11
and checking that

� tQ(A) = eitLQAe�itLQ ; eitLQH+ � H+: (5.35)

Under the conditions of Theorem 5.6 (recall Proposition 2.14), the second relation in
(5.35) is equivalent to

LQ
Q = 0: (5.36)

In this section we give an elementary direct proof of (5.36). This veri�es that LQ is the
Liouvillean of �Q without resort to Theorem 2.11.

We consider only the case of analytic perturbations Q 2 M� . The extension to
bounded Q and unbounded Q satisfying conditions of Theorem 5.6 is immediate using the
strong resolvent convergence of Liouvilleans and the weak convergence of �-KMS vectors.

First, the relation
eit(L+Q)
Q = EQ(t+ i�)


and analytic continuation yield that 
Q 2 D(exp(iz(L + Q)) for all z, and so 
Q 2
D(L+Q) = D(LQ).

Since eitLM0e�itL = M0, JQJ 2 M0, and eitLJ = JeitL, the Trotter product formula
yields

eit(L+Q)JQJe�it(L+Q) = eitLJQJe�itL = JeitLQe�itLJ:

By analytic continuation, the relation

(e�(L+Q)=2�jJQJe��(L+Q)=2
) = (�jJ� i�=2(Q)J
)
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holds for all � in a dense domain ~D = [r>0Ran1[�r;r](L +Q). Using

J� i�=2(Q)J
 = J�
1

2Q
 = Q
;

we derive
(e�(L+Q)=2�jJQJ
Q) = (�jQ
):

This relation yields

(e�(L+Q)=2�j(L +Q� JQJ)
Q) = (e�(L+Q)=2�j(L+Q)
Q)� (�jQ
)

= (�j(L +Q)
)� (�jQ
)

= (�jL
) = 0:

Since e�(L+Q)=2 ~D = ~D is dense in H, LQ
Q = 0.

A Technical facts

In this appendix we collect some technical facts which have been used throughout the
paper.

A.1 Operators and resolvent convergence

First, we recall the Trotter product formula (see [RS1], Theorem VIII.31).

Theorem A.1 If A and B are self-adjoint operators and A+B is essentially self-adjoint
on D(A) \ D(B), then

s� lim
n!1

�
eitA=neitB=n

�n
= eit(A+B):

The next proposition follows easily from the spectral theorem and the three-line the-
orem (see also Lemma 4 in [Ar2]).

Proposition A.2 Let H be a self-adjoint operator and 
 2 D(eÆH) for some Æ > 0. Then
the vector-valued function ezH
 is analytic inside the strip 0 < Rez < Æ, norm continuous
on its closure and

kezH
k � keÆH
kRez=Æk
k1�Rez=Æ:

Lemma A.3 Let Z be a compact metric space and Z 3 z 7! 
(z) 2 H a norm continuous
function. Let An be bounded operators and assume that An ! A strongly. Then

lim
n!1

k(An � A)
(z)k = 0

uniformly on Z.
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Proof. Note �rst that f
(z) : z 2 Zg is a compact subset of H and that by the uniform
boundedness principle C := supn kAnk < 1. Let � > 0 be given. Then there exists a
�nite dimensional projection P such that supz2Z k(1� P )
(z)k < �. Since

k(An � A)
(z)k � k(An � A)Pk supz2Z k
(z)k

+supn kAn � Ak supz2Z k(1� P )
(z)k;

we derive lim supn k(An � A)
(z)k < 2C�.2

The following properties of the strong convergence of functions of self-adjoint operators
are proven eg. in [RS1]:

Proposition A.4 Suppose that Hn, H are self-adjoint operators. Then the following
conditions are equivalent:

(1) Let z0 62
�S1

n=1 �(Hn)
�cl

(for instance, Imz0 6= 0). Then

s� lim
n!1

(z0 �Hn)
�1 = (z0 �H)�1:

(2) If f is a bounded continuous function on
�S1

n=1 �(Hn)
�cl

, then f(Hn) ! f(H)

strongly.

If the conditions of above proposition are satis�ed we say that Hn ! H in the strong
resolvent sense.

Proposition A.5 Suppose that Hn, H are self-adjoint operators, H is essentially self-
adjoint on D and limnHn	 = H	 for 	 2 D. Then Hn ! H in the strong resolvent
sense.

Proof. Let Imz 6= 0. Then (z �H)D =: D1 is dense in H. For 	 2 D1,

(z �H)�1	� (z �Hn)
�1	 = (z �Hn)

�1(H �Hn)(z �H)�1	! 0:

2

The following proposition plays an important role in several arguments in our paper.

Proposition A.6 Suppose that Hn, H are self-adjoint operators and Hn ! H in the
strong resolvent sense. Suppose that 
n;
 2 H such that 
n ! 
 weakly and kHn
nk �
C. Then 
 2 D(H), w� limnHn
n exists and H
 = w� limnHn
n.
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Remark. By the uniform boundedness principle, the condition kHn
nk � C can be
replaced by the existence of w� limHn
n.
Proof. Since the ball of radius C is weakly compact, one can �nd a weakly convergent
subsequence Hnk
nk . Set 	 = limk!1Hnk
nk .

Let D :=
S
r>0

Ran1[�r;r](H). Let � 2 D and f 2 C1
0 (R) such that f(H)� = �. Then

� = f(H)� = lim
n!1

f(Hn)�

H� = f(H)H� = lim
n!1

f(Hn)Hn�;

and

(H�j
) = lim
k!1

(Hnkf(Hnk)�j
nk)

= lim
k!1

(f(Hnk)�jHnk
nk)

= (�j	):

(A.37)

Since D is a core for H, 
 2 D(H) and H
 = 	
Now assume that w� limnHn
 does not exist. Then there exists � 2 H and a

subsequence Hnk
 such that

j(�jHnk
)� (�jH
)j � � > 0: (A.38)

Again using the weak compactness of the ball of radius C, by passing to a subsubsequence
we can assume that w� limk!1Hnk
 exists. Repeating the arguments of (A.37), we see
that w� limk!1Hnk
 = H
. This contradicts (A.38). 2

A.2 An interpolation theorem

Various versions of the following interpolation theorem for linear operators can be found
throughout literature, see e.g. [OP] (where a di�erent proof is outlined) and [RS2].

Theorem A.7 Let H1;H2 be Hilbert spaces and let Hi be a positive (possibly unbounded)
operator on Hi. Let D1 be a core of H1. Let T 2 B(H1;H2) with kTk = c0 be such that:
(a) TD1 � D(H2).
(b) For 	 2 D1, kH2T	k � c1kH1	k.
Then, for any 0 � � � 1, TD(H�

1 ) � D(H�
2 ) and for 	 2 D(H�

1 ),

kH�
2T	k � c1��0 c�1kH

�
1	k: (A.39)
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Proof. Clearly, we may assume that c0 = c1 = 1.
First let us show that TD(H1) � D(H2) and

kH2T	k � kH1	k; 	 2 D(H1): (A.40)

Let 	 2 D(H1). Then there exist 	n 2 D1 such that 	n ! 	 and H1	n ! H1	. Now

kH2(T	n � T	m)k � kH1(	n � 	m)k:

Thus H2T	n is Cauchy, hence convergent. T	n is obviously convergent. H2 is closed.
Hence T	 2 D(H2). (A.40) follows by passing to the limit in kH2T	nk � kH1	nk.

Let � 2 D(H2), 
 2 H1 and � > 0. For 0 � Rez � 1 set

F�(z) := (�jHz
2T (H1 + �)�z
):

F�(z) is a continuous function in the strip 0 � Rez � 1, analytic in its interior, and

jF�(z)j � k(H2 + 1)�k��1k
k:

For Rez = 0
jF�(z)j � k�kk
k:

For Rez = 1, (H1 + �)�z
 2 D(H1), and

jF�(z)j � k�kkH2T (H1 + �)�z
k

� k�kkH1(H1 + �)�z
k � k�kk
k:

These estimates and the three-line theorem yield that for 0 � � � 1

jF�(�)j � k�kk
k:

Therefore, for 
 2 H1,
kH�

2 T (H1 + �)��
k � k
k;

and for 	 2 D(H�
1 )

kH�
2T	k = lim

�#0
kH�

2 T (H1 + �)��(H1 + �)�	k

� lim
�#0
k(H1 + �)�	k

= kH�
1	k:

2
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