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Summary

The orientational characteristics of �bres in digital images are studied. The
�bres are modelled by a planar Boolean model whose typical grain is a thick-
ened (coloured) �bre. The aim is to make stereological inference on the rose
of directions of unobservable central �bres from observations made on a digi-
tal image of the thick �bres. For central �bres, the relation between the rose
of directions and the point intensity, observed on a sampling line, is known.
We derive, under regularity conditions, the relation between the unobserv-
able point intensity and the scaled variogram observed on the line in a binary
and a greyscale image. Using such a relation, it is possible to draw inference
about the rose of directions from the scaled variogram which is easy and fast
to determine in a digital image.
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1 Introduction

The estimation of the orientation distribution of planar �bres from intersec-
tion counts along sampling lines is a well-studied subject in the stereological
literature, cf. e.g. Hilliard (1962), Mecke & Stoyan (1980), Mecke (1981).
Methods of estimating the orientation distribution also exist in non-ideal
situations where �bres overlap due to thickness and are observed in digi-
tal greyscale images. In Serra (1982, p. 467) the orientation distribution
is obtained from a greyscale image, using sequential thresholding of grey
levels. At each threshold, counts of intercepts along sampling lines are deter-
mined. Greyscale images are also considered in Erkkilä et al. (1998) where
the estimate of the distribution is based on an approximation of the gradient
direction in each pixel. In Molchanov & Stoyan (1994), a method based on
empirical capacity functionals is developed for binary images.

In the present paper we develop a method for estimating the orientation
distribution based on the scaled variogram which is easy and fast to calculate,
without thresholding. The method is intended for biological and industrial
�brous materials which can be modelled by a planar Boolean model whose
typical grain is a thickened coloured �bre. The model is the so-called dead
leaves random functions model with �nite time, resulting in a greyscale image
partially covered by the �bres, cf. Jeulin (1989). A binary image is a special
case.

The focus is on the estimation of the rose of directionsR of the unobserv-
able central �bres (spines) from orientational characteristics of the thickened
�bres observed on sampling lines L� with angles � relative to a �xed direction.
If the central �bres were detectable, the well-known method of estimating R
from the rose of intersections P 0

L observed on lines could be used, cf. e.g.
Mecke & Stoyan (1980). However, since the �bres are thickened and may
overlap, the central �bres and thus the point intensity P 0

L(�) on L� are not
identi�able; instead, the point intensity P 1

L(�) between the boundary of the
thickened �bres and the line L� may be observed. The relation between
P 0
L(�) and P 1

L(�) is derived, and it is shown that the two quantities are pro-
portional if the extent of the �bres is much larger than their thickness. In
such cases, the orientation distribution R can be estimated using the rose of
intersections P 1

L instead of P 0
L without knowing the thickness of the �bres.

In digital binary images P 1
L(�) cannot be observed. Instead, the scaled

variogram VL(d; �), where d is the distance between observation points on
the sampling line L�, may be determined. In the binary case the scaled
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variogram VL(d; �) approximates P 1
L(�) when d is su�ciently small; in the

grey level case the scaled variogram VLdl
(d; �) is approximately proportional

to P 1
L(�), cf. Jeulin (2000). In practice, it may be a problem that arbitrarily

small distances d are not available in a digital image. In the present paper, a
re�ned relation between VL(d; �) and P 1

L(�) is derived. This result can also
be used for a greyscale image if segmentation into a binary image is possible.

The paper is organized as follows. In Section 2 the set-up for thickened
�bres is introduced. The relation between the point intensity P 0

L(�) and
the rose of directions R of the central �bres is also given. In Section 3 the
general relation between the point intensities P 0

L(�) and P 1
L(�) is derived

for Boolean �bres. Section 4 shows the precise form of this relation for two
speci�c examples of Boolean �bres. In Section 5 the re�ned relation between
the point intensity P 1

L(�) and the scaled variogram VL(d; �), observed in a
binary digital image, is derived, while the case of greyscale images is discussed
in Section 6. Simulation examples are considered in Section 7. In Section 8
the e�ect of using digital lines instead of continuous lines is brie�y studied.
In Section 9, the main results of the paper are summarized.

2 The set-up

Let us consider a marked point process 	 = f[xi; (�i;�i)]g where the points
xi constitute a point process inR2 and the marks (�i;�i) are random compact
sets inR2 such that �i � �i, cf. e.g. Matthes (1963) and Stoyan et al., (1995).
The marked point process is assumed to be stationary, i.e. f[xi+x; (�i;�i)]g
has the same distribution as f[xi; (�i;�i)]g for all x 2 R2. Each �i is a �bre,
i.e. a smooth, simple curve of �nite length. Furthermore,

� = [1i=1(xi + �i)

is a �bre process, such that the length of �\B is �nite for all compact subsets
B of R2. Fibre processes have been introduced in Mecke & Stoyan (1980).
The set �i, containing �i, can in principle be an arbitrary compact set but
in the applications we have in mind �i is a `thickened' version of �i. The �i's
are also called central �bres. A simple example of �i is a circle-dilated �bre

�i = �i �B(O; r);
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(a) (b)

Figure 1: Illustration of the set-up. a) The central �bres xi + �i are here line
segments. b) The thick �bres xi + �i are �at ellipses centred at xi.

where B(O; r) is a circular disk with centre O and radius r (chosen small
compared to the radii of curvature of the �i's). We let

� = [1i=1(xi + �i)

be the union of thick �bres. In Figure 1 the set-up is illustrated. Since the
marked point process 	 is stationary, the �bre process � and the process of
thick �bres � are also both stationary. If 	 is isotropic, then � and � are
both isotropic.

In the present paper we study the problem of making inference about
the orientation of the unobservable central �bres � from observation of the
orientation of the thick �bres �. The orientational characteristic of any
stationary �bre process, in particular �, can be described by the so-called rose
of directions R which is a distribution on [0; �). For x 2 �, let �(x) 2 [0; �)
be the angle that the tangent to � at x makes with a �xed axis. Then, if �1
and �2 denote length and area, respectively, we have for Borel sets B � R2

and D � [0; �),

E�1fx 2 � \B : �(x) 2 Dg = LA�2(B)R(D);

where LA is the length intensity of the �bre process. Note that R(D) is the
ratio between the mean length of �bre pieces in B having tangent angles in
D and the mean total �bre length in B.

In paper �bre technology, the elliptic distribution is often used as a model
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for R, compare with Forgacs & Strelis (1963). The density is

fR(�;�; � ) =
cp

1 � �2 cos2(�� � )
; 0 � � < �; (1)

with orientation parameters � 2 (0; 1), � 2 [0; �), and normalizing constant
c. Here �, called the strength, describes deviation from the circular model
(� = 0) and � , called the critical direction, is the preferred direction of the
�bres. Our reasoning is not restricted to this particular model (1); alternative
choices of orientation distribution can be applied as well.

Another orientational characteristic, the so-called rose of intersections
P 0
L(�) : [0; �)! [0;1), is related to R. The quantity P 0

L(�) is the intensity
of the process of intersection points between the �bre process � and a line
L� with angle � relative to the x1-axis. The two orientational characteristics
are related by

P 0
L(�) = LA

Z �

0

j sin(�� �)jR(d�); (2)

see Hilliard (1962), Mecke & Stoyan (1980), Mecke (1981). Similar formulas
can also be found in Forgacs & Strelis (1963).

3 From the point intensity P 0
L(�) to the point

intensity P 1
L(�)

Assume that the points fxig of the marked point process 	 is a stationary
Poisson point process in R2 with intensity � and f(�i;�i)g are independent
and identically distributed and independent of fxig. Then both � and � are
Boolean models (Matheron, 1967; 1972). Below, we let (�0;�0) be typical
thin and thick �bres from the common distribution of f(�i;�i)g. Then, we
have LA = �E�1(�0). For simplicity we assume that �0 and �0 are convex.
In particular, it is assumed that �0 is a line segment. It should be noted,
however, that the results can be extended to the non-convex case.

Let us consider the Boolean models � and � intersected by the sampling
line L�. On the line, the point processes L� \� and L� \@�, where @� is the
boundary of the union of thick �bres, are both Boolean models, cf. Matheron
(1975, p. 140). In this section we relate the point intensities P 0

L(�) of L� \�
and P 1

L(�) of L� \ @�.
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Let us �rst derive an expression for P 0
L(�). LetR0 be the rose of directions

of a single �bre �0 de�ned for a Borel set D � [0; �) as

R0(D) =
E�1fx 2 �0 : �(x) 2 Dg

E�1(�0)
:

Then, it is not di�cult to see that R = R0. Therefore, using (2),

P 0
L(�) = �E�1(�0)

Z �

0

j sin(�� �)jR0(d�) = �Eh�(�0); (3)

where h�(�0) is the length of the projection of �0 onto a line perpendicular
to L�.

Using Slivnyak's theorem (Stoyan et al., 1995, p. 41), we �nd that the
intensity of L� \ @� is

P 1
L(�) = (1 � p)�(�);

where p is the coverage probability

p = P (O 2 �) = 1� exp(��E�2(�0))

and �(�) is the intensity of L� \ [i(xi + @�i),

�(�) = 2�Eh�(�0);

see also Molchanov & Stoyan (1994, Theorem 3.1). Therefore, we get

P 1
L(�) = exp(��E�2(�0))2�Eh�(�0): (4)

Combining (3) and (4), we obtain the following relation between P 0
L(�) and

P 1
L(�),

P 1
L(�) = ��1(�)P

0
L(�); (5)

where

� = 2 exp(��E�2(�0)) (6)

and

�1(�) =
Eh�(�0)

Eh�(�0)
: (7)
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Since �1(�) depends on the thickness of �0, we will call �1(�) a thickness
factor. If �0 = �0, we get

P 1
L(�) = 2P 0

L(�): (8)

When the �bres �i's have some thickness, we cannot observe the central
�bres �i's and estimate their point intensity P 0

L(�) on the sampling line L�.
Instead @� may be observable such that the intensity P 1

L(�) of the point
process L� \ @� can be estimated. If the extent of the �bres �i's is large
compared to their thickness, then �1(�) � 1 and the relation (5) can be
regarded as approximately proportional

P 1
L(�) � �P 0

L(�) (9)

with 0 < � < 2. In such cases the rose of directions R can be estimated
using the rose of intersections P 1

L instead of P 0
L without knowing the actual

thickness of the �bres. Note also that if R is uniform, then �1(�) will be
constant.

4 Examples of Boolean �bres

4.1 Circle-dilated segment model

The circle-dilated segment model is

�0 = �0 �B(O; r);

where the central �bre �0 is a line segment with constant length l and orien-
tation distribution R, and B(O; r) is a circular disc with centre O and radius
r which determines the thickness of �0, see also Molchanov & Stoyan (1994).

Using this model, LA = �l,

�2(�0) = 2lr + �r2

and

Eh�(�0) =

Z �

0

(lj sin(�� �)j+ 2r)R(d�):
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Using (3) and (7), we �nd

�1(�) =
Eh�(�0) + 2r

Eh�(�0)

and, using (5),

P 1
L(�) = 2 exp(��(2lr + �r2))(P 0

L(�) + 2r�);

which is a linear function of P 0
L(�). The proportionality can be supposed to

hold if r is small compared to l. Note that under this assumption the intensity
� can be large and �bres overlap considerably. Under proportionality

P 1
L(�) � �P 0

L(�);

where � = 2 exp(��(2lr + �r2)).

4.2 Elliptical segment model

The elliptical segment �0 is a very �at ellipse with a major axis of random
length a and a minor axis of �xed length b. The length a follows the uniform
distribution in (a1; a2) with mean value �a = (a1 + a2)=2. In this case the
line segment �0 has random length l = 2a with mean value �l = 2�a. The
length intensity of � is thereby LA = 2��a. The orientation of �0 follows the
common orientation density fR. The elliptical segments are used in Figure
1.

Let us consider the formula (4) for the point intensity P 1
L(�) of � with

an elliptical segment �0. At �rst we obtain

E�2(�0) = �b�a

and from (6)

� = 2 exp(���b�a):
The length of the projection of �0 onto the direction perpendicular to � is

h�(�0) = 2
q
a2 sin2(� � �) + b2 cos2(� � �)

and the mean

Eh�(�0) =
2

a2 � a1

Z �

0

I(a1; a2; b; �; �)R(d�);
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where

I(a1; a2; b; �; �) =

Z a2

a1

q
a2 sin2(� � �) + b2 cos2(� � �) da

= j sin(� � �)j
Z a2

a1

q
a2 + b2 cot2(� � �) da

= j sin(� � �)j 1
2
[a2

q
a22 + b2 cot2(� � �)

+b2 cot2(� � �) log(a2 +
q
a22 + b2 cot2(� � �))

�a1
q
a12 + b2 cot2(� � �)

�b2 cot2(� � �) log(a1 +
q
a12 + b2 cot2(� � �))]:

Using (4), we �nd

P 1
L(�) =

4� exp(���b�a)
a2 � a1

Z �

0

I(a1; a2; b; �; �)R(d�):

The relation between P 0
L(�) and P 1

L(�) is not simple as for the circle-
dilated segment model, but will be proportional if the �bres �i's are long
compared to their thickness. In Table 1, the thickness factor

�1(�) =
P 1
L(�)

�P 0
L(�)

is shown for an elliptical segment model with a1 = 10; a2 = 30; b = 1
and � = 0:014. The orientation distribution is the elliptic distribution with
(�; �) = (1:178; 0:995), cf. (1). Note that in this example �1(�) � 1 such
that P 0

L(�) and P 1
L(�) can be regarded as proportional. At the same time,

the overlap of the �bres is substantial. Thus, the coverage probability p =
1 � exp(��E�2(�0)) = 0:585 and the total area fraction of ellipses in the
image �E�2(�0) = 0:880 di�er. The overlap can also be seen in Figure 3b
which shows a realization of the model. The example is treated in more detail
in Section 7 below.
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Table 1: The thickness factor �1(�) in eight directions for strong anisotropically
distributed elliptical segments with (�; �) = (1:178; 0:995).

� �1(�)
0.000 1.002
0.464 1.004
0.785 1.008
1.107 1.020
1.571 1.008
2.034 1.003
2.356 1.002
2.678 1.002

5 From the point intensity P 1
L(�) to the scaled

variogram VL(d; �) in binary images

Let us consider a binary (0,1)-coloured image of Boolean �bres � � R
2 as

a random function Z(x) = 1�(x), x 2 R2. In this section we examine the
binary-valued function formed by the restriction of Z(x) to the sampling
line L�. We consider the relation between the scaled variogram VL(d; �)
and P 1

L(�) observed on L�. In Jeulin (2000) it is shown that VL(d; �) is
approximately equal to P 1

L(�), for small d. Below, we derive a re�ned relation.
Let x; y 2 R2 be located on L� at distance d = jjx � yjj. The scaled

variogram is de�ned as follows

VL(d; �) =
EjZ(x)� Z(y)j

d
: (10)

This quantity is equal to 2
1(d; �)=d, where 
1(d; �) is the variogram of order
1 (Matheron, 1982). Note that the right-hand side of (10) only depends on
d and � because of the stationary of �. We get

EjZ(x)� Z(y)j = 2P (x 2 �; y =2 �)

= 2[P (� \ fyg = ;)� P (� \ fx; yg = ;)]:
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For a Boolean model,

P (� \ fyg = ;) = exp(��E�2(�0 + fyg))
= exp(��E�2(�0))

and

P (� \ fx; yg = ;) = exp(��E�2(�0 + fx; yg))
= exp(��E�2(�0 [ [�0 + fy � xg])): (11)

If d is small (as it is in our case), we can approximate in (11)

�2(�0 [ [�0 + fy � xg]) � �2(�0) + dh�(�0); (12)

cf. e.g. Matheron (1975, p. 141). Thus

VL(d; �) =
2[P (� \ fyg = ;)� P (� \ fx; yg = ;)]

d

� 2 exp(��E�2(�0))(1� exp(��dEh�(�0)))

d
(�)� 2 exp(��E�2(�0))�dEh�(�0)

d
= P 1

L(�) (13)

for small d. At (�) we have used
1 � exp(�x) � x

for x = �dEh�(�0).
A re�ned relation can be obtained if (12) is replaced by

�2(�0 [ [�0 + fy � xg]) � �2(�0) + dh�(�0) + d2k�(�0); (14)

cf. Kiderlen & Jensen (2001). The coe�cient k�(�0) seems not to have a
simple geometric interpretation but satis�es

1

2
� k�(�0) � 1;

if �0 is r-smooth for some r (for all boundary points x of �0 there is a circular
disc Br with radius r such that x 2 Br � �0). Using (14) instead of (12), we
�nd

VL(d; �) � 1� exp(��dEh�(�0)� �d2Ek�(�0))

�dEh�(�0)
P 1
L(�): (15)
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In typical applications of our model Eh�(�0) is much larger than d.
In such cases we can disregard the term �d2Ek�(�0) in (15), since 1

2
�

Ek�(�0) � 1. Using the re�ned approximation

1� exp(�x) � x� x2

2

for x = �dEh�(�0), we �nd from (15)

VL(d; �) � �2(d; �)P
1
L(�); (16)

where

�2(d; �) = 1� �dEh�(�0)

2
(��)
= 1� d�1(�)P

0
L(�)

2
:

We will call �2(d; �) a distance factor. At (��) we have used (3) and (7).
Let us suppose that the thickness factor �1(�) is approximately 1 such

that (9) holds. Then, we �nd

VL(d; �) � �P 0
L(�) (17)

for small d, cf. (13), and

VL(d; �) � �

�
1 � dP 0

L(�)

2

�
P 0
L(�) (18)

as a re�ned approximation, cf. (16). Recall that � is given in (6).

6 The scaled variogram VLdl
(d; �) observed in

greyscale images

In cases where the observed image is a greyscale image, it is clearly of inter-
est to develop procedures for estimating orientational characteristics which
can be used without segmentation of the greyscale image into a binary im-
age. This is indeed possible if the image can be modelled by a dead leaves
random functions model with �nite time t (Jeulin, 1989; 1993). This model
generalizes earlier binary versions, cf. Matheron (1968) and Serra (1982).
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The model is obtained by a sequential implantation of a random primary
grey-valued grain at each point of a space-time Poisson point process, the
more recent grains covering the already present grains. A typical application
of the model concerns micrographs of stacked �bres seen from above.

Formally, a dead leaves random functions model can be constructed using
a marked point process f[(xi; ti); �i]g where f(xi; ti)g is a homogeneous Pois-
son point process on R2� [0; t] of intensity �, say, and f�ig are independent
and identically distributed non-negative random functions on R2 which are
independent of f(xi; ti)g. It is supposed that the support of �i,

�i = fx 2 R2 : �i(x) > 0g;
is compact, see also Jeulin (1989). One can think of �i as a primary grey-
valued grain. We let �0 and �0 be a typical random function and its support.
The dead leaves random function Zt(x); x 2 R2, equals the grey value at x
of the most recently arrived grain. To be more precise, let

I(x) = fi : �i(x� xi) > 0g
be the set of primary grains hitting x. If I(x) is empty, let Zt(x) = 0.
Otherwise, Zt(x) = �I(x � xI) where I is the unique element in I(x) such
that tI > ti for all i 2 I(x)nfIg.

Following Jeulin (2000), an expression for the scaled variogram

VLdl
(d; �) =

EjZt(x)� Zt(y)j
d

can be derived where x � y = d(cos �; sin�) as in the previous section, see
also Matheron (1971, 1982). As previously, let � = [1i=1(xi + �i) and let

q = P (� \ fyg = ;)
Q(d; �) = P (� \ fx; yg = ;):

For the primary function and its support, let

r(d; �) = E�2(�0 \ [�0 + fy � xg])=E�2(�0)


1P (d; �) =
1

2
Ej�0(x)� �0(y)j:

Finally, let Z 0 be the grey value of a uniform random point on �0 where �0

is chosen to be area-weighted, i.e.

P (Z 0 � z) =
E�2(fx 2 �0 : �0(x) � zg

E�2(�0)
; z � 0:
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Then, for small d,

VLdl
(d; �) = 2(1 � q)
01P (0; �)� 2r0(0; �)[(1� q)2S � q log q(EZ 0 � 2S)];

(19)

where

S =

Z
1

0

P (Z 0 � z)P (Z 0 < z)dz

given by Matheron (1982). The �rst term in (19) can be neglected for primary
grains with slow variation of grey levels (low 
01P (0; �)). Since

P 1
L(�) � 2q log q � r0(0; �);

cf. (4) and (12), it follows that in such cases

VLdl
(d; �) � �1

q log q
[(1� q)2S � q log q(EZ 0 � 2S)]P 1

L(�) (20)

for small d. Note that in the binary case S = 0 and EZ 0 = 1 such that (20)
reduces to (13). If the thickness factor �1(�) of the �bres is close to 1, then it
follows that VLdl

(d; �) is proportional to the intensity P 0
L(�). Using various

angles �, the rose of direction of the central �bres can thereby be estimated.

7 Simulation example

In order to illustrate the obtained results, we have performed a simulation
study of the elliptical segment model. As in Section 4.2 the mean length of a
central segment �i is �l = 40 with major axis length a uniformly distributed
in (a1; a2) = (10; 30). The orientation distribution of �i is uniform (the
isotropic case) or an elliptic distribution with (�; �) = (1:178; 0:995) (the
anisotropic case), cf. (1). The intensity of the points xi is � = 0:014. The
length intensity of � is thereby LA = ��l = 0:563. Adding an ellipse to each �i

with minor axis length b = 1, the union of elliptical segments � is obtained.
Each realization of thick �bres � is digitized into a (0,1)-valued image of
size 250 � 200 where the background has a grey value zero (black) and the
thick �bres have a grey value one (white). A pixel is coloured white if the
centre of the pixel is covered by �. A dead leaves model with �nite time is
used for colouring the binary image of thick �bres. In the greyscale image
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(a) (b) (c)

Figure 2: Realizations from three image models of isotropically distributed
Boolean �bres with length intensity LA = 0:563. (a) An image of line segments.
(b) A digitized binary image of thick �bres. (c) A digitized dead leaves image of
thick �bres.

the background has a value 50, the �rst third of f�ig fallen on the image
has grey value 150, the second 170 and the third 210. The grey value at a
pixel is that of the most recent �bre. Note that this is an extension of the
dead leaves random functions model described earlier since the �i's are not
identically distributed. All simulations have been carried out in an extended
window in order to reduce edge-e�ects. The simulated images are shown in
Figures 2 and 3 for the isotropic and the anisotropic case, respectively.

The point intensity and scaled variograms have been estimated in the
four main directions: 0; �=4 = 0:785; �=2 = 1:571 and 3�=4 = 2:356. Using
a bundle of parallel sampling lines L�, the point intensity is estimated from
the image of line segments by

P̂ 0
L(�) =

#fL� \ �g
�1(L�)

;

for each direction, cf. e.g. Stoyan et al., (1995). The scaled variograms are
estimated from the digital images of � by the unbiased estimator

V̂L(�) =

Pn

i=1 jZ(xi)� Z(xi+1)j
nd

; (21)

where x1; :::; xn+1 are the pixel centres on the lines, Z(x) is the grey value
observed at x, and d is the distance between neighbour points,

d = jjxi � xi+1jj; i = 1; :::; n:
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(a) (b) (c)

Figure 3: Realizations from three image models of anisotropically distributed
Boolean �bres with orientation parameters (�; �) = (1:178; 0:995) and length in-
tensity LA = 0:563. (a) An image of line segments. (b) A digitized binary image
of thick �bres. (c) A digitized dead leaves image of thick �bres.

For horizontal and vertical lines, d = 1, while for diagonal ones, d =
p
2.

The estimated scaled variogram is denoted by V̂Lbin
(�) for the binary images

and V̂Ldl
(�) for the dead leaves images. In Tables 2 and 3, the estimates are

shown for the isotropic and anisotropic cases, respectively.
The ratio

�̂(�) =
V̂Lbin

(�)

P̂ 0
L(�)

is constant if the approximation (17) is valid while

�̂(d; �) =
V̂Lbin

(�)

(1 � dP̂ 0
L(�)=2)P̂

0
L(�)

is constant if the re�ned approximation holds. The constant � of proportion-
ality is in both cases

� = 2 exp(��E�2(�0)) = 0:830:

According to Tables 2 and 3, it is clear that in this case the re�ned ap-
proximation is needed. The largest deviation of �̂(�) from � is seen in the
directions where dP̂ 0

L(�) is largest. Finally, it should be noticed that the
ratios V̂Ldl

(�)=V̂Lbin
(�) are fairly constant.
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Table 2: In four directions the intensity P̂ 0
L and the scaled variograms V̂Lbin

and

V̂Ldl
estimated from Figures 2a, 2b and 2c, respectively, are shown together with

the ratios �̂(�) and �̂(d; �). For details, see text.

� d P̂ 0
L(�) V̂Lbin

(�) V̂Ldl
(�) �̂(�) �̂(d; �)

0.000 1 0.355 0.251 36.26 0.707 0.860

0.785
p
2 0.347 0.223 32.67 0.643 0.852

1.571 1 0.347 0.244 34.84 0.703 0.851

2.356
p
2 0.357 0.230 33.09 0.644 0.862

Table 3: In four directions the intensity P̂ 0
L and the scaled variograms V̂Lbin

and

V̂Ldl
estimated from Figures 3a, 3b and 3c, respectively, are shown together with

the ratios �̂(�) and �̂(d; �). For details, see text.

� d P̂ 0
L(�) V̂Lbin

(�) V̂Ldl
(�) �̂(�) �̂(d; �)

0.000 1 0.446 0.285 41.56 0.639 0.822

0.785
p
2 0.294 0.193 28.19 0.656 0.829

1.571 1 0.280 0.199 28.23 0.711 0.826

2.356
p
2 0.436 0.253 36.98 0.580 0.839

8 Further comments on digitization

In this section the problem of estimating the scaled variogram from observa-
tions on digital lines instead of continuous lines is shortly discussed. We con-
centrate on the four intermediate directions � = 0:464; 1:107; 2:034; 2:678
between the four main directions � = 0; �=4; �=2; 3�=4.

A digital line �L� in the intermediate direction � is often chosen as a chain
of 8-connected pixels. The neighbour points of the sequence x1; :::; xn+1 on
�L� are located in two angularly adjacent main directions �1 and �2 and at two
distances d1 and d2, respectively, see Table 4. Let us for simplicity assume
that n is even, n = 2k, and that jjx2j�1 � x2jjj = d1 in a direction �1 and
jjx2j � x2j+1jj = d2 in a direction �2, j = 1; :::; k. Then the straightforward
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estimator of the scaled variogram is

V̂L(�) =

Pn

i=1 jZ(xi)� Z(xi+1)j
k(d1 + d2)

(22)

for a digital image, compare with (21). However, the mean is, in the binary
case, a weighted average of VL(d1; �1) and VL(d2; �2)

EV̂Lbin
(�) =

d1
d1 + d2

VL(d1; �1) +
d2

d1 + d2
VL(d2; �2):

For instance, if � = arctan(1=2) = 0:464, the mean is a weighted average of
VL(1; 0) and VL(

p
2; �=4)

EV̂Lbin
(0:464) =

1

1 +
p
2
VL(1; 0) +

p
2

1 +
p
2
VL(

p
2; �=4):

Correspondingly, in the greyscale case EV̂Ldl
(�) is a weighted average of

VLdl
(d1; �1) and VLdl

(d2; �2). The mean is thus not equal to VL(d; �) or
VLdl

(d; �) for some suitably chosen d, as might be expected at �rst hand.
An alternative choise is to use every second pixel of the sequence x1; :::; xn+1
such that the distance d between points becomes

p
5. Then the unbiased

estimator (21) can be employed instead of (22). In order to use the approxi-
mations derived in this paper, it is, however, required that d is small.

Table 4: The values of the parameters �1, d1, �2, d2 for each intermediate
direction �.

� �1 d1 �2 d2
0.464 0 1 �

4

p
2

1.107 �

4

p
2 �

2
1

2.034 �

2 1 3�
4

p
2

2.678 3�
4

p
2 0 1

9 Conclusion

The aim of this study has been to make stereological inference on the ori-
entation of unobservable central Boolean �bres from observations made on
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thickened �bres in digital images. In the paper we have documented that
this is indeed possible under regularity conditions. First of all, the relation
between the roses of intersections P 0

L and P 1
L, where P

0
L refers to central �bres

and P 1
L to the boundary of the union of the thick �bres, is proportional if

the extent of thick �bres is large compared to their thickness. In such cases
the actual thickness and overlap of �bres are not important. Secondly, the
scaled variogram VL(d; �) calculated from a digital binary image approxi-
mates P 1

L(�) if the resolution of the grid is high. Under these assumptions
the point intensity P 0

L(�) can thereby be estimated up to a constant factor di-
rectly from the scaled variogram, which is easy and fast to determine. These
results also hold for multicoloured �bres modelled by a dead leaves random
functions model. For a binary image which has been digitized with a grid of
low resolution the re�ned approximation between VL(d; �) and P 1

L(�) can be
used. The same is true for a greyscale image if segmentation into a binary
image is possible.
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