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Summary

The orientational characteristics of fibres in digital images are studied. The
fibres are modelled by a planar Boolean model whose typical grain is a thick-
ened (coloured) fibre. The aim is to make stereological inference on the rose
of directions of unobservable central fibres from observations made on a digi-
tal image of the thick fibres. For central fibres, the relation between the rose
of directions and the point intensity, observed on a sampling line, is known.
We derive, under regularity conditions, the relation between the unobserv-
able point intensity and the scaled variogram observed on the line in a binary
and a greyscale image. Using such a relation, it is possible to draw inference
about the rose of directions from the scaled variogram which is easy and fast
to determine in a digital image.



1 Introduction

The estimation of the orientation distribution of planar fibres from intersec-
tion counts along sampling lines is a well-studied subject in the stereological
literature, cf. e.g. Hilliard (1962), Mecke & Stoyan (1980), Mecke (1981).
Methods of estimating the orientation distribution also exist in non-ideal
situations where fibres overlap due to thickness and are observed in digi-
tal greyscale images. In Serra (1982, p. 467) the orientation distribution
is obtained from a greyscale image, using sequential thresholding of grey
levels. At each threshold, counts of intercepts along sampling lines are deter-
mined. Greyscale images are also considered in Erkkila et al. (1998) where
the estimate of the distribution is based on an approximation of the gradient
direction in each pixel. In Molchanov & Stoyan (1994), a method based on
empirical capacity functionals is developed for binary images.

In the present paper we develop a method for estimating the orientation
distribution based on the scaled variogram which is easy and fast to calculate,
without thresholding. The method is intended for biological and industrial
fibrous materials which can be modelled by a planar Boolean model whose
typical grain is a thickened coloured fibre. The model is the so-called dead
leaves random functions model with finite time, resulting in a greyscale image
partially covered by the fibres, cf. Jeulin (1989). A binary image is a special
case.

The focus is on the estimation of the rose of directions R of the unobserv-
able central fibres (spines) from orientational characteristics of the thickened
fibres observed on sampling lines Lg with angles 3 relative to a fixed direction.
If the central fibres were detectable, the well-known method of estimating R
from the rose of intersections Py observed on lines could be used, cf. e.g.
Mecke & Stoyan (1980). However, since the fibres are thickened and may
overlap, the central fibres and thus the point intensity PP(3) on Ls are not
identifiable; instead, the point intensity P}(3) between the boundary of the
thickened fibres and the line Lg may be observed. The relation between
PP(B) and P} () is derived, and it is shown that the two quantities are pro-
portional if the extent of the fibres is much larger than their thickness. In
such cases, the orientation distribution R can be estimated using the rose of
intersections P} instead of PP without knowing the thickness of the fibres.

In digital binary images PL(/3) cannot be observed. Instead, the scaled
variogram Vi(d, 3), where d is the distance between observation points on
the sampling line Lz, may be determined. In the binary case the scaled



variogram V,(d, 3) approximates P} () when d is sufficiently small; in the
grey level case the scaled variogram Vi, (d, #) is approximately proportional
to P}(f3), cf. Jeulin (2000). In practice, it may be a problem that arbitrarily
small distances d are not available in a digital image. In the present paper, a
refined relation between V(d,3) and PL(53) is derived. This result can also
be used for a greyscale image if segmentation into a binary image is possible.

The paper is organized as follows. In Section 2 the set-up for thickened
fibres is introduced. The relation between the point intensity PP(/3) and
the rose of directions R of the central fibres is also given. In Section 3 the
general relation between the point intensities Pp(3) and PL(/3) is derived
for Boolean fibres. Section 4 shows the precise form of this relation for two
specific examples of Boolean fibres. In Section 5 the refined relation between
the point intensity P;(3) and the scaled variogram V(d, 3), observed in a
binary digital image, is derived, while the case of greyscale images is discussed
in Section 6. Simulation examples are considered in Section 7. In Section 8
the effect of using digital lines instead of continuous lines is briefly studied.
In Section 9, the main results of the paper are summarized.

2 The set-up

Let us consider a marked point process W = {[z;; (I';, Z;)]} where the points
z; constitute a point process in R? and the marks (I';, Z;) are random compact
sets in R? such that I'; C Z;, cf. e.g. Matthes (1963) and Stoyan et al., (1995).
The marked point process is assumed to be stationary, i.e. {[a; + x; (I';, Z)]}

has the same distribution as {[z;; (I';, Z;)]} for all x € R% Each T} is a fibre,
i.e. a smooth, simple curve of finite length. Furthermore,

I'=UZ,(z: +1})

is a fibre process, such that the length of ' B is finite for all compact subsets
B of R?%. Fibre processes have been introduced in Mecke & Stoyan (1980).
The set =;, containing I';, can in principle be an arbitrary compact set but
in the applications we have in mind =; is a ‘thickened’ version of I';. The I';’s
are also called central fibres. A simple example of =; is a circle-dilated fibre

Ei = FZ @ B(O,T),



Figure 1: Illustration of the set-up. a) The central fibres z; + I'; are here line
segments. b) The thick fibres ; + =; are flat ellipses centred at z;.

where B(O,r) is a circular disk with centre O and radius r (chosen small
compared to the radii of curvature of the I';’s). We let

= =UZ (v + i)

be the union of thick fibres. In Figure 1 the set-up is illustrated. Since the
marked point process W is stationary, the fibre process I' and the process of
thick fibres = are also both stationary. If W is isotropic, then I' and = are
both isotropic.

In the present paper we study the problem of making inference about
the orientation of the unobservable central fibres I' from observation of the
orientation of the thick fibres =. The orientational characteristic of any
stationary fibre process, in particular I', can be described by the so-called rose
of directions R which is a distribution on [0, 7). For « € I, let a(x) € [0, 7)
be the angle that the tangent to I' at  makes with a fixed axis. Then, if 14
and 14 denote length and area, respectively, we have for Borel sets B C R?

and D C [0, ),
FEun{zeT'NB:a(x) € D} = Lan(B)R(D),

where L4 is the length intensity of the fibre process. Note that R(D) is the
ratio between the mean length of fibre pieces in B having tangent angles in
D and the mean total fibre length in B.

In paper fibre technology, the elliptic distribution is often used as a model



for R, compare with Forgacs & Strelis (1963). The density is

c

, 0<a<m, (1)

fr(a;s,7) V1 — K2cos?(a—7)

with orientation parameters k € (0,1), 7 € [0,7), and normalizing constant
c. Here k, called the strength, describes deviation from the circular model
(k = 0) and 7, called the critical direction, is the preferred direction of the
fibres. Our reasoning is not restricted to this particular model (1); alternative
choices of orientation distribution can be applied as well.

Another orientational characteristic, the so-called rose of intersections
PP(B):[0,7) — [0,00), is related to R. The quantity P2(/3) is the intensity
of the process of intersection points between the fibre process I' and a line
L with angle 3 relative to the zq-axis. The two orientational characteristics
are related by

PYB) = La / " |sin(a — AR (da), 2)

see Hilliard (1962), Mecke & Stoyan (1980), Mecke (1981). Similar formulas
can also be found in Forgacs & Strelis (1963).

3 From the point intensity P)(() to the point
intensity P} ()

Assume that the points {z;} of the marked point process ¥ is a stationary
Poisson point process in R? with intensity A and {(T;,=;)} are independent
and identically distributed and independent of {z;}. Then both I' and = are
Boolean models (Matheron, 1967; 1972). Below, we let (I'g,=¢) be typical
thin and thick fibres from the common distribution of {(I';,=;)}. Then, we
have Ls = AEw1(Ig). For simplicity we assume that [y and =, are convex.
In particular, it is assumed that T’y is a line segment. It should be noted,
however, that the results can be extended to the non-convex case.

Let us consider the Boolean models I' and = intersected by the sampling
line Lz. On the line, the point processes Lz NI and LgNO=, where 0= is the
boundary of the union of thick fibres, are both Boolean models, cf. Matheron
(1975, p. 140). In this section we relate the point intensities PP(3) of LsNT
and P} (8) of Lz NI=.



Let us first derive an expression for PP(/3). Let Rq be the rose of directions

of a single fibre 'y defined for a Borel set D C [0,7) as

_ Evi{z e ly:a(x) € D}‘

Ro(D) Evi(To)

Then, it is not difficult to see that R = Rg. Therefore, using (2),

PR3) = ABn(Ta) [ [sinfa = §)[Ro(da) = AB#s(To) (3)

where hs(I'g) is the length of the projection of I'y onto a line perpendicular
to Lﬁ.

Using Slivnyak’s theorem (Stoyan et al., 1995, p. 41), we find that the
intensity of Lg N 0= is

Pr(B) = (1= p)p(B),
where p is the coverage probability
p=P(O€ET)=1—exp(—AEw(Zo))
and p(3) is the intensity of Lz N U;(x; + 0Z),
p(B3) = 2AEhs(Zo),
see also Molchanov & Stoyan (1994, Theorem 3.1). Therefore, we get
Pr(B) = exp(=AEvs(Z0))2A Ehs(Zo). (4)

Combining (3) and (4), we obtain the following relation between PP(3) and
PL(B),

PL(B) = E4(B)PL(B), (5)
where
£ =2exp(—AEvy(=0)) (6)
and
40 = - M

7



Since & () depends on the thickness of =y, we will call & (/3) a thickness
factor. If =y = I'g, we get

PL(B) = 2PL(3). (8)

When the fibres =;’s have some thickness, we cannot observe the central
fibres I';’s and estimate their point intensity Pp(/3) on the sampling line Lg.
Instead J= may be observable such that the intensity P}(3) of the point
process Lg N 0= can be estimated. If the extent of the fibres =;’s is large
compared to their thickness, then & (3) ~ 1 and the relation (5) can be
regarded as approximately proportional

PL(B) = EPL(B) (9)

with 0 < ¢ < 2. In such cases the rose of directions R can be estimated
using the rose of intersections P} instead of Py without knowing the actual
thickness of the fibres. Note also that if R is uniform, then & () will be
constant.

4 Examples of Boolean fibres
4.1 Circle-dilated segment model
The circle-dilated segment model is

EO = FO D B(O,T),

where the central fibre I'g is a line segment with constant length [ and orien-

tation distribution R, and B(O,r) is a circular disc with centre O and radius

r which determines the thickness of =y, see also Molchanov & Stoyan (1994).
Using this model, L4 = Al,

v2(Zo) = 2lr + 7’

and

FEhg(=o) = /OW(H sin(a — 8)] + 2r)R(da).



Using (3) and (7), we find

Ehg(To) + 2r
§i(B) = W

and, using (5),
Pp(B) = 2exp(=A(2lr + ar®))(PL(B) + 2rA),

which is a linear function of PP(/3). The proportionality can be supposed to
hold if r is small compared to [. Note that under this assumption the intensity
A can be large and fibres overlap considerably. Under proportionality

PL(B) = EPL(B),
where & = 2exp(—A(2lr 4+ 7r?)).

4.2 Elliptical segment model

The elliptical segment = is a very flat ellipse with a major axis of random
length @ and a minor axis of fixed length b. The length a follows the uniform
distribution in (a1, ay) with mean value @ = (a1 4 a2)/2. In this case the
line segment I'y has random length [ = 2a with mean value [ = 2a. The
length intensity of I" is thereby L4 = 2Aa. The orientation of 'y follows the
common orientation density fzr. The elliptical segments are used in Figure
1.

Let us consider the formula (4) for the point intensity P}(3) of = with
an elliptical segment Zy. At first we obtain

EI/Q(E()) = mwba
and from (6)
£ = 2exp(—Arba).

The length of the projection of =y onto the direction perpendicular to [ is

hs(Zo) = 2\/a2 sin2([3 —a) + b2 cos?(f — «)
and the mean

2

g — ay

Ehs(Zo) = /0 (a1, a2,b, o, B)R(dev),

9



where

Iay,az,b,a,3) = /:2 \/a2 sin?(3 — a) + b2 cos?(3 — a) da

= |sin(f8 — a)| / a? + b2 cot?(B — «) da

1

= |sin(f8 — a)| 5 [ag\/af + 0% cot?(f — )

+b? Cotz(ﬁ —a) log(ay + \/a22 + b? cot? (8 — )
—al\/a12 + b2 cot?* (8 — @)

—b? Cotz(ﬁ — a) log(ay + 1/ai? 4 b cot?(3 — a))].

Using (4), we find

_ 4Xexp(—Amba

g — ay

PL(B) ) / I{ay,az,b,a,3)R(da).

0

The relation between PP(3) and P}(f3) is not simple as for the circle-
dilated segment model, but will be proportional if the fibres =;’s are long
compared to their thickness. In Table 1, the thickness factor

_ )
EPP(5)

is shown for an elliptical segment model with ¢y = 10, a; = 30, b = 1
and A = 0.014. The orientation distribution is the elliptic distribution with
(r,k) = (1.178,0.995), cf. (1). Note that in this example & (3) ~ 1 such
that PP(8) and P}(3) can be regarded as proportional. At the same time,
the overlap of the fibres is substantial. Thus, the coverage probability p =
1 — exp(—AFE15(Zg)) = 0.585 and the total area fraction of ellipses in the
image AFE15(Z9) = 0.880 differ. The overlap can also be seen in Figure 3b
which shows a realization of the model. The exampleis treated in more detail

§1(8)

in Section 7 below.
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Table 1:  The thickness factor & (3) in eight directions for strong anisotropically
distributed elliptical segments with (7, x) = (1.178,0.995).

B &)
0.000 1.002
0.464 1.004
0.785 1.008
1.107 1.020
1.571 1.008
2.034 1.003
2.356  1.002
2.678 1.002

5 From the point intensity /() to the scaled
variogram V;(d, #) in binary images

Let us consider a binary (0,1)-coloured image of Boolean fibres = C R? as
a random function Z(x) = lz(z), + € R* In this section we examine the
binary-valued function formed by the restriction of Z(x) to the sampling
line L. We consider the relation between the scaled variogram Vi (d, )
and P}(3) observed on Lg. In Jeulin (2000) it is shown that Vi(d, 3) is
approximately equal to P} (), for small d. Below, we derive a refined relation.

Let @,y € R? be located on Lg at distance d = ||z — y||. The scaled
variogram is defined as follows

ElZ(x) = Z(y)]
y :

Vi(d, B) = (10)

This quantity is equal to 2v,(d, 3)/d, where v1(d, 3) is the variogram of order
1 (Matheron, 1982). Note that the right-hand side of (10) only depends on
d and ( because of the stationary of =. We get
E|Z(x) = Z(y)l = 2P(x €,y ¢ =)
— 2PEN (g} =0) — P(EN g} = 0]

11



For a Boolean model,

PEn{y}=0) = exp(=AEw(Zo+ {y}))
= exp(—=AEra(=o))

and
PENn{z,y} =0) = exp(—AEw(Zo+ {z,y}))
— exp(AEm(Eo U Eo + fy —2)]). (1)

If d is small (as it is in our case), we can approximate in (11)

12(Z0 U [Z0 + {y — 2}]) = 12(E0) + dhs(Zo), (12)
¢f. e.g. Matheron (1975, p. 141). Thus
20PEN{y}=0) - PEN{z.y} =0)]
zexp(—AEVQ(EO))g — exp(=AEhs(Zo))

d
2exp(—AFE15(Z0))AdEhs(=Z0)
d

VL(dvﬁ) =

%

—_
*
~—

%

= PL(B) (13)
for small d. At (%) we have used
I —exp(—z)~x

for @ = AdFEhg(Zo).
A refined relation can be obtained if (12) is replaced by

v2(Z0 U [Z0 + {y — 2}]) & 12(Z0) + dhs(Zo) + d*ks(=0), (14)

cf. Kiderlen & Jensen (2001). The coefficient kg(=o) seems not to have a
simple geometric interpretation but satisfies

1
5 S kﬁ(EO) S 17

if =y is r-smooth for some r (for all boundary points x of = there is a circular

disc B, with radius r such that @ € B, C Z). Using (14) instead of (12), we

find

—exp(—AdEhs(Zo) — Ad? Fkg(Zo))
A FEhg(Zo)

Vi(d, B) ~ - PAB).  (15)

12



In typical applications of our model Ehg(Z) is much larger than
In such cases we can disregard the term Ad*Fkg(Zo) in (15), since
Fks(Zo) < 1. Using the refined approximation

d.
1
3 S

1,2

I —exp(—a2) o — —

2
for @ = AdEhg(Zo), we find from (15)

VL(dvﬁ) R 52(d76)PI%(6)7 (16)

where
A Ehg(Zo)
G(dB) = 1- SR
(=) _ dG(B)PLB)
5 )

We will call £&»(d, 3) a distance factor. At (%) we have used (3) and (7).
Let us suppose that the thickness factor & () is approximately 1 such
that (9) holds. Then, we find

Vi(d, B) = EPP(B) (17)
for small d, cf. (13), and

vt s e (1= E0) ) (18)

as a refined approximation, cf. (16). Recall that & is given in (6).

6 The scaled variogram V; (d, /) observed in
greyscale images

In cases where the observed image is a greyscale image, it is clearly of inter-
est to develop procedures for estimating orientational characteristics which
can be used without segmentation of the greyscale image into a binary im-
age. This is indeed possible if the image can be modelled by a dead leaves
random functions model with finite time ¢ (Jeulin, 1989; 1993). This model
generalizes earlier binary versions, c¢f. Matheron (1968) and Serra (1982).

13



The model is obtained by a sequential implantation of a random primary
grey-valued grain at each point of a space-time Poisson point process, the
more recent grains covering the already present grains. A typical application
of the model concerns micrographs of stacked fibres seen from above.
Formally, a dead leaves random functions model can be constructed using
a marked point process {[(z;,t;); ®;]} where {(x;,1;)} is a homogeneous Pois-
son point process on R? x [0,¢] of intensity 8, say, and {®;} are independent
and identically distributed non-negative random functions on R? which are
independent of {(x;,%;)}. It is supposed that the support of ®,,

= ={r e R?: &;(x) > 0},

is compact, see also Jeulin (1989). One can think of ®; as a primary grey-
valued grain. We let &y and = be a typical random function and its support.
The dead leaves random function Z;(z), v € R? equals the grey value at
of the most recently arrived grain. To be more precise, let

Iz)=A{i: ®;(x — ;) > 0}

be the set of primary grains hitting x. If I(x) is empty, let Z;(z) = 0.
Otherwise, Z;(x) = ®;(x — x7) where [ is the unique element in [(z) such
that t; > t; for all 7+ € I(x)\{I}.

Following Jeulin (2000), an expression for the scaled variogram

VLdl(daﬁ) _ E|Zt(x)d_ Zt(y)|

can be derived where @ — y = d(cos 3,sin3) as in the previous section, see
also Matheron (1971, 1982). As previously, let = = U2, (z; + =;) and let

¢ = PEN{y}=0)
Q(d,p) = PEN{z,y}=10)
For the primary function and its support, let
r(d,B) = Evy(Z0N [Z0+{y — 2}])/ Eva(E0)
1
np(dB) = 5B|@o(x) = Po(y)].

Finally, let Z’ be the grey value of a uniform random point on =y where =
is chosen to be area-weighted, i.e.

Pz > ) = LT € 0 ®ola) 2 2}

p— , 2> 0.
- El/z(:o)

14



Then, for small d,

VLdl(d76) = 2(1 - Q)V{P(Ovﬁ) - QT/(Ovﬁ)[(l - Q)QS - qlog Q(EZ/ - 25)(]7 )
19

where
S = / P(Z' > 2)P(Z' < 2)d=
0

given by Matheron (1982). The first term in (19) can be neglected for primary
grains with slow variation of grey levels (low 4] (0, 3)). Since

PL(B) = 2qlogq - r'(0, 3),
cf. (4) and (12), it follows that in such cases

Via(d,p) ~ [(1 = )25 — qlog g(EZ" — 28)]PL(13) (20)

qlogq
for small d. Note that in the binary case S = 0 and EZ’ = 1 such that (20)
reduces to (13). If the thickness factor & () of the fibres is close to 1, then it
follows that V7, (d,3) is proportional to the intensity PP(3). Using various
angles (3, the rose of direction of the central fibres can thereby be estimated.

7 Simulation example

In order to illustrate the obtained results, we have performed a simulation
study of the elliptical segment model. As in Section 4.2 the mean length of a
central segment I'; is [ = 40 with major axis length a uniformly distributed
in (a1,a2) = (10,30). The orientation distribution of I'; is uniform (the
isotropic case) or an elliptic distribution with (7,x) = (1.178,0.995) (the
anisotropic case), cf. (1). The intensity of the points x; is A = 0.014. The
length intensity of T is thereby L4 = M = 0.563. Adding an ellipse to each I';
with minor axis length b = 1, the union of elliptical segments = is obtained.
Each realization of thick fibres = is digitized into a (0,1)-valued image of
size 250 x 200 where the background has a grey value zero (black) and the
thick fibres have a grey value one (white). A pixel is coloured white if the
centre of the pixel is covered by =. A dead leaves model with finite time is
used for colouring the binary image of thick fibres. In the greyscale image

15



Figure 2: Realizations from three image models of isotropically distributed
Boolean fibres with length intensity L4 = 0.563. (a) An image of line segments.
(b) A digitized binary image of thick fibres. (c¢) A digitized dead leaves image of
thick fibres.

the background has a value 50, the first third of {Z;} fallen on the image
has grey value 150, the second 170 and the third 210. The grey value at a
pixel is that of the most recent fibre. Note that this is an extension of the
dead leaves random functions model described earlier since the ®;’s are not
identically distributed. All simulations have been carried out in an extended
window in order to reduce edge-effects. The simulated images are shown in
Figures 2 and 3 for the isotropic and the anisotropic case, respectively.

The point intensity and scaled variograms have been estimated in the
four main directions: 0, 7/4 = 0.785, 7/2 = 1.571 and 37 /4 = 2.356. Using
a bundle of parallel sampling lines Lg, the point intensity is estimated from
the image of line segments by

prgs) = e

for each direction, cf. e.g. Stoyan et al., (1995). The scaled variograms are
estimated from the digital images of = by the unbiased estimator

‘A/L(ﬁ) _ E?:l |Z(x:3d_ Z(x2+1)| 7

(21)

where 1,..., 2,41 are the pixel centres on the lines, Z(x) is the grey value
observed at x, and d is the distance between neighbour points,

d=|lz; —xial], 1=1,....n.

16



Figure 3: Realizations from three image models of anisotropically distributed
Boolean fibres with orientation parameters (7,x) = (1.178,0.995) and length in-
tensity L4 = 0.563. (a) An image of line segments. (b) A digitized binary image
of thick fibres. (¢) A digitized dead leaves image of thick fibres.

For horizontal and vertical lines, d = 1, while for diagonal ones, d = /2.
The estimated scaled variogram is denoted by ‘A/me () for the binary images
and VLdl(ﬁ) for the dead leaves images. In Tables 2 and 3, the estimates are
shown for the isotropic and anisotropic cases, respectively.

The ratio

¢ . Vme (6)
=)

is constant if the approximation (17) is valid while

Y/me(ﬁ) _
(1 —dP(B)/2)PL(B)

is constant if the refined approximation holds. The constant ¢ of proportion-
ality is in both cases

£(d,3) =

£ = 2exp(—AEwy(Z0)) = 0.830.

According to Tables 2 and 3, it is clear that in this case the refined ap-
proximation is needed. The largest deviation of é(ﬁ) from & is seen in the
directions where dpf(ﬁ) is largest. Finally, it should be noticed that the
ratios VLdl(ﬁ)/Vme () are fairly constant.

17



Table 2: 1In four directions the intensity PLO and the scaled variograms ‘A/me and

VLdl estimated from Figures 2a, 2b and 2c, respectively, are shown together with
the ratios £(3) and &£(d, 8). For details, see text.

B d PAB) Vi, (B) Viu(B) 4B &d.B)
0.000 1 0.355 0.251 36.26  0.707 0.860

0.785 2 0.347  0.223 32.67  0.643 0.852
1.571 1 0347 0.244 34.84  0.703  0.851
2.356 /2 0.357  0.230 33.09  0.644 0.862

Table 3: 1In four directions the intensity PLO and the scaled variograms ‘A/me and

VLdl estimated from Figures 3a, 3b and 3c, respectively, are shown together with
the ratios £(3) and &£(d, 8). For details, see text.

B d PB) Vi,(B) ViuB) &B) &(d,B)
0.000 1 0.446 0.285 4156 0.639 0.822

0.785 2 0.294  0.193 28.19  0.656 0.829
1.571 1 0.280 0.199 28.23  0.711 0.826
2.356 2 0.436 0.253 36.98  0.580  0.839

8 Further comments on digitization

In this section the problem of estimating the scaled variogram from observa-
tions on digital lines instead of continuous lines is shortly discussed. We con-
centrate on the four intermediate directions § = 0.464, 1.107, 2.034, 2.678
between the four main directions 3 =0, w/4, /2, 37 /4.

A digital line Lg in the intermediate direction 3 is often chosen as a chain
of 8-connected pixels. The neighbour points of the sequence zy,....,x,1; on
L are located in two angularly adjacent main directions 3; and 3; and at two
distances d; and ds, respectively, see Table 4. Let us for simplicity assume
that n is even, n = 2k, and that ||xg;_1 — 29j|| = d; in a direction f; and
||£9; — ®9;41]| = d2 in a direction By, j = 1,...,k. Then the straightforward
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estimator of the scaled variogram is

: Doimy [ Z(wi) = Z(wig1)|
Vi = == 22
for a digital image, compare with (21). However, the mean is, in the binary
case, a weighted average of Vi.(dy,31) and Vi, (dz, fB2)
dy ds
= Vi(dy, 81) +
dtdy P

For instance, if # = arctan(1/2) = 0.464, the mean is a weighted average of
Vi(1,0) and Vi.(v/2,7/4)

EVi,,. () Vi(da, B2).

1 Vi(1,0) + ﬁ
L+v2 142
Correspondingly, in the greyscale case EVLdl(ﬁ) is a weighted average of
Via(di, #1) and Vi, (ds, 33). The mean is thus not equal to Vi(d,3) or
Vi, (d, 3) for some suitably chosen d, as might be expected at first hand.
An alternative choise is to use every second pixel of the sequence xy, ..., z,11
such that the distance d between points becomes v/5. Then the unbiased
estimator (21) can be employed instead of (22). In order to use the approxi-
mations derived in this paper, it is, however, required that d is small.

EVi,, (0.464) = Vi(V2,7/4).

Table 4:  The values of the parameters 3y, d;, (2, dy for each intermediate
direction (3.

BB di By dy
0464 0 1 I 2
L1072 V2 1
2034 2 1 2 2
2678 2 V2 0 1

9 Conclusion

The aim of this study has been to make stereological inference on the ori-
entation of unobservable central Boolean fibres from observations made on
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thickened fibres in digital images. In the paper we have documented that
this is indeed possible under regularity conditions. First of all, the relation
between the roses of intersections P} and P}, where Py refers to central fibres
and P} to the boundary of the union of the thick fibres, is proportional if
the extent of thick fibres is large compared to their thickness. In such cases
the actual thickness and overlap of fibres are not important. Secondly, the
scaled variogram Vi(d, 3) calculated from a digital binary image approxi-
mates P}(f3) if the resolution of the grid is high. Under these assumptions
the point intensity PP(3) can thereby be estimated up to a constant factor di-
rectly from the scaled variogram, which is easy and fast to determine. These
results also hold for multicoloured fibres modelled by a dead leaves random
functions model. For a binary image which has been digitized with a grid of
low resolution the refined approximation between V,(d, 3) and P} (3) can be
used. The same is true for a greyscale image if segmentation into a binary
image is possible.
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