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1 Introduction

One of the most exciting and important recent developments in
Markov chain Monte Carlo (MCMC) is perfect or exact simulation.
Following the seminal work by Propp & Wilson (1996) many new
perfect simulation ideas have appeared, particularly for spatial point
processes, cf. the survey in M�ller (2001); see also Wilson's web site
(http://dimacs.rutgers.edu/�dwilson/exact.html). The aims of this
paper are to review and compare the performance of some perfect
simulation algorithms which apply on a rather general class of point
processes, viz. locally stable point processes.

We focus on algorithms based on dominated (or horizontal) cou-
pling from the past (CFTP) using spatial birth-and-death processes;
alternative and eÆcient perfect samplers have been developed for
some special models, see M�ller (2001) and the references therein.
In Kendall & M�ller (2000) dominated CFTP is treated in a general



context and applied on locally stable point processes using either spa-
tial birth-and-death processes or a Metropolis-Hastings algorithm.
In this paper we give an alternative and self-contained exposition of
the case where spatial birth-and-death processes are used. A spatial
birth-and-death process is a continuous time Markov process where
each transition consists in either adding a new point to the process
(a birth) or deleting an existing point from the process (a death).
Background material on spatial birth-and-death processes can be
found in Preston (1977) and M�ller (1989), but it is not needed in
the present paper. Extensions of the algorithms considered in this
paper are given in Berthelsen & M�ller (2001b) using spatial jump
processes. Another extension which is not treated in this paper, is
Wilson's (2000a) read-once version of CFTP. This algorithm applies
also on locally stable point processes, and it drastically reduces the
storage requirements.

The paper is organized as follows. Section 2 describes the setting
for spatial point processes used in this paper, and it is explained
what is meant by local stability. Section 3 speci�es a coupling con-
struction which is underlying the perfect samplers considered later.
Section 4 discusses a very simple perfect simulation algorithm, and
we show that it is too slow for practical purposes. Section 5 describes
a more eÆcient algorithm based on so-called upper and lower pro-
cesses (Kendall 1998, Kendall & M�ller 2000). Section 6 describes an
alternative algorithm using so-called clans of ancestors (Fern�andez
et al. 2000). Section 7 discusses some empirical �ndings for: the var-
ious perfect simulation algorithms.

2 Background

Throughout this paper we consider a fairly general setting for a
spatial point process � de�ned on a space S, equipped with a �-
algebra B which contains all singleton sets, and a di�use probability
measure �, i.e. f�g 2 B and �(f�g) = 0 for all � 2 S. For simplicity
we assume � to be a �nite subset of S, though everything in the
sequel easily extend to the case where � is allowed to have multiple
points and � is not necessarily di�use.

The state space of � is the set of all �nite point con�gurations

 =

S1
i=0fx � S : n(x) = ig, where n(x) denotes the number
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of points in x; for i = 0 we have the empty point con�guration
x = ;. We equip 
 with the smallest �-algebra making the map-
pings nB(x) = n(x \ B) measurable for all B 2 B. Further, � de-
notes a Poisson point process on S with intensity measure ��, where
� > 0 is a parameter. In other words, if � follows �, then n(�) is
Poisson distributed with mean �, and conditionally on n(�) = i,
the i points in � are independent and each point has distribution �.
Speci�cally one may think of S = [0; 1]2 as the unit square, B as the
Borel sets, and � as the uniform distribution, in which case � is a
standard Poisson process. However, our general setting covers many
other cases, including situations where � can be interpret as a mul-
titype or marked point process, see e.g. Baddeley & M�ller (1989)
and van Lieshout (2000) .

We assume that the distribution of � is speci�ed by an unnor-
malized density � with respect to �, so that � is non-increasing in
the following sense:

�(x [ �) � �(x) for all x 2 S and � 2 S n x (1)

(we abuse the notation and write x[� for x[f�g, xn� for xnf�g, etc.,
when x 2 
, � 2 S n x, � 2 x). This condition implies integrability
of � with respect to �. Particularly, (1) is needed for the perfect
simulation algorithms considered in this paper.

For a moment consider any unnormalized density � with respect
to �. Local stability of � means that for some constant K > 0 and
all x 2 
 and all � 2 S n x,

�(x [ �) � K�(x) (2)

(Ruelle 1969). This is a basic assumption in many papers: for exam-
ple, Geyer (1999) establishes geometric ergodicity of a birth-death
type Metropolis-Hastings algorithm for locally stable point processes
(Geyer & M�ller 1994); and Kendall & M�ller (2000) show that it is
a suÆcient condition for applying dominated CFTP based on spa-
tial birth-and-death processes and Metropolis-Hastings algorithms.
Local stability is in fact a rather weak condition satis�ed by most
models considered in the statistical literature on spatial point pro-
cesses, cf. the discussion in Kendall & M�ller (2000). The concept of
local stability is extended in Berthelsen & M�ller (2001b) to cases
where the dominating measure � is not necessary a Poisson process.
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As K can be absorbed into the parameter � we may without loss
of generality set K = 1 in (2), whereby (1) is obtained. Below we
consider just two examples where (1) is satis�ed.

Example 1: Suppose that � is the uniform distribution on S = [0; 1]2

and
�(x) = 
sR(x) (3)

taking 00 = 1, where sR(x) =
P

f�;�g�x 1l[jj���jj � R] is the number
of R-close pairs of points in x, and where 0 � 
 � 1 and R > 0
are parameters. This speci�es a Strauss process on the unit square
(Strauss 1975, Kelly & Ripley 1976). Clearly, � is locally stable.

Example 2: Let S and � be speci�ed as in Example 1, but let now

�(x) = 
��(Ux)

where Ux = [�2xball(�; R) is the union of closed balls with centers
� 2 x and of radius R, where R > 0 and 
 > 0 are parameters.
This is an area interaction point process (Widom & Rowlinson 1970,
Baddeley & van Lieshout 1995). The process is said to be attractive
for 
 > 1, and repulsive for 
 < 1, since

�(x [ �)=�(x) = 
��(Ux[�nUx) (4)

is increasing (
 > 1) or decreasing (
 < 1) in x. It follows from (4)
that (1) holds in the attractive case, but not in the repulsive case.
If 
 < 1 we therefore rede�ne � as a Poisson process with intensity
measure (�=
�R

2

)�, and rede�ne � by

�(x) = 
n(x)�R
2��(Ux):

Then (1) is satis�ed.

3 Coupling construction

Below we construct two time-stationary and reversible spatial birth-
and-death processes X = fXt : t 2 IRg and D = fDt : t 2 IRg with
equilibrium distributions given by Xt � � (with respect to �) and
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Dt � �. The two processes are coupled so that D dominates X in
the sense that

Xt � Dt for all t 2 IR: (5)

This is obtained by letting (D;X) be a continuous time Markov
processes with the following types of transitions: either a new point
is added to both D and X, or a birth happens in D but not in X, or
a point in X is deleted from both D and X, or a point in D but not
in X is deleted. The coupling construction is underlying the perfect
samplers in Sections 4{ 6.

We �rst specify how Dt can be generated forwards in time t � 0.
For any x 2 
 and t � 0, if we condition on that Dt = x, and � is
the waiting time for the next transition in D after time t, then

� � is exponentially distributed with mean 1=(� + n(x));
� with probability �=(�+n(x)) a birth happens in D at time t+ � :
draw a point �t+� � � and set Dt+� = x [ �t+� | for later
use in the coupling construction, generate also a \mark" Rt+� �
Uniform[0; 1];

� else a death happens in D at time t + � :
draw randomly uniformly a point �t+� from x and set Dt+� =
x n �t+� .

Furthermore, the conditional distributions of � , the event of a birth
or death, and the generation of either (�; Rt+� ) or � are assumed to
be mutually independent and independent of the previous history
given Dt = x. In other words, a birth of a new point in D happens
with rate � and follows the distribution �, each point in D dies with
rate 1, and births and deaths in D are independent events.

It is easily veri�ed that fDt : t � 0g is reversible with invariant
distribution �, and all the marks associated to the birth times are
mutually independent and independent of fDt : t � 0g. Hence we can
easily start in equilibrium D0 � �, and by reversibility, Dt is easily
generated backwards in time t < 0 together with the associated
marks for (forwards) births Dt = Dt� [ �t, where t� refers to the
situation just before time t. Moreover, it is not hard to verify that
D is non-explosive and ; is an ergodic atom at which D regenerates,
see Fig. 1.
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X
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Fig. 1. Upper curve: the dominating spatial birth-and-death process D; lower curve:
the spatial birth-and-death process X. The horizontal axis is time and the vertical line
corresponds to the state space 
 with ; placed at the bottom. Each time Dt = ;, the
jump process (D;X) regenerates.

We show next how Xt can be coupled to Dt forwards in time
t 2 IR. For x 2 
 and � 2 S n x, de�ne

b(x; �) = �(x [ �)=�(x) (6)

(setting 0=0 = 0). By (1), b � 1, and �b is a so-called Papan-
gelou conditionally intensity (Kallenberg 1984). Consider a cycle
of D given by fDt : �1 � t < �2g where �1 and �2 are two suc-
cessive times at which D enters ;, i.e. D�1� 6= ;, D�1 = ;, and
�2 = infft > �1 : Dt� 6= ;; Dt = ;g (with probability one, D enters
; in�nite often, and �1 < �1 < �2 < 1). Then set X�1 = ; and
construct Xt forwards in time t 2 (�1; �2), according to the following
rules:

Dt = Dt� ) Xt = Xt�

Dt = Dt� [ �t ) Xt =

(
Xt� [ �t if Rt � b(Xt�; �t)

Xt� otherwise

Dt = Dt� n �t ) Xt = Xt� n �t:

Using this coupling construction for all cycles of D, (5) is obviously
satis�ed.

It follows immediately from the coupling construction that X is a
spatial birth-and-death process with birth rate �b and death rate 1.
As � satis�es the detailed balance condition �(x)b(x; �) = �(x [ �),
we obtain that X is reversible with invariant (unnormalized) density
�. Hence, since (D;X) is time-stationary, Xt follows � for any �xed
time t 2 IR.
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In the case where �(x) = �n(x) with 0 � � � 1, we have that
(D;X) is reversible, X and fDtnXt : t 2 IRg are independent spatial
birth-and-death processes, and for any �xed time t 2 IR, Xt and
Dt n Xt are independent Poisson processes with intensity measures
��� and (1� �)��, respectively. However, it is easily checked that
(D;X) is in general not reversible, and apart from the Poisson case
above, it seems complicated to obtain a closed form expression for
the equilibrium distribution of (D;X).

4 The simple dominated CFTP algorithm

A jump in D happens when Dt 6= Dt�, in which case t is called a
jump time. In order to generate a simulation of X0 � � we need
only to consider the jump chain (or embedded Markov chain) of
fDt : t < 0g, its associated marks for forwards births, and the states
of X when fDt : t < 0g jumps. This is described in detail below.

Let : : : ; Z�2; Z�1; Z0 denote the jump chain of fDt : t < 0g so
that Z0 = D0 � �. This can be generated backwards in time together
with the associated marks for forwards births as follows. For i =
0;�1;�2; : : :,

� with probability �=(� + n(Zi)) make a backwards birth:
draw �i � � and set Zi�1 = Zi [ �i;

� else make a backwards death:
draw randomly uniformly �i 2 Zi, set Zi�1 = Zin�i, and generate
the associated mark Ri � Uniform[0; 1] for the forwards birth
Zi = Zi�1 [ �i.

Furthermore, let

T0 = inffi 2 IN0 : Z�i = ;g

and de�ne recursively Y�T0 ; : : : ; Y0, setting Y�T0 = ; and using the
rules

Zi = Zi�1 [ �i ) Yi =

(
Yi�1 [ �i if Ri � b(Yi�1; �i)

Yi�1 otherwise
(7)

Zi = Zi�1n�i ) Yi = Yi�1n�i (8)
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for i = �T0 + 1; : : : ; 0. Let � � � < ��2 < ��1 < �0 denote the jump
times of D before time 0. Then (X��T0

; : : : ; X�0) and (Y�T0; : : : ; Y0)
follow the same distribution. Especially, Y0 � �, since X�0 = X0

almost surely. This suggests the following perfect sampler.

The simple dominated CFTP algorithm

1. Generate backwards Z0; : : : ; Z�T0, starting with Z0 � �, and gen-
erate the associated marks Ri for forwards births Zi = Zi�1 [ �i;

2. set Y�T0 = ; and construct Y�T0+1; : : : ; Y0 as in (7){(8);
3. return Y0 � �; see Fig. 2.

0
t

�T0

Y

Z

Y0 � �

Z0 � �

Fig. 2. Illustration of the simple dominated CFTP algorithm.

Proposition: The mean number of steps involved in the backwards
construction of the simple dominated CFTP algorithm is bounded
from below by

IET0 � exp(�)� 1=2: (9)

Proof: Let Z1; Z2; : : : denote the jump chain of fDt : t > 0g. Set
Mi = n(Zi) for i 2 ZZ, T�0 = T0, T

+
0 = inffi 2 IN0 : Mi = 0g,

L = inffi 2 IN : Mi+T+
0
= 0g, and L0 = T�0 + T+

0 if M0 6= 0 and
L0 = L otherwise. By time-stationarity,

IEL0 � IEL = 1=�0; (10)

where � denotes the invariant probability density function of M . By
reversibility, T�0 and T+

0 are identically distributed, so

2IET0 = IE
�
T�0 + T+

0

�
= IE

�
L01[M0 6= 0]

�
: (11)
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Further,

IE
�
L01[M0 = 0]

�
= �0IE(L0jM0 = 0) = �0IEL = 1: (12)

Combining (10){(12) we obtain that

IET0 � (1=�0 � 1)=2:

Finally, by detailed balance of M ,

�i�=(� + i) = �i+1(i+ 1)=(� + i+ 1)

so by induction

�i+1 = �0�
i(� + i + 1)=(i+ 1)!; i 2 IN0;

whereby 1=�0 = 2 exp(�), and so (9) follows.

Remark: Since IET0 is at least exponentially growing in �, the sim-
ple dominated CFTP algorithm is infeasible for real applications of
interest. For instance, if � = 100, then IET0 � e100�1=2 � 2:7�1043.

5 Upper and lower processes

A much faster perfect simulation algorithm is given in Kendall &
M�ller (2000), using upper and lower processes U j = fU j

j ; : : : ; U
j
0g

and Lj = fLj
j; : : : ; L

j
0g which are started at times j = 0;�1;�2; : : :.

For each j, the upper and lower processes are constructed as follows.
Initially set U j

j = Zj and Lj
j = ;. For i = j + 1; : : : ; 0, if z = Zi�1,

u = U j
i�1, and l = Lj

i�1, use the rules

Zi = zn�i ) U j
i = un�i and Lj

i = ln�i; (13)

Zi = z [ �i ) U j
i =

(
u [ �i if Ri � �max(u; l; �i)

u otherwise

and Lj
i =

(
l [ �i if Ri � �min(u; l; �i)

l otherwise;
(14)

where
�max(u; l; �) = maxfb(x; �) : l � x � ug (15)

9



and
�min(u; l; �) = minfb(x; �) : l � x � ug: (16)

Notice that U j; Lj; U j�1; Lj�1; : : : are coupled by the same Ri; �i; �i
for i > j.

The construction in (13){(16) ensures the sandwiching property

Lj
i � Yi � U j

i � Zi; j � i � 0; (17)

the funneling property

Lj0

i � Lj
i � U j

i � U j0

i ; j � j 0 � i � 0; (18)

and the coalescence property

Lj
i = U j

i ) Lj

i0 = U j

i0 for j � i � i0 � 0; (19)

see Fig. 3. The sandwiching property explains why the U j and Lj are

0
t

�4 �2�8�T0

Y

Z

Y0 � �

Z0 � �

Fig. 3. Illustration of sandwiching, funnelling, and coalescence properties for T0 = 12
and j = �2;�4;�8 in (17){(19).

called upper and lower processes: they bound the \target process" Y .
The de�nitions (15){(16) seem natural as they provide the minimal
upper and maximal lower processes so that (17) is satis�ed for all
possible realizations of the marks Ri. By (17) and (19), once a pair of
upper and lower processes have coalesced, they stay in coalescence,
and at time 0 they are equal to Y0 � �.

The time
T = inffj 2 IN0 : U

�j
0 = L�j0 g

is called the true coalescence time for upper and lower processes. The
funneling property (18) suggests that instead of searching for T it
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may be advantageous to search for a larger coalescence time. There-
fore, consider any sequence of (possibly random) integers : : : j2 <
j1 < 0 such that limk!1 jk = �1, and let

Tfjkg = inff�jk : U
jk
0 = Ljk

0 g

be the �rst time that U j
0 = Lj

0 = Y0 when pairs of upper and lower
processes are started at times j = j1; j2; : : :. Further, let

Tmin = inffi 2 IN0 : Z�i \ Z0 = ;g

be the time just before the �rst point in Z0 is born. For �Tmin <
j � 0, we have that U j

0 � Zj \ Z0 6= ; and Lj
0 \ Zj = ;, so clearly

Tmin � T � Tfjkg � T0: (20)

For eÆciency reasons a doubling scheme is usually used (Propp &
Wilson 1996, Wilson 2000b), i.e. jk = �2k�1n, where n 2 IN is chosen
by the user; then we write Tn for Tfjkg. Typically in applications
Tn � T0, cf. Section 7. Taking (20) into account, we propose to
replace n by Tmin in the doubling scheme; then we write T� for Tfjkg.
See also the empirical results in Section 7.

Given a sequence of (possibly random) integers : : : j2 < j1 < 0
such that limk!1 jk = �1, we have the following perfect sampler,
where we set j0 = 0.

The dominated CFTP algorithm based on upper and lower processes

1. Generate Z0 � �;
2. repeat the following steps 3.{4. for k = 1; 2; : : : until U jk

0 = Ljk
0 ;

3. generate backwards Zjk�1�1; : : : ; Zjk and generate the associated
marks Ri � Uniform[0; 1] each time Zi nZi�1 6= ;; jk < i � jk�1;

4. generate forwards (U jk
jk
; Ljk

jk
); : : : ; (U jk

0 ; Ljk
0 ) as in (13){(14);

5. return U
�Tfjkg
0 � �.

The calculation of �max and �min is particular simple in the fol-
lowing cases. A point processes is attractive respectively repulsive
if

b(x; �) � b(y; �) whenever x � y; � 62 y; (21)

b(x; �) � b(y; �) whenever x � y; � 62 y: (22)
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For the Strauss and area interaction point processes (Examples 1
and 2), either (21) or (22) is satis�ed. In the attractive case (21),
�max(u; l; �) = b(u; �) and �min(u; l; �) = b(l; �); while in the repulsive
case (22), �max(u; l; �) = b(l; �) and �min(u; l; �) = b(u; �). Note that
it is only in the attractive case that U j and Lj are individual Markov
chains.

It other situations it may be quite time consuming to calcu-
late �max and �min by (15) and (16). For instance, if b(x; �) =
ba(x; �)br(x; �) factorizes into two terms, where ba(x; �) � Ka is in-
creasing in x, br(x; �) � Kr is decreasing in x, and KaKr � 1, it may
be convenient to rede�ne �max and �min by

�max(u; l; �) = ba(u; �)br(l; �) and �min(u; l; �) = ba(l; �)br(u; �):

Since (17){(19) are satis�ed with this choice of �max and �min, the
algorithm still works.

Example 1 (continued): Perfect simulations of di�erent Strauss pro-
cesses with 
 = 1 (the Poisson case), 
 = 0:5, and 
 = 0 are shown
in Fig. 4, using the same dominating process (and associated marks)
in all three cases. Due to the thinning procedure in the algorithm,
the point pattern with 
 = 1 contains the two others. The point
pattern with 
 = 0 does not contain the point pattern with 
 = 0:5,
because the Strauss process is repulsive.

Fig. 4. Simulation of a Strauss process on S = [0; 1]2, when � = 100, R = 0:05, and

 = 1; 0:5; 0 (from left to right).

12



6 Clan of ancestors

In this section we consider an alternative algorithm due to Fern�andez
et al. (2000). For simplicity we assume that S is a metric space and
� has �nite range of interaction, i.e. there exists an R < 1 such
that for any x 2 
 and � 2 Snx, b(x; �) = b(x\ ball(�; R); �), where
ball(�; R) denotes the ball with center � and radius R. This is ful�lled
in Examples 1 and 2.

In order to understand the following de�nitions it may be useful
to consider Fig. 5 and to keep in mind how the simple dominated
CFTP algorithm (Section 4) works. For � 2 [i�0Zi, let I(�) be the
time at which � was born, i.e. I(�) = i if � = �i in (7). We call

an1(�) = ZI(�)�1 \ ball(�; R)

the �rst generation of ancestors of �, de�ne recursively the jth gen-
eration of ancestors of � by

anj(�) = [�2anj�1(�)an
1(�); j = 2; 3; : : : ;

and call an(�) = [j2INan
j(�) the ancestors of �. If I(�) = i, then

Yi�1 \ ball(�; R) � an(�), so the ancestors of � = �i are the only
points in Z which are needed in (7) in order to determine whether
or not �i 2 Yi. Hence Y0 depends only on Z through ZC = C(Z0)[Z0,
where

C(Z0) = [�2Z0an(�)

is called the clan of ancestors of Z0. Finally, let

TC = inffi 2 IN0 : Z�i \ ZC = ;g

specify the time interval in which the points in ZC are living. Then
TC � T0, and Y0 is una�ected if we set Y�TC = ; and generate
Yi forwards in time i � �TC as usual, but considering only the
transitions in Z�TC \ ZC ; : : : ; Z0 \ ZC .

The dominated CFTP algorithm based on the clan of ancestors

1. Generate backwards Z0; : : : ; Z�TC , i.e. starting with Z0 � �;
2. set Y�TC = ; and generate forwards Y�TC+1; : : : ; Y0 as in (7){ (8),

but so that Yi+1 = Yi is unchanged whenever Zi+1\ZC = Zi\ZC

is unchanged;
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3. return Y0 � �.

It is not hard to see that T � TC , so

T � TC � T0: (23)

Note that TC depends only on b through R, and no monotonicity
properties such as (21) and (22) are required. The algorithm can eas-
ily be modi�ed to perfect Metropolis-Hastings simulation of locally
stable point processes (Kendall & M�ller 2000), and to perfect Gibbs
sampling of the Widom & Rowlinson (1970) model (H�aggstr�om, van
Lieshout & M�ller 1999) and related models (Georgii 2000). The case
of the Widom-Rowlinson model turns out to be particular simple.

t

S

0�TC

Fig. 5. Example of a clan of ancestors when S is a line segment. The points in D agree
with the midpoints of the vertical edges of the rectangles. Each horizontal edge of a
rectangle shows the life time of the corresponding point in D. The vertical edges are
all of length R. Shaded rectangles represent members of the clan.

7 Empirical �ndings

In this section we present some empirical �ndings for the dominated
CFTP algorithm based on upper and lower processes (Section 5)
and the clan algorithm (Section 6), respectively. The algorithms are
applied on a Strauss process de�ned on the unit square with � = 100
and R > 0 (Example 1). Note that as the interaction parameter 

increases, the interaction/repulsion between the points in the Strauss
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process decreases. Below we consider three values of 
: 
 = 0 (a so-
called hard core process), 
 = 0:5, and 
 = 1 (a Poisson process on
the unit square with rate � = 100).

First we consider the algorithm based on upper and lower pro-
cesses, using the doubling scheme with either n = 1 or n replaced
by Tmin. Recall that T1 and T� denote the corresponding coalescence
times, cf. Section 5. The number of steps involved in the backward-
forwards construction in the two cases are given by

N1 � T1 + (1 + 2 + 4 + : : :+ T1) = 3T1 � 1

and

Nmin � T� + (Tmin + 2Tmin + 4Tmin + : : :+ T�) = 3T� � Tmin;

respectively. It makes sense to compare N1 and Nmin because the
\basic algorithm" is the same in the two cases.

The left plot in Fig. 6 shows how the means IEN1 and IENmin

depend on R > 0 when 
 = 0. Each mean is estimated by the
empirical average based on 500 independent runs of the algorithm.
For all values of R in the plot, IENmin < IEN1, but the di�erence
decreases as R increases. Based on this and other results (not shown
here) we prefer to replace n by Tmin in the doubling scheme.

0.0 0.05 0.10

10^3

10^4

10^5

10^6

0.0 0.05 0.10 0.15

10^3

5*10^3

10^4

Fig. 6. Various mean values related to the CFTP algorithms, where each mean is
estimated from 500 independent runs. Left plot: IEN1 (full line) and IENmin (dotted
line) versus R. Right plot: IETC (full line) and IET� when 
 = 0 (upper dotted line)
and 
 = 0:5 (lower dotted line) versus R.
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Next we compare the dominated CFTP algorithm based on upper
and lower processes and the clan algorithm. As these algorithms are
not immediately comparable, there is little sense in comparing the
number of steps involved in the backwards-forwards construction in
the two algorithms. Instead we just consider the means IET� and
IETC for R > 0 and either 
 = 0 or 
 = 0:5, though this is of course
not telling the whole story about which algorithm is the fastest.

The right plot in Fig. 6 shows IET� and IETC versus R when 
 = 0
and 
 = 0:5, respectively. Note that TC does not depend on 
, and
each mean in the plot is estimated by the empirical average based
on 500 independent runs of the algorithm. All means in the plot are
much smaller than IET0 � e100� 1=2, cf. (9). As expected the means
agree as R tends to 0, and IET� decreases as 
 increases. For both

 = 0 and 
 = 0:5, it is only for rather small values of 
 that IET� is
larger than IETC . The picture changes as 
 tends to 1, since in the
limit T� agrees with Tmin which is smaller than TC , cf. (20) and (23).
Furthermore, as R increases, IET� becomes much smaller than IETC .

We have also investigated empirically how IETC and IET� depend
on �, and obtained similar conclusions as above. Further empirical
results for the Strauss process and other locally stable point processes
can be found in Berthelsen & M�ller (2001a).

Finally, all things considered our conclusion is that the domi-
nated CFTP algorithm based on upper and lower processes using
the doubling scheme with n replaced by Tmin seems to be the best
choice.

Acknowledgment

This paper will be a part of KKB's PhD dissertation. JM was sup-
ported by the European Union's research network \Statistical and
Computational Methods for the Analysis of Spatial Data, ERB-
FMRX-CT96-0096", by the Centre for Mathematical Physics and
Stochastics (MaPhySto), funded by a grant from the Danish Na-
tional Research Foundation, and by the Danish Natural Science Re-
search Council. JM also acknowledges the invitation and support for
attending the 5th Brazilian School of Probability.

16



References

Baddeley, A. & M�ller, J. (1989). Nearest-neighbour markov point
processes and random sets, Internat. Statist. Rev. 2: 89{121.

Baddeley, A. & van Lieshout, M. N. M. (1995). Area-interaction
Point Processes, Ann. Inst. Statist. Math. 46: 601{619.

Berthelsen, K. K. & M�ller, J. (2001a). Perfect simulation and in-
ference for spatial point processes. In preparation.

Berthelsen, K. K. & M�ller, J. (2001b). Spatial jump processes and
perfect simulation, Technical report, R-01-2008, Department of
Mathematical Sciences, Aalborg University. Submitted.

Fern�andez, R., Ferrari, P. A. & Garcia, N. L. (2000). Perfect sim-
ulation for interacting point processes, loss networks and Ising
models. Submitted to Stoch. Process. Appl.

Georgii, H.-O. (2000). Phase transitions and percolation in Gibb-
sian particle models, in K. R. Mecke & D. Stoyan (eds), Statis-
tical Physics and Spatial Statistics, Vol. 554 of Lecture Notes in
Physics, Springer, Berlin, pp. 267{294.

Geyer, C. J. (1999). Likelihood inference for spatial processes, in
O. E. Barndor�-Nielsen, W. Kendall & M. van Lieshout (eds),
Stochastic Geometry, Likelihood and Computation, Chapman &
Hall, pp. 79{140.

Geyer, C. J. & M�ller, J. (1994). Simulation procedures and like-
lihood inference for spatial point processes, Scand. J. Statist.
21: 359{373.

H�aggstr�om, O., van Lieshout, M. N. M. & M�ller, J. (1999). Char-
acterization results and Markov chain Monte Carlo algorithms
including exact simulation for some spatial point processes,
Bernoulli 5: 641{658.

Kallenberg, O. (1984). An informal guide to the theory of condition-
ing in point processes, Int. Statist. Rev. 52: 151{164.

Kelly, F. P. & Ripley, B. D. (1976). A note on Strauss's model for
clustering, Biometrika 63: 357{360.

Kendall, W. S. (1998). Perfect simulation for the area-interaction
point process, in L. Accardi & C. Heyde (eds), Probability To-
wards 2000, Springer, New York, pp. 218{234.

Kendall, W. S. & M�ller, J. (2000). Perfect simulation using dom-
inating processes on ordered spaces, with application to locally
stable point processes, Adv. Appl. Prob. 32: 844{865.

17



Lieshout, M. N. M. van (2000). Markov point processes and their
applications, Imperial College Press, London.

M�ller, J. (1989). On the rate of convergence of spatial birth-and-
death processes, Ann. Inst. Statist. Math. 41: 565{581.

M�ller, J. (2001). A review of perfect simulation in stochastic geom-
etry, in C. C. H. I. V. Basawa & R. L. Taylor (eds), Selected Pro-
ceedings of the Symposium on Inference for Stochastic Processes,
Vol. 37, IMS Lecture Notes & Monographs Series, pp. 333{355.

Preston, C. (1977). Spatial birth-and-death processes, Bull. Int.
Statist. Inst. 46: 371{391.

Propp, J. G. & Wilson, D. B. (1996). Exact sampling with coupled
Markov chains and applications to statistical mechanics, Random
Structures and Algorithms 9: 223{252.

Ruelle, D. (1969). Statistical Mechanis: Rigorous Results, W. A.
Benjamin, Reading, Massachusetts.

Strauss, D. J. (1975). A model for clustering, Biometrika 62: 467{
475.

Widom, B. & Rowlinson, J. S. (1970). A new model for the study of
liquid-vapor phase transitions, J. Chem. Phys. 52: 1670{1684.

Wilson, D. B. (2000a). How to couple from the past using a read-
once source of randomness, Random Structures and Algorithms
16: 85{113.

Wilson, D. B. (2000b). Layered multishift coupling for use in per-
fect sampling algorithms (with a primer on CFTP), in N. Madras
(ed.), Monte Carlo Methods, Vol. 26 of Fields Institute Commu-
nications, Amer. Stat. Soc., pp. 141{176.

18


