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Abstract

We prove the ionization conjecture within the Hartree-Fock theory of

atoms. More precisely, we prove that, if the nuclear charge is allowed to

tend to in�nity, the maximal negative ionization charge and the ionization

energy of atoms nevertheless remain bounded. Moreover, we show that in

Hartree-Fock theory the radius of an atom (properly de�ned) is bounded

independently of its nuclear charge.
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1 Introduction and main results

One of the great triumphs of quantum mechanics is that it explains the order

in the periodic table qualitatively as well as quantitatively. In elementary chem-

istry it is discussed how quantum mechanics implies the shell structure of atoms

which gives a qualitative understanding of the periodic table. In computational

quantum chemistry it is found that quantum mechanics gives excellent agree-

ment with the quantitative aspects of the periodic table. It is a very striking

fact, however, that the periodic table is much more \periodic" than can be ex-

plained by the simple shell structure picture. As an example it can be mentioned

that e.g., the radii of di�erent atoms belonging to the same group in the periodic

table do not vary very much, although the number of electrons in the atoms can

vary by a factor of 10. Another related example is the fact that the maximal

negative ionization (the number of extra electrons that a neutral atom can bind)

remains small (possibly no bigger than 2) even for atoms with large atomic num-

ber (nuclear charge). These experimental facts can to some extent be understood

numerically, but there is no good qualitative explanation for them.

In the mathematical physics literature the problem has been formulated as

follows (see e.g., problems 9 and 10 in [20]). Imagine that we consider `the

in�nitely large periodic table', i.e., atoms with arbitrarily large nuclear charge

Z, is it then still true that the radius and maximal negative ionization remain

bounded? This question often referred to as the ionization conjecture is the

subject of this paper.

To be completely honest neither the qualitative nor the quantitative expla-

nations of the periodic table use the full quantum mechanical description. On

one hand the simple qualitative shell structure picture ignores the interactions

between the electrons in the atoms. On the other hand even in computational

quantum chemistry one most often uses approximations to the full many body

quantum mechanical description. There are in fact a hierarchy of models for the

structure of atoms. The one which is usually considered most complete is the

Schr�odinger many-particle model. There are, however, even more complicated

models, which take relativistic and/or quantum �eld theoretic corrections into

account.
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A description which is somewhat simpler than the Schr�odinger model is the

Hartree-Fock (HF) model. Because of its greater simplicity it has been more

widely used in computational quantum chemistry than the full Schr�odinger model.

Although, chemists over the years have developed numerous generalizations of

the Hartree-Fock model, it is still remarkable how tremendously successful the

original (HF) model has been in describing the structure of atoms and molecules.

A model which is again much simpler than the Hartree-Fock model is the

Thomas-Fermi (TF) model. In this model the problem of �nding the structure

of an atom is essentially reduced to solving an ODE. The TF model has some

features, which are qualitatively wrong. Most notably it predicts that atoms do

not bind to form molecules (Teller's no binding Theorem, see [14]).

In this work we shall show that the TF model is, indeed, a much better

approximation to the more complicated HF model than generally believed. In

fact, we shall show that it is only the outermost region of the atom which is not

well described by the TF model.

As a simple corollary of this improved TF approximation we shall prove the

ionization conjecture within HF theory. The corresponding results for the full

Schr�odinger theory are still open and only much simpler results are known (see

e.g., [5, 12, 18, 19, 21]). In [3] the ionization conjecture was solved in the Thomas-

Fermi-von Weizs�acker generalization of the Thomas-Fermi model. In [22] the

ionization conjecture was solved in a simpli�ed Hartree-Fock mean �eld model

by a method very similar to the one presented here. In the simpli�ed model the

atoms are entirely spherically symmetric. In the full HF model, however, the

atoms need not be spherically symmetric. This lack of spherical symmetry in the

HF model is one of the main reasons for many of the diÆculties that have to be

overcome in the present paper, although this may not always be apparent from

the presentation.

We shall now describe more precisely the results of this paper. In common for

all the atomic models is that, given the number of electrons N and the nuclear

charge Z, they describe how to �nd the electronic ground state density � 2
L1(R3), with

R
� = N . Or more precisely how to �nd one ground state density,

since it may not be unique. In the TF model the ground state is described only

by the density, whereas in the Schr�odinger and HF models the density is derived
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from more detailed descriptions of the ground state. For all models we shall

use the following de�nitions. We distinguish quantities in the di�erent models

by adding superscripts TF, HF. (In this work we shall not be concerned with

the Schr�odinger model at all.) Throughout the paper we use units in which

~ = m = e = 1, i.e., atomic units.

We shall discuss Hartree-Fock theory in greater detail in Sect. 3 and Thomas-

Fermi theory in greater detail in Sect. 4. For a complete discussion of TF theory

we refer the reader to the original paper by Lieb and Simon [14] or the review by

Lieb [8]. In this introduction we shall only make the most basic de�nitions and

enough remarks in order to state some of the main results of the paper.

1.1. DEFINITION (Mean �eld potentials). Let �HF and �TF be the densi-

ties of atomic ground states in the HF and TF models respectively. We de�ne

the corresponding mean �eld potentials

'HF(x) := Zjxj�1 � �HF � jxj�1 = Zjxj�1 �
Z

�HF(y)jx� yj�1dy (1)

'TF(x) := Zjxj�1 � �TF � jxj�1 = Zjxj�1 �
Z

�TF(y)jx� yj�1dy (2)

and for all R � 0 the screened nuclear potentials at radius R

�
HF

R (x) := Zjxj�1 �
Z
jyj<R

�HF(y)jx� yj�1dy: (3)

�
TF

R (x) := Zjxj�1 �
Z
jyj<R

�TF(y)jx� yj�1dy: (4)

This is the potential from the nuclear charge Z screened by the electrons in the

region fx : jxj < Rg. The screened nuclear potential will be very important in

the technical proofs in Sects. 10{13.

1.2. DEFINITION (Radius). Let again �HF and �TF be the densities of atomic

ground states in the HF and TF models respectively. We de�ne the radius

RZ;N(�) to the � last electrons byZ
jxj�RTFZ;N(�)

�TF(x) dx = �;

Z
jxj�RHFZ;N(�)

�HF(x) dx = �:

The functions 'TF and �TF are the unique solutions to the set of equations

�'TF(x) = 4��TF(x)� 4�ZÆ(x) (5)
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�TF(x) = 23=2(3�2)�1 ['TF(x)� �TF]3=2+ (6)Z
�TF = N: (7)

Here �TF is a non-negative parameter called the chemical potential, which is also

uniquely determined from the equations. We have used the notation [t]+ =

maxft; 0g for all t 2 R. Instead of �xing N and determining �TF (the `canonical'

picture) one could �x �TF and determine N (the `grand canonical' picture). The

equation (5) is essentially equivalent to (2) and expresses the fact that 'TF is

the mean �eld potential generated by the positive charge Z and the negative

charge distribution ��TF. The equations (6{7) state that �TF is given by the

semiclassical expression for the density of an electron gas of N electrons in the

exterior potential 'TF. For a discussion of semiclassics we refer the reader to

Sect. 8.

1.3. REMARK. The total energy of the atom in Thomas-Fermi theory is

3
10
(3�2)2=3

Z
�TF(x)5=3 dx� Z

Z
�TF(x)jxj�1dx

+1
2

Z Z
�TF(x)jx� yj�1�TF(y)dx dy � �e0Z7=3 (8)

where e0 is the total binding energy of a neutral TF atom of unit nuclear charge.

Numerically [8],

e0 = 2(3�2)�2=3 � 3:67874 = 0:7687: (9)

For a neutral atom, where N = Z, the above inequality is an equality. The

inequality states that in Thomas-Fermi theory the energy is smallest for a neutral

atom.

We can now state two of the main results in this paper.

1.4. THEOREM (Potential Estimate). For all Z � 1 and all integers N

with N � Z for which there exist Hartree-Fock ground states with
R
�HF = N we

have

j'HF(x)� 'TF(x)j � A'jxj�4+"0 + A1; (10)

where A'; A1; "0 > 0 are universal constants.

This theorem is proved in Section 13 on page 71. The signi�cance of the

power jxj�4 is that for N � Z we have limZ!1'TF(x) = 342�3�2jxj�4. The
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existence of this limit known as the Sommerfeld asymptotic law [24] follows from

Theorem 2.10 in [8], but we shall also prove it in Theorems 5.2 and 5.4 below.

Note that the bound in Theorem 1.4 is uniform in N and Z.

The second main theorem is the universal bound on the atomic radius men-

tioned in the beginning of the introduction. In fact, not only do we prove uniform

bounds but we also establish a certain exact asymptotic formula for the radius

of an \in�nite atom".

1.5. THEOREM (The radius of an in�nite neutral HF atom). Both

lim inf
Z!1

RHF
Z;Z(�) and lim sup

Z!1
RHF
Z;Z(�) are bounded and have the asymptotic behavior

2�1=334=3�2=3��1=3 + o(��1=3)

as � !1.

The proof of this theorem can be found in Sect. 13 on page 71. The universal

bound on the maximal ionization is given in Theorem 3.6. The proof is given in

Sect. 13 on page 71. A universal bound on the ionization energy (the energy it

takes to remove one electron) is formulated in Theorem 3.8. The proof is given

in Sect. 13 on page 73.

One of the main ideas in the paper is to use the strong universal behavior

of the TF theory reected in the Sommerfeld asymptotics. If we combine (5)

and (6) we see that for �TF = 0 the potential satis�es the equation �'TF(x) =

27=2(3�)�1['TF]
3=2
+ (x) for x 6= 0. It turns out that the singularity at x = 0 of any

solution to this equation is either of weak type � Zjxj�1 for some constant Z or of

strong type � 342�3�2jxj�4 (see [27] for a discussion of singularities for di�erential
equations of similar type). The surprising fact, contained in Theorem 1.4, is that

the same type of universal behavior holds also for the much more complicated HF

potential. We prove this by comparing with appropriately modi�ed TF systems

on di�erent scales, using the fact that the modi�cations do not a�ect the universal

behavior. A direct comparison works only in a short range of scales. This is

however enough to use an iterative renormalization argument to bootstrap the

comparison to essentially all scales.

The paper is organized as follows. In Sect. 2 we �x our notational conventions

and give some basic prerequisites.



JPS/16-Jan-2001|Hartree-Fock Ionization, Sect. 1, Introduction 8

In Sect. 3 we discuss Hartree-Fock theory.

In Sects. 4 and 5 we discuss Thomas-Fermi theory. In particular we show that

the TF model, indeed, has the universal behavior for large Z that we want to

establish for the HF model. In the TF model the universality can be expressed

very precisely through the Sommerfeld asymptotics.

In Sect. 6 we begin the more technical work. We show in this section that the

HF atom in the region fx : jxj > Rg is determined to a good approximation, in

terms of energy, from knowledge of the screened nuclear potential �
HF

R . It is this

crucial step in the whole argument that I do not know how to generalize to the

Schr�odinger model or even to the case of molecules in HF theory.

For the outermost region of the atom one cannot use the energy to control the

density. In fact, changing the density of the atom far from the nucleus will not

a�ect the energy very much. Far away from the nucleus one must use the exact

energy minimizing property of the ground state, i.e., that it satis�es a variational

equation. This is done in Sect. 7 to estimate the L1 norm of the density in a

region of the form fx : jxj > Rg.
In Sect. 8 we establish the semiclassical estimates that allow one to compare

the HF model with the TF model. To be more precise, there is no semiclassical

parameter in our setup, but we derive bounds that in a semiclassical limit would

be asymptotically exact.

It turns out to be useful to use the electrostatic energy (or rather its square

root) as a norm in which to control the di�erence between the densities in TF

and HF theory. The properties of this norm, which we call the Coulomb norm,

are discussed in Sect. 9.

Sects. 4-9 can be read almost independently.

In Sect. 10 we state and prove the main technical tool in the work. It is

a comparison of the screened nuclear potentials in HF and TF theory. Using

a comparison between the screened nuclear potentials at radius R one may use

the result of the separation of the outside from the inside given in Sect. 6 to

get good control on the outside region fx : jxj > Rg. Using an iterative scheme

one establishes the main estimate for all R. The two main technical lemmas are

proved in Sect. 11 and Sect. 12 respectively.

Finally the main theorems are proved in Sect. 13.
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The main results of this paper were announced in [23] and a sketch of the

proof was given there.

2 Notational conventions and basic prerequisites

We shall throughout the paper use the de�nitions

B(r) :=
�
y 2 R3 : jyj � r

	
(11)

B(x; r) :=
�
y 2 R3 : jy � xj � r

	
(12)

A(r1; r2) :=
�
x 2 R3 : r1 � jxj � r2

	
: (13)

For any r > 0 we shall denote by �r the characteristic function of the ball

B(r) and by �
+
r = 1 � �r. We shall as in the introduction use the notation

[t]� = (t)� := maxf�t; 0g.
Our convention for the Fourier transform is

f̂(p) := (2�)�3=2
Z

eipxf(x) dx: (14)

Then

[f � g = (2�)3=2f̂ ĝ; kfk2 = kf̂k2; jf̂(p)j � (2�)�3=2kfk1 (15)

and Z Z
f(x)jx� yj�1g(y)dx dy = 2(2�)

Z
f̂(p)ĝ(p)jpj�2 dp: (16)

2.1. DEFINITION (Density Matrix). Here we shall use the de�nition that

a density matrix, on a Hilbert space H, is a positive trace class operator satisfying
the operator inequality 0 �  � I. When H is either L2(R3) or L2(R3 ; C 2) we

write (x; y) for the integral kernel for . It is 2 � 2 matrix valued in the case

L2(R3 ; C 2). We de�ne the density 0 � � 2 L1(R3) corresponding to  by

� :=
X
j

�jjuj(x)j2; (17)

where �j and uj are the eigenvalues and corresponding eigenfunctions of . ThenR
� = Tr[].
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2.2. REMARK. Whenever  is a density matrix with eigenfunctions uj and cor-

responding eigenvalues �j on either L2(R3) or L2(R3 ; C 2) we shall write

Tr [��] :=
X
j

�j

Z
jruj(x)j2 dx: (18)

If we allow the value +1 then the right side is de�ned for all density matrices.

The expression �� may of course de�ne a trace class operator for some , i.e.,

if the eigenfunctions uj are in the Sobolev space H2 and the right side above

is �nite. In this case the left side is well de�ned and is equal to the right side.

On the other hand, the right side may be �nite even though �� does not even

de�ne a bounded operator, i.e., if an eigenfunction is in H1, but not in H2. Then

the sum on the right is really

Tr
�
(��)1=2(��)1=2� = Tr [r � r] :

It is therefore easy to see that (18) holds not only for the spectral decomposition,

but more generally, whenever  can be written as f =
P

j �j(uj; f)uj, with

0 � �j (the uj need not be orthonormal). The same is also true for the expression

(17) for the density.

2.3. PROPOSITION. The map  7! Tr[��] as de�ned above on all density

matrices is aÆne and weakly lower semicontinuous

Proof. Choose a basis f1; f2; : : : for L
2 consisting of functions from H1. Then

Tr[��] =
X
m

(rfm; rfm):

The aÆnity is trivial and the lower semicontinuity follows from Fatou's Lemma.

We are of course abusing notation when we de�ne Tr[��] for all density
matrices. This is, however, very convenient and should hopefuly not cause any

confusion.

If V is a positive measurable function. We always identify V with a multipli-

cation operator on L2. If V � 2 L1(R3) we abuse notation and write

Tr [V ] :=

Z
V �:
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As before if V  happens to be trace class then the left side is well de�ned

and �nite and is equal to the right side. Otherwise, we really have
R
V � =

Tr
h
[V ]

1=2
+ [V ]

1=2
+

i
� Tr

h
[V ]

1=2
� [V ]

1=2
�

i
.

2.4. LEMMA (The IMS formulas). If u is in the Sobolev space H1(R3 ; C 2)

or H1(R3) and if � 2 C1(R3) is real, bounded, and has bounded derivative then1

Re

Z
r ��2u�

� � ru =

Z
jr(�u)j2 �

Z
jr�j2 juj2: (19)

If  is a density matrix on L2(R3 ; C 2) or L2(R3) and if �1; : : : ;�m 2 C1(R3) are

real, bounded, have bounded derivatives, and satisfy �2
1 + : : :+ �2

m = 1 then

Tr [��] = Tr [��(�1�1)]� Tr
�
(r�1)

2 
�
+ : : :

+ Tr [��(�m�m)]� Tr
�
(r�m)2 

�
: (20)

Note that �j�j again de�nes a density matrix (where we identi�ed �j with a

multiplication operator).

Proof. The identity (19) follows from a simple computation. If we sum this

identity and use �2
1 + : : :+ �2

m = 1 we obtainZ
jruj2 =

Z
jr(�1u)j2 �

Z
jr�1j2 juj2 + : : :+

Z
jr(�mu)j2 �

Z
jr�mj2 juj2:

If we allow the value +1 this identity holds for all functions u in L2. Thus (20)

is a simple consequence of the de�nition (18).

2.5. THEOREM (Lieb-Thirring inequality). We have the Lieb-Thirring in-

equality

Tr
��1

2
�
� � K1

Z
�5=3 ; (21)

where K1 := 20:49. Equivalently, If V 2 L5=2(R3) and if  is any density matrix

such that Tr[��] <1 we have

Tr
��1

2
�
�� Tr [V ] � �L1

Z
[V ]

5=2
+ ; (22)

where L1 :=
2
5

�
3

5K1

�2=3
= 0:038.

1We denote by u� the complex conjugate of u. In the case when u takes values in C 2 this

refers to the complex conjugate matrix.



JPS/16-Jan-2001|Hartree-Fock Ionization, Sect. 3, HF theory 12

The original proofs of these inequalities can be found in [15]. The constants

here are taken from [6]. From the min-max principle it is clear that the right

side of (22) is in fact a lower bound on the sum of the negative eigenvalues of the

operator �1
2
�� V .

2.6. THEOREM (Cwikel-Lieb-Rozenblum inequality). If V 2 L3=2(R3)

then the number of non-positive eigenvalues of �1
2
��V , i.e., Tr ��(�1;0]

��1
2
�� V

��
,

where �(�1;0] is the characteristic function of the interval (�1; 0], satis�es the

bound

Tr
�
�(�1;0]

��1
2
�� V

�� � L0

Z
[V ]

3=2
+ ; (23)

where L0 := 23=20:1156 = 0:3270.

The original (independent) proofs can be found in Cwikel [4], Rozenblum [17],

and Lieb [7]. The constant is from Lieb [7].

3 Hartree-Fock Theory

In Hartree-Fock theory, as opposed to Schr�odinger theory, one does not consider

the full N -body Hilbert space
VN L2(R3 ; C 2). One rather restricts attention to

the pure wedge products (Slater determinants)

	 = (N !)�1=2u1 ^ : : : ^ uN ; (24)

where u1; : : : ; uN 2 L2(R3 ; C 2). Then one minimizes the energy expectation

(	; HN;Z	)

(	;	)

of the Hamiltonian

HN;Z :=
NX
i=1

�
�1

2
�� Z

jxj
�
+

X
1�i<j�N

1

jxi � xjj (25)

over wave functions 	 of the form (24) only.

If  is the projection onto the N -dimensional space spanned by the functions

u1; : : : ; uN , the energy depends only on . In fact,

(	; HN;Z	)

(	;	)
= EHF():
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Here we have de�ned the Hartree-Fock energy functional

EHF() : = Tr
���1

2
�� Zjxj�1� �+D()� EX()

= Tr
��1

2
�
�� Z Zjxj�1�(x) dx+D()� EX(); (26)

where we have introduced the direct Coulomb energy, de�ned in terms of the

Coulomb inner product D (see also (79) below), by

D() := D(� ; �) =
1
2

Z Z
�(x)jx� yj�1�(y)dx dy (27)

and the exchange Coulomb energy

EX() := 1
2

Z Z
TrC2

�j(x; y)j2� jx� yj�1dx dy: (28)

3.1. DEFINITION (The Hartree-Fock ground state). Let Z > 0 be a

real number and N � 0 be an integer. The Hartree-Fock ground state energy is

EHF(N;Z) := inf
�EHF() : � = ;  = 2; Tr[] = N

	
:

If a minimizer HF exists we say that the atom has an HF ground state described

by HF. In particular, its density is �HF(x) = �HF(x).

3.2. THEOREM (Bound on the Hartree-Fock energy). For Z > 0 and

any integer N > 0 we have

EHF(N;Z) � �3(4�L1)
2=3Z2N1=3;

where L1 is the constant in the Lieb-Thirring inequality (22).

Proof. Let  be an N dimensional projection. Since the last term in HN;Z is

positive we see that EHF() � Tr
���1

2
�� Zjxj�1� �. It the follows from the

Lieb-Thirring inequality (22) that for all R > 0 we have

EHF() � �L1

Z
jxj<R

Z5=2jxj�5=2 dx� ZNR�1:

The estimate in the theorem follows by evaluating the integral and choosing the

optimal value for R.
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3.3. REMARK. The function N 7! EHF(N;Z) is non-increasing. This can be

seen fairly easily by constructing a trialN+1-dimensional projection from any N -

dimensional projection by adding an extra dimension corresponding to a function

u concentrated far from the origin and with very small kinetic energy
R jruj2.

This trial projection can be constructed such that it has an energy arbitrarily

close to the original N -dimensional projection. Therefore we also have that

EHF(N;Z) = inf
�EHF() : � = ; 2 = ; Tr � N

	
: (29)

This Hartree-Fock minimization problem was studied by Lieb and Simon in

[13]. They proved the following about the existence of minimizers.

3.4. THEOREM (Existence of HF minimizers). If N is a positive integer

such that N < Z+1 then there exists an N-dimensional projection HF minimizing

the functional EHF in (26), i.e., EHF(N;Z) = EHF(HF) is a minimum.

In the oppposite direction the following result was proved by Lieb [11].

3.5. THEOREM (Lieb's bound on the maximal ionization). If N is a pos-

itive integer such that N > 2Z + 1 there are no minimizers for the Hartree-Fock

functional among N-dimensional projections, i.e., there does not exist an N-

dimensional projection  such that EHF() = EHF(N;Z).

This Theorem will, in fact, follow from the proof of Lemma 7.1 below (see

page 36). Although this result is very good for Z = 1 it is far from optimal for

large Z. In particular the factor 2 should rather be 1. This fact known as the

ionization conjecture is one of the of the main results of the present work.

3.6. THEOREM (Optimal bound on maximal ionization charge). There

exists a universal constant Q > 0 such that for all positive integers satisfying

N � Z + Q there are no minimizers for the Hartree-Fock functional among N-

dimensional projections.

3.7. REMARK. Although, it is possible to calculate an exact value for the con-

stant Q above it is quite tedious to do so. Moreover, the present work does not

attempt to optimize this constant. The result of this work is mainly to estab-

lish that such a �nite constant exists. This of course raises the very interesting
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question of �nding a good estimate on the constant, but we shall not address this

here.

The proof Theorem 3.6 is given in Sect. 13 on page 71.

3.8. THEOREM (Bound on the ionization energy). The ionization energy

of a neutral atom EHF(Z � 1; Z)� EHF(Z;Z) is bounded by a universal constant

(in particular, independent of Z).

This theorem is proved in Sect. 13 on page 73.

The variational equations (Euler-Lagrange equations) for the minimizer was

also given in [13]. Since the Hartree-Fock variational equations shall be used later

in this work, we shall derive them in Theorem 3.11 below.

We �rst note that the Hartree-Fock functional EHF may be extended from pro-

jections (i.e., density matrices with 2 = ) to all density matrices. If Tr [��] <
1 all the terms of EHF are �nite. In fact, Tr [Zjxj�1] is �nite by the Lieb-Thirring
inequality (21) since Zjxj�1 2 L1(R3)+L5=2(R3). The term D() is �nite by the
Hardy-Littlewood-Sobolev inequality since � 2 L1(R3) \ L5=3(R3) � L6=5(R3).

Finally, EX() � D() since

D()� EX() = 1
4

X
i;j

�i�j

Z Z kui(x)
 uj(y)� uj(x)
 ui(y)k2C2
C2
jx� yj dx dy � 0;

when �i are the eigenvalues of  with ui being the corresponding eigenfunctions.

If Tr [��] = 1 we set EHF() := 1. It is clear that limn EHF(n) = 1 if

limn Tr [��n]!1.

3.9. REMARK. It is important to realize that although D()�EX() is positive
it is not a convex functional on the set of density matrices. In particular, the

Hartree-Fock minimizer need not be unique. (A simple example of non-uniqueness

occurs for the case N = 1. For a one-dimensional projection , it is clear that

D()� EX() = 0, hence the minimizer in this case is simply the projection onto

a ground state of the operator �1
2
��Zjxj�1 on the space L2(R3 ; C 2). There are

many ground states since the spin can point in any direction.)

Another fact related to the non-convexity of the Hartree-Fock functional is the

important observation �rst made by Lieb in [9] that the in�mum of the Hartree-

Fock functional is not lowered by extending the functional to all density matrices.

For a simple proof of this see [1].
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3.10. THEOREM (Lieb's variational principle). For all non-negative in-

tegers N we have

inf
�EHF() : � = ;  = 2; Tr[] = N

	
= inf fEHF() : 0 �  � I; Tr[] = Ng

and if the in�mum over all density matrices (the inf on the right) is attained then

so is the in�mum over projections (the inf on the left).

We now come to the properties of the Hartree-Fock minimizers, especially that

they satisfy the Hartree-Fock equations. These equations state that a minimizing

N -dimensional projection HF is the projection onto the N -dimensional space

spanned by eigenfunctions with lowest possible eigenvalues for the HF mean �eld

operator

HHF := �1
2
�� Zjxj�1 + �HF � jxj�1 � KHF: (30)

Here KHF is the exchange operator de�ned by having the 2 � 2-matrix valued

integral kernel

KHF(x; y) := jx� yj�1HF(x; y):
Thus HF(x; y) =

PN
i=1 ui(x)ui(y)

�, where HHFui = "iui, and "1; "2; : : : ; "N � 0

are the N lowest eigenvalues of HHF counted with multiplicities.

This self-consistent property of a minimizer HF may equivalently be stated

as in the theorem below.

3.11. THEOREM (Properties of HF minimizers). If HF with density �HF

is a projection minimizing the HF functional EHF under the constraint Tr [HF] =

N then �HF 2 L5=3(R3) \ L1(R3) and HHF de�nes a semibounded self-adjoint

operator with form domain H1(R3 ; C 2) having at least N non-positive eigenval-

ues. Moreover, HF is the N-dimensional projection minimizing the map  7!
Tr
h
HHF

i
.

3.12. REMARK. The reader may worry that, because of degenerate eigenvalues

of HHF, the N -dimensional projection  minimizing Tr
h
HHF

i
may not be

unique. That it is, indeed, unique was proved in [2].

Proof of Theorem 3.11. We note that Tr [HF] = N , Tr [��HF] < 1, and the

Lieb-Thirring inequality (21) implies that �HF 2 L5=3(R3) \ L1(R3). From this it
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is easy to see that �HF � jxj�1 is a bounded function (in fact, it is continuous and

tends to 0 as jxj ! 1). Moreover, in the operator sense KHF � �HF � jxj�1. This
follows, since for f 2 L2(R3 ; C 2) we haveZ

�HF � jxj�1jf(x)j2dx�
Z Z

f(x)�KHF(x; y)f(y)dx dy =

NX
i=1

1
2

Z Z kui(x)
 f(y)� f(x)
 ui(y)k2C 2
C2
jx� yj dx dy;

where u1; : : : ; uN is a complete set of eigenfunctions of HF. It is therefore clear

that HHF de�nes a semibounded operator with form domain H1(R3 ; C 2). Thus

it makes sense to compute Tr
h
HHF

i
if and only if Tr [��] <1.

Let 0 be an N -dimensional projection with Tr [��0] < 1. We shall prove

that

Tr
h
HHF

0
i
� Tr

h
HHF

HF

i
:

For 0 � t � 1, consider the density matrix t = (1 � t)HF + t0. It satis�es

Tr[t] = N . By the Lieb variational principle, Theorem 3.10, we have that

EHF(HF) = EHF(0) � EHF(t), for all 0 � t � 1. Hence

0 � dEHF(t)

dt

����
t=0

= Tr
h
HHF

0
i
� Tr

h
HHF

HF

i
:

The fact that Tr
h
HHF

i
is minimized among N -dimensional projections

implies in particular that HHF has at least N non-positive eigenvalues.

4 Thomas-Fermi Theory

In this section we discuss the facts needed from Thomas-Fermi theory. We focus

only on the results that we shall use in our study of Hartree-Fock theory.

4.1. DEFINITION (Thomas-Fermi functional). Let V 2 L5=2(R3)+L1(R3)

with

inf
�kWkL1(R3) : V �W 2 L5=2(R3)

	
= 0:

Corresponding to V we de�ne the Thomas-Fermi (TF) energy functional

ETF

V (�) = 3
10
(3�2)2=3

Z
�5=3 �

Z
V � + 1

2

Z Z
�(x)jx� yj�1�(y)dx dy;

on functions � with 0 � � 2 L5=3(R3) \ L1(R3).
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Note that the Hardy-Littlewood-Sobolev inequality implies that D(�; �) =

1
2

Z Z
�(x)jx � yj�1�(y)dx dy is �nite for functions � 2 L5=3 \ L1 � L6=5. Hence

ETF

V is �nite on these functions.

The proof of existence and uniqueness of minimizers to the TF functional

and the characterization of their properties can be found in the work of Lieb and

Simon [14] (see also [8]). We state the properties that we need in the following

theorem.

4.2. THEOREM (The TF minimizer). Let V be as in De�nition 4.1. For

all N 0 � 0 there exists a unique non-negative �TF
V
2 L5=3(R3) such that

R
�TF
V
� N 0

and

ETF

V (�TF
V
) = inf

�
ETF

V (�) : � 2 L5=3(R3);

Z
� � N 0

�
: (31)

On the other hand there exists a (unique) chemical potential (Lagrange

multiplier) �TF

V
(N 0), with 0 � �TF

V
(N 0) � sup V , such that �TF

V
is uniquely charac-

terized by

ETF

V (�TF
V
) + �TF

V
(N 0)

Z
�TF
V

= inf

�
ETF

V (�) + �TF

V
(N 0)

Z
� : 0 � � 2 L5=3(R3) \ L1(R3)

�
: (32)

Moreover, �TF
V

is the unique solution in L5=3 \ L1 to the Thomas-Fermi

equation (the Euler-Lagrange equation for the variational problem (32))

1
2
(3�2)2=3

�
�TF
V
(x)
�2=3

=
�
V (x)� �TF

V
� jxj�1 � �TF

V
(N 0)

�
+
: (33)

If �TF

V
(N 0) > 0 then

R
�TF
V

= N 0. Therefore �TF

V
(N 0)

R
�TF
V

= �TF

V
(N 0)N 0:

For all 0 < � there is a unique minimizer 0 � � 2 L5=3 \L1 to ETF

V (�)+�
R
�.

(If � � supV then � is simply zero).

We shall be interested in properties of the Thomas-Fermi potential

'TF

V
:= V (x)� �TF

V
� jxj�1: (34)

The Thomas-Fermi equation (33) can be turned into the Thomas-Fermi di�er-

ential equation

�'TF

V
= 27=2(3�)�1

�
'TF

V
� �TF

V
(N 0)

�3=2
+

+�V; (35)

which holds in distribution sense.
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4.3. THEOREM (Maximal ionization). There exists a non-negative real num-

ber Nc, possibly equal to +1, such that �TF

V
(N 0) > 0 if and only if N 0 < Nc.

Moreover,

Nc � lim inf
r!1

(4�)�1
Z
S2
rV (r!)d!; (36)

where d! is the surface measure on the unit 2-sphere S2.

Proof. Since ETF

V is a convex functional of � it is clear that ETF

V

�
�TF
V

�
is a convex

and decreasing function of N 0. Hence there is a value Nc such that ETF

V

�
�TF
V

�
is

strictly decreasing for N 0 < Nc and constant for N 0 � Nc. Thus if N
0 � Nc thenR

�TF
V

= Nc. Since
R
�TF
V

= N 0 if �TF

V
> 0 we must have �TF

V
(N 0) = �TF

V
(Nc) = 0

for N 0 � Nc. On the other hand since
R
�TF
V

= N 0 if N 0 < Nc we cannot have

�TF

V
(N 0) = 0 in this case. This proves the �rst assertion.

In order to prove the second assertion we may of course assume that Nc <1.

Since �TF

V
(Nc) = 0 we have for the corresponding Thomas-Fermi minimizer thatZ
S2
�TF
V
(r!)d! = (Const.)

Z
S2

�
V (r!)� �TF

V
� jr!j�1�3=2

+
d!

� (Const.)

�
(4�)�1

Z
S2
V (r!)d! � r�1

Z
R3

�TF
V

�3=2
+

where the last estimate follows from Jensen's inequality and Newton's Theorem.

Since we are considering a TF minimizer �TF
V

such that
R
�TF
V

= Nc it is clear

that if (36) is violated then
R
S2
�TF
V
(r!)d! > cr�3=2 for some positive constant

c and all large enough r. Hence Nc =
R
�TF
V

= 1 in contradiction with our

assumption.

Proving a bound on Nc in the opposite direction is in general more diÆcult.

We shall return to a partial converse to (36) in Corollary 4.8 below.

Usually the Thomas-Fermi model is studied for the potential V being the

Coulomb potential, i.e., Zjxj�1. In this case we denote �TF
V
, 'TF

V
, and �TF

V
simply

by �TF, 'TF, and �TF. These are the functions discussed in the introduction. In

fact, the equations (5) and (6) correspond to (33) and (35).

From Theorem 4.3 we see that in this case Nc � Z. We shall see below after

Corollary 4.8 that indeed Nc = Z.

The �rst mathematical study of the atomic TF equation was done by Hille [16];

a much more complete analysis can be found in [14].
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The function 'TF satis�es the asymptotics 'TF(x) � 342�3�2jxj�4 for large x.
The important thing to note about this asymptotics, �rst discovered by Sommer-

feld [24], is that it is independent of Z. The Sommerfeld asymptotics is central

to the present work and we shall prove a strong version of it in Theorems 5.2 and

5.4 below. Similar asymptotic estimates may be derived for the density using the

TF equation (33). We shall more generally prove asymptotic bounds for 'TF

V
, in

the case when the potential V is harmonic in certain regions of space.

We now come to the main technical lemma in this section, which is a version

of the Sommerfeld estimate.2

4.4. LEMMA (Sommerfeld estimate). Assume that ' � 0 is a smooth func-

tion on jxj > R and satis�es the di�erential equation

�'(x) = 27=2(3�)�1'(x)3=2; for jxj > R;

for some R � 0. Let � := (�7 +p73)=2 � 0:77. De�ne

a(R) := lim inf
r&R

sup
jxj=r

"�
'(x)

342�3�2r�4

��1=2
� 1

#
r�

and

A(R) := lim inf
r&R

sup
jxj=r

�
'(x)

342�3�2r�4
� 1

�
r�:

Then for jxj > R we have

�
1 + a(R)jxj����2 � '(x)

342�3�2jxj�4 �
�
1 + A(R)jxj��� : (37)

4.5. REMARK. It is important to realize that we are not assuming that ' is

spherically symmetric. The lemma above can therefore not be proved by ODE

techniques. By elliptic regularity the smoothness of ' would of course be a

consequence of a much weaker assumption.

2A version of this Sommerfeld estimate was stated in the announcement [23]. The result

stated was weaker than here in the sense that the exponents in the error terms were di�erent

for the upper and lower bounds. The result in the announcement also contained a minor error

because the lower bound had been stated incorrectly. The better and correct version is the one

stated and proved here.
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Proof of Lemma 4.4. We �rst prove that '(x)! 0 as jxj ! 1. For this purpose

consider L > 4R and for L=4 < jxj < L the function f(x) = C[(jxj � L=4)�4 +

(L� jxj)�4]. We compute

�f = C
h
20
�
(jxj � L=4)�6 + (L� jxj)�6�

+ 8jxj�1(L� jxj)�5 � 8jxj�1(jxj � L=4)�5
i

� 44C(L� jxj)�6 + 20C(jxj � L=4)�6:

On the other hand, f(x)3=2 � C3=2 ((jxj � L=4)�6 + (L� jxj)�6). It is there-
fore clear that we can choose C independently of L such that �f � 27=2(3�)�1f 3=2.

We claim that '(x) � f(x) for L=4 < jxj < L. This is trivial for jxj close to L=4
or close to L since here f(x) diverges whereas '(x) remains bounded. Consider

the set fL=4 < jxj < L : '(x) > f(x)g. This is an open set on which �('� f) �
27=2(3�)�1('3=2 � f 3=2) > 0, i.e., '� f is subharmonic on the set and is zero on

its boundary. Hence '(x) � f(x) on the set which is a contradiction unless the

set is empty. Thus for all L > 4R we have '(L=2) � C ((1=4)�4 + (1=2)�4)L�4:

Hence, '(x)jxj4 is bounded.
Next we turn to the proof of the main estimate. Let R0 > R and set A0 =

A(R0) and a0 = a(R0). Then a0 and A0 are �nite. We consider the two functions

!+
A0(x) := 342�3�2jxj�4(1+A0jxj��) and !�a0(x) := 342�3�2jxj�4(1+a0jxj��)�2:

Note that by the de�nition of a0 and A0 both functions are well-de�ned and

positive for jxj > R0. We claim that

�!+
A0(x) � 27=2(3�)�1!+

A0(x)
3=2 and �!�a0(x) � 27=2(3�)�1!�a0(x)

3=2: (38)

As we shall �rst show the lemma is a simple consequence of the estimates in

(38). We give the proof for the upper bound. The lower bound is similar. Let


+ :=
�jxj > R0 : '(x) > !+

A0(x)
	
:

On 
+, '� !+
A0 is subharmonic. On the boundary of 
+, '� !+

A0 vanishes. For

the subset @
+\fx : jxj = R0g this follows from the choice of A0. Since '(x) and

!+
A0(x) both tend to zero as jxj tends to in�nity we conclude that 
+ = ;.
Therefore '(x) � !+

A(R0)(x) for jxj > R0. For jxj > R we get '(x) �
lim infR0&R !

+
A(R0)(x) = !+

A(R)(x).
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It remains to check (38). For !�a0 we get

�!�a0(x) = 27=2(3�)�1!�a0(x)
3=2

�
1 +

�
1� 1

6
�(� + 7)

�
a0jxj��

+6(1 + a0jxj��)�1(�a0jxj��)2
�
:

Since �(�+7) = 6 and 1+a0jxj�� > 0 we see that �!�a0(x) � 27=2(3�)�1!�a0(x)
3=2.

For !+
A0 we have

�!+
A0(x) = 27=2(3�)�1!+

A0(x)
3=2(1 + A0jxj��)�3=2

�
1 +

�
1 +

�(� + 7)

12

�
A0jxj��

�
� 27=2(3�)�1!+

A0(x)
3=2;

where we have used that

(1 + A0jxj��)3=2 � 1 + 3
2
A0jxj�� = 1 + (1 + 1

12
�(� + 7))A0jxj��:

We can immediately use this lemma to get estimates on 'TF

V
when �TF

V
= 0.

For general �TF

V
the result can be generalized as follows.

4.6. THEOREM (Sommerfeld estimate for general �TF

V
). Assume that V

is continuous and harmonic for jxj > R and satis�es limjxj!1 V (x) = 0. Consider

the corresponding Thomas-Fermi potential 'TF

V
, which satis�es the TF di�erential

equation (35). Assume that �TF

V
< lim inf

r&R
inf
jxj=r

'TF

V
(x). De�ne

a(R) := lim inf
r&R

sup
jxj=r

"�
'TF

V
(x)

342�3�2r�4

��1=2
� 1

#
r� (39)

and

A(R; �TF

V
) := lim inf

r&R
sup
jxj=r

�
'TF

V
(x)� �TF

V

342�3�2r�4
� 1

�
r�: (40)

Then again, with � = (�7 +p73)=2 � 0:77, we �nd for all jxj > R

'TF

V
(x) � 342�3�2jxj�4 �1 + A(R; �TF

V
)jxj���+ �TF

V
(41)

and

'TF

V
(x) � max

n
342�3�2jxj�4 �1 + a(R)jxj����2 ; �(�TF

V
)jxj�1

o
; (42)

where

�(�TF

V
) := inf

jxj�R
max

n
342�3�2jxj�3 �1 + a(R)jxj����2 ; �TF

V
jxj
o
: (43)
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Proof. Since �TF
V
2 L5=3 \ L1 it is easy to see that �TF

V
� jxj�1 is continuous and

tends to zero as x tends to in�nity. Thus from the assumption on V it follows

that 'TF

V
is continuous on jxj > R and satis�es 'TF

V
(x)! 0 as jxj ! 1.

Let R0 > R and set A0 = A(R0; �TF

V
) and a0 = a(R0). Then a0 is well-de�ned

if R0 is close enough to R since then we may assume that 'TF

V
(x) > �TF

V
� 0 for

all jxj = R0. Both a0 and A0 are �nite. Using the notation from the proof of

Lemma 4.4 we de�ne

!+

�TF

V
;A0
(x) := !+

A0(x) + �TF

V
and !�

�TF

V
;a0
(x) := max

�
!�a0(x); �

0jxj�1	 ;
where

� 0 := min
jxj�R0

max
�jxj!�a0(x); jxj�TF

V

	
::

Note that, since we assume that 'TF

V
(x) > �TF

V
for jxj = R0, we have that both

!+
A0(x) and !

�
a0(x) are positive for all jxj > R0. We also have that !�a0(x) > �TF

V
for

jxj = R and hence that !�a0(x0) = �TF

V
at points x0 where the minimum, de�ning

� 0, is attained. (Note that jxj!�a0(x) is a radially decreasing function for jxj > R0.)

The proof of the present lemma is now similar to that of Lemma 4.4 if we can

show that for jxj > R0

�!+

�TF

V
;A0
(x) � 27=2(3�)�1

�
!+

�TF

V
;A0
(x)� �TF

V

�3=2
+

(44)

and

�!�
�TF

V
;a0
(x) � 27=2(3�)�1

�
!�
�TF

V
;a0
(x)� �TF

V

�3=2
+

(45)

(in distribution sense). The inequality (44) follows immediately from the �rst in-

equality in (38). The inequality (45) is slightly more complicated. Note that the

de�nitions of !�
�TF

V
;a0

and of � 0 imply that !�
�TF

V
;a0
(x) = � 0jxj�1 if !�

�TF

V
;a0
(x) < �TF

V

and !�
�TF

V
;a0
(x) = !�a0(x) if !

�

�TF

V
;a0
(x) > �TF

V
. Thus if !�

�TF

V
;a0
(x) < �TF

V
we have

that !�
�TF

V
;a0

is harmonic. Hence (45) holds in this region. If !�
�TF

V
;a0
(x) > �TF

V

then !�
�TF

V
;a0
(x) = !�a0(x) and (45) follows in this region from the second inequality

in (38). Finally, since the maximum of two subharmonic functions is also sub-

harmonic, it is clear that the distribution �!�
�TF

V
;a0

is a positive measure and in

particular positive on the set (of Lebesgue measure) zero where !�
�TF

V
;a0
(x) = �TF

V
.

Hence, (45) holds in distribution sense for all jxj > R.
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As an application of the lower bound on 'TF

V
in (42) we can get an estimate

on the chemical potential �TF

V
.

4.7. COROLLARY (Chemical potential estimate). With the assumptions

and de�nitions in Theorem 4.6, in particular, if �TF

V
< lim infr&R infjxj=r '

TF

V
(x)

we have

(�TF

V
)3=4 � 23=4

3�1=2
(1 + ja(R)jR��)1=2

�
lim
r!1

(4�)�1
Z
S2
rV (r!)d! �

Z
R3

�TF
V
(y)dy

�
:

(46)

Proof. According to (42) we have �(�TF

V
) � lim infjxj!1 jxj'TF

V
(x): Using that V

is harmonic and tends to zero at in�nity we have that for all r > R

lim inf
jxj!1

jxj'TF

V
(x) � (4�)�1

Z
S2
rV (r!)d! �

Z
R3

�TF
V
(y)dy:

Moreover since, �TF

V
� 0 the assumption �TF

V
< lim infr&R inf jxj=r '

TF

V
(x) implies

that the spherical average of V is non-negative.

On the other hand, since
�
1 + ja(R)jR����2 � �1 + a(R)jxj����2 for jxj � R,

we have from (43) that �(�TF

V
) � � 0, where

� 0 = min
jxj�R

max
n
342�3�2jxj�3 �1 + ja(R)jR����2 ; �TF

V
jxj
o

= 3 � 2�3=4�1=2 �1 + ja(R)jR����1=2 (�TF

V
)3=4:

This corollary immediately gives a partial converse to Theorem 4.3.

4.8. COROLLARY (Upper bound on maximal ionization). If V is har-

monic and continuous for jxj > R and satis�es V (x) ! 0 as jxj ! 1 and if

moreover �TF

V
< lim infr&R infjxj=r '

TF

V
(x) thenZ

�TF
V
� lim

r!1
(4�)�1

Z
S2
rV (r!)d!:

In particular, if lim infr&R inf jxj=r '
TF

V
(x) > 0 (which may not necessarily be true)

we have

Nc � lim
r!1

(4�)�1
Z
S2
rV (r!)d!:
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4.9. REMARK. The limit above of course exists since by the harmonicity of V

and since V tends to zero at in�nity we have that
R
S2
rV (r!)d! is independent

of r.

The diÆculty in using Corollaries 4.7 and 4.8 in concrete examples lies in

establishing the condition

�TF

V
< lim inf

r&R
inf
jxj=r

'TF

V
(x): (47)

5 Estimates on the standard atomic TF theory

In the usual atomic case the Coulomb potential V (x) = Zjxj�1 is harmonic

away from x = 0 and we can use Corollary 4.8 for all R > 0. Since �TF � jxj�1
is a bounded function it follows that 'TF(x) ! 1 as x ! 0. The condition

(47) is therefore satis�ed if R is chosen small enough. It therefore follows from

Theorem 4.3 and Corollary 4.8 that Nc = Z. Thus the neutral atom corresponds

to �TF = 0.

5.1. LEMMA. Let '
TF

0 be the TF potential for the neutral atom then if 'TF is

the potential for a general �TF � 0 we have

'
TF

0 (x) � 'TF(x) � '
TF

0 (x) + �TF:

Proof. See Corollary 3.8 (i) and (iii) in [8].

We now easily get an upper bound agreeing with the atomic Sommerfeld

asymptotics.

5.2. THEOREM (Atomic Sommerfeld upper bound). The atomic TF po-

tential satis�es the bound

'TF(x) � minf342�3�2jxj�4 + �TF; Zjxj�1g

Proof. This follows immediately from and (34) and (41) together with the fact

that �TF is non-negative. Simply note that since 'TF(x)jxj ! Z as x ! 0 we

have that A(0; �TF) = 0 in (41).
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5.3. LEMMA (Lower bound on the TF potential). In the atomic case we

have for all N > 0 and Z > 0

'TF(x) � Zjxj�1 �min

�
N jxj�1; 22

(9�)2=3
Z4=3

�
:

Proof. We have by Newton's Theorem

�TF � jxj�1 = jxj�1
Z
jyj<jxj

�TF(y)dy +

Z
jyj>jxj

�TF(y)jyj�1dy

� min

�
N jxj�1;

Z
�TF(y)jyj�1dy

�
:

From the Sommerfeld upper bound Theorem 5.2 and the TF equation (33) we

have

�TF(x)2=3 � 2(3�2)�2=3minf342�3�2jxj�4; Zjxj�1g:
Hence

�TF(x) � min
�
c1Z

3=2jxj�3=2; c2jxj�6
	
;

where c1 := 23=2(3�2)�1 and c2 := 352�3�. Let r0 := (c2=c1)
2=9Z�1=3. When

jxj = r0 the two functions, in the minimum above, are equal. ThusZ
�TF(y)jyj�1dy � 4�c1Z

3=2

Z r0

0

t�1=2dt+ 4�c2

Z 1

r0

t�5dt =
11�

3
c
8=9
1 c

1=9
2 Z4=3

=
22

(9�)2=3
Z4=3:

The lemma follows from the de�nition (34) of the TF potential.

5.4. THEOREM (Atomic Sommerfeld Lower bound). The TF potential

satis�es

'TF(x) �

8>>>>><>>>>>:

Zjxj�1 � 22(9�)�2=3Z4=3; if jxj � �0Z
�1=3

max
n

342�3�2
�
1 + aZ��=3jxj����2 jxj�4;

(Z �N)+jxj�1
o
;

if jxj � �0Z
�1=3

;

where �0 =
(9�)2=3

44
and � = (�7 +p73)=2 as in Theorem 4.6 and a = 43:7:
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Proof. Let R = (9�)2=3Z�1=3=44. Note that for jxj � R the bound we want to

prove is identical to the bound in Lemma. 5.3.

If N � Z, i.e., �TF = 0 the lower bound follows from Theorem 4.6 since a is

chosen so as to make the lower bound continuous at jxj = R and at these points

we clearly have 'TF(x) > 0 = �TF.

For general N the lower bound follows from the case N = Z because of

Lemma 5.1 and Lemma 5.3.

We end this section by giving a bound on the screened nuclear potential �
TF

R

at radius R in the atomic TF theory.

5.5. LEMMA (Bound on �
TF

R ). We have

�
TF

jxj(x) � 342�1�2jxj�4 + �TF

Proof. We write �
TF

jxj(x) = 'TF(x) +
R
jyj>jxj

�TF(y)jx� yj�1dy. From Theorem 5.2

and the TF equation (33) we see that

�TF(y) � 23=2(3�2)�1['TF � �TF]
3=2
+ � 2�335�jyj�6

and henceZ
jyj>jxj

�TF(y)jx� yj�1dy �
Z
jyj>jxj

2�335�jyj�6jx� yj�1dy

=

Z
jyj>jxj

2�335�jyj�7dy = 2�335�2jxj�4:

The lemma follows from Theorem 5.2.

6 Separating the outside from the inside

We shall here control the energy coming from the regions far from the nucleus.

Let HF be an HF minimizer with Tr[HF] = N . (We are thus assuming that N

is such that a minimizer exists.)
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6.1. DEFINITION (The localization function). Fix 0 < � < 1 and let

G : R3 ! R be given by

G(x) =

8>><>>:
0 if jxj � 1

(�=2)(jxj � 1) [(1� �)�1 � 1]
�1

if 1 � jxj � (1� �)�1

�=2 if (1� �)�1 � jxj

We introduce the cuto� radius r > 0 and de�ne the outside localization

function �r(x) = sinG(jxj=r). Then

0 � �r(x)

8>><>>:
= 0 if jxj � r

� 1 if r � jxj � (1� �)�1r

= 1 if (1� �)�1r � jxj

and jr�r(x)j2 + jr(1� �r(x)
2)1=2j2 � (�=(2�r))2 (since (1� �)�1 � 1 � �).

We shall consider the HF minimizer restricted to the region fx : jxj > rg. We

therefore de�ne the exterior part of the minimizer

HFr = �r
HF�r (48)

and its density �HF
r (x) = �r(x)

2�HF(x). In order to control HFr we introduce an

auxilliary functional de�ned on all density matrices with Tr [��] < 1 (See

Remark 2.2) by

EA() = Tr
�
(�1

2
�� �

HF

r )
�
+ 1

2

Z Z
jxj�r
jyj�r

�(x)jx� yj�1�(y)dx dy; (49)

where the screened nuclear potential �
HF

r is de�ned in (3) in De�nition 1.1. Note

that the functional EA, in contrast to the HF functional EHF in (26), does not

contain an exchange term.

The main result in this section is that HFr almost minimizes EA. More pre-

cisely, we shall prove the following theorem.

6.2. THEOREM (The outside energy). For all 0 < � < 1 and all r > 0 we

have

EA [HFr ] � inf

�
EA() : supp � � fy : jyj � rg;

Z
� �

Z
�
+
r �

HF

�
+R; (50)
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where the error is

R = C�(r)

Z
jxj�(1��)r

�HF(x)dx + 2L1

Z
(1��)r�jxj�(1��)�1r

h
�

HF

(1��)r(x)
i5=2
+

dx+ EX (HFr ) (51)

with

C�(r) =

�
�2

8 (�(1� �)r)2
+

�

r�

�
:

Here L1 is the constant in the Lieb-Thirring inequality (22).

Proof. Besides �r we introduce two other localization functions

�� = (1� �2r(1��))
1=2 and �(0) =

�
�2r(1��) � �2r

�1=2
:

Note that �2�+�
2
(0)
+�2r = 1 and that (r��)2+(r�(0))2+(r�r)2 � (�=(2�(1� �)r))2.

We introduce the inside part of the HF minimizer

HF� = ��
HF��: (52)

We shall prove (50) by showing that for all density matrices  with supp � �
fx : jxj � rg and R � � R �+r �HF we have

EA [HFr ] + EHF
�
HF�
��R � EHF [HF] � EA[] + EHF

�
HF�
�
; (53)

with R given by (51). The estimate (50) follows immediately from (53).

Proof of the upper bound in (53): Since HF is a minimizer for EHF under the

condition Tr[HF] � N (see (29)) we have for any density matrix e with Tr
�e� �

N that EHF (HF) � EHF
�e�. We take

e = HF� + :

Since the support of � is disjoint from the support of �� we see that HF�  = 0

and hence e is a density matrix.

Note that

Tr
�e� = Tr

�
HF�
�
+

Z
� � Tr

�
HF�
�
+

Z
�
+
r �

HF =

Z
(�2� + �

+
r )�

HF �
Z

�HF � N

We shall compute EHF
�e�. The only terms in EHF that are not linear in the

density matrix (and thus do not simply split into a sum of terms for HF� and )
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are the exchange and direct Coulomb energies. Because of the support properties

of HF� and  we have that e2 = �HF� �2+2 and therefore even the exchange term

satis�es

EX �e� = EX �HF� �+ EX () � EX �HF� � :
We are thus left with the direct Coulomb energy. For this we �nd that

D �e� = D �HF� �+D () +

Z
�2�(y)�

HF(y)jx� yj�1�(y)dy:

By the choice of the support of �� we have thatZ
�2�(y)�

HF(y)jx� yj�1�(x)dx dy �
Z �

Z

jxj � �
HF

r (x)

�
�(x)dx:

We have thus proved the upper bound in (53).

Proof of the lower bound in (53):

Let again the inside part of the HF minimizer be HF� de�ned by (52) and

introduce also the middle part HF
(0)

= �(0)
HF�(0). Since �

2
� + �2

(0)
+ �2r = 1 we have

from the IMS formula (20) that

Tr
��1

2
�HF

�
= Tr

��1
2
�
�
HF� + HF

(0) + HFr
��

� 1
2
Tr
�
HF

�
(r��)2 + (r�(0))2 + (r�r)2

��
� Tr

��1
2
�
�
HF� + HF

(0)
+ HFr

��
� (�2=8) (�(1� �)r)�2

Z
(1��)r<jxj<r(1��)�1

�HF(x)dx: (54)

We now come to the lower bounds on the Coulomb terms. Note that

1 =
�
�2�(x) + �2

(0)
(x) + �2r(x)

� �
�2�(y) + �2

(0)
(y) + �2r(y)

�
� �2�(x)�

2
�(y) + �2r(x)�

2
r(y) + �2r(x)

�
�2�(y) + �2

(0)
(y)
�

+
�
�2�(x) + �2

(0)
(x)
�
�2r(y) + �2

(0)
(x)2�2�(y) + �2�(x)

2�2
(0)
(y):
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Note that �2�(x)+�2(0)(x) � �r(x) and �
2
�(x) � �(1��)r We may therefore estimate

the Coulomb kernel from below by

jx� yj�1 � eV (x; y);
where

eV (x; y) := �2�(x)jx� yj�1�2�(y) + �2r(x)jx� yj�1�2r(y)

+�2r(x)jx� yj�1�r(y) + �r(x)jx� yj�1�2r(y) (55)

+�2
(0)
(x)jx� yj�1�(1��)r(y) + �(1��)r(x)jx� yj�1�2

(0)
(y):

The function eV is pointwise positive and symmetric in x and y.

Recall that HF is a projection onto the subspace spanned by the orthonormal

vectors u1; u2; : : : ; uN and

D (HF)� EX (HF) = 1
4

X
i;j

Z Z kui(x)
 uj(y)� uj(x)
 ui(y)k2C2
C2
jx� yj dx dy

� 1
4

X
i;j

Z Z
kui(x)
 uj(y)� uj(x)
 ui(y)k2C 2
C2 eV (x; y)dx dy

= 1
2

Z Z
�HF(x)eV (x; y)�HF(y)dx dy

� 1
2

Z Z
TrC2 jHF(x; y)j2 eV (x; y)dx dy: (56)

We estimate these two terms independently. We obtain for the �rst term in (56)

1
2

Z Z
�HF(x)eV (x; y)�HF(y)dx dy = D �HF� �+D (HFr )

+

Z �
Z

jxj � �
HF

r (x)

�
�HFr (x)dx+ Tr

��
Z

jxj � �
HF

(1��)r(x)

�
HF
(0)

�
:(57)

To estimate the last term in (56) we use that for all jxj > r

�r(x)
2 � �r(x) � (�=2)(jxj=r� 1)

�
(1� �)�1 � 1

��1
:
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Thus if jyj < r we have jx� yj�1�r(x)2 � (�=2)r�1 ((1� �)�1 � 1)
�1

and henceZ Z
TrC2

h
jHF(x; y)j2

i
jx� yj�1 ��r(y)�2r(x) + �(1��)r(y)�

2
(0)
(x)
�
dx dy

� �

2r

�
(1� �)�1 � 1

��1 �
1 + (1� �)�1

� Z Z
jyj�r

jxj�(1��)r

TrC2
h
jHF(x; y)j2

i
dx dy

� �

r�

Z Z
jyj�r

jxj�(1��)r

TrC2
h
jHF(x; y)j2

i
dx dy:

Moreover, we only increase the last integral if we integrate over all y 2 R3 . ThusZ Z
jyj�r

jxj�(1��)r

TrC2 jHF(x; y)j2 dx dy �
Z

jxj�(1��)r

�
TrC 2

Z
HF(x; y)HF(y; x)dy

�
dx

=

Z
jxj�(1��)r

TrC 2
h
(HF)2 (x; x)

i
dx:

If we now use that (HF)2 = HF and that �HF(x) = TrC2 [
HF(x; x)] we obtain the

estimate

1
2

Z Z
TrC2 jHF(x; y)j2 eV (x; y)dx dy � EX �HF� �+ EX [HFr ]

+
�

r�

Z
jxj�(1��)r

�HF(x)dx: (58)

If we combine (54), (57) and (58) we obtain

EHF [HF] � EHF
�
HF�
�
+ EA [HFr ]� EX [HFr ] + Tr

h�
�1

2
�� �

HF

(1��)r

�
HF
(0)

i

� C�(r)

�
�2

8 (�(1� �)r)2
+

�

r�

� Z
jxj�(1��)r

�HF(x)dx:

Since 0 � HF
(0)
� I and the density of HF

(0)
is supported within the set�

x : (1� �)r � jxj � (1� �)�1r
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we have from the Lieb-Thirring inequality (22) that

Tr
h�
�1

2
�� �

HF

(1��)r

�
HF
(0)

i
� �2L1

Z
(1��)r�jxj�(1��)�1r

h
�

HF

(1��)r(x)
i5=2
+

dx:

The factor of 2 above is due to the spin degrees of freedom. We have thus proved

the lower bound in (53).

As a consequence of this theorem and the Lieb-Thirring inequality (21) we

get the following bound.

6.3. COROLLARY (L5=3 bound on �HF
r ). Let K1 denote the constant in the

LT inequality (21) and e0, as in (9), denote the TF energy of a neutral atom with

unit nuclear charge and physical parameter values. ThenZ
�HFr (y)5=3dy � 2K�1

1 R+ 6
5
(3�2)2=3K�2

1 e0

"
r sup
jxj=r

�
HF

r (x)

#7=3
+

; (59)

where R was given in (51).

Proof. Since �
HF

r is harmonic on the set fjxj > rg and tends to zero at in�nity

we get for all jyj > r that �
HF

r (y) � jyj�1r supjxj=r �HF

r (x). Hence

EA [HFr ] � K1

Z
�HFr (y)5=3dy �

"
r sup
jxj=r

�
HF

r (x)

# Z
jyj�1�HFr (y)dy

+ 1
2

Z Z
�HFr (y)jy � y0j�1�HFr 0(y0)dy dy0

It follows from standard atomic Thomas-Fermi theory that the right hand side

is bounded below by the energy of a neutral Thomas-Fermi atom with nuclear

charge
�
r supjxj=r �

HF

r (x)
�
+
and with the constant K1 in front of the �rst term. A

simple scaling argument shows that this is� 3
10
(3�2)2=3K�1

1

�
r supjxj=r �

HF

r (x)
�7=3
+

e0.

By repeating this argument with only a fraction of the term
R
(�HFr )5=3 we

conclude that for all 0 < t < 1

(1� t)K1

Z
�HFr (y)5=3dy � EA [HFr ] + 3

10
(3�2)2=3(tK1)

�1e0

"
r sup
jxj=r

�
HF

r (x)

#7=3
+

:

Since EA [HFr ] � R (by choosing the trial  = 0 in (50) ) we get (59) if we choose

t = 1=2.
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We still need to show how we can control the exchange term EX [HFr ]. This is

done using a standard inequality of Lieb [](or in an improved version by Lieb and

Oxford []). They proved the inequality for general wave functions, but we need it

here only for Hartree-Fock Slater determinants. For completeness we shall give a

proof (with a worse constant) in the simple case we need here.

6.4. THEOREM (Exchange inequality). For any trace class operator  with

0 �  � I we have the estimate

EX [] � 1:68

Z
�4=3

Proof. We shall here present a simple proof that the inequality holds with 1.68

replaced by 248.3. To get the much better constant one needs the more detailed

analysis in []. We use the representation

jxj�1 = ��1
Z 1

0

�r � �r(x)r�5dr;

where �r again denotes the characteristic function of the ball of radius r centered

at the origin. Thus we may write the exchange energy as

EX [] = (2�)�1
Z 1

0

Z
R3

Tr[Xr;zXr;z]r
�5dzdr;

where Xr;z is the multiplication operator Xr;zf(x) = �r(x� z)f(x).

We now use the two simple estimates Xr;zXr;z � X2
r;z and Xr;zXr;z �

Tr[X2
r;z]I. We obtain

Tr[Xr;zXr;z] = Tr[1=2Xr;z(Xr;zXr;z)Xr;z
1=2] � Tr[X2

r;z] = � � �r(z)
and

Tr[Xr;zXr;z] = Tr[1=2Xr;z(Xr;zXr;z)Xr;z
1=2] � Tr[X2

r;z]
2 = (� � �r(z))2:

If �� denotes the Hardy-Littlewood maximal function we have � � �r(z) �
(4�r3=3)��(z). Thus with R(z) =

�
(4�=3)��(z)

��1=3
we can estimate

EX [] � (2�)�1
Z
R3

 Z R(z)

0

�
4�r3

3
��(z)

�2

r�5dr +

Z 1

R(z)

4�r3

3
��(z)r

�5dr

!
dz

= (4�=3)1=3
Z
R3

�
��(z)

�4=3
dz:
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If we �nally apply the maximal inequality kf �kpp � (48p2p=(�(p�1))kfkpp, for
all p > 1 ([25], p. 58) we obtain

EX [] � 384

�

�
8�

3

�1=3 Z
�4=3 = 248:3

Z
�4=3 :

7 Exterior L1 estimate

The aim of this section is to control
R
jxj>r

�HF(x)dx, for all r > 0. As before �HF is

the density of a Hartree-Fock minimizer HF with Tr[HF] = N . Thus
R
�HF = N .

The diÆculty in estimating
R
jxj>r

�HF(x)dx is that this quantity cannot be

controlled in terms of the energy EHF(HF). More precisely,
R
jxj>r

�(x)dx can be

arbitrarily large even when EHF() is arbitrarily close to the absolute minimum.

The simple reason is that \adding electrons at in�nity" will not raise the energy.

Therefore, in order to control
R
jxj>r

�HF(x)dx, we must use the minimizing

property of HF.

In contrast, it follows from the Lieb-Thirring inequality that
R
jxj>r

�HF(x)5=3dx

can be controlled in terms of the energy. By H�older's inequality it then also follows

that the integral of �HF over any bounded set can be controlled by the energy.

The philosophy here will be, to use the minimizing property of HF, to control

the integral of �HF over an unbounded set, in terms of the integral over a bounded

set.

Our main result in this section is stated in the next lemma. The proof of the

lemma uses an idea of Lieb [11].

7.1. LEMMA (Exterior L1 estimate). For all r > 0 and all 0 < � < 1 the

density �HF of an HF minimizer HF satis�es the boundZ
jxj>(1��)�1r

�HF(x)dx � 1 + 2��1 + 2

"
sup

jxj=(1��)r

jxj�HF

(1��)r(x)

#
+

+

�
K�r

�1

Z
r<jxj<(1��)�1r

�HF(x)dx

�1=2

;

where K� := (2�
�
+(1��)�1)

�
�
2�

�2
. Here �

HF

(1��)r is the screened nuclear potential

introduced in De�nition 1.1.
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Proof. Since HF is a minimizer we know that it satis�es the Hartree-Fock equa-

tions. I.e, according to Theorem 3.11, HF is a projection onto a space spanned

by functions u1; : : : ; uN 2 L2(R3 ; C 2) satisfying HHFui = "iui, were "i � 0.

Let � 2 C1(R3) have compact support away from x = 0, be real and satisfy

�(x)2 � 1. Then

0 �
NX
i=1

"i

Z
jui(x)j2 jxj�(x)2 dx =

NX
i=1

Z
ui(x)

�jxj�(x)2HHFui(x)dx:

From the de�nition (30) of the mean �eld operator HHF we obtain

0 �
NX
i=1

1
2

Z
r �ui(x)�jxj�(x)2� � rui(x)dx� Z

Z
�HF�2

+

Z Z h
�HF(x)�HF(y)� TrC 2

h
jHF(x; y)j2

ii jyj�(y)2
jx� yj dx dy: (60)

We consider separately the di�erent terms above. By the IMS formula (19)

Re1
2

Z
r �ui(x)�jxj�(x)2� � rui(x)dx

= 1
2

Z ��r ��(x)jxj1=2ui(x)���2 � 1
4
jxj�1�(x)2 jui(x)j2 dx

�1
2

Z �
1
2
r ��(x)2�+ jxj (r�(x))2� jui(x)j2 dx

� �1
2

Z �
1
2
r ��(x)2�+ jxj (r�(x))2� jui(x)j2 dx; (61)

where we have used Hardy's inequality
R jrf(x)j2dx � 1

4

R jxj�2jf(x)j2dx.
For the Coulomb terms we estimate it using that

�HF(x)�HF(y)� TrC2
h
jHF(x; y)j2

i
= 1

2

NX
i;j=1

kui(x)
 uj(y)� uj(x)
 ui(y)k2C 2
C2

is non-negative. HenceZ Z h
�HF(x)�HF(y)� TrC2

h
jHF(x; y)j2

ii jyj�(y)2
jx� yj dx dy

=

Z Z h
�HF(x)�HF(y)� TrC2

h
jHF(x; y)j2

ii jyj (1� �(x)2) �(y)2

jx� yj dx dy

+ 1
2

Z Z h
�HF(x)�HF(y)� TrC2

h
jHF(x; y)j2

ii jxj+ jyj
jx� yj �(x)

2�(y)2dx dy;
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where we expressed the last term symmetrically in x and y. If we now use

the triangle inequality and the fact
R
TrC2

�jHF(x; y)j2��(y)2dy � �HF(x), which

follows from �(x)2 � 1 and (HF)2 = HF, we arrive atZ Z h
�HF(x)�HF(y)� TrC2

h
jHF(x; y)j2

ii jyj�(y)2
jx� yj dx dy

�
Z Z h

�HF(x)�HF(y)� TrC 2
h
jHF(x; y)j2

ii jyj (1� �(x)2) �(y)2

jx� yj dx dy

+ 1
2

�Z
�HF�2

�2

� 1
2

Z
�HF�2: (62)

Inserting the inequalities (61) and (62) into (60) gives

0 � �1
2

Z �
1
2
r ��(x)2�+ jxj (r�(x))2� �HF(x)dx� Z

Z
�HF�2

+

Z Z h
�HF(x)�HF(y)� TrC2

h
jHF(x; y)j2

ii jyj (1� �(x)2) �(y)2

jx� yj dx dy

+ 1
2

�Z
�HF�2

�2

� 1
2

Z
�HF�2: (63)

By an approximation argument it is clear that we can use (63) for any real

function � for which �2 � 1 and the function
�r (�(x)2) + jxj (r�(x))2� is

bounded. In particular we can choose � identically equal to 1, which will re-

cover Lieb's result from [11], i.e.,
R
�HF � 2Z + 1.

We shall now choose � := �r, where �r is the localization function given in

De�nition 6.1. Then

1
2
r ��(x)2�+ jxj (r�(x))2 � �

2�r
+ (1� �)�1r

�2

(2�r)2
= K�r

�1 (64)

and Z Z h
�HF(x)�HF(y)� TrC2

h
jHF(x; y)j2

ii jyj (1� �(x)2) �(y)2

jx� yj dx dy

�
Z Z

jxj<(1��)r

h
�HF(x)�HF(y)� TrC 2

h
jHF(x; y)j2

ii jyj�r(y)2
jx� yj dx dy:
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If we now use that jxj < (1� �)r and y 2 supp �r imply that jyjjx� yj�1 � ��1

we obtainZ Z h
�HF(x)�HF(y)� TrC2

h
jHF(x; y)j2

ii jyj (1� �(x)2) �(y)2

jx� yj dx dy

�
Z Z

jxj<(1��)r

�HF(x)�HF(y)
jyj�r(y)2
jx� yj dx dy � ��1

Z
�r(y)

2�HF(y) dy; (65)

where we have also used that
R
TrC 2

�jHF(x; y)j2� dx = �HF(y).

If we insert (64) and (65) into (63) we arrive at

0 � �K�

2r

Z
r<jxj<(1��)�1r

�HF(x)dx�
Z

�r(y)
2jyj�HF

(1��)r(y)�
HF(y)dy

+ 1
2

�Z
�HF�2r

�2

� �1
2
+ ��1

� Z
�HF�2r :

Using now that �
HF

(1��)r(y) tends to zero at in�nity and is harmonic for jyj >
(1��)r, which contains the support of �r, we see by a simple comparison argument

that

�r(y)
2jyj�HF

(1��)r(y) � �r(y)
2

"
sup

jxj=(1��)r

jxj�HF

(1��)r(x)

#
+

:

Thus

0 �
�Z

�HF�2r

�2

�
 
1 + 2��1 + 2

"
sup

jxj=(1��)r

jxj�HF

(1��)r(x)

#
+

!Z
�HF�2r

�K�r
�1

Z
r<jxj<(1��)�1r

�HF(x)dx:

Finally, in order to arrive at the result of the lemma we simply use that 0 �
X2 � BX � C for B;C > 0 implies X � B +

p
C.

8 The semiclassical estimates

In this section we derive the relevant semiclassical estimates. We do not attempt

to give optimal results. We shall be satis�ed with what is needed for the applica-

tion we have in mind. In a certain sense it is misleading to refer to the estimates

in this section as semiclassical. Usually, semiclassics refers to the limit as Planck's



JPS/16-Jan-2001|Hartree-Fock Ionization, Sect. 8, Semiclassical estimates 39

constant ~ tends to zero. One then expands the relevant physical quantities like

energy and density in powers of ~. In our setting there is, however, no semi-

classical parameter which could play the role of Planck's constant. It is rather

that we consider potentials for which the semiclassical expressions for the energy

and density are approximately valid. We must then estimate the errors directly

in terms of certain norms of the potential. The estimates are semiclassical in

the sense that if one introduces a semiclassical parameter then the errors are of

smaller order than the leading semiclassical expression.

We are interested in a semiclassical approximation to the sum of the negative

eigenvalues of a Schr�odinger operator

h := �1
2
�� V;

on R3 . We shall in this section always assume that the potential V : R3 ! R

is locally in L1 and that its positive part satis�es that [V ]+ 2 L5=2(R3). This

ensures (by the Lieb-Thirring inequality or even by Sobolev's inequality) that h

is bounded below and can be de�ned as a Friedrichs' extension from the domain

C10 (R3). 3

The semiclassical approximation to the sum of the negative eigenvalues of h

is given by

(2�)�3
Z Z

1
2
p2�V (x)�0

1
2
p2 � V (x) dp dx = �23=2(15�2)�1

Z
[V (x)]5=2+ dx: (66)

Moreover, the semiclassical approximation to the density, i.e., the sum of the

absolute square of the eigenfunctions corresponding to the negative eigenvalues,

is

(2�)�3
Z
1
2
p2�V (x)�0

1dp = 23=2(6�2)�1 [V (x)]3=2+ : (67)

8.1. DEFINITION. For s > 0, let g : R3 ! R be the ground state of the

Dirichlet Laplacian for a ball of radius s, i.e., the function with g(x) = 0 if

jxj > s and g(x) = (2�s)�1=2jxj�1 sin(�jxj=s) if jxj � s. Then

0 � g � 1;

Z
g2 = 1

Z
jrgj2 = (�=s)2: (68)

3Note that we are not including spin. The operator h is acting in the space L2(R3 ) and not

in the space L2(R3 ; C 2 ).
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8.2. LEMMA (Semiclassical approximation). We assume about the poten-

tial that [V ]+; [V � V � g2]+ 2 L5=2(R3) with g as in De�nition 8.1 above . Let

e(1) � e(2) � : : : < 0, denote the negative eigenvalues of h = �1
2
� � V as an

operator on L2(R3). Then for all 0 < Æ < 1, all integers N > 0, and all s > 0 we

have

NX
j=1

e(j) � �23=2(15�2)�1(1� Æ)�3=2
Z

[V ]5=2+

�1
2
�2s�2N � L1Æ

�3=2
�V � V � g2�

+

5=2
5=2

(69)

where L1 is the constant in the Lieb-Thirring estimate (22). If there are fewer

than N negative eigenvalues the sum on the left refers simply to the sum over all

the negative eigenvalues.

On the other hand, if also [V ]+ 2 L3=2(R3), we can, for all s > 0, �nd a

density matrix  with �(x) = 23=2(6�2)�1 [V ]3=2+ � g2(x) such that

Tr[�1
2
�] = 21=2(5�2)�1

Z
[V ]5=2+ + 1

2
�2s�2

Z
23=2(6�2)�1 [V ]3=2+ : (70)

8.3. REMARK. We are not proving that the true density of the projection onto

the negative eigenvalues of h is approximated by the semiclassical expression (67).

We only claim that there is a `good' trial density matrix. In the context where

we shall use the semiclassics we shall infer the approximation of the true density

by other means.

Proof of Lemma 8.2. We prove the result using the method of coherent states

(see Thirring [26] and Lieb [8]).

For u; p 2 R3 let �u;p be the one-dimensional projection in L2(R3), projecting

onto the space spanned by the function fu;p(x) := exp(ipx)g(x � u). We then

have the coherent states identities

Tr[�u;p] = 1; for all p; u (71)

(2�)�3
Z Z

�u;pdp du = I; on L2(R3): (72)

We also have the identity

Tr[�1
2
��u;p] = 1

2
p2 + 1

2

Z
jrgj2 = 1

2
p2 + �2=(2s2); (73)

and for all density matrices 
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Tr[�1
2
�] = (2�)�3

Z Z
1
2
p2Tr[�u;p]dp du� �2=(2s2)Tr[] (74)

Tr[(V � g2)] = (2�)�3
Z Z

V (u)Tr[�u;p]dp du : (75)

Proof of the lower bound (69): Let f1; f2; : : : 2 L2(R3) denote the normalized

eigenfunctions of h corresponding to negative eigenvalues. It is clear that we may

without loss of generality assume that there are N negative eigenvalues

We decompose the operator h as h = �1
2
(1�Æ)��V �g2+[�1

2
Æ��(V �V �g2)].

We may then write
PN

j=1 e
(j) =

PN
j=1(fj; hfj) = A+ B, where

A :=
NX
j=1

(fj; [�1
2
(1� Æ)�� V � g2]fj); B :=

NX
j=1

(fj; [�1
2
Æ�� (V � V � g2)]fj):

From (74) and (75) we hence obtain

A = (2�)�3
Z Z �

1
2
(1� Æ)p2 � V (u)

� NX
j=1

(fj;�u;pfj)dp du�N�2(2s2)�1:

As a consequence of (71) we have that 0 �PN
j=1(fj;�u;pfj) � 1.

It is therefore clear that

A � (2�)�3
Z Z

(1�Æ)
1
2
p2�V (u)�0

�
(1� Æ)1

2
p2 � V (u)

�
dp du� �2(2s2)�1N

= �23=2(15�2)�1(1� Æ)�3=2
Z

[V ]5=2+ � �2(2s2)�1N:

The estimate (69) follows by applying the Lieb-Thirring estimate (22) to

conclude that B � �L1Æ
�3=2k [V � V � g2]+ k5=25=2:

Proof of the existence of . We shall prove that

 := (2�)�3
Z Z

1
2
p2�V (u)�0

�u;pdp du

has the desired properties. From (72) we see that  is a density matrix, i.e.,

0 �  � I. The density corresponding to  is easily computable

�(x) = (x; x) = (2�)�3
Z Z

1
2
p2�V (u)�0

�u;p(x; x)dp du = 23=2(6�2)�1 [V ]3=2+ � g2(x):

From (73) we immediately obtain (70).
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Although we shall use the semiclassical approximation in the form given in

the lemma we shall for completeness state a less technical semiclassical result

which follows very easily from the lemma.

8.4. THEOREM (Semiclassical approximation). Assume that 0 � V 2
L5=2(R3) \ L3=2(R3) and jrV j 2 L5=2(R3). Let e(1) � e(2) � : : : < 0, denote the

negative eigenvalues of h = �1
2
�� V as an operator on L2(R3). Then we have

X
j

e(j) � �23=2(15�2)�1
Z

V (x)5=2dx
n
1 + ALkV k�3=25=2 krV k2=35=2kV k1=23=2

o5=3
(76)

andX
j

e(j) � �23=2(15�2)�1
Z

V (x)5=2dx + 3
2
�2=3kV k5=2krV k2=35=2kV k1=23=2 (77)

where AL := 9
4
2�9=10(15�2)3=5

�
2�2

5

�1=3
L
1=3
0 L

4=15
1 . Here L0 and L1 are the con-

stants in the CLR and Lieb-Thirring estimates (23) and (22) respectively.

Proof. We may estimate

��V (u)� V � g2(u)�� �
Z
R3

Z 1

0

jrV (u� ty)jjyjg(y)2dt dy

=

Z
R3

jrV (u� y)jjyj
Z 1

0

t�4g(y=t)2dtdy

� (4�)�1
Z
jyj�s

jrV (u� y)jjyj�2dy;

where we have used that
R 1
0
t�4g(y=t)2dt � jyj�3 R1

0
t2g(t)2dt = (4�)�1jyj�3 (iden-

tifying g with a function on R+). Hence

kV � V � g2k5=2 � (4�)�1krV k5=2
Z
jyj�s

jyj�2dy = skrV k5=2: (78)

For any density matrix , Tr[h] is an upper bound to the sum of the nega-

tive eigenvalues of h. From (70) we �nd for the density matrix constructed in

Lemma 8.2 that

Tr[h] = �23=2(15�2)�1
Z

[V ]5=2+

+ 23=2(6�2)�1
Z

[V (u)]3=2+

�
V (u)� V � g2(u) + 1

2
�2s�2

�
du:
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The bound (77) follows from applying H�older's inequality, (78), and optimizing

in s.

By the CLR bound (23) we know that h has only �nitely many negative

eigenvalues and that their number N is bounded by N � L0

R
[V ]3=2+ . From (69)

and (78) we therefore obtainX
j

e(j) � �23=2(15�2)�1(1� Æ)�3=2
Z

V 5=2

� L0�
2(2s2)�1

Z
V 3=2 � L1Æ

�3=2s5=2
Z
jrV j5=2

= �23=2(15�2)�1(1� Æ)�3=2
Z

V 5=2

� 9
4

�
2
5

�5=9
L5=9
0 L4=9

1 �10=9Æ�2=3
�Z

V 3=2

�5=9 �Z
jrV j5=2

�4=9

;

where we have optimized in the parameter s.

We now optimize in the parameter Æ. De�ne Æ0 by (1� Æ)�3=2 = (1� Æ0)�2=3.

(Note that 0 < Æ < 1 if and only if 0 < Æ0 < 1.) Then Æ�2=3 � (4Æ0=9)�2=3. Thus

X
j

e(j) � �23=2(15�2)�1(1�Æ0)�2=3
Z

V 5=2�A1Æ
0�2=3

�Z
V 3=2

�5=9 �Z
jrV j5=2

�4=9

;

where A1 :=
�
9
4

�5=3 � 2�2

5

�5=9
L
5=9
0 L

4=9
1 : Using that minÆ0

�
(1� Æ0)�2=3a+ Æ0�2=3b

�
=

a[1 + (b=a)3=5]5=3 we arrive at (76).

We shall need the semiclassical estimates also for the operator h restricted to

functions on the set fx : jxj � rg satisfying Dirichlet boundary conditions.

8.5. LEMMA (Dirichlet Boundary conditions). Let the assumptions be as

in the beginning of Lemma 8.2. For r > 0 let hr denote the restriction of the

operator h = �1
2
� � V to functions on the set fx : jxj � rg satisfying Dirichlet

boundary conditions. Denote by e(1) � e(2) � : : : < 0 the negative eigenvalues of

h and by e
(1)
r � e

(2)
r � : : : < 0 the negative eigenvalues of hr. Then

P
j e

(j) �P
j e

(j)
r : Moreover, if  is a density matrix on L2(R3) we may, for all 0 < � < 1,

�nd a density matrix e such that �
e is supported in fx : jxj � rg and �

e � � and

Tr[hre] � Tr[h] + L1

Z
jxj�(1��)�1r

[V ]5=2+ + 1
2
(�=(2�r))2

Z
jxj�(1��)�1r

� :
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Proof. That the Dirichlet eigenvalues are upper bounds to the eigenvalues on R3 ,

is a well known simple consequence of the variational principle.

Let �r be the localization function from De�nition 6.1. We shall choose e =

�r�r. Then by the IMS formula (20) we have

Tr[h] = Tr[hr�r�r] + Tr[h(1� �2r)
1=2(1� �2r)

1=2]

� 1
2
Tr[
�
(r�r)2 + (r(1� �2r)

1=2)2
�
]:

By the Lieb-Thirring inequality (22) we have Tr[h(1 � �2r)
1=2(1 � �2r)

1=2] �
�L1

R
jxj�(1��)�1r

[V ]5=2+ . Thus the lemma follows from the bound on the gradi-

ent of �r and (1� �2r)
1=2 given in De�nition 6.1.

9 The Coulomb norm estimates

In this section we introduce and study the Coulomb norm.

9.1. DEFINITION. For f; g 2 L6=5(R3) we de�ne the Coulomb inner product

D(f; g) := 1
2

Z Z
f(x)jx� yj�1g(y)dx dy (79)

and the corresponding Coulomb norm,

kgkC := D(g; g)1=2:

By the Hardy-Littlewood-Sobolev estimate we have

kgkC � ��1=621=33�1=2kgk6=5: (80)

In this sharp form the inequality was proved by Lieb [10]. Using the Fourier

transform we may write

D(f; g) = (2�)

Z
f̂(p)ĝ(p)jpj�2dp; (81)

from which it follows that the Coulomb norm really is a norm on L6=5(R3).

The following estimate was �rst used in the context of atomic problems by

Fe�erman and Seco [5].
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9.2. LEMMA (Coulomb norm estimate). If f 2 L6(R3) with jrf j 2 L2(R3)

and g 2 L6=5(R3) then ����Z fg

���� � (2�)�1=2krfk2kgkC:

Proof. Using Plancherel's identity and the representation (81) we have����Z fg

���� = ����Z f̂ ĝ

���� � kjpjf̂(p)k2kjpj�1ĝ(p)k2 = (2�)�1=2krfk2kgkC:

We shall next give some simple but very useful consequences of this estimate.

9.3. COROLLARY. Consider f 2 L5=3(R3) \ L6=5(R3). For all x 2 R3 and

s > 0 we have

f � jxj�1 � (5=4)2=5(�s)1=5k[f ]+kL5=3(B(x;s)) + (4�)1=2s�1=2kfkC: (82)

For all x 2 R3 and all � > 0 denote by A(jxj; �) the annulus

A(jxj; �) = fy : (1� 2�)jxj � jyj � jxjg

we then haveZ
jyj<jxj

f(y)jx� yj�1dy � 27=5�2=5(�jxj)1=5 k[f ]+kL5=3(A(jxj;�))
+ 4�1=2��1jxj�1=2kfkC: (83)

9.4. REMARK. Note that we do not restrict to � � 1=2. We do this to avoid

having to check this condition in the applications of the corollary.

Proof of Corollary 9.3. Consider the function �s : R
3 ! R de�ned by

�s(z) :=

(
s�1; if jzj � s

jzj�1; if jzj � s
:

It satis�es kr�sk2 � (4�=s)1=2. Hence from Lemma 9.2 we obtain

f � jxj�1 �
Z
jy�xj�s

[f(y)]+
�jx� yj�1 � s�1

�
dy +

Z
R3

f(y)�s(x� y)dy

� (5=4)2=5(�s)1=5k[f ]+kL5=3(B(x;s)) + (4�=s)1=2kfkC;
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where we have used that
R
jyj<1

(jyj�1 � 1)5=2dy = 5�2

4
.

In order to prove the second half of the corollary we introduce the function

�x;� : R
3 ! R3 given by

�x;�(z) :=

8>><>>:
1; if jzj � (1� 2�)jxj

1� (jxj�)�1(jzj � jxj(1� 2�)); if (1� 2�)jxj � jzj � (1� �)jxj
0; if (1� �)jxj � jzj

:

Then j�x;�(z)j � 1 and we can estimateZ
jyj<jxj

f(y)jx� yj�1dy �
Z
A(jxj;�)

[f(y)]+jx� yj�1dy

+

Z
R3

f(y)jx� yj�1�x;�(y)dy

� k[f ]+kL5=3(A(jxj;�))
�Z

A(jxj;�)

jx� yj�5=2dy
�2=5

+ kfkC
�Z ��ry

�jx� yj�1�x;�(y)
���2 dy�1=2

:

It remains to estimate the two integrals above. For the �rst integral we �nd for

� � 1=2Z
A(jxj;�)

jx� yj�5=2dy = 2�jxj1=2
Z 1

r=1�2�

Z 1

u=�1

(1� 2ru+ r2)�5=4r2du dr

= 2�jxj1=2�1(�);

where

�1(�) := 4(2�)1=2 � (4=3)(2�)3=2 + (4=3)
p
2[1� (1� �)1=2(1 + 2�)] � 4(2�)1=2:

The last inequality follows from a straightforward careful analysis of �1(�). For

the second integral we get�Z ��ry

�jx� yj�1�x;�(y)
���2 dy�1=2

�
�Z

jx�yj>�jxj

jx� yj�4dy
�1=2

+ (�jxj)�1
�Z

A(jxj;�)

jx� yj�2dy
�1=2

= (4�)1=2(�jxj)�1=2(1 + �2(�)
1=2);
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with

�2(�) := 1 + (1� �) ln

�
1� �

�

�
� 1� ln� � ��1;

where we have used thatZ
A(jxj;�)

jx� yj�2dy = 2�jxj
Z 1

r=1�2�

Z 1

u=�1

(1� 2ru+ r2)�1r2du dr = 4��jxj�2(�):

Using (4�)1=2��1=2(1 + �2(�)
1=2) � 4�1=2��1 we get (83).

The estimate holds also for � > 1=2 since the last term in (83) can be ignored

in this case.

10 Main Estimate

We now restrict attention to the case N � Z. Throughout the remaining part

of this paper �TF; 'TF;�
TF

R ; �HF; 'HF and �
HF

R always refer to the problems with

particle number N . In fact, since N � Z the TF functions correspond to the

neutral atom, i.e., �TF = 0. We shall suppress the dependence on N everywhere

since it is held �xed throughout the discussion.

From now on we shall no longer explicitly compute the constants involved in

the estimates. We shall use the notation (Const.) to refer to any universal (in

principle explicitly computable) positive constant. Thus (Const.) does not mean

the same constant in all equations or inequalities. Even within the same equation

we shall use the notation (Const.) to refer to possibly di�erent universal constants.

Universal constants of particular importance will be given separate names. We

begin by stating the main result of this section.

10.1. THEOREM (Main Estimate). Assume Z � 1 and N � Z. There

exist universal constants 0 < " < 4 and CM ; C� > 0 such that for all x 2 R3 we

have ����HF

jxj(x)� �
TF

jxj(x)
��� � C�jxj�4+" + CM : (84)

We shall prove Theorem 10.1 by an iterative procedure. The �rst step is to

control \small" x.
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10.2. LEMMA (Control of region close to the nucleus).

Assume Z � 1 and N � Z. For all � > 0 and all jxj � �Z�1=3 we have����HF

jxj(x)� �TF

jxj(x)
��� � A��

49=12�"1 jxj�4+"1;

where "1 = 1=66 and A� > 0 is a universal constant.

10.3. LEMMA (Iterative step). Assume N � Z. For all Æ > 0 smaller than

some universal constant there exist constants "2; C
0
� > 0 depending only on Æ such

that, given "0; � > 0, there exists a constant D = D("0; �) > 0 depending only on

"0; � with the following property. For all R0 < D satisfying that �0Z
�1=3 � R1+Æ

0

(where �0 =
(9�)2=3

44
as in Theorem 5.4) and that����HF

jxj(x)� �
TF

jxj(x)
��� � �jxj�4+"0 (85)

holds for all jxj � R0, there exists R
0
0 > R0 such that����HF

jxj(x)� �
TF

jxj(x)
��� � C 0�jxj�4+"2 (86)

for all x with R0 < jxj < R00.

Lemmas 10.2 and 10.3 will allow us to control small and intermediate jxj to
control large jxj we shall need the following two lemmas.

10.4. LEMMA (Bound on
R
(�HF)5=3). Assume N � Z. Given 0 < "0; �,

there is a D > 0 such that if (85) holds for all jxj � D then we haveZ
jyj>jxj

�HF(y)5=3 dy � (Const.)jxj�7; (87)

for all jxj � D.

10.5. LEMMA (Bound on
R
�HF). Assume that (85) holds for all jxj � R for

some R > 0 and some "0; � > 0. Then for 0 < r � R we have����Z
jyj<r

(�HF(y)� �TF(y))dy

���� � �r�3+"
0

and Z
jyj>r

�HF(y)dy � (Const.)(1 + �r"
0

)
�
r�3 + 1

�
:
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We shall prove Lemma 10.2 in Sect. 11 and Lemmas 10.3 and 10.4 in Sect. 12.

We end this section with the proofs of Lemma 10.5 and the main estimate The-

orem 10.1.

Proof of Lemma 10.5. First note that for 0 < r � R we haveZ
jyj<r

(�TF(y)� �HF(y)) dy = (4�)�1r

Z
!2S2

Z
jyj<r

(�TF(y)� �HF(y)) jr! � yj�1dy d!:

Thus we haveZ
jyj<r

(�TF(y)� �HF(y))dy = (4�)�1r

Z
!2S2

�
HF

r (r!)� �
TF

r (r!)d!:

Together with (85) this gives the �rst estimate above. Moreover, we also have

that����Z
r=2<jyj<r

(�TF(y)� �HF(y))dy

���� � sup
jyj=r

���HF

r (y)� �
TF

r (y)
��

+ sup
jyj=r=2

����HF

r=2(y)� �
TF

r=2(y)
��� � (Const.)�r�3+"

0

:

The TF equation (6), and the Sommerfeld estimate in Theorem 5.2 givesZ
jyj>r=2

�TF(y) dy � (Const.)r�3

and hence Z
r=2<jyj<r

�HF(y)dy � (Const.)(1 + �r"
0

)r�3:

From (85), the exterior L1 estimate Lemma 7.1 (used with � = 1=2 and r replaced

by r=2), and Lemma 5.5 (recall that now �TF = 0) we immediately conclude the

estimate on
R
jyj>r

�HF(y)dy.

We �nally show how to use Lemmas 10.2{10.5 to prove the main estimate

Theorem 10.1.

Proof of Theorem 10.1. We �rst show that we may choose Æ > 0 small enough

such that if we choose eR1+Æ = �0Z
�1=3 we have for all jxj < eR that����HF

jxj(x)� �
TF

jxj(x)
��� � C 00�jxj�4+

"1
2 (88)
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for a universal constant C 00� > 0 and with "1 given in Lemma 10.2.

To see this let � > 0 be such that
�
�Z�1=3

�1+Æ
= �0Z

�1=3, i.e., �1+Æ = �0Z
Æ=3.

We then see from Lemma 10.2 that for all jxj < �Z�1=3 we have����HF

jxj(x)� �
TF

jxj(x)
��� � A��

49
12
�
"1
2 Z�

"1
6 jxj�4+ "1

2

= A�(�0Z
Æ=3)(

49
12(1+Æ)

�
"1

2(1+Æ))Z�
"1
6 jxj�4+ "1

2 :

Since eR1+Æ = �0Z
�1=3, i.e., eR = �Z�1=3 we see that if Æ is small enough and C 00�

is chosen appropriately then (88) holds for all jxj < eR.
We now assume that Æ is also small enough that we may apply Lemma 10.3.

This gives us constants "2; C
0
� > 0 and for all �; "0 > 0 aD > 0 with the properties

stated in Lemmas 10.3 and 10.4. We may without loss of generality assume that

D � 1. Now choose � = maxfC 0�; C 00�g and "0 = minf"1=2; "2g. Note that �; ",

and D are now universal constants. We shall prove that for all jxj � D we have����HF

jxj(x)� �
TF

jxj(x)
��� � �jxj�4+"0: (89)

Since we are assuming that D � 1 it is suÆcient to prove (89) with "0 replaced

by "1=2 or "2. We have to prove that D belongs to the set

M = f0 < R � 1 : Inequality (89) holds for all jxj � Rg:

If this were not true we would have D > R0 := supM. In order to reach

a contradiction we therefore assume this and hence in particular that R0 < 1.

From (88) it follows that either eR > 1 or eR 2 M. If eR > 1 then R0 = supM = 1

which contradicts our assumption. On the other hand if eR 2 M then R1+Æ
0 �eR1+Æ = �0Z

�1=3. It is then an immediate consequence of Lemma 10.3 that there

exists R00 2 M with R00 > R0 and this is of course also a contradiction. This

establishes an inequality of the form (84) for all jxj � D.

We shall now prove (84) for jxj > D. We write����HF

jxj(x)� �
TF

jxj(x)
��� � ���HF

D (x)� �
TF

D (x)
�� + ����Z

D<jyj<jxj

(�TF(y)� �HF(y))

jx� yj dy

���� :
We shall estimate the last term using Lemma 10.4 and the similar boundZ

jyj>jxj

�TF(y)5=3 dy � (Const.)jxj�7;



JPS/16-Jan-2001|Hartree-Fock Ionization, Sect. 11, Region close to nucleus 51

which holds for all x by the Sommerfeld estimate Theorem 5.2 and the TF equa-

tion (6). Hence using H�older's inequality we have�������
Z

D<jyj<jxj

(�TF(y)� �HF(y))

jx� yj dy

������� � (Const.)D�21=5

�Z
jx�yj<D

jx� yj�5=2dy
�2=5

+D�1

Z
jyj>D

(�TF(y) + �HF(y)) dy:

By Lemma 10.5 and the bound
R
jyj>D

�TF(y) dy � (Const.)D�3, which is again a

consequence of the Sommerfeld estimate Theorem 5.2 and the TF equation (6),

we see that this last expression is bounded by a universal constant.

Since �
HF

D (x) � �
TF

D (x) is harmonic for jxj > D and tends to zero at in�nity

we have for all jxj > D that���HF

D (x)� �
TF

D (x)
�� � sup

jzj=D

���HF

D (z)� �
TF

D (z)
�� � �D�4+"0;

which is also bounded by a universal constant. Thus (84) holds for all x.

11 Control of region close to nucleus: proof of

Lemma 10.2

In order to prove Lemma 10.2 we need some basic estimates.

11.1. LEMMA (Global L5=3 and Coulomb norm estimates).

For all N and Z we have the boundZ
R3

�HF(y)5=3dy � (Const.)Z7=3: (90)

Moreover, if Z � 1

k�HF � �TFk2C � (Const.)Z7(1�"3)=3; (91)

with "3 := 2=77.

Proof. Although we shall only use this result for N � Z the proof is almost as

easy without this restriction, so we treat the more general case here.
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We �rst estimate the L5=3 norm of �HF. It is easy to see that EHF(HF) � 0.

Thus since D(HF)� EX(HF) � 0 we have from the Lieb-Thirring inequality (21)

that

0 � EHF(HF) � Tr
���1

2
�� Zjyj�1� HF� � Z �K1�

HF(y)5=3 � Zjyj�1�HF(y)�dy:
If we use that

R
�HF = N and the inequality ab � 3

5
a5=3 + 2

5
b5=2 we get for all

Æ > 0 and all r > 0,

0 �
Z
(K1 � 3

5
Æ5=3)�HF(y)5=3dy � 2

5

Z
jyj<r

(Æ�1Zjyj�1)5=2dy �NZr�1:

Choosing Æ5=3 = 5K1=6 and optimizing in r gives
R
(�HF)5=3 � (Const.)N1=3Z2.

If we use that, since there exists an HF minimizer with particle number N , we

must have Lieb's bound N � 2Z + 1 (see Theorem 3.5) we arrive at (90).

We turn to the proof of (91). We rewrite the Hartree-Fock functional (26) as

EHF() = Tr
���1

2
�� 'TF

�

�
+ k�TF � �k2C �D(�TF; �TF)� EX(); (92)

where we have used the de�nition 'TF(y) = Zjyj�1 � �TF � jyj�1 and

Tr
�
(�TF � jyj�1)� = 2D(�TF; �) = D() +D(�TF; �TF)� k�TF � �k2C:

From the semiclassical estimate (69) and the fact that, when  is a density

matrix with Tr[] = N and h is a self-adjoint operator, then Tr[h] is an upper

bound on the sum of the N lowest eigenvalues of h, we �nd

Tr
���1

2
�� 'TF + �TF

�
HF
� � �25=2(15�2)�1(1� Æ)�3=2

Z
['TF � �TF]5=2+

� 1
2
�2s�2N � 2L1Æ

�3=2
�'TF � 'TF � g2�

+

5=2
5=2

;

for all 0 < Æ < 1 and all s > 0. Recall that the function g was given in De�ni-

tion 8.1. Here we have used the semiclassical estimate for the space L2(R3 ; C 2).

The estimate above therefore has an extra factor of 2 in the �rst and the last

term compared to (69). Thus

EHF(HF) � �25=2(15�2)�1(1� Æ)�3=2
Z

['TF � �TF]5=2+ � �TFN �D(�TF; �TF)

+ k�TF � �HFk2C � 1
2
�2s�2N � 2L1Æ

�3=2
�'TF � 'TF � g2�

+

5=2
5=2
� EX(HF):
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Since jyj�1 � g2 � jyj�1 � 0 (because the function jyj�1 is superharmonic) we

have �'TF � 'TF � g2�
+

5=2
5=2
� Z

jyj�1 � g2 � jyj�15=2
5=2
� 8�Z5=2s1=2;

where we have used that jyj�1� g2 � jyj�1 is non-negative, bounded by jyj�1, and
vanishes for jyj > s. If we insert this above and optimize in s we obtain

EHF(HF) � �25=2(15�2)�1(1� Æ)�3=2
Z

['TF � �TF]5=2+ � �TFN �D(�TF; �TF)

+ k�TF � �HFk2C � (Const.)Æ�6=5N1=5Z2 � EX(HF): (93)

We choose Æ := 1
2
Z�2=33 (this is not optimal). Then for Z � 1 we have Æ � 1=2

and thus (1� Æ)�2=3 � 1 + (25=2 � 2)Æ. Hence

EHF(HF) � �25=2(15�2)�1
Z

['TF � �TF]5=2+ � �TFN �D(�TF; �TF)

+k�TF � �HFk2C � (Const.)Z7=3�2=33 � EX(HF); (94)

where we have again used N � 2Z + 1 and the fact that by (90) we have

25=2(15�2)�1
Z

['TF � �TF]5=2+ = 2
3

�
(3�2)2=3 3

10

Z
(�TF)5=3

�
� (Const.)Z7=3:

On the other hand, since HF minimizes EHF among all density matrices  with

Tr[] � N , we can �nd an upper bound to EHF(HF) by choosing an appropriate

trial density matrix. We choose as trial matrix  an operator which acts identi-

cally on the two spin components. On each spin component we choose it to be

the density matrix constructed in Lemma 8.2 satisfying (70) with V = 'TF��TF.

Note that the Thomas-Fermi equation (6) and the properties of  stated in

Lemma 8.2 imply that � = 25=2(6�2)�1 ['TF � �TF]3=2+ � g2 = �TF � g2 (the ex-

tra factor of 2 compared to Lemma 8.2 is of course due to the spin degeneracy).

Thus Tr[] =
R
�TF � N .

From (26) and (70) we �nd, since EX() � 0, that

EHF() � 23=2(5�2)�1
Z

['TF � �TF]5=2+ + 1
2
�2s�2N �

Z
Zjyj�1�(y)dy+D(� ; �)

Since

Z Z
g(x� z)2jz �wj�1g(y� w)2dw dz � jx� yj�1 we see that D(�; �) �

D(�TF; �TF). Thus from the de�nition (2) of 'TF we can write

EHF() � 23=2(5�2)�1
Z

['TF � �TF]5=2+ �
Z

['TF(y)� �TF] �TF(y)dy � �TFN
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�D(�TF; �TF) + 1
2
�2s�2N +

Z
Z
�jyj�1 � g2 � jyj�1� �TF(y)dy

If we use the TF equation (6), the estimate �TF(y) � 23=2(3�2)�1Z3=2jyj�3=2 which
follows from the TF equation, and again the facts that jyj�1 � g2 � jyj�1 is non-
negative, bounded by jyj�1, and vanishes for jyj > s, we obtain after optimizing

in s

EHF() � �25=2(15�2)�1
Z

['TF � �TF]5=2+ � �TFN �D(�TF; �TF)

+ (Const.)N1=5Z2: (95)

Comparing (94) and (95) and recalling that EHF() � EHF(HF) we get that

k�TF � �HFk2C � (Const.)Z7=3�2=15 + (Const.)Z7=3�2=33 + EX(HF):
If we �nally use the exchange inequality in Theorem 6.4 and the estimate (90)

we see that

EX(HF) � 1:68

�Z
(�HF)5=3

�1=2 �Z
(�HF)

�1=2

� (Const.)N1=2Z7=6:

Inserting this above and again using N � 2Z + 1 we arrive at (91).

End of proof of Lemma 10.2. We write

�
HF

jxj(x)� �
TF

jxj(x) =

Z
jyj<jxj

[�TF(y)� �HF(y)] jx� yj�1dy:

Using the Coulomb norm estimate (83) we �nd����HF

jxj(x)� �
TF

jxj(x)
��� � 27=5�2=5(�jxj)1=5max

�k�TFkL5=3(R3); k�HFkL5=3(R3)	
+ 4�1=2��1jxj�1=2k�HF � �TFkC:

Thus from Lemma 11.1 and the fact that
R
(�TF)5=3 � (Const.)Z7=3 (which can be

seen for instance from the Sommerfeld estimate Theorem 5.2 together with the

TF equation (6)) we obtain����HF

jxj(x)� �
TF

jxj(x)
��� � (Const.)(�jxj)1=5Z7=5

+ (Const.)��1jxj�1=2Z7(1�"3)=36 = (Const.)jxj1=12Z7=6+7(1�"3)=36;

where the last equality above follows from choosing the optimal value for �.

Hence if jxj � �Z�1=3 we have����HF

jxj(x)� �
TF

jxj(x)
��� � A��

49=12�7"3=12jxj�4+7"3=12:
The lemma follows since 7"3=12 = 1=66.
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12 Proof of the iterative step Lemma 10.3 and

of Lemma 10.4

We begin by �xing some 0 < r such that (85) holds for all jxj � r.

We shall proceed as for the region close to the nucleus, but instead of directly

comparing HF and TF. We shall introduce an intermediate TF theory. Namely,

the TF theory de�ned as in De�nition 4.1 from the functional EOTF

r := ETF

Vr
with

the exterior potential V = Vr given by

Vr(y) := �
+
r (y)�

HF

r (y) =

(
0; if jyj < r

�HF

r (y); if jyj � r

Here again �
+
r = 1��r is the characteristic function of the set fx : jxj � rg. Note

that this potential is harmonic and continuous on jxj > r. Let �OTFr denote the

minimizer for the TF functional, EOTF

r (�), under the constraint
R
� � R �HF�+r .

Denote the corresponding TF potential by

'OTF

r (y) := Vr(y)� �OTFr � jyj�1

and the corresponding chemical potential by �OTF

r . We shall prove below (see

Lemma 12.4) that if r is chosen appropriately then �OTF

r = 0.

Note that according to the Thomas-Fermi equation (33), �OTFr has support on

the set fy : jyj � rg. Since Vr on the support of �OTFr is the potential coming from

the true HF density for jyj < r we may interpret �OTFr as the TF approximation

for only the outside region, i.e., jyj > r, of the atom. The notation OTF refers

to Outside TF.

12.1. LEMMA (Preliminary bounds on TF and OTF functions).

Assume that N � Z then for all y

'TF(y) � 342�3�2jyj�4 and �TF(y) � 352�3�jyj�6:
For all jyj � �0Z

�1=3 we have

'TF(y) � (Const.)jyj�4 and �TF(y) � (Const.)jyj�6:
Given "0; � > 0, and r > 0 such that (85) holds for all jxj � r and �r"

0 � 1 then

for all jyj � r we have

�OTFr (y) � (Const.)r�6 and 'OTF

r (y) � jVr(y)j = j�HF

r (y)j � (Const.)r�4:
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Proof. The upper bounds on the TF functions follow immediately from the

Atomic Sommerfeld estimate Theorem 5.2) and the TF equation (6) if we re-

call that �TF = 0. The lower bounds follow from Theorem 5.4.

Since �
HF

r is harmonic on the set fjyj > rg and tends to zero at in�nity it

follows from the assumptions on "0; �; r that for all jyj � r we have

j�HF

r (y)j � sup
jzj=r

j�HF

r (z)j � (Const.)r�4;

where in the last inequality we have used the iterative assumption (85) and

Lemma 5.5 for the case �TF = 0 and the fact that �
TF

r � 'TF � 0 (see e.g.,

Theorem 5.4). The inequality 'OTF

r (y) � jVr(y)j is trivial from the de�nition of

'OTF

r .

Finally, from the TF equation (33) we conclude that for all jyj � r

�OTFr (y) � (Const.)Vr(y)
3=2 � (Const.)r�6:

12.2. LEMMA (Preliminary comparison of HF and TF).

Assume that N � Z. Given "0; � > 0, and r > 0 such that (85) holds for all

jxj � r then Z
�
+
r (�

TF � �HF) � �r�3+"
0

: (96)

Proof. We haveZ
jyj<r

(�TF(y)� �HF(y)) dy = (4�)�1r

Z
S2

�
�

HF

r (r!)� �
TF

r (r!)
�
d!

where d! denotes the surface measure of the unit sphere S2. Thus according to

(85) we have ����Z
jyj<r

(�TF(y)� �HF(y)) dy

���� � �r�3+"
0

:

Since
R
�TF � N =

R
�HF we haveZ �

�
+
r �

TF � �
+
r �

HF

�
�
Z
jyj<r

(�HF(y)� �TF(y)) dy � �r�3+"
0

:
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For jxj > r we may write

�
HF

jxj(x)� �
TF

jxj(x) = A1(r; x) +A2(r; x) +A3(r; x); (97)

where

A1(r; x) = 'OTF

r (x)� 'TF(x) (98)

A2(r; x) =

Z
jyj>jxj

[�OTFr (y)� �TF(y)] jx� yj�1dy (99)

A3(r; x) =

Z
r<jyj<jxj

[�OTFr (y)� �HF(y)] jx� yj�1dy: (100)

We turn �rst to estimating A1 and A2. Thus we need to control the di�erence

between the full TF approximation and the TF approximation for the outside

region. Our strategy is to �rst prove that 'OTF

r (x) and 'TF(x) are close on the

set fjxj = rg. An application of the Sommerfeld estimates in Theorem 4.6 will

then give excellent control on the di�erence 'OTF

r (x) � 'TF(x) for all jxj > r.

Controlling the behavior on the set fjxj = rg is diÆcult and we begin with a

weak estimate on the di�erence between �OTF
r and �TF. In fact, we �rst estimate

the di�erence in Coulomb norm.

12.3. LEMMA (Coulomb norm comparison of TF and OTF).

Assume N � Z. Given constants "0; � > 0 there exists a constant D > 0 depend-

ing only on "0; � such that for all r with �0Z
�1=3 � r � D for which (85) holds

for all jxj � r we have

k�OTFr � �
+
r �

TFk2C � (Const.)�r�7+"
0

: (101)

Here again �
+
r denotes the characteristic function of the set fy : jyj � rg. More-

over,

�OTF

r � (Const.)�1=2r�4+
"0

2 : (102)

Proof. To prove this we make a perturbation analysis of the TF functional. We

introduce the perturbation potential

W (x) = �
HF

r (x)� �
TF

r (x): (103)

Then for all jxj > r

�
TF

r (x) = Vr(x)�W (x):
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Note that W is harmonic for jxj > r and tends to zero at in�nity. Hence, since

we assume that the iterative assumption (85) holds for jxj = r, we have

sup
jxj�r

jW (x)j = sup
jxj=r

jW (x)j � �r�4+"
0

: (104)

We claim that there exist two functions W1, W2 with supp W1 � fx : jxj < 3rg
and supp W2 � fx : jxj > 2rg such that W (x) = W1(x) +W2(x) and

sup
jxj�r

jW1(x)j � sup
jxj=r

jW (x)j � �r�4+"
0

(105)Z
jrW2j2 � 76�

3
r sup
jxj=r

jW (x)j2 � 76�

3
�2r�7+2"

0

: (106)

In order to prove this we let

F (x) =

8>><>>:
0 if jxj < 2r

(jxj � 2r)r�1; if 2r � jxj � 3r

1 if jxj > 3r

:

Set W1(x) = (1� F (x))W (x) and W2(x) = F (x)W (x). The �rst estimate (105)

follows immediately from (104). By a simple integration by parts, similar to the

one used to prove the IMS formula (19), we obtain (note that W (x) behaves like

cjxj�1 and jrW (x)j behaves like cjxj�2 at in�nity so there are no contributions

from in�nity to the integration by parts)Z
jrW2j2 =

Z
jrF j2jW j2 �

Z
jF j2W�W =

Z
jrF j2jW j2

� sup
jxj�r

jW (x)j2
Z
2r�jxj�3r

r�2dx =
76�

3
r sup
jxj�r

jW (x)j2;

where the second equality follows since W is harmonic on the support of F . The

estimate (105) now also follows from (104).

We are now ready to estimate the TF densities. We shall use �
+
r �R�

TF for

some R � r (possibly R is in�nity) as a trial density in EOTF

r .

Since �OTFr minimizes EOTF

r (�)+�OTF

r

R
� and �OTF

r = 0 unless
R
�OTF
r =

R
�
+
r �HF

we have

�OTF

r

�Z
�
+
r �

HF �
Z

�
+
r �R�

TF

�
� EOTF

r

�
�
+
r �R�

TF

�
� EOTF

r (�OTFr ) (107)
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We write the left side as

EOTF

r

�
�
+
r �R�

TF

�
� EOTF

r (�OTFr ) = EOTF

r

�
�
+
r �R�

TF

�
� EOTF

r

�
�
+
r �

TF

�
+ EOTF

r

�
�
+
r �

TF

�
� EOTF

r (�OTFr ) : (108)

We have for the �rst two terms

EOTF

r

�
�
+
r �R�

TF

�
� EOTF

r

�
�
+
r �

TF

�

=

Z
'TF�TF�

+

R + k�+R�TFk2C +
Z �

�HF

r � �TF

r

�
�
+

R
�TF � 3

10
(3�2)2=3

Z
�
+

R(�
TF)5=3

�
Z

'TF�TF�
+

R + k�+R�TFk2C + �r�4+"
0

Z
�
+

R
�TF; (109)

and since �TF = 0

EOTF

r (�
+
r �

TF)� EOTF

r (�OTFr ) =

Z
W (�OTFr � �

+
r �

TF)� k�OTFr � �
+
r �

TFk2C

+

Z
jyj�r

�h
3
10
(3�2)2=3�TF(y)5=3 � 'TF(y)�TF(y)

i

�
h
3
10
(3�2)2=3�OTFr (y)5=3 � 'TF(y)�OTFr (y)

i�
dy: (110)

Since �TF satis�es the TF equation (6) we see that for �xed y the expression

3
10
(3�2)2=3t5=3 � 'TF(y)t; t � 0

takes its minimal value for t = �TF(y). Hence we conclude that the last integral

above is negative. Thus combining (107){(110) we have

�OTF

r

�Z
�
+
r �

HF �
Z

�
+
r �R�

TF

�
�
Z

W (�OTFr � �
+
r �

TF)� k�OTFr � �
+
r �

TFk2C

+

Z
'TF�TF�

+

R + k�+R�TFk2C + �r�4+"
0

Z
�
+

R
�TF:

Lemma 12.1 implies that k�+R�TFk2C � (Const.)R�4
R
�
+

R
�TF. If we now also use

Lemma 12.2 we arrive at

�OTF

r

�Z
�
+
r �

HF �
Z

�
+
r �R�

TF

�
�

Z
W (�OTFr � �

+
r �

TF)� k�OTFr � �
+
r �

TFk2C

+
�
(Const.)R�4 + �r�4+"

0
�Z

�TF�
+

R: (111)
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This is the main estimate from which we shall derive the estimates of the lemma.

We shall do this by choosing di�erent values for R. One for the estimate (101)

another for (102). We shall choose R such thatZ
�
+
r �R�

TF �
Z

�
+
r �

HF: (112)

Let Rmax denote the largest possible R for which this holds. ThenZ
�
+

Rmax
�TF =

�Z
�
+
r �

TF �
Z

�
+
r �

HF

�
+

� �r�3+"
0

; (113)

where the last inequality follows from Lemma 12.2. By Lemma 12.1 we have for

all R � r � �0Z
�1=3 that Z

�
+

R
�TF � (Const.)R�3: (114)

We shall now make the assumption that D is chosen so small that if r � D then

�r"
0 � 1. Thus from (113) and (114) we conclude that

R�4max � (Const.)�4=3r�4+
4
3
"0 � (Const.)r�4: (115)

From (113) and (111) with R = Rmax we get, again using the above assumption

on D, that

k�OTFr � �
+
r �

TFk2C �
Z

W (�OTFr � �
+
r �

TF) + (Const.)�r�7+"
0

: (116)

We estimate the integral on the right by dividing it in two partsZ
W (�OTFr � �

+
r �

TF) �
Z
jW1j(�OTFr + �

+
r �

TF) +

Z
W2(�

OTF

r � �
+
r �

TF)

� �r�4+"
0

Z
r<jxj<3r

�OTFr (x) + �
+
r (x)�

TF(x)dx +

Z
W2(�

OTF

r � �
+
r �

TF);

where we have also used (105). From Lemma 12.1 we arrive atZ
W (�OTFr � �

+
r �

TF) � (Const.)�r�7+"
0

+

Z
W2(�

OTF

r � �
+
r �

TF): (117)

The last term in this estimate we now control using the Coulomb norm estimate

Lemma 9.2. Note that �TF and �OTFr both belong to L6=5 since they are in L5=3\L1.

We �nd from (106) thatZ
W2(�

OTF

r � �
+
r �

TF) � (Const.)�r�
7
2
+"0k�OTFr � �

+
r �

TFkC: (118)
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Inserting the last two estimates into (116) gives (recall that �r"
0 � 1)

k�OTFr � �
+
r �

TFk2C � (Const.)�r�7+"
0

+ (Const.)
�
�r�7+"

0
�1=2

k�OTFr � �
+
r �

TFkC
and (101) follows immediately from this.

We now return to (111) and make a new choice for R. It follows from the �rst

inequality in (115) that that we can �nd R with R � Rmax satisfying

R�4 = (Const.)�1=2r�4+"
0=2:

Note that, since

R�4 � (Const.)�1=2D"0=2r�4;

we can choose D small enough to ensure that r � R. From (114) we haveZ
�
+

R
�TF � (Const.)�3=8r�3+

3
8
"0: (119)

It follows from (113) and (114) that we may assume that the constant in the

de�nition of R is chosen such as to ensure that
R
�
+

R
�TF � 2

R
�
+

Rmax
�TF: Thus

since (see (113))Z
�
+
r �

HF �
Z

�
+
r �R�

TF � �
Z

�
+

Rmax
�TF +

Z
�
+

R
�TF

we have
1
2

Z
�
+

R
�TF �

Z
�
+
r �

HF �
Z

�
+
r �R�

TF:

Thus from (119), (117), (118), (101), and (111) we conclude (102).

Using these fairly weak estimates we shall now show that the outside TF

potential and density satisfy Sommerfeld type estimates.

12.4. LEMMA (Sommerfeld estimates for OTF). Assume N � Z. Given

constants "0; � > 0 there exists a constant D > 0 depending only on "0; � such

that for all r with �0Z
�1=3 � r � D for which (85) holds for all jxj � r then

�OTF

r = 0 and for all jxj � r we have

'OTF

r (x) � 342�3�2jxj�4 �1 + Ar�jxj��� (120)

and

'OTF

r (x) � 342�3�2jxj�4 �1 + ar�jxj����2 ; (121)

where a and A are universal constants (but not necessarily positive) and a > �1.
Here as before � = (�7 +p73)=2 � 0:77.
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Proof. Note �rst that the potential Vr satis�es the assumptions in Theorem 4.6

with R = r. Hence the potential 'OTF

r satis�es the Sommerfeld estimates de-

scribed in the theorem. In order to get some useful estimates we however need

to control the behavior of 'OTF

r (x) for jxj = r. In particular, we need to establish

that �OTF

r < infjxj=r '
OTF

r (x). In order to control 'OTF

r (x) for jxj = r we note that

for all jxj � r we have

'OTF

r (x) = 'TF(x) +
�
�
+
r �

TF � �OTFr

�
� jxj�1 +W (x); (122)

where as in (103),W = �
HF

r ��TF

r . According to the Coulomb norm Corollary 9.3

we get for all s > 0 that�����+r �TF � �OTFr

�
� jxj�1

���
� (Const.)s1=5maxfk�+r �TFkL5=3(B(x;s)); k�OTFr kL5=3(B(x;s))g

+ (Const.)s�1=2k�+r �TF � �OTFr kC:

From Lemma 12.1 we see that

maxfk�+r �TFkL5=3(B(x;s)); k�OTFr kL5=3(B(x;s))g � (Const.)r�6s9=5;

where we have assumed that D is such that �r"
0 � 1. Inserting this and the

estimate (101) from Lemma 12.3 above we obtain that for all jxj � r�����+r �TF � �OTFr

�
� jxj�1

��� � (Const.)r�6s2 + (Const.)s�1=2
�
�r�7+"

�1=2
= (Const.)�2=5r�4+2"

0=5 (123)

where we have optimized in s in order to get the last expression. Thus from

(122), the iterative assumption (85), and Lemma 12.1 we obtain

inf
jxj=r

'OTF

r (x) � inf
jxj=r

'TF(x)� (Const.)�2=5r�4+2"
0=5

� (Const.)r�4 � (Const.)�2=5r�4+2"
0=5:

We have used that since �r"
0 � 1 the error from (123) is worse than the error

from (85). Note that the constant in front of r�4 above is positive.
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From Lemma 12.3 we know that �OTF

r � (Const.)�1=2r�4+"
0=2 Hence we may

choose D such that �OTF

r < inf jxj=r '
OTF

r (x).

As above we of course also have

sup
jxj=r

'OTF

r (x) � (Const.)r�4 + (Const.)�2=5r�4+2"
0=5:

Thus (Const.)r�4 � infjxj=r '
OTF

r (x) � supjxj=r '
OTF

r (x) � (Const.)r�4.

That �OTF

r = 0 follows from Corollary 4.7 as follows. By harmonicity of Vr we

have

lim
r0!1

(4�)�1
Z
S2
r0Vr(r

0!)d! =

Z
S2
r�

HF

r (r!)d! = Z �
Z

�r�
HF:

Thus from Corollary 4.7 we have if �OTF

r 6= 0, i.e., if
R
�OTF
r =

R
�
+
r �HF that

0 < (�OTF

r )3=4 � (Const.)

�
Z �

Z
�r�

HF �
Z

�OTFr

�
= (Const.)(Z �

Z
�HF);

which is a contradiction since
R
�HF = N � Z.

The estimates (120) and (121) now follow from Theorem 4.6.

We are now ready to give the bounds on A1 and A2 de�ned in (98) and (99).

12.5. LEMMA (Control of A1 and A2).

Assume N � Z. Given constants "0; � > 0 there exists a constant D > 0 depend-

ing only on "0; � such that for all r with �0Z
�1=3 � r � D for which (85) holds

for all jxj � r we have for all jxj � r that

jA1(r; x)j � (Const.)r� jxj�4�� (124)

and

jA2(r; x)j � (Const.)r�jxj�4�� ; (125)

with � = (�7 +p73)=2 � 0:77.

Proof. Combining Theorems 5.2, 5.4, with Lemma 12.4 and recalling that �TF = 0

immediately gives the bound on A1.

If we use the TF equation (33) we obtain from Lemma 12.4 that for all jyj � r���OTFr (y)� 352�3�jyj�6�� � (Const.)r� jyj�6��:
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Of course we similarly have from Theorems 5.2, 5.4, and the TF equation (6)

that

�TF(y) � 352�3�jyj�6

and

�TF(y) � 352�3�jyj�6 � (Const.)Z��=3jyj�6��:

Since r � �0Z
�1=3 we conclude that for all jyj > r

j�TF(y)� �OTFr (y)j � (Const.)r� jyj�6��: (126)

Thus

jA2j � (Const.)

Z
jyj>jxj

r� jyj�7�� dy

which gives the bound in (125).

We turn now to estimating A3. This requires estimating the di�erence be-

tween �OTFr and �HF. We again begin by estimating this di�erence in the Coulomb

norm. More precisely, we estimate in Coulomb norm the di�erence between the

\outside" TF density �OTF
r and the \outside" HF density �

+
r �HFr . This is done

through a semiclassical analysis of the exterior region fjxj > rg.

12.6. LEMMA (Coulomb norm comparison of HF and OTF).

Assume N � Z. Given constants "0; � > 0 there exists a constant D > 0 depend-

ing only on "0; � such that for all r with �0Z
�1=3 � r � D for which (85) holds

for all jxj � r we have

k�OTFr � �
+
r �

HFkC � (Const.)r�
7
2
+ 1
6 (127)

and Z �
�
+
r �

HF

�5=3
� (Const.)r�7: (128)

Proof. Let  be the density matrix on L2(R3 ; C 2), but diagonal in spin, con-

structed in the semiclassical approximation Lemma 8.2 for the potential V =

'OTF

r . Note that from Lemma 12.4 we have 'OTF

r (y) � 0 for jyj � r and from its

de�nition 'OTF

r (y) � 0 for jyj < r. From Lemma 8.2 we have that

� = 23=2(3�2)�1 ['OTF

r ]3=2+ � g2 = �OTFr � g2; (129)
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where we have used the TF equation (33) and the fact �OTF

r = 0 proved in

Lemma 12.4. Here g was given in De�nition 8.1. From Lemma 8.2 we also have

Tr
��1

2
�
� � 23=2

5�2

Z
['OTF

r ]5=2+ + 1
2
�2s�2

Z
23=2

3�2
['OTF

r ]3=2+

� 3
10
(3�2)2=3

Z
(�OTFr )5=3 + (Const.)s�2r�3: (130)

(Note the factor of 2 in the formulas above compared to Lemma 8.2. This is

due to the fact that there was no spin in Lemma 8.2.) The last inequality above

follows from the Sommerfeld estimate for OTF given in Lemma 12.4.

According to Lemma 8.5 we may, for all 0 < �0 < 1, choose a density matrixe such that its density �
e has support in fjxj � rg and such that �

e � � and

Tr
���1

2
�� Vr

� e� � Tr
���1

2
�� Vr

�

�
+ (Const.)

Z
jxj�(1��0)�1r

[Vr]
5=2
+

+ (Const.)(�0r)�2
Z
jxj�(1��0)�1r

�:

If we make the assumption that D is chosen to ensure that �r"
0 � 1 we may use

the estimate on Vr from Lemma 12.1 and use the same lemma to conclude that

�(y) � (Const.)r�6 for all y. If we now make the choice that the parameter s

which appears in the de�nition of the function g satis�es s < r we get (recall

that Vr and hence also 'OTF

r � have support for jxj � r)

Tr
���1

2
�� Vr

� e� � Tr
���1

2
�� Vr

�

�
+ (Const.)

�
�0r�7 + �0�2r�5

�
= Tr

���1
2
�� Vr

�

�
+ (Const.)r�7+2=3;

where we have made the choice �0 = r2=3 and assumed that D is such that

�0 < 1=2.

Since
R
�
e �

R
� =

R
�OTF
r � R �+r �HF we see from Theorem 6.2 that in terms

of the auxiliary functional EA de�ned in (49)

EA [HFr ] � EA [e] +R � Tr
���1

2
�� Vr

�

�
+ (Const.)r�7+2=3

+ 1
2

Z Z
�(x)jx� yj�1�(y)dx dy +R;

where HF
r and R were de�ned in (48) and (51) respectively in terms of a pa-

rameter 0 < � < 1 (di�erent from the �0 used above). We have here used that
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�
HF

r
�
e = Vr�e , since �e has support in fjxj � rg, and that

1
2

Z Z
�
e(x)jx� yj�1�

e(y)dx dy � 1
2

Z Z
�(x)jx� yj�1�(y)dx dy

since �
e � �.

Since jxj�1 is superharmonic we haveZ Z
g(x� z)2jz � wj�1g(y � w)2 dz dw � jx� yj�1

and we conclude that

EA [HFr ] � Tr
���1

2
�� Vr

�

�
+ (Const.)r�7+2=3

+ 1
2

Z Z
�OTFr (x)jx� yj�1�OTFr (y)dx dy +R:

From (129) and (130) we �nd that

EA [HFr ] � EOTF

r (�OTFr ) +

Z
Vr
�
�OTFr � �OTFr � g2�+ (Const.)s�2r�3

+ (Const.)r�7+2=3 +R: (131)

We have Z
Vr
�
�OTFr � �OTFr � g2� = Z �Vr � Vr � g2

�
�OTFr :

Now since Vr(y) is harmonic for jyj > r we conclude that Vr � g2(y) = Vr(y) for

jyj > r + s. Hence we get from Lemma 12.1 thatZ
Vr
�
�OTFr � �OTFr � g2� � (Const.)r�4

Z
jyj<r+s

�OTFr � (Const.)r�8s: (132)

We insert this into (131) and arrive at

EA [HFr ] � EOTF

r (�OTFr ) + (Const.)(s�2r�3 + r�8s) + (Const.)r�7+2=3 +R
= EOTF

r (�OTFr ) + (Const.)r�7+2=3 +R; (133)

with the choise s = r5=3. Note that this agrees with our earlier condition s < r if

we choose D � 1.

We shall now estimate R. We shall choose the � used to de�ne HFr and R
in such a way that � � 1=2. We then see that the constant C�(r) in Theo-

rem 6.2 satis�es C�(r) � (Const.)(�r)�2, since � � 1=2 and r � 1. We see from

Lemma 10.5 that Z
jyj>(1��)r

�HF � (Const.)r�3; (134)
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where we have used that r; �r"
0 � 1.

Moreover, from Lemma 12.1 with r replaced by (1� �)r we haveZ
(1��)r<jyj<(1��)�1r

h
�

HF

(1��)r(y)
i5=2
+

dy � (Const.)r�7�:

Hence we have

R � (Const.)��2r�5 + (Const.)r�7�+ EX [HFr ] :

If we now use the exchange inequality in Theorem 6.4 and (134) we get (recall

that �HFr = �2r�
HF is the density corresponding to HFr )

EX [HFr ] � (Const.)

Z
(�HFr )4=3 � (Const.)

�Z
�HFr

�1=2 �Z
(�HFr )5=3

�1=2

� (Const.)r�3=2
�R+ r�7

�1=2
;

where we have also used that according to (59) and Lemma 12.1 we haveZ
(�HFr )5=3 � (Const.)R + (Const.)r�7: (135)

We may therefore conclude that

R � (Const.)r�7(r2��2 + �) + (Const.)r�5: (136)

We may use (135) and (136) to prove (128). Recall that �HFr (y) = �HF(y) if

jyj > (1 � �)�1r. Now (128) follows if we simply observe that (135) and (136)

hold with r replaced by r=2 and � = 1=2. We shall make a possible di�erent

choice of � below.

We shall now prove a lower bound on EA [HFr ]. We write

EA [HFr ] = Tr
���1

2
�� �

HF

r

�
HFr
�
+ 1

2

Z Z
�HFr (x)jx� yj�1�HFr (y)dx dy

= Tr
���1

2
�� �

HF

r + �OTFr � jxj�1� HFr �+ k�HFr � �OTFr k2C
�1

2

Z Z
�OTFr (x)jx� yj�1�OTFr (y)dx dy:

If we use that on the support of �HFr we have �
HF

r = Vr we may write this as

EA [HFr ] = Tr
���1

2
�� 'OTF

r

�
HFr
�
+ k�HFr � �OTFr k2C

�1
2

Z Z
�OTFr (x)jx� yj�1�OTFr (y) dx dy: (137)
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The trace may be bounded below by the sum of the �rst N 0 negative eigenvalues

of the operator �1
2
��'OTF

r , where N 0 is the smallest integer larger than Tr[HFr ] =R
�HF
r . From Lemma 8.2 (again with an extra factor of 2 due to spin) we therefore

have that for all s > 0 and all 0 < Æ < 1

Tr
���1

2
�� 'OTF

r

�
HFr
� � � 25=2

(15�2)
(1� Æ)�3=2

Z
('OTF

r )5=2+

� �2s�2
�Z

�HFr + 1

�
(138)

� 2L1Æ
�3=2

�'OTF

r � 'OTF

r � g2�
+

5=2
5=2

:

We �rst estimate the last term. Since �OTFr � jxj�1 is superharmonic we have by

the mean value property that �OTFr � jxj�1 � �OTF
r � jxj�1 � g2. Thus we have

'OTF

r � 'OTF

r � g2 = Vr � Vr � g2 + �OTFr � jxj�1 � g2 � �OTFr � jxj�1 � Vr � Vr � g2:

The same argument which led to (132) gives that Vr(y) � Vr � g2(y) = 0 unless

r � s � jyj � r + s. Since by Lemma 12.1 we have jVr(y)j � (Const.)r�4 (recall

that Vr is supported on fjyj � rg) we obtain�'OTF

r � 'OTF

r � g2�
+

5=2
5=2
� (Const.)r�8s;

if we assume that s � r. (Note that s here does not have to be chosen as in the

upper bound).

From (134) we also get that
R
�HF
r � R �HF�+r � (Const.)r�3.

Finally from the Sommerfeld estimate (120) and the fact that 'OTF

r (x) is

positive only if Vr(x) > 0, i.e., only if jxj � r, we �nd thatZ
('OTF

r )5=2+ � (Const.)r�7:

We therefore see from (138) and the TF equation (33) (recall that �OTF

r = 0, by

Lemma 12.4) that if 0 < Æ < 1=2 then

Tr
���1

2
�� 'OTF

r

�
HFr
�

� 3
10
(3�2)2=3

Z
(�OTFr )5=3 �

Z
'OTF

r �OTFr

�(Const.)
�
Ær�7 + Æ�3=2r�8s

�� (Const.)s�2r�3

= 3
10
(3�2)2=3

Z
(�OTFr )5=3 �

Z
'OTF

r �OTFr � (Const.)r�7+
1
3 ;
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where we have chosen Æ = r�2=5s2=5 and s = r11=6, which agrees with s � r.

If we insert this last estimate into (137) awe obtain

EA [HFr ] � EOTF

r (�OTFr ) + k�HFr � �OTFr k2C � (Const.)r�7+
1
3 :

If we compare this with (133) we see that

k�HFr � �OTFr k2C � (Const.)r�7+
1
3 +R:

Finally, we use the Hardy-Littlewood-Sobolev inequality (80) and (128) to con-

clude that

k�+r �HF � �HFr kC
� (Const.)k�+r �HF � �HFr k6=5 � (Const.)

�Z
r<jyj<(1��)�1r

�HF(y)6=5dy

�5=6

� (Const.)

�Z
r<jyj

�HF(y)5=3dy

�3=5 �Z
r<jyj<(1��)�1r

1dy

�7=30

� (Const.)�7=30r�7=2:

We thus get from (136) that

k�+r �HF � �OTFr kC � k�+r �HF � �HFr kC + k�HFr � �OTFr kC
� (Const.)r�

7
2
+ 1
6 + (Const.)r�7=2(r��1 + � + �7=30)

which gives (127) if we choose � = minf1=2; r5=7g.

We may now estimate A3 de�ned in (100).

12.7. LEMMA (Controlling A3). Assume N � Z. Given constants "0; � > 0

there exists a constant D > 0 depending only on "0; � such that for all r with

�0Z
�1=3 � r � D for which (85) holds for all jxj � r we have for all jxj � r that

jA3(r; x)j � (Const.)(jxj=r)1=12r�4+ 1
36 : (139)

Proof. We shall use the Coulomb norm estimate (83) with f = �OTF
r ��+r �HF. We

then immediately see from (83), Lemma 12.6, and the fact, which follows from

Lemma 12.4 and the TF equation (33), that �OTFr (y) � (Const.)jyj�6 , that

jA3(r; x)j � (Const.)(�jxj)1=5r�21=5 + (Const.)��1jxj�1=2r� 7
2
+ 1
6 :

This gives (139) if we choose � = (Const.)(r=jxj)7=12r 5
36 :
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Proof of Lemma 10.4. For jxj � �0Z
�1=3 the estimate in (87) follows from (128).

For jxj � �0Z
�1=3 we get from (90) thatZ

jyj>jxj

�HF(y)5=3 dy �
Z
R3

�HF(y)5=3 dy � (Const.)Z7=3 � (Const.)jxj�7:

End of proof of the iterative Lemma 10.3. Let D > 0 depending on �; "0 be the

smaller of the values D occurring in Lemmas 12.5 and 12.7. We may without loss

of generality assume that D � 1.

Given Æ > 0. We consider R0 < D satisfying �0Z
�1=3 � R1+Æ

0 and we assume

that (85) holds for all jxj � R0.

Set R00 = R1�Æ
0 and r = R1+Æ

0 . Then we have �0Z
�1=3 � r � R0 < D and we

can therefore apply Lemmas 12.5 and 12.7. Moreover R00 > R0. In order to prove

(86) for R0 < jxj < R00 we use (97) and Lemmas 12.5 and 12.7. We obtain that

for all jxj � r����HF

jxj(x)� �
TF

jxj(x)
��� � (Const.) (r=jxj)� jxj�4 + (Const.) (jxj=r)1=12 r�4+ 1

36 :

Moreover, for all R0 < jxj < R00 we have

jxj 2Æ
1�Æ � r

jxj � jxj
Æ

and thus ����HF

jxj(x)� �
TF

jxj(x)
��� � (Const.)

�
jxj�4+�Æ + jxj�4+ 1

36
� 73Æ
9(1�Æ)

�
:

It follows that if Æ is small enough there exist "; C 0� > 0 such that (86) is satis�ed.

13 Proving the main results Theorems 1.4, 1.5,

3.6, and 3.8

The main result Theorem 3.6 on the maximal number of electrons N is a simple

consequence of Lemma 10.5 and Theorem 10.1.
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Proof of Theorem 3.6. We may of course assume that N � Z and that Z � 1

(otherwise the result follows from Lieb's bound Theorem 3.5). Then
R
�TF = Z.

We can then use Lemma 10.5 with R chosen so small that CM � C�R
�4+",

because then (85) holds with � = 2C� and "0 = ". We conclude from Lemma 10.5

thatZ
�HF �

Z
jxj<R

�TF(x) dx+�R�3+"
0

+ (Const.)(1+�R"0)(1+R�3) � Z + (Const.);

since now R; �, and "0 are universal constants. We have thus concluded the result

of Theorem 3.6.

The asymptotics of the radius of an in�nite atom given in Theorem 1.5 is

a simple consequence of the main estimate Theorem 10.1 and the Sommerfeld

asymptotics.

Proof of Theorem 1.5. Note that in the neutral case N = Z we have from the

main estimate Theorem 10.1 that����Z
jxj>R

�TF(x)� �HF(x) dx

���� =

����Z
jxj<R

�HF(x)� �TF(x) dx

����
=

����(4�)�1R Z
S2
�

TF

R (R!)� �
HF

R (R!) d!

����
� C�R

�3+" + CMR:

Theorem 1.5 now easily follows from TF equation (6) and the Sommerfeld laws

Theorem 5.2 and 5.4 for the case N = Z, i.e., �TF = 0.

The potential estimate in Theorem 1.4 is somewhat more diÆcult to prove.

Proof of Theorem 1.4. As in the proof of the main estimate Theorem 10.1 we

separately treat small jxj, intermediate jxj, and large jxj.
We �rst consider small jxj. Note that

'HF(x)� 'TF(x) =

Z
(�TF(y)� �HF(y)) jx� yj�1dy:

Thus using the Coulomb norm estimate (82) we obtain����Z (�TF(y)� �HF(y)) jx� yj�1dy
����

� (Const.)s1=5max
�k�TFkL5=3(B(x;s)); k�HFkL5=3(B(x;s))	

+(Const.)s�1=2k (�TF � �HF) kC:
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If we use Lemma 11.1 and optimize in s we arrive at

j'HF(x)� 'TF(x)j � (Const.)Z4=3�"3 � (Const.)jxj�4+3"3�4Æ+3Æ"3 (140)

for some universal "3, if jxj1+Æ < �0Z
�1=3.

We now turn to intermediate jxj. We shall choose a D > 0 such that, with

the notation of Theorem 10.1, we have CM � C�D
�4+". Then by Theorem 10.1

we have that (85) holds for all jxj � D with � = 2C� and "0 = ". We may now

assume that D � 1 and that D is smaller than the values for D in Lemmas 12.5

and 12.6 corresponding to the above choices of � and "0.

Consider

(�0Z
�1=3)

1
1+Æ � jxj < D

1
1+Æ :

Set r = jxj1+Æ. Then jxj � r and �0Z
�1=3 � r � D. We shall use the notation

from Section 12. We write

'HF(x)� 'TF(x) = 'HF(x)� 'OTF

r (x) + 'OTF

r (x)� 'TF(x):

The di�erence between the last two terms was de�ned in (98) to be A1(r; x) and

this was estimated in Lemma 12.5.

We have

'HF(x)� 'OTF

r (x) =

Z �
�OTFr (y)� �

+
r (y)�

HF(y)
�
jx� yj�1dy:

Exactly as above, for small jxj, we now use Theorem 10.1, Lemma 12.6 and the

Coulomb norm estimate (82) to conclude that

j'HF(x)� 'OTF

r (x)j � (Const.)r�4+
1
21 � (Const.)jxj(�4+ 1

21)(1+Æ);

If we combine this with (124) from Lemma 12.5 we obtain

j'HF(x)� 'TF(x)j � (Const.)
�
jxj�4+�Æ + jxj(�4+ 1

21)(1+Æ)
�
: (141)

Combining (140) and (141) we see that by choosing Æ small enough we have

proved (10) for all jxj � D
1

1+Æ .

We turn to jxj � D
1

1+Æ , i.e., jxj greater than some universal constant. Here

we may write

j'HF(x)� 'TF(x)j �
����HF

jxj(x)� �
TF

jxj(x)
��� + ����Z

jyj>jxj

(�TF(y)� �HF(y)) jx� yj�1dy
���� :
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The �rst term is controlled by the main estimate Theorem 10.1. If we use that

according to Lemma 10.4 we have
R
jyj>jxj

�HF(y)5=3dy � (Const.) and that the

same estimate holds for the TF density (see Lemma 12.1) we may estimate the

second term above as follows. Using H�older's inequality we have�������
Z

jxj<jyj

(�TF(y)� �HF(y)) jx� yj�1dy

������� � (Const.)

�Z
jx�yj<1

jx� yj�5=2dy
�2=5

+

Z
jxj<jyj

(�TF(y) + �HF(y)) dy � (Const.);

where the last estimate follows from Lemma 10.5.

We end the paper by giving the proof of the bound on the ionization energy

in Theorem 3.8

Proof of Theorem 3.8. Since the HF energy is a non-increasing function of N we

have that 0 � EHF(Z � 1; Z) � EHF(Z;Z). In order to prove an upper bound

we shall construct a trial density matrix  for EHF with Tr[] � Z � 1. We then

clearly have that EHF [] � EHF(Z�1; Z). Let �� be given in terms of appropriate

r; � > 0 as in the beginning of the proof of Theorem 6.2. We then choose as our

trial matrix

HF� = ��
HF��;

where HF is the HF minimizer with Tr [HF] = Z. According to the de�nition of

�� we have

Tr
�
HF�
� � Z �

Z
jyj>r

�HF(y)dy:

We choose � = 1=2. Let R > 0 be such that CM = C�R
�4+". We shall now

choose r satisfying r � R. Then according to Theorem 10.1 we have that (85)

holds for jxj � r with � = 2C� and "0 = ". From Lemma 10.5 we therefore

conclude thatZ
jyj>r

�HF(y)dy =

Z
�HF �

Z
jyj<r

�HF(y)dy

=

Z
jyj<r

�TF(y)� �HF(y) dy +

Z
jyj>r

�TF(y) dy

�
Z
jyj>r

�TF(y) dy� (Const.)r�3+"
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where we have used that
R
�HF =

R
�TF = Z.

We may of course assume that Z is larger than some �xed universal constant.

For Z less than a universal constant, the total energy EHF(Z;Z) and hence the

ionization energy EHF(Z � 1; Z)�EHF(Z;Z) are bounded by universal constants

(see Theorem 3.2). We can therefore assume that �0Z
�1=3 < R and we shall

choose �0Z
�1=3 < r. It then follows from Theorem 5.4, the TF equation (6)

(recall that we consider the case �TF = 0 and N = Z) that �TF(y) � (Const.)jyj�6
for all jyj � r. Hence

Z
jyj>r

�HF(y)dy � (Const.)r�3 � (Const.)r�3+":

Thus we may choose r to be a small enough universal number (assuming that

Z is large enough to allow �0Z
�1=3 < r) to ensure that

R
jyj>r

�HF(y)dy � 1 and

hence that Tr
�
HF
�

� � Z � 1.

From the estimate (53) in the proof of Theorem 6.2 we have

EHF
�
HF�
� � EHF [HF]� EA [HFr ] +R = EHF(Z;Z)� EA [HFr ] +R

where as before HFr = �r
HF�r, R is given in (51), and the functional EA was

de�ned in (49).

It remains to prove that

�EA [HFr ] +R � (Const.): (142)

As in (136) we conclude that R � (Const.)r�5 � (Const.), where we have used

that r is a universal constant.

In order to estimate EA [HFr ] we note that, since �
HF

r (y) is harmonic for jyj > r

and tends to 0 at in�nity, we have that for all jyj � r

�
HF

r (y) � jyj�1r sup
jxj=r

�
HF

r (x) � jyj�1r sup
jxj=r

j�TF

r (x)j+ jyj�1 �C�r
�3+" + rCM

�
� (Const.)r�3jyj�1;

where we have used the main estimate Theorem 10.1 and the bound on �
TF

r in

Lemma 5.5 with �TF = 0. If we use that r is some universal constant we get

�
HF

r (y) � (Const.)jyj�1:



JPS/16-Jan-2001|Hartree-Fock Ionization, Sect. 13, References 75

Using the Lieb-Thirring inequality (21) we see from the de�nition (49) of the

auxiliary functional EA that

EA [HFr ] � K1

Z
�HFr (y)5=3dy � (Const.)

Z
�HF
r (y)

jyj dy

+ 1
2

Z Z
�HFr (x)jx� yj�1�HFr (y)dx dy:

Here again �HF
r = �2r�

HF is the density corresponding to HF
r . It follows from

standard atomic TF theory that

inf
��0

�
K1

Z
�(y)5=3dy � (Const.)

Z
�(y)

jyj dy +
1
2

Z Z
�(x)jx� yj�1�(y)dx dy

�
is some universal constant. Hence EA [HFr ] � �(Const.) and we have proved

(142).
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