
L�evy Laws and Processes in Free Probability

O.E. Barndorff-Nielsen�yand S. Thorbj�rnsenzx

Introduction.

In this note we outline certain aspects of the theory of in�nite divisibility and L�evy processes
in the framework of Voiculescu's free probability. Our studies are concentrated around the
bijection, introduced by Bercovici and Pata in [7], between the class of classically in�nitely
divisible probability measures and the class of freely in�nitely divisible probability measures. We
derive, in Section 5, certain algebraic and topological properties of this bijection, in the present
paper denoted �, and explain how these properties imply that � maps certain canonical sub-
classes of classically in�nitely divisible probability measures onto their natural free counterparts.
We show also, in Section 6, how �, by virtue of the afore-mentioned properties, gives rise to a one-
to-one (in law) correspondence between classical and free L�evy processes. In Section 7 we use the
properties of � to construct certain stochastic integrals w.r.t. free L�evy processes, and we derive
the free counterpart of the well-known integral representation of classically selfdecomposable
random variables. Finally, in Section 8, we describe a free version of the L�evy-Itô decomposition
of a classical L�evy process into the sum of two independent processes: a Brownian motion (with
drift) and a pure jump process. Sections 1-2 provide background material on non-commutative
probability in general and free probability in particular. Sections 3-4 review, brie
y, the theory
of convolution and in�nite divisibility in free (and classical) probability. The theory, outlined in
sections 5-8, is developed, in detail, in the forthcoming papers [5] and [6].

1 Non-commutative Probability.

In classical probability, the basic objects of study are random variables, i.e. measurable functions
from a probability space (
;F; P ) into the real numbers R equipped with the Borel �-algebra
B. To any such random variable X : 
 ! R there is associated a probability measure �X on
(R;B), de�ned by �X(B) = P (X 2 B) = P (X�1(B)), for any Borel set B. The measure �X is
called the distribution of X (w.r.t. P ), and it satis�es the property that:

Z
R

f(t) �X(dt) = E(f(X));
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for any bounded Borel function f : R ! R, and where E denotes expectation (or integration)
w.r.t. P . We shall also use the notation LfXg for �X (where L stands for \law").

In non-commutative probability, one replaces the random variables by (selfadjoint) operators
on a Hilbert space H. These operators are then referred to as \non{commutative random
variables". The term non-commutative refers to the fact that, in this setting, the multiplication
of \random variables" (i.e. composition of operators) is no longer commutative, as opposed
to the usual multiplication of classical random variables. The non-commutative situation is
often remarkably di�erent from the classical one, and most often more complicated. By B(H)
we denote the algebra of all bounded operators on H. Recall that B(H) is equipped with an
involution (the adjoint operation) a 7! a� : B(H)! B(H), which is given by:

ha�; �i = h�; a��i; (a 2 B(H); �; � 2H):

Instead of working with the whole algebra B(H) as the set of \random variables" under con-
sideration, it is, for most purposes, natural to restrict attention to certain subalgebras of B(H).
In this note, we shall only consider the nicest cases of such subalgebras, the von Neumann alge-

bras, although much of what follows is also valid for more general classes of \non-commutative
probability spaces". A von Neumann algebra, acting on a Hilbert space H, is a subalgebra of
B(H) which contains the multiplicative unit 111 of B(H) (i.e. 111 is the identity mapping on H),
and which is closed under the adjoint operation and closed in the weak operator topology on
B(H) (i.e. the weak topology on B(H) induced by the linear functionals: a 7! ha�; �i, �; � 2 H).
A tracial state on a von Neumann algebra A is a positive linear functional � : A ! C , taking
the value 1 at the identity operator 111 on H, and satisfying the trace property1:

�(ab) = �(ba); (a; b 2 A):

1.1 De�nition. A W �-probability space is a pair (A; �), where A is a von Neumann algebra
on a Hilbert space H and � is a faithful tracial state on A.

The assumed faithfulness of � in De�nition 1.1 means that � does not annihilate any non-zero
positive operator. It implies that A is �nite in the sense of F. Murray and J. von Neumann.

Suppose now that (A; �) is a W �-probability space and that a is a selfadjoint operator (i.e.
a� = a) in A. Then, as in the classical case, we can associate a (spectral) distribution to a in
a natural way: Indeed, by the Riesz representation theorem, there exists a unique probability
measure �a on (R;B), satisfying that

Z
R

f(t) �a(dt) = �(f(a)); (1.1)

for any bounded Borel function f : R ! R. In formula (1.1), f(a) has the obvious meaning if f
is a polynomial. For general Borel functions f , f(a) is de�ned in terms of spectral theory (see
e.g. [22]).

The (spectral) distribution �a of a selfadjoint operator a in A is automatically concentrated
on the spectrum sp(a), and is thus, in particular, compactly supported. If one wants to be
able to consider any probability measure � on R as the spectral distribution of some selfadjoint

1In quantum physics, � is of the form �(a) = tr(�a), where � is a trace class selfadjoint operator on H with
trace 1, that expresses the state of a quantum system, and a would be an observable, i.e. a selfadjoint operator
on H, the mean value of the outcome of observing a being �(a) = trf�ag.
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operator, then it is necessary to take unbounded (i.e. non-continuous) operators into account.
Such an operator a is, generally, not de�ned on all of H, but only on a subspace D(a) of H,
called the domain of a. We say then that a is an operator in H rather than on H. For most of
the interesting examples, D(a) is a dense subspace of H, in which case a is said to be densely
de�ned.

If (A; �) is a W �-probability space acting on H and a is an unbounded operator in H, a cannot
be an element of A. The closest a can get to A is to be aÆliated with A, which means that a
commutes with any unitary operator u, that commutes with all elements of A. If a is selfadjoint,
a is aÆliated with A if and only if f(a) 2 A for any bounded Borel function f : R ! R. In
this case, (1.1) determines, again, a unique probability measure �a on R, which we also refer to
as the (spectral) distribution of a, and which generally has unbounded support. Furthermore,
any probability measure on R can be realized as the (spectral) distribution of some selfadjoint
operator aÆliated with some W �-probability space. In the following we shall also use the
notation Lfag for the distribution of a (possibly unbounded) operator a aÆliated with (A; �).

Although there is no problem in de�ning the distribution of a single selfadjoint operator aÆliated
with (A; �), one major diÆculty in non-commutative probability is the lack of a notion of the
joint distribution of two non-commuting operators. This fact means that many arguments from
classical probability cannot, directly, be carried over to the non-commutative case.

2 Free independence.

The key concept on relations between classical random variables X and Y is independence. One
way of de�ning that X and Y are independent is to ask that all compositions of X and Y with
bounded Borel functions be uncorrelated:

E
�
[f(X)� Eff(X)g] � [g(Y )� Efg(Y )g]	 = 0;

for any bounded Borel functions f; g : R ! R.

In the early 1980's, D.V. Voiculescu introduced the notion of free independence among non-
commutative random variables:

2.1 De�nition. Let a1; a2; : : : ; ar be selfadjoint operators aÆliated with a W �-probability
space (A; �). We say then that a1; a2; : : : ; ar are freely independent w.r.t. � , if

�
�
[f1(ai1)� �(f1(ai1))][f2(ai2)� �(f2(ai2))] � � � [fp(aip)� �(fp(aip))]

	
= 0;

for any p in N, any bounded Borel functions f1; f2; : : : ; fp : R ! R and any indices i1; i2; : : : ; ip
in f1; 2; : : : ; rg satisfying that i1 6= i2; i2 6= i3; : : : ; ip�1 6= ip.

At a �rst glance, the de�nition of free independence looks, perhaps, quite similar to the de�ni-
tion of classical independence given above, and indeed, in many respects free independence is
conceptually similar to classical independence. For example, if a1; a2; : : : ; ar are freely indepen-
dent selfadjoint operators in (A; �), then all numbers of the form �ff1(ai1)f2(ai2) � � � fp(aip)g
(where i1; i2; : : : ; ip 2 f1; 2; : : : ; rg and f1; f2; : : : ; fp : R ! R are bounded Borel functions),
are uniquely determined by the distributions Lfaig, i = 1; 2; : : : ; r. On the other hand, free
independence is a truly non-commutative notion, which can be seen, for instance, from the fact
that two classical random variables are never freely independent, unless one of them is trivial,
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i.e. constant with probability one. Indeed, suppose X and Y are classical random variables, and
assume, for simplicity, that X and Y are both bounded with mean 0. If X and Y are freely
independent w.r.t. expectation E , then, since X and Y commute, we have

0 = EfXY XY g = EfX2Y 2g = EfX2gEfY 2g;

where the last equality is due to the fact that X2 and Y 2 are necessarily freely independent too.
The calculation above implies that either EfX2g = 0 or EfY 2g = 0, as asserted.

Voiculescu originally introduced free independence in connection with his deep studies of the von
Neumann algebras associated to the free group factors (see [25], [27], [28]). We prefer in this note,
however, to indicate the signi�cance of free independence by explaining its connection with ran-
dom matrices. In the 1950's, the phycisist E.P. Wigner showed that the spectral distribution of
large selfadjoint random matrices with independent complex Gaussian entries is, approximately,
the semi-circle distribution, i.e. the distribution on R with density s 7! p

4� s2 � 1[�2;2](s) w.r.t.
Lebesgue measure. More precisely, for each n in N, let X(n) be a selfadjoint complex Gaussian
random matrix of the kind considered by Wigner (and suitably normalized), and let trn denote
the (usual) tracial state on the n� n matrices Mn(C ). Then for any positive integer p, Wigner
showed that

E
�
trn

�
(X(n))p]

	 �!
n!1

Z 2

�2
sp
p
4� s2 ds:

In the late 1980's, Voiculescu generalized Wigner's result to families of independent selfadjoint

Gaussian random matrices (cf. [27]): For each n in N, let X
(n)
1 ;X

(n)
2 ; : : : ;X

(n)
r be indepen-

dent2 random matrices of the kind considered by Wigner. Then for any indices i1; i2; : : : ; ip in
f1; 2; : : : ; rg,

E
�
trn

�
X

(n)
i1
X

(n)
i2

� � �X(n)
ip

�	 �!
n!1

�fxi1xi2 � � � xipg;

where x1; x2; : : : ; xr are freely independent selfadjoint operators in a W �-probability space
(A; �), and such that Lfxig is the semi-circle distribution for each i.

By Voiculescu's result, free independence describes what the assumed classical independence
between the random matrices is turned into, as n ! 1. Also, from a classical probabilistic
point of view, free probability theory may be considered as (an aspect of) the probability theory
of large random matrices.

Voiculescu's result reveals another general fact in free probability, namely that the role of the
Gaussian distribution in classical probability is taken over by the semi-circle distribution in free
probability. In particular, as also proved by Voiculescu, the limit distribution appearing in the
free version of the central limit theorem is the semi-circle distribution (see e.g. [24]).

3 Classical and Free Convolution.

In classical probability, the convolution �1 � �2 of two probability measures �1 and �2 on R is
de�ned as the distribution of the sum X1 + X2 of two independent random variables X1 and
X2 with distributions �1 respectively �2. The existence of two independent random variables

2in the classical sense; at the level of the entries.
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X1 and X2 de�ned on the same probability space and with prescribed distributions �1 and
�2 follows from a tensor-product construction. In free probability, the corresponding existence
result follows from a similar construction, where the tensor-product is replaced by the so-called
free product (we refer to [24] for details). Furthermore, as previously indicated, if x1 and x2 are
freely independent selfadjoint operators with spectral distributions �1 and �2, the distribution
Lfx1 + x2g depends only on �1 and �2. Hence, it makes sense to de�ne the free convolution
�1 � �2 of �1 and �2 by setting �1 � �2 = Lfx1 + x2g. Once the free convolution � has, thus,
been de�ned, one could, from a probabilistic point of view, forget about the underlying operator
construction, and merely consider � as a new type of convolution on the set of probability
measures on R. To a large extent, this approach can, in fact, be followed through by virtue of
the analytical function tools that we describe next.

The main tool for dealing with classical convolution is the Fourier transform. The Fourier
transform (or characteristic function) of a probability measure � on R is the function f� : R ! C

given by:

f�(u) =

Z
R

eisu �(ds); (u 2 R):

The key property of the Fourier transform, in this connection, is that

f�1��2(u) = f�1(u) � f�2(u); (u 2 R);

for any probability measures �1; �2 on R. Thus, the logarithm of the Fourier transform (the so-
called cumulant transform) linearizes classical convolution. In the paper [26], Voiculescu found a
transformation which linearizes free convolution; the so-called R-transform. Since then, several
modi�cations of Voiculescu's R-transform have appeared in the literature. We prefer, here, to
work with what we shall refer to as the free cumulant transform, which we introduce next.

By C + (respectively C �) we denote the strictly upper (respectively strictly lower) complex half-
plane. For a probability measure � on R, the Cauchy transform G� : C

+ ! C � is de�ned
by:

G�(z) =

Z
R

1

z � t
�(dt); (z 2 C

+):

It turns out that the mapping F� :=
1
G�

: C + ! C + always has a right inverse, F�1� , de�ned on

a region of the form: �(�;M) = fx + iy 2 C
+ j x2 + y2 > M2; jxj < �yg, where � and M are

positive numbers (see [9]). The free cumulant transform C� is then de�ned by

C�(z) = zF�1� (1
z
)� 1;

for 1
z
in �(�;M), i.e. for z in the region fx� iy 2 C � j x2 + y2 < M�2; jxj < �yg. As indicated

above, the key property of the free cumulant transform is that

C�1��2(z) = C�1(z) + C�2(z);

for any probability measures �1; �2 on R.

The reason we have chosen to work with the free cumulant transform, rather than the R-
transform or other modi�cations of it, is that this particular modi�cation is especially close in
nature to the classical cumulant transform. In particular, it behaves exactly like the classical
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cumulant transform w.r.t. scalar-multiplication, which is important for the discussion of free
selfdecomposability, introduced in [5] (see Section 4 below). Indeed, if � is the distribution of
a random variable X and c � 0, then, denoting by Dc� the distribution of cX, we have the
relation:

CDc�(z) = C�(cz): (3.1)

Furthermore, in terms of C� the free L�evy-Khintchine representation of freely in�nitely divisible
probability measures resembles more closely the classical L�evy-Khintchine representation, as we
shall see in Section 5 below.

4 In�nite Divisibility, Selfdecomposability and Stability.

In classical probability theory one has the following hierarchy of classes of probability measures
on R:

G(�) � S(�) � L(�) � ID(�) � P

where

(i) P is the class of all probability measures on R.

(ii) ID(�) is the class of in�nitely divisible probability measures on R, i.e.

� 2 ID(�) () 8n 2 N 9�n 2 P : � = �n � �n � � � � � �n| {z }
n terms

:

(iii) L(�) is the class of selfdecomposable probability measures on R, i.e.

� 2 L(�) () 8c 2 ]0; 1[ 9�c 2 P : � = Dc� � �c:

(iv) S(�) is the class of stable probability measures on R, i.e.

� 2 S(�) () f (�) j  : R ! R; increasing aÆne transformationg
is closed under convolution � :

(v) G(�) is the class of Gaussian (or normal) distributions on R.

The classes of probability measures de�ned above, are all of great importance in classical proba-
bility. This is, partly, explained by their characterizations as limit distributions of certain types
of sums of independent random variables (see e.g. [16] or [14]).

In free probability, we denote by ID(�), L(�) and S(�) the classes of, respectively, freely
in�nitely divisible, freely selfdecomposable and freely stable probability measures on R. These
classes are de�ned exactly as the corresponding classical classes, except that one replaces classical
convolution � by free convolution � throughout in (ii)-(iv) above. Furthermore, we shall denote
by G(�) the class of free Gaussian distributions, i.e. that of semi-circle distributions. It turns
out, then, that in free probability, we also have the hierarchy:

G(�) � S(�) � L(�) � ID(�) � P:
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The �rst inclusion is well-known and easily veri�ed, and the second one is not hard to prove by
application of the free cumulant transform. The third inclusion is of deeper nature. As in the
classical case, it is a consequence of the fact that the in�nitely divisible distributions may be
characterized as the possible limit distributions, as n ! 1, of sums Sn = Xn;1 + � � � + Xn;kn

of (freely) independent random variables, such that the terms Xn;1; : : : ;Xn;kn are uniformly
negligible (in probability) as n ! 1. The latter result was proved in 1937 by Khintchine (cf.
[19]) in the classical case, and recently by Bercovici and Pata in the free case (cf. [8]). Based
on this, it remains to remark that by successive applications of (iii) above, a measure � in L(�)
can be considered as the (�xed) distribution of sums Sn of the kind described above (see [5] for
details).

We shall focus, here, mostly on the class L(�) of selfdecomposable measures (and its free counter-
part), which, until fairly recently, seemed to be more or less forgotten, except by a few experts,
even though it did receive considerable attention in the early studies of in�nite divisibility. It
was �rst introduced as a class of limit distributions by P. L�evy and is now playing a substantial
role in mathematical �nance (see the contribution by Barndor�-Nielsen and Shephard in [3]).

A random variable Y has distribution in L(�) if and only if Y has a representation in law of the
form3

Y
d
= cY + Yc;

for some random variable Yc which is independent of Y . This latter formulation makes the idea
of selfdecomposability of immediate appeal from the viewpoint of mathematical modeling. Yet
another key characterization is given by the following result which was �rst proved by Wolfe in
[30] and later generalized and strengthened by Jurek and Verwaat in [18]: A random variable Y
has law in L(�) if and only if Y has a representation in the form

Y
d
=

Z 1

0
e�t dXt; (4.1)

where Xt is a L�evy process (see Section 6 below) satisfying Eflog(1 + jX1j)g <1. The process
X = (Xt)t�0 is termed the background driving L�evy process or the BDLP corresponding to Y ;
this is due to its role for processes of Ornstein-Uhlenbeck type (see [2]). One of the main results,
to be outlined in the present paper, is a representation in the form (4.1), for any selfadjoint
operator y with (spectral) distribution in L(�) (see Section 7).

5 The Bercovici-Pata bijection.

We present next a bijection between the classes ID(�) and ID(�), which was introduced by
Bercovici and Pata in [7]. The bijection is de�ned in terms of the L�evy-Khintchine representa-
tions of classical and free in�nitely divisible probability measures.

In the classical case, a famous result, due to L�evy and Khintchine (who build on initial work by
Kolmogorov) states that a probability measure � on R is in ID(�) if and only if its characteristic
function f� has a representation in the form:

log f�(u) = i
u� 1
2au

2 +

Z
R

�
eiut � 1� iut1[�1;1](t)

�
�(dt); (u 2 R); (5.1)

3The symbol \
d
=" means \has the same distribution as".
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where 
 is a real constant, a is a non-negative constant and � is a measure on R satisfying the
conditions:

�(f0g) = 0 and

Z
R

minf1; t2g �(dt) <1;

i.e. � is a L�evy measure. The triplet (a; �; 
) is uniquely determined and is called the generating
triplet for �.

The free version of the L�evy-Khintchine representation was proved, in the general case, by
Bercovici and Voiculescu in [9]. Reformulated in terms of the free cumulant transform (rather
than the Voiculescu transform), it asserts that a probability measure � on R is in ID(�) if and
only if its free cumulant transform C� has a representation in the form:

C�(z) = 
z + az2 +

Z
R

� 1

1� tz
� 1� tz1[�1;1](t)

�
�(dt); (5.2)

where 
 2 R, a � 0 and � is a L�evy measure. Again, the triplet (a; �; 
) is uniquely determined,
and we call it the free generating triplet of �.

There are several alternative ways of writing the L�evy-Khintchine representations. We have
chosen, in this note, to use the representations (5.1) and (5.2), since they are very similar,
and since (5.1) seems to be the preferred representation in recent literature (see e.g. [23]). In
addition, both (5.1) and (5.2) clearly exhibit how � is always the convolution of a Gaussian
distribution (respectively a semi-circle distribution) and a distribution of generalized Poisson
type (cf. also the L�evy-Itô decomposition in Section 8). In particular, the cumulant transform
for the Gaussian distribution with mean 
 and variance a is: u 7! i
u � 1

2au
2, and the free

cumulant transform for the semi-circle distribution with mean 
 and variance a is z 7! 
z+az2.

5.1 De�nition. The Bercovici-Pata bijection is the mapping �: ID(�)! ID(�) de�ned in the
following way: Suppose � is in ID(�) and has generating triplet (a; �; 
). Then �(�) is the
measure in ID(�) with free generating triplet (a; �; 
).

From the characterizations of ID(�) and ID(�) in terms of the L�evy-Khintchine representa-
tions, it is immediate that � is, in fact, a bijection. However formal � may seem at a �rst
glance, it is clear from the de�nition that � maps the Gaussian distributions onto the semi-
circle distributions. Furthermore, it was proved by Bercovici and Pata in [7] that � actually
preserves stability4, i.e. �(S(�)) = S(�). When investigating the corresponding question for
selfdecomposability we realized that, in fact, � has the following algebraic properties:

5.2 Theorem. The Bercovici-Pata bijection �: ID(�)! ID(�), satis�es:

(i) If �1; �2 2 ID(�), then �(�1 � �2) = �(�1)� �(�2).

(ii) If � 2 ID(�) and c 2 R, then �(Dc�) = Dc�(�).

The proof of (i) is actually a straightforward consequence of the fact that the classical (respec-
tively free) cumulant transform linearizes classical (respectively free) convolution. To prove (ii),
one has to verify that the operation Dc has the exact same e�ect on classical and free generating

4Bercovici and Pata actually proved an even stronger result, namely that � preserves the so-called partial
domain of attraction.
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triplets. By virtue of (3.1) (and the corresponding classical result) and the striking similarity
between (5.1) and (5.2), this ends up being a straightforward observation too.

Together with the, easily checked, property that all Dirac measures are �xed points of �, Theo-
rem 5.2 shows that � preserves the aÆne structure on ID(�) and ID(�). This provides another
explanation of the fact that � preserves stability, and it also shows that the same holds for self-
decomposability, i.e. that �(L(�)) = L(�). Indeed, suppose that � 2 L(�) and that c 2 ]0; 1[.
Then � = Dc� � �c for some probability measure �c. It is a well-known fact that �c is automat-
ically in ID(�) (see [16]) and hence, by Theorem 5.2,

�(�) = �(Dc� � �c) = Dc�(�)� �(�c);

which shows that �(�) 2 L(�). The same argumentation applies to the converse inclusion.

In the paper [5] we also studied the topological properties of �. Recall that a sequence (�n) of
�nite measures on R is said to converge weakly to a �nite measure � on R if

R
R
f(s) �n(ds) !R

R
f(s) �(ds) for any continuous bounded function f : R ! R. In that case we write �n

w�! �.

5.3 Theorem. The Bercovici-Pata bijection �: ID(�) ! ID(�) is a homeomorphism w.r.t.

weak convergence. In other words, if (�n) is a sequence of measures in ID(�) and � is another
measure in ID(�), then �n w�! � if and only if �(�n)

w�! �(�).

The proof of Theorem 5.3 is based on a result by B.V. Gnedenko (see [16]), which gives a
necessary and suÆcient condition for weak convergence in ID(�) in terms of the generating
triplets. Suppose (�n) is a sequence in ID(�) with corresponding generating triplets (an; �n; 
n),
and suppose that � is another measure in ID(�) with generating triplet (a; �; 
). Consider the
�nite measures �n and � on R de�ned by:

�(dt) = aÆ0(dt) +
t2

1+t2
�(dt) and �n(dt) = anÆ0(dt) +

t2

1+t2
�n(dt); (n 2 N);

where Æ0 is the Dirac measure at 0. If we assume, for simplicity, that the L�evy measure � for
� has no atoms at �1 or 1 (the discontinuity points of the integrands in (5.1) and (5.2)), then
Gnedenko's result asserts that �n

w�! �, if and only if �n
w�! � and 
n ! 
. The remaining

task, then, is to prove a free version of Gnedenko's result. This can be done by fairly standard
measure theoretic techniques, based on the description of weak convergence in terms of the free
cumulant transform, which was established by Bercovici and Voiculescu in [9]. We refer to [5]
for details.

6 L�evy processes in Free Probability.

In classical probability, L�evy processes form a very important area of research, both from theo-
retical and applied points of view (see [23],[10],[11],[20],[3]). In free probability, such processes
have already received quite a lot of attention (see e.g. [1], [12] and [13]).

6.1 De�nition. A free L�evy process (in law), aÆliated with a W �-probability space (A; �), is a
process (Zt)t�0 of selfadjoint operators aÆliated with A, which satis�es the following conditions:

(i) whenever n 2 N and 0 � t0 < t1 < � � � < tn, the increments

Zt0 ; Zt1 � Zt0 ; Zt2 � Zt1 ; : : : ; Ztn � Ztn�1 ;

are freely independent random variables.
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(ii) Z0 = 0.

(iii) for any s; t in [0;1[, the (spectral) distribution of Zs+t � Zs does not depend on s.

(iv) for any s in [0;1[, Zs+t ! Zs in probability, as t ! 0, i.e. the (spectral) distributions
LfZs+t � Zsg converge weakly to Æ0, as t! 0.

A classical L�evy process in law is a family (Xt)t�0 of random variables on a probability space
(
;F; P ), which satis�es the conditions (i)-(iv) above, except that free independence has to be
replaced by classical independence in (i). Such a process (Xt) is called a (genuine) L�evy process,
if it satis�es, in addition, the requirement that for almost all ! in 
, the sample path t 7! Xt(!)
is right continuous with left limits.

Let (Zt) be a free L�evy process and let (�t) be the family of marginal distributions, i.e. �t =
LfZtg for all t. As in the classical case, it is an immediate consequence of conditions (i) and (iii)
that �t is �-in�nitely divisible for all t. Note also that the following conditions are satis�ed:

�s � �t�s = �t; (0 � s < t); (6.1)

and

�t
w�! Æ0; as t& 0: (6.2)

Conversely, given any family (�t) of probability measures on R, which satis�es (6.1) and (6.2),
there exists a W �-probability space (A; �) and a free L�evy process in law (Zt)t�0 aÆliated with
(A; �), such that LfZtg = �t for all t. As noted in [12] and [29], (A; �) can be constructed,
loosely speaking, as the inductive limit of a directed system of free product von Neumann
algebras. In classical probability, the corresponding existence result for classical L�evy processes
in law follows by an application of Kolmogorov's consistency theorem. Since the Bercovici-Pata
bijection preserves both conditions (6.1) and (6.2), it follows, then, that we have the following
correspondence between classical and free L�evy processes in law:

6.2 Proposition. Let (Zt)t�0 be a free L�evy process (in law) aÆliated with a W �-probability

space (A; �), and with marginal distributions (�t). Then there exists a (classical) L�evy process

(in law) (Xt)t�0, with marginal distributions (��1(�t)).

Conversely, for any (classical) L�evy process (in law) (Xt) with marginal distributions (�t), there
exists a free L�evy process (in law) (Zt) with marginal distributions (�(�t)).

7 Selfdecomposability and Free Stochastic Integration.

Let Y be a classical random variable on (
;F; P ). As mentioned previously, LfY g is in L(�)
if and only if there exists a (classical) L�evy process (Xt), de�ned on some probability space
(
0;F0; P 0), and such that

Eflog(1 + jX1j)g <1; (7.1)

and

Y
d
=

Z 1

0
e�t dXt: (7.2)
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Condition (7.1) is equivalent to asking that
R
Rn[�1;1] log(1+jsj) �1(ds) <1, where �1 is the L�evy

measure appearing in the generating triplet for LfX1g. Moreover, this condition is necessary

and suÆcient for the integrals
R R
0 e�t dXt to converge, in probability, as R ! 1; the limit

being, by de�nition, the right hand side of (7.2) (see [18]). The integrals
R R
0 e�t dXt, in turn,

are de�ned as the limit, in probability, of Riemann sums

Sn =
nX

j=1

e�t
#
n;j � (Xtn;j �Xtn;j�1);

corresponding to subdivisions:

0 = tn;0 < tn;1 < tn;2 < � � � < tn;n = R; t
#
n;j 2 [tn;j�1; tn;j ]; (j = 1; 2; : : : ; n); (7.3)

subject to the condition that maxftn;j � tn;j�1 j j = 1; 2; : : : ; ng ! 0, as n ! 1. Using, once
again, the algebraic and topological properties of �, we derived, in [5], the following free analog
of the classical result described above:

7.1 Theorem. Let y be a selfadjoint operator aÆliated with a W �-probability space (A; �).
Then the distribution of y is �-selfdecomposable if and only if y has a representation in law of

the form:

y
d
=

Z 1

0
e�t dZt; (7.4)

for some free L�evy process (in law) (Zt) aÆliated with a W �-probability space (A0; � 0), and
satisfying that

R
Rn[�1;1] log(1 + jsj) �1(ds) <1, where �1 is the L�evy measure appearing in the

free generating triplet for Z1.

The key ingredient in the proof of Theorem 7.1 is the following observation: Let (Xt) and (Zt) be,
respectively, classical and free L�evy processes corresponding to each other as in Proposition 6.2.
Then, if we form Riemann sums Sn and Tn w.r.t. (Xt) and (Zt), corresponding to subdivisions
as in (7.3), it follows from the algebraic properties of �, that �(LfSng) = LfTng, and similarly
�(LfSn�Smg) = LfTn�Tmg. Using then, in addition, the continuity of �, it follows that (Tn)
is a Cauchy sequence w.r.t. convergence in probability. Since the set of selfadjoint operators
aÆliated with a W �-probability space is complete w.r.t. convergence in probability (cf. [21]), we
conclude that (Tn) converges in probability to a selfadjoint operator, which we may then denote

by
R R
0 e�t dZt.

Having established integration w.r.t. (Zt) by taking limits of Riemann sums, Theorem 7.1 is now
easily derived by using the corresponding classical result, as well as the fact that � preserves
selfdecomposability and distributions of Riemann sums w.r.t. corresponding L�evy processes as
in Proposition 6.2.

8 The L�evy-Itô Decomposition.

Historically, P. L�evy derived the L�evy-Khintchine representation of a measure � in ID(�) by
establishing, �rst, a decomposition of any (classical) L�evy process into two independent parts: a
continuous part and a part which is, loosely speaking, the sum of the jumps of the process. This
decomposition, now known as the L�evy-Itô decomposition, was later proved rigorously by K. Itô,

11



and is, from the probabilistic viewpoint, more basic than the L�evy-Khintchine representation.
In order to describe, precisely, the sum of jumps of a L�evy process, one needs to introduce the
concept of Poisson random measures. Before doing so, we recall that for any positive number
�, the Poisson distribution P� is the measure on the non-negative integers, given by:

P�(fng) = �n

n!
e��; (n 2 N0):

8.1 De�nition. Let (�;E; �) be a �-�nite measure space. A Poisson random measure on
(�;E; �) is a collection fN(E) j E 2 Eg of random variables (de�ned on some probability
space (
;F; P )), satisfying the following conditions:

(i) For each E in E, LfN(E)g = P�(E).

(ii) If E1; : : : ; En are disjoint sets from E, then N(E1); : : : ; N(En) are independent random
variables.

(iii) For each �xed ! in 
, the mapping E 7! N(E;!) is a measure on E.

In case �(E) =1, condition (i) in the de�nition above means, by convention, that N(E;!) =1
for all ! in 
. Recall next that a (standard) Brownian motion is a classical L�evy process (Bt)
for which LfBtg is the Gaussian distribution with mean 0 and variance t. We are then ready to
state the L�evy-Itô result mentioned above:

8.2 Theorem. (L�evy-Itô) Let (Xt) be a classical genuine L�evy process and let � be the

L�evy measure appearing in the generating triplet for LfX1g. Assume, for simplicity, thatR 1
�1 jxj �(dx) <1. Then (Xt) has a representation in the form:

Xt
a:s:
= 
t+

p
aBt +

Z
]0;t]�R

x N(ds; dx); (8.1)

where 
 2 R, a � 0, (Bt) is a Brownian motion and N is a Poisson random measure on

(]0;1[�R;B(]0;1[�R);Leb 
 �) (here B denotes Borel �-algebra and Leb denotes Lebesgue

measure). Furthermore, the last two terms on the right hand side of (8.1) are independent

processes.

The symbol
a:s:
= in (8.1) means that the two random variables are equal with probability 1 (a.s.

stands for \almost surely"). The Poisson random measure N appearing in the right hand side
of (8.1) is, speci�cally, given by

N(E;!) = #
�
s 2 ]0;1[

�� (s;�Xs(!)) 2 E
	
;

for any Borel subset E of ]0;1[�R, and where �Xs = Xs � limu%sXu. Consequently, the
integral in the right hand side of (8.1) is, indeed, the sum of the jumps of Xt until time t:R
]0;t]�R x N(ds; dx) =

P
s�t�Xs. The condition

R 1
�1 jxj �(dx) < 1 ensures that this sum

converges. Without that assumption, one still has a L�evy-Itô decomposition, but it is slightly
more complicated than (8.1). In particular, the sum of jumps interpretation does not make
sense, directly, in a rigorous fashion. We emphasize, though, that for applied purposes, the most
interesting examples actually appear when the afore-mentioned condition is not satis�ed.

In the forthcoming paper [6], we prove the following free analog of the L�evy-Itô decomposition.
For simplicity, we restrict attention, here, to the case where

R 1
�1 jxj �(dx) <1.
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8.3 Theorem. Let (Zt) be a free L�evy process aÆliated with a W �-probability space (A; �),
and let � be the L�evy measure appearing in the free generating triplet for LfZ1g. Assume, for

simplicity, that
R 1
�1 jxj �(dx) <1. Then (Zt) has a representation in the form:

Xt
d
= 
t+

p
aWt +

Z
]0;t]�R

x M(ds; dx); (8.2)

where 
 2 R, a � 0, (Wt) is a free Brownian motion and M is a free Poisson random measure

on (]0;1[�R;B(]0;1[�R);Leb 
 �). Furthermore, the last two terms on the right hand side of

(8.2) are freely independent processes, and the right hand side of (8.2) is a free L�evy process.

Some explanatory comments are in order: Recall that the symbol
d
= in (8.2) only means that

the two operators have the same (spectral) distribution. Therefore, it is necessary to specify
that the right hand side of (8.2) is, indeed, a free L�evy process. A free Brownian motion is a
free L�evy process with semi-circular distributed increments. It corresponds, thus, to a classical
Brownian motion via the correspondence described in Proposition 6.2. Finally, a free Poisson
random measure is de�ned as follows:

8.4 De�nition. Let (�;E; �) be a �-�nite measure space, and put

Ef = fE 2 E j �(E) <1g:

A Poisson random measure on (�;E; �) is a collection fM(E) j E 2 Efg of selfadjoint operators
(aÆliated with some W �-probability space (A; �)), satisfying the following conditions:

(i) For each E in Ef , LfM(E)g = �(P�(E)), where � is the Bercovici-Pata bijection.

(ii) If E1; : : : ; En are disjoint sets from Ef , then M(E1); : : : ;M(En) are freely independent.

(iii) If E1; : : : ; En are disjoint sets from Ef , then M([nj=1Ej) =
Pn

j=1M(Ej).

The above de�nition of a free Poisson random measure may seem a little \poor", compared to
that of a classical Poisson random measure. This de�nition is, however, suÆcient to develop the
integration theory needed to establish (8.2).

9 Concluding remarks

Processes with `independent' increments, where `independent' can have a variety of meanings,
are objects of wide current interest in stochastics (i.e. probability and statistics together) and
in mathematical physics. Not only are processes of this type of great interest in themselves but
they occur as important building blocks in other more structured processes. The reference [3]
contains state of the art papers discussing a variety of aspects of this. But a number of the
topics in question are, however, not treated there. Some of the further recent developments are
presented in [17, Chapters 4 and 5] and [15].

In the present paper we have indicated several results on processes with freely independent (and
stationary) increments that are closely parallel to key results from the theory of L�evy processes
in classical probability theory. In the light of these, and other related �ndings, it seems certain
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that much more of interest can be done in studying the similarities, as well as the intriguing
di�erences, between processes based on classical stochastic independence and free independence,
respectively. It is also feasible to link the two types of processes more directly, for instance by
using classical subordinators as time changes of free L�evy processes, a topic that we are currently
considering. (For information on subordination in classical probability, see [10],[11] and [4]).
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