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Summary. Given a L�evy process Y and an independent time change A, we identify
the cases when A and Y are completely determined by X = Y Æ A. We calculate the
nontrivial conditional law of A and Y given X when A is a pure jump subordinator. For
Y Brownian motion this study was initiated by Geman et al. [10]. We deduce from our
higher generality some of their main results using new methods. In their setting, we go a
step further and allow A to be the sum of a continuous process and a pure jump process
with independent increments.
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1 Introduction

For a stochastic process Y we consider the process

X = Y Æ A; i.e. Xt = YAt
; t � 0; (1)

obtained from Y by an independent random change of time A, increasing. In mathe-
matical �nance, several models of the stock price X have been based on this concept
to address the inadequacy of normally distributed short time returns and the constancy
of the volatility parameter in the Black-Scholes model based on Brownian motion. We
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mention here only the variance gamma model (Madan and Seneta [13]), the generalized
hyperbolic model (Eberlein [7]), and approaches to stochastic volatility, cf. Barndor�-
Nielsen [1], Barndor�-Nielsen and Shephard [3], also Eberlein et al. [8], Geman et al. [11]
and Carr et al. [6]. The procedure (1) is known as the subordination of Bochner [5] when
Y is a L�evy process and A a subordinator, cf. Bertoin [4]. On the other hand, when A
is right-continuously di�erentiable, its derivative can be viewed as stochastic volatility of
the price process X, cf. Barndor�-Nielsen and Shephard [3].

We assume here that Y is a L�evy process. We interpret X as the observed stock price
and suppose that Y and A cannot be observed. Since A bears the information on the
volatility in �nancial models, it is natural to ask what we can say about A. This problem
has been treated by Geman et al. [10] when Y is more particularly Brownian motion, and
the interesting case then is when A is not continuous, since A can be fully recovered from
X if A is continuous. We make the same observation for all L�evy processes Y that are
not compound Poisson. Like [10] we then focus on the case when A is a subordinator and
obtain results concerning the law of A given X. Our results are more general and more
explicit than Geman et al. and allow to reprove some of their main results by di�erent
methods. Next, we return to the Brownian motion setting and let A be the sum of a
continuous and a discontinuous part. We can then combine the two preceding results to
recover the continuous part and give the conditional law of the discontinuous part, when
it has independent increments. Once the conditional law of A given X is known, the
conditional law of Y given X and A can be constructed as a concatenation of L�evy (or
Brownian) bridges.

2 Characterisation of full recovery

Let Y be a L�evy process whose marginal laws are given by the L�evy-Khintchine repre-
sentation of their characteristic exponent

 Y (�) = � logE (expfi�Y1g) = �i��+ 1

2
�2�2 +

Z
IR�

�
1� ei�z � i�z1fjzj<1g

�
�(dz) (2)

where � 2 IR, �2 � 0,
R
IR�
(1 ^ z2)�(dz) < 1 and IR� = IRnf0g. Y is then Brown-

ian motion with drift � and variance �2 with (for jzj < 1 compensated!) independent
jumps added following a Poisson point process (�Ya)a�0 with intensity measure �. This
motivates to refer to �2 as the Gaussian coeÆcient and to � as the jump measure. It
also allows to decompose Y = Y c + Y j into a Brownian motion Y c with drift and an
independent L�evy process Y j with zero Gaussian coeÆcient. We refer to the two books
on L�evy processes by Bertoin [4] and Sato [16].

The following theorem shows the most important situations in which A can be re-
covered completely from X = Y Æ A and how to do the recovery. After the proof of
the theorem we give a discussion why these are essentially the only situations where full
recovery is possible.
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Theorem 1 Let (Ya)a�0 be a L�evy process but not compound Poisson, (At)t�0 indepen-
dent continuous increasing and X = Y Æ A.

a) If Y has an in�nite jump measure �(IR�) =1, then

At = lim
n!1

1

n

nX
k=1

Nk;

where Nk = #fs � t : �Xs 2 [zk+1; zk)g and (zk)k�0 such that �(jzj � zk) = k. Existence
problems of (zk)k�0 due to atoms of � may be circumvented by randomising accordingly
whether a jump of size zk is counted by Nk or Nk+1 etc.

b) If Y has bounded variation, i.e. Yt = �t+
P

s�t�Ys, and a nontrivial drift coeÆ-
cient � 6= 0, then

At =
1

�

 
Xt �

X
s�t

�Xs

!
:

c) If Y has a positive Gaussian coeÆcient �2 > 0, then

At =
1

�2

 
[X]t �

X
s�t

(�Xs)
2

!
; t � 0;

where the quadratic variation process [X] of X is adapted to the natural �ltration of X.

Proof: a) Conditionally on A, the Nk are independent and identically Poisson distributed
with parameter At since the jump heights of Y on [0; At] are the same as the jumps of
X on [0; t] and they form a homogeneous Poisson point process with intensity measure
�. The result now follows from the strong law of large numbers.

b) This is an elementary observation.
c) The jumps of the quadratic variation process [X] of a semi-martingale X are the

squares �[X]s = (�Xs)
2 of the jump sizes of X. Removing these jumps, we retain the

quadratic variation of the continuous martingale part. Cf. Protter [14] Section II.6.
Now the result follows as an application of the well-known Dubins-Schwarz theorem,

cf. Revuz and Yor [15] Section V.1. 2

Furthermore, it is clear that when Y is compound Poisson, A is only determined by X
in trivial cases. More precisely, we study here the determination of (As)0�s�t by (Xs)0�s�t
for all t � 0. Roughly, any randomness of A before it passes the level given by the �rst
jump time of Y , is not reected by X. Since Y and A are independent, there is positive
probability that YAt

= 0 for any t � 0, thus A must be deterministic, regardless whether
A was assumed continuous or not.

On the other hand, if A has jumps, the homogeneity of L�evy processes only allows
us to recover the jump height if either the jump height itself or the L�evy process are
deterministic. Deterministic L�evy processes are multiples of the identity process in which
case A coincides with X up to this constant multiple. If the jump heights of A are
deterministic, the situation is more complicated since one has to make sure that jump
times of A are recognised from observing X = Y Æ A which jumps both when A jumps
and when Y jumps on the closed range of A which may have positive Lebesgue measure.
Still, we consider this a degenerate situation and stop its discussion here.
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3 Conditional laws for Bochner's subordination of

L�evy processes

In Theorem 1 the continuity of A is essential to ensure that all jumps of X are jumps of
Y . In fact, if Y is not compound Poisson, X jumps whenever A jumps and also inherits
those jumps of Y that take place on the range of A. If A is continuous, all jumps of
Y are in the range of A. The other extreme is when the closed range of A has zero
Lebesgue measure, because then the independence of Y and A ensures that a.s. no jump
time of Y lies in the closed range of A. Having a range of zero Lebesgue measure is in
fact equivalent to moving only by jumps - we then call A purely discontinuous. For our
second result we shall furthermore assume that A is a subordinator, i.e. an increasing
L�evy process.

Theorem 2 Let (Ya)a�0 be a L�evy process with P (Ya 2 dy) = pa(y)dy, (At)t�0 a purely
discontinuous subordinator with jump measure �A and X = Y Æ A.

Then A has the same jump times as X. The heights of the jumps of A are conditionally
independent given X and their conditional laws are

P (�At 2 dzjT = t;�Xt = y) =
1

c(y)
pz(y)�A(dz) for a:e: y 2 IR

where c(y) < 1 is a normalisation constant and T any (stopping) time for X with
y 2 supp(�XT ) and t 2 supp(T ). As the right hand side is independent of T , we may
introduce the convention to drop the condition T = t.

Proof: A andX have countable numbers of jumps. During any jump (T;�AT ) = (t; z) of
A (where T is any stopping time for A), the independent process Y moves from a starting
point Y (At�) = x to a terminal point Y (At) = Y (At� + z) distributed according to
pz(y�x)dy. In particular, Y is not at x at the terminal point a.s. and (t; Y (At)�Y (At�))
is a jump of X. Vice versa, take any jump (T;�XT ) = (t; y) of X (where T is now any
stopping time for X), i.e.

y = Xt �Xt� = YAt
� lim

s"t
YAs

> 0:

Assume that t is not a jump time of A, then At = At� must be a jump time of Y .
But, since A is purely discontinuous, its range has zero Lebesgue measure whereas any
of the countable number of jump times of Y does a.s. not lie in this set of zero Lebesgue
measure. Thus, contrary to our assumption, t must be a jump time of A. We have
established that A and X have the same jump times.

Also, we deduce from the independence of increments of Y that the jump heights of
X are conditionally independent given A. The height distribution only depends on the
size of the jump of A and follows the transition kernel of Y . Therefore (�Xt;�At)t�0 is
a Poisson point process with intensity measure pz(y)dy�A(dz). In particular, (�Xt)t�0
has an absolutely continuous intensity measure c(y)dy, and c(y) =

R
(0;1)

pz(y)�A(dz) is a

version of the density, hence �nite for a.e. y 2 IR.
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Note that X has no Brownian component, since the Gaussian coeÆcient of X is

2 lim
j�j!1

 X(�)

�2
= 2 lim

j�j!1
�A( Y (�))

�2
= d�2 = 0

due to the zero drift coeÆcient d = 0 of A, cf. Proposition I.2 in [4]; �A(q) =
� logE(expf�qA1g) denotes the Laplace exponent of A. Hence, the randomness of X is
determined by its jumps, and the Poisson point process property of (�Xt;�At)t�0 yields
the conditional independence of the jump heights ofA givenX. Looking at (�Xt;�At)t�0
as a marked Poisson point process, cf. Kingman [12] Section 5.2, the Marking Theorem
identi�es the marking kernel

q(y; dz) =
1

c(y)
pz(y)�A(dz):

For any (random) time T which is measurable in the �-algebra generated by X such that
�XT 6= 0 a.s., we obtain furthermore

P (�At 2 dzj�Xt = y; T = t) =
1

c(y)
pz(y)�A(dz)

for a.e. y 2 IR and all t 2 supp(T ) since
E (f(�AT )g(�XT ; T ))

= E (E (f(�AT )g(�XT ; T )jX))

= E

�
g(�XT ; T )

Z
(0;1)

f(z)q(�XT ; dz)

�

=

Z
(0;1)�IR

Z
(0;1)

f(z)g(y; t)
1

c(y)
pz(y)�A(dz)P (T 2 dt;�XT 2 dy):

2

One can generalise Theorem 2 by replacing the subordinator A by any purely dis-
continuous increasing additive process (processes with independent but inhomogeneous
increments), cf. Sato [16] for background on additive processes, in particular their time-
dependent L�evy-Khintchine characteristics in analogy with (2). The conditional laws
then depend on t. We do not spell this out here, but refer to Theorem 3 where a similar
result is established in a slightly di�erent setting.

Example 1 Let Y be Brownian motion, A an independent standard gamma subordina-
tor, then

P (�At 2 dzj�Xt = y) =
jyjp
2�
e
p
2jyjz�3=2 exp

�
�1

2

�
y2z�1 + 2z

��
dz

and this is the inverse Gaussian law of parameters
p
2 and jyj. Using the additivity

property of independent inverse Gaussian random variables (associated with a countable
family of stopping times), we deduce that the conditional law of At given X is inverse
Gaussian with parameters

p
2 and the total variation of X on [0; t] which is the sum of

the moduli of its jumps. This is Theorem 1 of Geman et al. [10].
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Example 2 Let Y be Brownian motion, A an independent �-stable subordinator, then
X is symmetric 2�-stable and

P (�At 2 dzj�Xt = y) =
1

�(� + 1=2)

�
y2

2

��+1=2
z���3=2 exp

�
�y

2

2
z�1
�
dz

which is a reciprocal gamma distribution with parameters � + 1=2 and y2=2.

Examples 1 and 2 can be seen as limit cases of a more general setting where A is an
2=2-exponentially tilted �-stable subordinator. The conditional law is then generalised
inverse Gaussian with parameters ��� 1=2, y and . The densities of these laws can be
expressed in terms of the Bessel function of the third kind, cf. [2]. Example 1 corresponds
to � = 0,  =

p
2, and in Example 2,  = 0.

Theorem 2 is at the same time more general and more explicit than Theorem 3
in Geman et al. [10] where they give transform identities in terms of some stochastic
exponential (for the special case where Y is Brownian motion):

Corollary 1 ([10] for Y Brownian motion) In the setting of Theorem 2, we have

E
�
e��At

�� (Xs)s�t
�
= e�t (�)Et

�
�� � �0
�0

�
;

where  (�) = � logE(e��A1) is the Laplace exponent of A, E(f) is the stochastic expo-
nential of

f � (�X j[0;t] � t�X) =

Z
IR

f(x)

 X
0�s�t

Æ�Xs
� t�X

!
(dx); t � 0;

�X is the jump measure of X and

��(x) =

Z
(0;1)

e��zpz(x)�A(dz):

Proof: We calculate both sides of the asserted equality, �rst by Theorem 2

E
�
e��At

�� (Xs)s�t
�

=
Y
s�t

E
�
e���As

���Xs

�

=
Y
s�t

1

c(�Xs)
��(�Xs) =

Y
s�t

��(�Xs)

�0(�Xs)

and then the de�nition of the closed form representation of the stochastic exponential for
the compensated pure jump process

Zt = f � (�X j[0;t] � t�X) =
X
s�t

f(�Xs)� t

Z
IR

f(x)�0(x)dx
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yields for f = (�� � �0)=�0

e�t (�)Et
�
�� � �0
�0

�
= e�t (�)eZt

Y
s�t

(1 + �Zs)e
��Zs

= exp

�
�t
�
 (�) +

Z
IR

(��(x)� �0(x))dx

��Y
s�t

��(�Xs)

�0(�Xs)

cf. Theorem II.36 in Protter [14]. Now the equality is established by noting

�
Z
IR

(��(x)� �0(x))dx =

Z
IR

Z
(0;1)

(1� e��z)pz(x)�A(dz)dx

=

Z
(0;1)

(1� e��z)�A(dz) =  (�):

2

4 Combination of the preceding in the Brownian

case

In the following A = �+ is an increasing process that has both a continuous component
� and a purely discontinuous component . We shall not need any restrictions upon �.
As for , a subordinator is a convenient choice, also from the point of view of applications
but as we remarked after Theorem 2 our method only requires the independent increment
property, i.e. we suppose  is an additive process. Furthermore, the result can be best
presented when the L�evy measures �t of t, t � 0, are such that there are density measures
ns in the sense that

�t(C) =

Z t

0

ns(C)ds; t � 0; C 2 B: (3)

Such a process is a subordinator if and only if ns does not depend on s 2 [0;1). ns is
then the jump measure of the subordinator.

Theorem 3 Let B be Brownian motion and A = �+ an independent increasing process
with continuous part � and purely discontinuous part  such that (3) holds. Observing
X = B Æ A, we recover

�t = [X]t �
X
s�t

(�Xs)
2;

and obtain

P (�t 2 dzj�Xt = y) =
1

ct(y)
pz(y)nt(dz); t � 0; z � 0; y 2 IR;

where pz(y) is the Brownian transition density and ct(y) a normalisation constant.
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Proof: The essential idea of the proof is to write Xt = B(�t+ t) � B(�t)+ ~B(t) as an
identity in law of processes where ~B is an independent Brownian motion. To check this
we calculate

E

�
exp

�
i

Z
(0;t]

f(s)dB�s+s

��
= E

�
exp

�
�1

2

Z
(0;t]

f 2(s)d(�s + s)

��

= E

�
exp

�
i

�Z
(0;t]

f(s)dB�s +

Z
(0;t]

f(s)d ~Bs

���

where the equalities follow from a conditioning w.r.t. � and .
Since A = �+  is the decomposition in continuous and purely discontinuous compo-

nent, the same is true for the decomposition X � ~X = B Æ �+ ~B Æ . Speci�cally, B Æ �
is obviously continuous, and ~B Æ  is purely discontinuous since this process moves when
and only when  jumps. In particularX

s�t
� ~Xs = ~Bt (4)

converges (but not necessarily absolutely) for all t � 0.
The result now follows from our Theorems 1 and 2. 2

In our presentation we implicitly assumed that � and  are independent. This as-
sumption may be dropped provided that  is an additive process given �. Its L�evy
measures nt may then be allowed to depend on the current value of �.

Example 3 (Ornstein-Uhlenbeck type stochastic volatility with jumps) Let Y
be Brownian motion and (Ut)t�0 a process of Ornstein-Uhlenbeck type (OU process)
associated with the so-called background driving subordinator Z by

Ut = e�ctU0 + e�ct
Z
(0;t]

ecsdZs:

Under a weak logarithmic moment condition on Z we may choose U0 in such a way that
(Ut)t�0 is stationary. The stochastic volatility model

dXt = UtdYt

is then equivalent to subordinating a Brownian motion by the integrated OU process
�t =

R t
0
Usds, cf. Barndor�-Nielsen and Shephard [3]. By our Theorem 1, � and hence U

can be completely recovered from observing the whole path of X. When �tting data, the
continuity of � is not always adequate. A mathematically tractable way to remedy this
is by adding independent jumps to �, following a subordinator . One can e.g. choose
the same law for the stationary law of U and the increments of , inverse Gaussian, say.
According to Barndor�-Nielsen [1] the law of short time returns is then approximately
normal inverse Gaussian. This composite model can be seen as a mixture of two types
of stochastic volatility models via the decomposition in the proof of Theorem 3, which
allows to recover � and obtain the conditional law of  given the observation X.
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5 Recovering Y from observing X

Though not so interesting from an applied point of view, mathematically, Y has the
same right to be recovered from X as A. In the setting of a continuous time change A
to a non-compound-Poisson L�evy process Y , Theorem 1 gives full recovery of A. Since
A is continuous increasing, Y is just X composed with the inverse of A - hence itself
completely determined by X.

When A is a purely discontinuous subordinator, Theorem 2 shows that the jump times
of A can be recovered and gives the conditional law of the jump heights. The following
theorem says that this determines the conditional law of Y on the range of A given X
and A, and that Y behaves like a concatenation of independent L�evy bridges. For details
on bridges we refer to Fitzsimmons et al. [9].

Theorem 4 In the situation of Theorem 2 denote the closed range of A by R = fAt :
t � 0gcl, its subsets of points isolated to the left or right by G and D respectively. Then

P (Ya = XLa�; a 2 RnD; Ya = XLa; a 2 RnGjX;A) = 1 a.s.

where La = infft � 0 : At > ag. Furthermore, the subpaths of Y between each two
successive points in the regenerative set R are conditionally independent given X and A
and we have a.s. for all t � 0

P
�
(YAt�+u)0�u��At

2 d!��X;A� = Q�At

Xt�!Xt
(d!)

where Qz
x!y denotes the law of the L�evy bridge of length z spanning from x to y associated

with Y .

Proof: The �rst statement is immediate by the de�nition of X = Y Æ A which yields
precisely the assertion when composed with L.

For the second statement, note that there is a.s. only a countable number of jumps,
and the assertion is trivial when A or (and) X do not jump. As for the jump times, we
associate a Poisson point process in path space �t = (YAt�+u� YAt�

)0�u��At
if �At > 0,

t � 0, where the Poisson property follows from the independence of increments of Y , the
independence of Y and A and the Poisson property of (�At)t�0. We proceed now as in
the proof of Theorem 2: the intensity measure of (�t)t�0 is given by

P ((Yu)0�u�z 2 d!)�A(dz)

and this can be interpreted as a Poisson point process (�At)t�0 with marks �t associated
with �At > 0. Even more, it can be interpreted as a Poisson point process (�At;�Xt)t�0
where the mark distributions depend on �Xt = Y (At� + �At) � Y (At�) by the condi-
tioning to reach a �xed terminal value - this is the de�nition of a bridge, cf. [9]. The
bridge exists since Y has absolutely continuous transition densities. The mark kernel is
now given by Qz

0!y(d!) since

P ((Yu)0�u�z 2 d!; Yz 2 dy)�A(dz) = Qz
0!y(d!)pz(y)dy�A(dz):

9



Now it suÆces to calculate

E
�
f(AT�; AT ; XT�; XT ; T )g(YAT�+u � YAT�

; 0 � u � �AT )
�

= E
�
E
�
f(AT�; AT ; XT�; XT ; T )g(YAT�+u � YAT�

; 0 � u � �AT )
��A;X��

= E

�
f(AT�; AT ; XT�; XT ; T )

Z
g(!)Q�AT

0!�XT
(d!)

�

=

Z
(0;1)2�IR2�(0;1)

Z
f(a; a+ z; x; y; t)g(!)Qz

0!y�x(d!)

P (AT� 2 da;�AT 2 dz;XT� 2 dx;XT 2 dy; T 2 dt):

to conclude by a linear transformation

P ((Ya+u)0�u�z 2 d!jAt� = a; At = a+ z;Xt� = x;Xt = y) = Qz
x!y(d!)

in the sense introduced in the statement of Theorem 2. 2

The same description is also valid in the setting of Theorem 3. A convenient way to
present this is via the decomposition X � B Æ�+ ~B Æ into independent continuous and
discontinuous time-change given in the proof of Theorem 3. Then (B; �) is determin-
istic given X and the remainder of the conditional law of (B; ), trivially conditionally
independent of (B; �), can be given in terms of (Brownian) bridges as above.
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