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1 Introduction

Spatial point processes play a fundamental role in spatial statistics. In the
simplest case they model \small" objects that may be identi�ed by a map
of points showing stores, towns, plants, nests, galaxies or cases of a disease
observed in a two or three dimensional region. The points may be deco-
rated with marks (such as sizes or types) whereby marked point processes
are obtained. The areas of applications are manifold: astronomy, geography,
ecology, forestry, spatial epidemiology, image analysis, and many more. Cur-
rently spatial point processes is an active area of research, which probably
will be of increasing importance for many new applications, as new technol-
ogy such as geographical information systems makes huge amounts of spatial
point process data available.

Textbooks and review articles on di�erent aspects of spatial point pro-
cesses include Matheron (1975), Ripley (1977), Ripley (1981), Diggle (1983),
Penttinen (1984), Daley & Vere-Jones (1988), Ripley (1988), Mecke, Schnei-
der, Stoyan & Weil (1990), Karr (1991), Cressie (1993), Baddeley & M�ller
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(1989), Diggle, Fiksel, Grabarnik, Ogata, Stoyan & Tanemura (1994), Stoyan
& Stoyan (1994), Stoyan, Kendall & Mecke (1995), Geyer (1999), M�ller
(1999), van Lieshout (2000), and Ohser & M�ucklich (2000). Much of the
more classical literature deal with non-parametric methods for rather general
models, but the focus has changed over the years to exploiting more and more

exible and complex parametric statistical models which are analyzed using
a Bayesian or likelihood approach by means of Markov chain Monte Carlo
(MCMC) methods. This chapter aims at collecting some of the recent theo-
retical advances and examples of applications in simulation-based inference
for spatial point processes in a concise manner. Sometimes the exposition
will be biased towards our own work and interests.

The chapter is organized as follows. We focus mainly on general ideas
and methodology without going too much into technical details, and use
throughout this text the two examples of applications introduced in Section 2
for illustrative purposes. Section 3 describes in more detail what is meant
by a spatial point process. Section 4 deals with Poisson point processes.
Explanatory analysis and model validation using various kind of summary
statistics are reviewed in Section 5. Section 6 considers cluster processes
and Cox processes, particularly log Gaussian Cox processes, and discusses
simulation based inference for aggregated point patterns. Section 7 deals
with di�erent aspects of model construction, simulation (including perfect
simulation), and inference for Markov point processes. Sections 6{ 7 are the
two main sections.

2 Illustrating examples

Examples 1 and 2 below are used for illustrative purposes throughout this
chapter. In Example 1 we consider what is later on called a simple point
process, while the discs in Example 2 will later on be treated as a so-called
marked point process.

2.1 Example 1: Weed plants

Figure 1 shows the position of 976 weed plants (Trifolium spp./clover) ob-
served within 45 metal frames on a Danish barley �eld. This point pattern
is a subset of a much larger dataset analyzed in Brix & M�ller (2001) and
Brix & Chadoeuf (2000) where several weed species at di�erent dates were
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considered. Note that we have rotated the design 90Æ in Figure 1. The 45
frames are of size 30� 20 cm2, and they are organized in 9 groups each con-
taining 5 frames, where the vertical and horizontal distances between two
neighbouring groups are 1 m and 1:5 m, respectively. The size of the exper-
imental area is 7:5� 5 m2, where the longest side agrees with the ploughing
direction. Note the trend in the point pattern: in general more weed plants
occur in the upper frames (i.e. the frames to the left in Figure 1).

2.2 Example 2: Norwegian spruces

The Norwegian spruce data (Fiksel 1984, Penttinen, Stoyan & Henttonen
1992, Stoyan et al. 1995, Goulard, S�arkk�a & Grabarnik 1996) is an example
of a pattern of discs. The data are shown in Figure 2, where the centers
of the 134 discs are the positions of the spruces observed in a rectangular
window of size 56� 38 m2, and the radii are the stem diameters multiplied
by 5. As discussed in Penttinen et al. (1992) and Goulard et al. (1996) the
\in
uence zone" of a tree is about 5 times the stem diameter.

2.3 Other examples

Many other examples of simple point processes and marked point processes
can be found in the books and review papers mentioned in Section 1. Ex-
amples 1 and 2 concern a single planar pattern; replicated point patterns
in 2 and 3 dimensions are discussed in Diggle, Lange & Ben�es (1991) and
Baddeley, Moyeed, Howard & Boyde (1993).

3 What is a spatial point process?

A formal answer to this question is given below by considering in Section 3.1
the special case of simple point processes in Rd , then in Section 3.2 some spe-
cial cases of marked point processes which all can be related to the examples
in Section 2, and �nally in Section 3.3 a general setting and notation used
throughout this text.
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3.1 Simple point processes in R
d

A simple point process in the d-dimensional Eucledian space Rd may be con-
sidered as a random countable set X � Rd . What is meant here by random
will be made precise in a moment. The elements in X are called points,
and they may represent the occurrence of some event like the occurrence of
a weed plant. Equivalently we may view X as a counting measure de�ned
by X(A) = n(XA) for bounded Borel sets A � Rd , where n(XA) denotes
the cardinality of XA = X \ A. We here for simplicity restrict attention to
the case of simple point processes, i.e. when there are no multiple points; a
counting measure with multiplicities may in fact be considered as a special
case of a marked point process as described below. Moreover, we exclude the
case of accumulating points, i.e. X(A) <1 whenever A is bounded.

In practice X = XS will be concentrated on a bounded set S � Rd ,
but for mathematical convenience, or if S is large or unknown, we may let
S = Rd . Usually in applications S is d-dimensional (we may formalize this
by saying that S is topological regular, i.e. it is equal to the closure of its
interior), and most examples in the point process literature concerns the
planar case d = 2. In other cases S may be a lower-dimensional manifold,
e.g. the (d � 1)-dimensional unit sphere. In practice we observe only XW

where W � S is some bounded observation window like in Figures 1 and
2. If X is not concentrated on W , it may be important to take boundary or
edge e�ects into account in the statistical analysis, as the unobserved points
outside W may a�ect XW .

3.2 Marked point processes in R
d

Suppose now that Y is a simple point process in Rd and a random \mark"
m� 2 M is attached to each point � 2 Y . Then X = f(�;m�) : � 2 Y g is
called a marked point process in Rd with mark spaceM. The marks may be
dependent or not of each other and of Y ; again what is meant by randomness
is made precise below.

One simple example is a disc process as considered in Example 2 (Nor-
wegian spruces), letting M = (0;1) and identifying (�;m�) with the disc
with center � and radius m�. Similarly, we obtain marked point processes
for other kinds of geometric objects (line segments, ellipses, etc.), also called
germ-grain models where � (the germ) speci�es the location of the object m�

(the grain).
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Another example is a multivariate ormulti-type point process, whereM =
f1; : : : ; kg and the marks specify k di�erent types of points (e.g. di�erent
types of weed plants).

3.3 General setting and notation

Many readers (including those who are unfamiliar with measure theory) may
prefer to skip the general setting described below. However, we recommend
the reader to at least notice the meaning of the following notation which is
used throughout this text.

3.3.1 Notation

We consider X to be a locally �nite subset of a rather general metric space
S with metric d(�; �). Here locally �niteness means that X(A) = n(XA) <1
for any bounded set A � S. The state space of X is denoted N and consists
of all locally �nite point con�gurations in S:

N = fx � S : x(A) <1 for all A 2 B0g
where B0 denotes the class of bounded Borel sets contained in S. This state
space is equipped with a suitable �-algebra denoted N (see below). Elements
of S and N are usually denoted �; �; : : : 2 S and x; y; : : : 2 N . We abuse the
notation and write x [ � for x [ f�g (with x 2 N and � 2 S n x), y n � for
y n f�g (with y 2 N and � 2 S), etc.

3.3.2 Measure theoretical details

Formally, we assume S to be a Polish space, i.e. a complete separable metric
space; though this assumption may be weakened, it is commonly satis�ed in
applications and ensures the validity of some desirable properties as listed
below. Moreover, we assume X to be de�ned on some underlying probability
space (
;F ; P ) so that measurability of X means that X(A) : 
 ! N is a
measurable function whenever A 2 B0. In other words, we equip N with the
smallest �-algebra N containing all sets of the form fx 2 N : x(A) = mg
with A 2 B0 and m 2 N0 . It can be shown (Carter & Prenter 1972, Matheron
1975, Daley & Vere-Jones 1988) that

� N is a metric space, N is the corresponding Borel �-algebra, and N is
countably generated;
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� N is also naturally obtained by requiring that the mapping of vectors
(x1; : : : ; xm) 2 Am (with xi 6= xj for i 6= j) into subsets fx1; : : : ; xmg �
A is measurable for any A 2 B0 and integer m > 0;

� the distribution of X is determined by the void probabilities as given
by P (X(A) = 0), A 2 B0.

3.3.3 How is this related to simple and marked point processes

considered so far?

For a simple point process in Rd we let d(�; �) be the usual Eucledian metric
or distance k � k.

A marked point process with locations in Rd and mark space M can be
considered as a point process de�ned on S = Rd �M. Then S becomes
a Polish space, if we assume the mark space M to be a Polish space with
metric dM, and equip S with the metric

d((�1; m�1); (�2; m�2)) = maxfk�1 � �2k; dM(m�1 ; m�1)g:

This is also a natural metric in the sense that the Borel �-algebra for S agrees
with the product �-algebra of the Borel sets in Rd and M.

4 Poisson point processes

Poisson point processes play a fundamental role, as they serve as a tractable
model class for \no interaction" or \complete spatial randomness" in spatial
point patterns, and as reference processes when comparing and constructing
more advanced point process models. Often the initial step of a point process
analysis consists in looking for discrepancies with a Poisson model. This may
point to alternative models as discussed later in Section 5.

General de�nitions and properties of Poisson processes are reviewed in
Section 4.1, the particular case of Poisson processes in Rd is considered in
Section 4.2, and Section 4.3 concerns marked Poisson processes in Rd . Fur-
ther material can be found in Daley & Vere-Jones (1988), Kingman (1993),
and Stoyan et al. (1995).
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4.1 De�nitions and properties

Let � be a given measure de�ned on the Borel sets in S. We say that X is a
Poisson point process on S with intensity measure �, and write

X � Poisson(S; �);

if X satis�es the following properties:

� for any A 2 B0, X(A) � po(�(A)), the Poisson distribution with mean
�(A);

� independent scattering: for any disjoint Borel sets A;B � S, X(A) and
X(B) are independent.

As we restrict attention to locally �nite point processes X with no multi-
ple points, we assume that � is locally �nite and di�use (i.e. �(A) < 1 for
A 2 B0 and � has no mass at any point in S and ). The independent scat-
tering property explains the terminology of \no interaction" and \complete
spatial randomness". In the de�nition above we can replace the independent
scattering property by

� for any A 2 B0 with �(A) > 0, conditionally on X(A) = n, the
n points in XA are mutually independent with common distribution
��(�) = �(�)=�(A); this is called a binomial point process of n points
with distribution ��.

It is therefore not hard to verify that there exists a well-de�ned point process
with these properties.

The simplest way of characterizing a Poisson point process is by its void
probabilities,

P (X(A) = 0) = exp(��(A)); A 2 B0:

A less well-known but very useful characterization of a Poisson process is
provided by the Slivnyak-Mecke theorem (Mecke 1967): X � Poisson(S; �) if
and only if, for any measurable function h : N � S ! [0;1),

E
X
�2X

h(X n �; �) =
Z
Eh(X; �)�(d�): (1)
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The extended Slivnyak-Mecke theorem is obtained by induction: we have that
X � Poisson(S; �) if and only if, for any n 2 N , and measurable functions
h : N � Sn ! [0;1),

E

6=X
�1;:::;�n2X

h(X n f�1; : : : ; �ng; �1; : : : ; �n) =
Z
� � �
Z
Eh(X; �1; : : : ; �n)�(d�1) � � ��(d�n); (2)

where the 6= over the summation sign means that the n points �1; : : : ; �n are
all di�erent.

The class of Poisson processes is closed under two basic operations for
point processes:

� superpositioning: if X1 � Poisson(S; �1) and X2 � Poisson(S; �2) are
independent, then X1 [X2 � Poisson(S; �1 + �2);

� independent thinning: if X � Poisson(S; �) and R(�) � Uniform[0; 1];
� 2 S, are mutually independent, and p(�) 2 [0; 1]; � 2 S, are given
numbers, then Z = f� 2 X : R(�) < p(�)g � Poisson(S; �) with
�(A) =

R
A
p(�)�(d�).

These statements are most easily veri�ed by considering the void probabilities
of the superposition X1 [X2 and the thinned process Z.

4.2 Poisson processes in R
d

Suppose that X � Poisson(Rd ; �). If � is absolutely continuous with respect
to the Lebesgue measure, then its density �(�) = d�(�)=d� is called the
intensity function. Often in statistical modelling of a Poisson point process,
one speci�es a parametric model for the intensity function, cf. Section 5.5.
This may depend on covariate information as e.g. in Rathbun (1996).

In the particular case where �(�) = � is constant, X is said to be a homo-
geneous Poisson point process with intensity �. This is equivalent to assume
stationarity ofX under translations, that is the distribution ofX+s = f�+s :
� 2 Xg is the same as that of X for any s 2 Rd . A homogeneous Poisson
point process is also isotropic as its distribution is invariant under rotations
in Rd . In the special case d = 1, the distances between successive points
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of a homogeneous Poisson point process are independent and exponentially
distributed with mean 1=�.

Consider a Poisson point process X with intensity function �. If W � Rd
has Lebesgue measure jW j 2 (0;1) and

R
W
�(�)d� < 1, then XW has a

density

fW (x) = exp

�
jW j �

Z
W

�(�)d�

�Y
�2x

�(�); x � W; x(W ) <1; (3)

with respect to the standard Poisson point process Poisson(Rd ;Lebesgue).
It is usually impossible to specify the density of X unless � has bounded
support; for example, a homogeneous Poisson point process with intensity
� > 0 is absolutely continuous with respect to Poisson(Rd ;Lebesgue) if and
only if � = 1.

Simulation of a homogeneous Poisson point processX with intensity � > 0
within a d-dimensional box B = [0; a1]� � � � � [0; ad] is straightforward: �rst
generate the N � po(�a1 � � �ad)-distributed number of points, and second
the N independent and uniformly distributed points in B. Alternatively, we
may use that

� the �rst coordinates �(1) of points � = (�(1); �(2)) 2 X with �(2) 2
[0; a2] � � � � � [0; ad] form a homogeneous Poisson process on the real
line with intensity �a2 � � �ad,

� the remaining components �(2) of such points are independent and uni-
formly distributed on [0; a2]� � � � � [0; ad].

For simulation within a ball in Rd , it is more convenient to make a shift to
polar coordinates and use a radial simulation procedure (Quine & Watson
1984).

Combining this with independent thinning we obtain a simple simulation
procedure for inhomogeneous Poisson processes with an intensity function
�(�) which is bounded by a constant c on B � Rd : generate a homogeneous
Poisson process on B with intensity c, and let the retention probabilities be
p(�) = �(�)=c; � 2 B.

4.3 Marked Poisson processes in R
d

Suppose that X � Poisson(Rd �M; �). Independence between the points
and marks in X is equivalently to that � factorizes into a product measure
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� = � � Q where � is a locally �nite measure in Rd and Q is a probability
measure describing the common distribution of the marks; it is simply called
the mark distribution. We shall not pay much attention to marked Poisson
processes, but refer the interested reader to Stoyan et al. (1995) and the
references therein.

5 Summary statistics

Exploratory analysis for spatial point patterns and the validation of �tted
models are often based on non-parametric estimates of various summary
statistics, cf. e.g. Ripley (1977), Stoyan et al. (1995), and Ohser & M�ucklich
(2000). In this section we con�ne ourself to summary statistics for a sin-
gle point pattern X observed in a bounded planar window W � Rd with
Lebesgue measure jW j > 0. Extensions to replicated point patterns and
to marked point processes are sometimes obvious; see Diggle et al. (1991),
Baddeley et al. (1993), Schlather (2001), and the references therein.

Sections 5.1{5.2 consider summary statistics related to the �rst and sec-
ond order moments of the counts X(A); A 2 B0, while summary statistics
based on distribution functions for interpoint distances are treated in Sec-
tion 5.3.

5.1 First order characteristics

Just as for Poisson point processes in Rd , we de�ne the following concepts.
The intensity measure � of X is given by �(A) = EX(A) for Borel sets
A � Rd . If � is absolutely continuous with respect to the Lebesgue measure,
its density �(�) = d�(�)=d� is called the intensity function. Loosely speaking,
�(�)d� is the probability for the occurrence of a point in an in�nitesimally
small ball with center � and area d�. If moreover �(�) = � is constant, X is
said to be homogeneous or �rst order stationary with intensity �; otherwise
X is said to be inhomogeneous. Clearly, stationarity of X under translations
implies homogeneity of X.

In the homogeneous case, a natural unbiased estimator is �̂ = X(W )=jW j.
This is in fact the maximum likelihood estimator if X is a homogeneous
Poisson process.

In the inhomogeneous case, a non-parametric kernel estimator of the in-
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tensity function (assuming this exists) is

�̂(�) =
X
�2XW

k1(� � �)=cW;k1(�); � 2 W; (4)

where k1 is a kernel (density function) and cW;k1(�) =
R
W
k1(� � �)d� is an

edge correction factor so that
R
W
�̂(�)d� is an unbiased estimator of �(W )

(Diggle 1985). The estimator (4) can be calculated using the corresponding
function in S+SpatialStats (Kaluzny, Vega, Cardoso & Shelly 1997). The
estimator is usually very sensitive to the choice of bandwidth, while the
choice of kernel function is less important.

5.2 Second order characteristics

5.2.1 Pair correlation, K, and L-functions

The so-called second order factorial moment measure is given by

�(2)(A� B) = E

6=X
�;�2X

1[� 2 A; � 2 B] = E
�
X(A)X(B)

�� �(A \ B) (5)

for Borel sets A;B � Rd , where 1[�] denotes indicator function. When X
is Poisson with intensity measure �, combining (2) and (5), we obtain that
�(2)(A� B) = �(A)�(B). If �(2) has a density �(2)(�; �) with respect to the
Lebesgue measure on Rd�Rd , this is called the second order product density;
intuitively, �(2)(�; �)d�d� is the probability for observing a point in each of
the in�nitesimally small balls with centers �; � and areas d�; d�.

A widely used summary statistic (in spatial statistics and particularly
astronomy and astrophysics (see e.g. Pebles (1974)) is the pair correlation
function given by

g(�; �) = �(2)(�; �)=(�(�)�(�))

provided the terms on the right hand side exist. For a Poisson process, we
have that g = 1. In general, g(�; �) > 1 indicates attraction or clustering,
and g(�; �) < 1 repulsion or regularity for points at locations �; �; this may in
turn be due to certain latent processes (Section 6) or interaction between the
points (Section 7). It is often assumed that g(�; �) = g(� � �) is translation
invariant; this is e.g. implied by stationarity of X under translations. It is
convenient if g(�; �) = g(k�� �k) depends only on the distance k�� �k; this
is the case if X is both stationary and isotropic.
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In the stationary case of X with �nite intensity � > 0, there is a close
relationship between g and Ripley's K-function (Ripley 1977) de�ned by

K(r) = E

6=X
�2XW ;�2X

1[k� � �k � r]=(�2jW j): (6)

It is easily seen that this de�nition does not depend on W . Further �K(r)
has an interpretation as the mean number of points within distance r from a
\typical" point in X. If g(�; �) = g(�� �) exists and is translation invariant,
then

K(r) =

Z
k�k�r

g(�)d�; r � 0:

Especially, for a homogeneous Poisson process,

K(r) = !dr
d; r � 0

where !d = �d=2=�(1+d=2) is the volume of a unit ball. One often considers
the L-function given by L = (K=!d)

1=d instead of K, as L(r) = r is the
identity ifX is a homogeneous Poisson process, and since this transformation
is variance stabilizing when d = 2 and K is estimated by non-parametric
methods (Besag 1977b).

The K-function can be modi�ed to directional K-functions for the aniso-
tropic case (Stoyan & Stoyan 1994). It can also be extended to the inhomoge-
neous case (Baddeley, M�ller & Waagepetersen 2000), where Kinhom(r) is de-
�ned as in (6) with �2 replaced by �(�)�(�), provided that Kinhom(r) does not
depend on W . For example, this assumption is satis�ed if g(�; �) = g(� � �)
exists and is translation invariant, since Kinhom(r) =

R
k�k�r

g(�)d�. It is also

satis�ed if X is obtained by independent thinning of a stationary point pro-
cess. As in the homogeneous case, we often use Linhom = (Kinhom=!d)

1=d

instead of Kinhom. Note that Linhom(r) = r in the Poisson case.
The summary statistics g and Kinhom (when they exist) are invariant

under independent thinning. Similarly for K when all thinning probabilities
p(�) are equal. Furthermore, after independent thinning of a stationary point
process, Kinhom for the thinned process agrees withK for the original process.
These invariance properties can be explored for semi-parametric inference,
cf. Baddeley et al. (2000).

The summary statistics considered so far describe the second order prop-
erties of a spatial point process. It should be noticed that very di�erent

12



point process models can share the same �rst and second order properties as
discussed in Baddeley & Silverman (1984) and Baddeley et al. (2000).

5.2.2 Non-parametric estimation

Non-parametric estimation of summary statistics is discussed in Stoyan &
Stoyan (1994), Stoyan & Stoyan (2000), Ohser & M�ucklich (2000), and the
references therein. Such estimators may take boundary e�ects into consider-
ation as demonstrated below.

One commonly used estimator of �2K(r) is

\�2K(r) = 2

6=X
f�;�g�XW

1[k� � �k � r]=jW� \W�j (7)

where W� = f� + � : � 2 Wg denotes the translate of W by �. Because of
stationarity, the estimator is unbiased when

jW \W�j > 0 for all � 2 Rd with k�k � r. (8)

For example, if W is rectangular, it is by (8) required that r is smaller than
the smallest side inW . If the pair correlation of X exists, then the estimator
is still unbiased if

jW \W�j > 0 for Lebesgue almost all � 2 Rd with k�k � r. (9)

We compare the conditions (8) and (9) for the special design of the weed
plants in Section 5.5.

The estimator (7) may be combined with an estimator of �2 to obtain an
estimator of K(r), but the best choice of combination depends on the partic-
ular model of X (Stoyan & Stoyan 2000). For example, for a homogeneous
Poisson process X, it is recommended to useb�2 = X(W )(X(W )� 1)=jW j2 (10)

which is an unbiased estimator of �2. However, the combined estimator of
K will be biased. The estimator of L obtained from that of K will be biased
also.

A similar situation is noticed in Baddeley et al. (2000) for the inhomoge-
neous case, where Kinhom(r) (provided it exists) is estimated by

bKinhom(r) = 2

6=X
f�;�g�XW

1[k� � �k � r]=fjW� \W�j��(�)��(�)g; (11)
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and instead of the estimator �̂ in (4),

��(�) =
X

�2XW n�

k1(� � �)=cW;k1(�); � 2 W

is used. From (11) we obtain an estimator of Linhom.
Non-parametric kernel estimators of g may be derived along similar lines

when g(�; �) = g(k� � �k) depends only on the distance. In the planar case

d = 2, if \�(�)�(�) is an estimate of �(�)�(�), we may estimate g(r); r > 0; in
analogy with (7) and (11) by

ĝ(r) = 2

6=X
f�;�g�XW

k2(r � k� � �k)
��

�rjW� \W�j \�(�)�(�)
�

(12)

where k2 is a symmetric kernel. Like in (4) the choice of bandwidth is impor-
tant, and the estimator may be unreliable at small distances r as discussed
later in Example 5.4. Alternative estimators are discussed in Stoyan & Stoyan
(1994), Stoyan & Stoyan (2000), and Ohser & M�ucklich (2000).

Plots of these estimators are often supplied with envelopes obtained by
simulation of a speci�ed model, for example, an estimated Poisson model;
several examples are shown in the sequel. Let T̂0 be a non-parametric esti-
mator of a summary statistic T obtained from the data X, and T̂1; : : : ; T̂n
be estimators obtained from i.i.d. simulations X1; : : : ; Xn under the speci�ed
model of X. Then, for each distance r, we have that

min
1�i�n

T̂i(r) � T̂0 � max
1�i�n

T̂i(r) (13)

with probability (n � 1)=(n + 1) if X follows the speci�ed model. We refer
to the bounds in (13) as lower and upper envelopes. In our examples we
choose n = 39 so that (13) speci�es a 2:5% lower envelope and a 97:5%
upper envelope.

5.2.3 Higher order intensities

Finally, we remark that higher order summary statistics can be introduced
as well, but the corresponding non-parametric estimators may be less sta-
ble if the number of points observed is not suÆciently large; see Stoyan &
Stoyan (1994), M�ller, Syversveen & Waagepetersen (1998), and Schladitz &
Baddeley (2000).
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5.3 Nearest-neighbour and empty space functions

Consider again the stationary case with �nite intensity � > 0. The empty
space function (or spherical contact distribution function) F is the distribu-
tion function of the distance from the origin (or another �xed point in Rd)
to the nearest point in X, i.e.

F (r) = P ( inf
�2X

k�k � r):

The nearest-neighbour function is de�ned by

G(r) = E
X
�2XW

1[ inf
�2Xn�

k� � �k � r]=(�jW j)

and has the interpretation as the distribution function of the distance from a
typical point in X to its nearest point in X. This de�nition does not depend
on the choice of W . It is not obvious how to extend the de�nitions of F
and G to the inhomogeneous case. For a homogeneous Poisson process, by
(1), F (r) = G(r) = 1� exp(��!drd). For other kind of models, closed form
expressions of F and G are rarely known.

Van Lieshout and Baddeley (1996) suggest to consider the combined
summary statistic

J(r) = (1�G(r))=(1� F (r)) for F (r) < 1;

which is 1 for a homogeneous Poisson process, whilst values less (more) than
1 may be an indication of clustering (regularity) in X.

Non-parametric estimators of F and G (and thereby J) are easily derived
using minus sampling: For each r > 0, let W	r = f� 2 W : b(�; r) � Wg
denote the set of points in W with a distance to the boundary of W which is
greater than r. If Ir � W	r is a �nite grid of nr points (chosen independently
of X), we have the unbiased estimators

F̂ (r) =
X
�2Ir

1[ inf
�2X

k� � �k � r]=nr (14)

and
Ĝ(r) =

X
�2XW	r

1[ inf
�2Xn�

k� � �k � r]=(�̂jW	rj): (15)

The estimators (14)-(15) can be calculated using the corresponding functions
in S+SpatialStats (Kaluzny et al. 1997). Finally, envelopes may be simulated
in the same way as described above for the L-function.
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5.4 Example 2: Norwegian spruces (continued)

In this section we consider only the positions of the spruces.
A non-parametric kernel estimate (4) of the intensity surface for the

spruce positions is shown in Figure 3. A Gaussian kernel k1 is used where the
bandwidth is chosen subjectively in order to get a suitable trade o� between
smoothness of the estimate and level of detail in the estimate. There is no
obvious trend in the estimated intensity surface, so we assume that the point
pattern is a partially observed realization of a stationary point process.

A non-parametric estimate of L(r) � r, r > 0, (see Section 5.2.2), the
estimates Ĝ (15) and F̂ (14), the estimate of J obtained from Ĝ and F̂ , and
a non-parametric estimate of the pair correlation are also shown in Figure 3.

The pair correlation function is estimated using (12) with \�(�)�(�) given by
(10), and an Epanecnikov kernel

k2(r) = 1[jrj < b]3(1� (r=b)2)=(4b)

with bandwidth b = 2. For each summary statistic, 2:5% and 97:5% envelopes
are calculated from 39 simulations of the �tted homogeneous Poisson process
with intensity �̂ = 134=(56� 38).

There is clear indication of regularity since the estimate of L(r) � r is
smaller than 0 and below the lower envelope for r up to around 8. Similarly,
Ĝ is smaller than expected for a Poisson process, and F̂ (r) is above the
upper envelope for r > 2. Also the estimated J-function and pair correlation
function suggest that the point pattern is regular. Note from the envelopes
that the pair correlation estimate appears to be biased upwards for 0 < r < 1
under the �tted Poisson model. So it does not seem advisable to interpret
the small kink of the estimated g(r) occurring for 0 < r < 1.

5.5 Example 1: Weed plants (continued)

Brix & M�ller (2001) observe a log linear trend for the intensity of the weed
plants perpendicular to the ploughing direction, so they consider a parametric
log linear model for the intensity function,

log �(�; �) = �1 + �2�2; � = (�1; �2) 2 W; � = (�1; �2) 2 R2 ; (16)

where W is the union of the 45 observation frames. This is supported by
the fact that the humidity of the �eld seemed to have a gradient in that
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direction; a fact that should stimulate the occurrence of Trifolium spp. In
Brix & M�ller (2001) the parameter � is estimated in an ad hoc manner using
a simple linear regression with dependent variables given by the weed counts
in each frame.

Alternatively we here consider the log likelihood under the assumption
that the weed plants form a Poisson process. By (3) the log likelihood is
given by X

�2xW

log �(�; �)� log

Z
W

�(�; �)d� (17)

where xW is the set of weed plant locations. As suggested in Berman &
Turner (1992) and further investigated in Baddeley & Turner (2000), like-
lihoods of the form (17) can easily be maximized using standard software
for generalized linear models, see also Section 7.2. Using this approach
with the Splus routine glm() we obtain the maximum likelihood estimate
�̂ = (�4:10; 0:003) (which is close to the estimate (�4:28; 0:003) obtained in
Brix & M�ller (2001)).

By replacing ��(�) in (11) with �(�; �̂) an estimate of Kinhom and thereby
of Linhom is obtained; denote this estimate by L̂inhom;�̂. Figure 4 shows

L̂inhom;�̂(r)� r which should be close to zero if the weed positions were Pois-
son. The dashed line shows the average of estimated Linhom(r)� r functions
calculated from 39 simulations under the �tted inhomogeneous Poisson pro-
cess (i.e. when the intensity function is assumed to be known and given by
�(�; �̂)). It appears that L̂inhom;�̂ is nearly unbiased under the �tted Pois-
son process. Furthermore, the upper/lower envelopes calculated from the 39
simulations of the �tted inhomogeneous Poisson process are rather constant
when r � 20 cm, whilst they increase/decrease for larger values of r. This
may be compared with the conditions (8) and (9) which require r to be less
than 20 cm and (302+602)1=2 � 67 cm, respectively. Arguably, the envelopes
may be too narrow since we are ignoring the variability of �̂ when using the
�tted Poisson model for the simulations.

A plot similar to that of the L-function but for the pair correlation func-
tion g is also shown in Figure 4. Here g is estimated by (12) with an Epanec-
nikov kernel with bandwidth 3 and �̂(�) given by �(�; �̂). As in Section 5.4
the pair correlation function estimate is biased upwards for small distances
under the �tted Poisson process.

By Figure 4, the weed data clearly exhibit clustering, since L̂inhom;�̂(r)�r
takes positive values above the upper envelope when r � 20 cm. Similarly,
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the estimated g(r) falls above the upper envelope for distances up to around
17. Note that the envelopes for g(r) di�er most for 20 < r < 40 where
few interpoint distances are observed due to the experimental design. That
L̂inhom;�̂(r)�r and the estimated g(r) are below the lower envelope for values
of r > 30 cm is in fact in accordance with the behaviour of a non-parametric
estimator of the pair correlation function under an estimated log Gaussian
Cox process (Brix & M�ller 2001); see also Sections 6.2 and 6.3.

A close look at Figure 1 shows that the intensities of weed plants are
higher in the third column of frames than in the �rst column of frames. This
is not re
ected by the log linear model (16), so an appropriate alternative
might be a log third order polynomial model

log �3(�; ) =  1 +  2�2 +  3�
2
2 +  4�

3
2 ;

� = (�1; �2) 2 W;  = ( 1;  2;  3;  4) 2 R4 : (18)

The maximum likelihood estimate is

 ̂ = (�3:670;�0:014; 9:342� 10�5;�1:310� 10�7):

Using �3(�;  ̂) in (11) we obtain an estimate L̂inhom;3; ̂(r)�r. The plot (omit-
ted) of L̂inhom;3; ̂(r) � r is qualitatively similar to the plot of the estimated
L(r) � r function in Figure 4: the clustering is less pronounced, but the
Poisson model is still rejected.

As a more appropriate model, Brix & M�ller (2001) consider a log Gaus-
sian Cox process (see Section 6.2) where it is possible to model clustering
due to environmental e�ects and the seed bank in the soil. In Section 6.3 we
also consider a log Gaussian Cox process model for the weed plants.

6 Models and simulation based inference for

aggregated point patterns

Aggregation in a spatial point process may be caused by at least three factors:
(i) spatial heterogeneity, e.g. due to some underlying \environmental" pro-
cess, (ii) clustering of the points around the points of another point process,
(iii) interaction between the points. In this section we concentrate mostly on
(i) and partly on (ii), while (iii) is considered in Section 7.1.

The relationship between (i) and (ii) is described in Section 6.1 which
deals with Cox and cluster processes; further material on such processes can
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be found in Diggle (1983), Stoyan et al. (1995), and the references therein. In
Section 6.2 we study the particular case of log Gaussian Cox processes. Other
speci�c models such as shot noise Cox processes are discussed in Section 6.4.

6.1 Cox and cluster processes

6.1.1 De�nitions and properties of Cox processes

A natural way to generalize the de�nition of a Poisson point process is to
let � be a random locally �nite measure on S so that conditionally on �,
Xj� � Poisson(S;�). Thereby we obtain a doubly stochastic Poisson point
process which is also called a Cox process with driving measure �. Speci�c
constructions of � are considered in Sections 6.2 and 6.4, and in the following
two simple examples.

The simplest non-trivial example of a Cox process is a mixed Poisson
process in Rd . This is obtained by letting R > 0 be a random variable and
XjR a homogeneous Poisson process in Rd with intensity R. For example,
if R is gamma distributed, X(A) follows a negative binomial distribution for
A 2 B0.

Another example is random independent thinning of a Poisson process:
Suppose that X � Poisson(S; �), � = f�(�) : � 2 Sg � [0; 1] is a random
�eld, and R(�) � Uniform[0; 1]; � 2 S, are mutually independent. Then
Z = f� 2 X : R(�) < �(�)g is a Cox process driven by the random measure
given by �(B) =

R
B
�(�)�(d�) (provided this integral is well-de�ned for Borel

sets B � S, and � is locally �nite).
By de�nition of a Cox process X and the properties of Poisson processes

we obtain immediately the following general results. The void probabilities
are given by

P (X(B) = 0) = E exp(��(B)):
Furthermore, the intensity measure is given by

�(B) = EX(B) = E�(B);

and the second order factorial moment measure by

�(2)(A�B) = E

6=X
�;�2X

1[� 2 A; � 2 B] = E[�(A)�(B)]:
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Combining these results, we see that

V ar(X(B)) = V ar(�(B)) + �(B):

Thus, compared to a Poisson process, a Cox process exhibits overdispersion.
In the particular case of S = Rd , if � has a (random) density d�(�)=d� =

�(�), then X has intensity function

�(�) = E�(�) (20)

and second order product density

�(2)(�; �) = E[�(�)�(�)]: (21)

Closed form expressions of these functions may sometimes be derived for
speci�c models, cf. Sections 6.2 and 6.4.

6.1.2 De�nitions and properties of cluster processes

Let Y be a point process de�ned on a space T , and for each � 2 Y , let Z� be
a point process de�ned on a space S so that the superposition

X =
[
�2Y

Z�

is a simple and locally �nite point process on S. Then X is called a cluster
process with mother process Y and clusters or daughters Z�; � 2 Y . We may
e.g. think of plants (the mothers) that spread seeds (the daughters). Usually
in applications, S = T � Rd and the mother process is unobserved, so we
are dealing with a missing data problem.

Certain cluster processes are special cases of Cox processes: If conditional
on Y , the clusters are independent, each cluster Z� � Poisson(S; ��), and
the random measure given by

�(B) =
X
�2Y

��(B); B � S;

is locally �nite, then X is a Cox process driven by �. This follows simply by
�nding the void probabilities of X.

A particular important subclass of such models are Neyman-Scott pro-
cesses X, where it is assumed that S = Rd , each cluster Z� has an intensity
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function ��(�), and Y � Poisson(T; �) (slightly extending the de�nition of
Neyman & Scott (1958)). Then � has density

�(�) =
X
�2Y

��(�)

with respect to Lebesgue measure, which combined with (20) and (21) give
expressions for the intensity function and second order product density func-
tion of X,

�(�) = E
X
�2Y

��(�); �(2)(�; �) = E
X
�;�2Y

��(�)��(�):

Then by Slivnyak-Mecke (1)-(2),

�(�) =

Z
��(�)d�(�)

and

�(2)(�; �) =

Z Z
��(�)��(�)d�(�)d�(�) +

Z
��(�)��(�)d�(�):

These expressions can be further reduced when T = Rd , Y is a homogeneous
Poisson process, and Z� � �; � 2 Y; (the clusters relative to their mother
points) are i.i.d. and independent of Y ; see e.g. Stoyan et al. (1995).

However, closed form expressions of �(2) and hence the pair correlation can
only be derived for a few such Neyman-Scott processes, including a Thomas
process X de�ned as follows: Y is a homogeneous Poisson process with in-
tensity �Y > 0, and Z��� is a Poisson process where the number of points is
po(�)-distributed and each point follows a d-dimensional normal distribution
with mean 0 and radially symmetric covariance matrix �2I. Then X is sta-
tionary and isotropic with intensity �X = ��Y and pair correlation function
g(�; �) = g(k� � �k) given by

g(r) = 1 + exp(�r2=(4�2))=[�Y (4��
2)d=2]; r � 0:

Furthermore, in the planar case d = 2, Ripley's K-function is

K(r) = �r2 + [1� exp(�r2=(4�2))]=�Y :
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Simulation procedures for Neyman-Scott processes on a bounded window
B follow often straightforwardly from their de�nition as cluster processes or
their construction as Cox processes: in either case, we �rst simulate Y and
next XBjY . In order to avoid boundary e�ects the mother process usually
must be simulated on an extended window A � B so that daughter points
from a mother outside A falls into B with a negligible probability.

6.2 Log Gaussian Cox processes

6.2.1 De�nitions and properties

Suppose that Y = fY (�) : � 2 Rdg is a real-valued Gaussian process, i.e. any
�nite linear combination of the Y (�) follows a normal distribution. If X is a
Cox process on Rd driven by a random measure with density

�(�) = exp(Y (�))

with respect to Lebesgue measure, then X is said to be a log Gaussian Cox
process (LGCP). Such models have independently been introduced in astron-
omy by Coles & Jones (1991) and in statistics by M�ller et al. (1998).

It is necessary to impose weak conditions on the mean function m(�) =
EY (�) and covariance function c(�; �) = Cov(Y (�); Y (�)) in order to get a
well-de�ned and �nite integral

R
B
exp(Y (�))d� for bounded Borel sets B �

Rd . For example, we may require that � ! Y (�) is almost surely continuous.
This is the case ifm and c are continuous functions, and for some 0 < C <1
and some � > 0,

c(�; �) + c(�; �)� 2c(�; �) � C=(� log k� � �k)1+� (22)

whenever k� � �k < 1, cf. Theorem 3.4.1 in Adler (1981). These are fairly
weak conditions which are usually satis�ed for the models used in practice.

The de�nition of an LGCP can easily be extended in a natural way to
multivariate LGCPs as shown in M�ller et al. (1998) and to multivariate
spatio-temporal LGCP as studied in Brix & M�ller (2001). LGCPs are 
exi-
ble models for clustering as demonstrated in M�ller et al. (1998), where exam-
ples of covariance functions together with simulated realizations of LGCPs
and their underlying Gaussian processes are shown. Certain Thomas pro-
cesses may in practice be diÆcult to distinguish from LGCPs with a Gaus-
sian covariance function c(�; �) = �2 exp(�(k� � �k=�)2), where �2 > 0 and
� > 0 are parameters (M�ller et al. 1998).
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The intensity function and pair correlation function of a LGCP are simply
given by

�(�) = exp(m(�) + c(�; �)=2); g(�; �) = exp(c(�; �)): (23)

Hence, if c(�; �) = c(� � �) is translation invariant, Kinhom exists. Further
theoretical results for the intensities of a LGCP (including third and higher
order properties) can be found in M�ller et al. (1998). These results are in
general of a di�erent and much simpler form than for other Cox processes.

By (23) there is a one-to-one correspondence between c and g and between
(m; c) and (�; g). Consequently, the distribution of an LGCP is uniquely de-
termined by its �rst- and second-order properties as given by the intensity
and pair correlation functions. This makes parametric models easy to in-
terpret and simple methods for parameter estimation and model checking
become available as discussed in M�ller et al. (1998).

Finally, notice that there is no problem with edge e�ects as the distribu-
tion of an LGCP restricted to a bounded subset is known.

6.2.2 Simulation of LGCPs

Unconditional simulation of an LGCP: Below we describe shortly how to
simulate an LGCP X and its underlying Gaussian process Y when both are
restricted to a bounded region B. Since XBjY is simply a Poisson process
with intensity function exp(Y ) on B, we restrict attention to simulation from
YB = fY (�) : � 2 Bg. As the in�nitely dimensional process YB does not in
general have a �nite representation in a computer, we approximate YB by
a random step function with constant value Y (ci) within disjoint cells Ci,
where B = [i2ICi, I is a �nite index set, and ci 2 Ci is a \center" point of
Ci. So we actually consider how to simulate the Gaussian vector ~Y = (~Yi)i2I
where ~Yi = Y (ci).

Suppose for the moment that B is rectangular, say B = [0; 1[2, and let
I � B denote a rectangular grid. As discussed in M�ller et al. (1998),
there is an eÆcient way of simulating ~Y when c(�; �) = c(� � �) is invariant
under translations. Brie
y, I is embedded in a rectangular grid Iext, which
is wrapped on a torus, and a block circulant matrix K = fKijgi;j2Iext is
constructed so that the submatrix fKijg(i;j)2I is the covariance matrix of ~Y .
Since K is block circulant, it can easily be diagonalized by means of the
two-dimensional discrete Fourier transform with associated matrix F2 (see
Section 6.1 in M�ller et al. (1998) and Wood & Chan (1994)). Suppose that
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K is positive semi-de�nite (i.e. K has non-negative eigenvalues). Then we
can extend ~Y = (~Y(i;j))(i;j)2I to a larger Gaussian �eld ~Yext = (~Y(i;j))(i;j)2Iext
with covariance matrix K and set

~Yext = �Q+ �ext (24)

where � follows a standard multivariate normal distribution, Q = �F2�
1=2F2,

� is the diagonal matrix of eigenvalues for K, and the restriction of �ext to I
agrees with the mean of ~Y . Using the two-dimensional fast Fourier transform
a fast simulation algorithm for ~Yext and hence ~Y is obtained.

Another possibility is to use the Choleski decomposition of the covariance
matrix of ~Y , provided this covariance matrix is positive de�nite. This may be
advantageous if c is not translation invariant or B is far from being rectangu-
lar, see Section 6.3. On the other hand, the Choleski decomposition is only
practically applicable if the dimension of ~Y is moderate. We can still refer
to (24) when the Choleski decomposition is used, letting now Iext; ~Yext; K;
and Q be speci�ed as follows: Iext = I, ~Yext = ~Y , K is the covariance matrix
of ~Y , and Q denotes the upper-triangular matrix obtained from the Choleski
decomposition.

Conditional simulation in an LGCP: Now, suppose that we have observed
a point pattern XW = x within a window W � B so that each cell Ci is
contained in either W or A = B nW . When making conditional simulations
of (YB; XA) given XW , we may simulate �rst from YBjXW and next from
XAj(YB; XW ). Since the latter conditional distribution is a Poisson process
with intensity function exp(Y ) on A, we restrict attention to simulation of
YBjXW below; this will be used later when discussing Bayesian inference
for LGCPs. Note that if we wish to make further conditional simulations
within a region D which is disjoint to B, we may �rst make simulations from
YDj(YB; XB), which is Gaussian and does not depend on XB, and next from
the Poisson process XDjYD with intensity function exp(Y ) on D.

Approximate simulations of YBjXW = x can be obtained from simulations
of ~Y jXW = x which in turn can be obtained from simulations of �jXW = x
using the transformation (24). Omitting an additive constant depending on
x only, the log conditional density of � given x is

�k
k2=2 +
X
i2I

(~yini � Ai exp(~yi)) (25)

where, in accordance with (24), (~yi)i2Iext = 
Q + �ext, ni = x(Ci), and
Ai = jCij if Ci � W and Ai = 0 otherwise. Note that (25) is formally
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equivalent to the conditional density of the random e�ects given observations
ni; i 2 I, in a generalized linear mixed model with Poisson error distribution,
cf. the chapter by Christensen, Diggle & Ribeiro in this volume. The gradient
of (25) becomes

r(
) = �
 + �ni � Ai exp(~yi)
�
i2Iext

QT;

and di�erentiating once more the conditional density of � given x is seen to
be strictly log-concave.

For simulation from �jXW = x, M�ller et al. (1998) use a Langevin-
Hastings algorithm or Metropolis-adjusted Langevin algorithm as introduced
in the statistical community by Besag (1994) (see also Roberts & Tweedie
(1996)) and earlier in the physics literature by Rossky, Doll & Friedman
(1978). This is a Metropolis-Hastings algorithm with collective updating in-
spired by the de�nition of a Langevin di�usion. If 
 is the current state gen-
erated by the Langevin-Hastings algorithm, then we �rst propose a new state
generated from a multivariate normal distribution with mean 
+(h=2)r(
)
and covariance matrix hId, where Id is the d � d identity matrix and h > 0
is a user speci�ed parameter. Secondly we accept or reject the proposal in
accordance to the Hastings ratio. Theoretical results in Roberts & Rosenthal
(1998) and Breyer & Roberts (2000) suggest that one should tune h to obtain
acceptance rates around 0:57. The use of the gradient in the proposal distri-
bution may lead to much better convergence properties when compared to the
standard alternative of a random walk Metropolis algorithm, see Christensen,
M�ller & Waagepetersen (2000) and Christensen & Waagepetersen (2001).
Provided K is strictly positive de�nite, there is another Langevin-Hastings
algorithm for simulating ~Yext given x, but for the examples considered in
M�ller et al. (1998) this algorithm mixes slower.

A truncated version of the Langevin-Hastings algorithm is obtained by
replacing the gradient r(
) by

rtrun(
) = �
 + �ni �minfH;Ai exp(~yi)g
�
i2Iext

QT (26)

where H > 0 is a user-speci�ed parameter which can e.g. be taken to be
twice the maximal ni, i 2 I. We still tune h so that the acceptance rate is
about 0:57. As shown in M�ller et al. (1998) the truncated Langevin-Hastings
algorithm is geometrically ergodic.

The algorithms described above can easily be generalized to the case of
multivariate LGCPs, cf. M�ller et al. (1998).
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6.2.3 Bayesian inference for LGCPs

M�ller et al. (1998) consider an empirical Bayesian approach to prediction
of YB given XW = x, where the mean and covariance functions are mod-
elled by a parametric model and the parameters are estimated by a so-called
minimum contrast method. This estimation method depends on certain user-
speci�ed parameters, and the uncertainty of the estimated parameters are not
taken into account, so arguably the variation of YBjXW = x may be under-
estimated. In the sequel we consider an alternative fully Bayesian approach
with hyper priors on the parameters and discuss how we can make MCMC
simulations of the full posterior given XW = x. Again the random step func-
tion approximation of YB is used, and we consider the posterior of � from
which the posterior of ~Y can be computed.

Speci�cally, assume that the mean function m restricted to B is a linear
function m(�) = �z(�)T of a p-dimensional covariate z(�), and the covariance
function is of the form c(�; �) = �2r(k���k=�)) where � > 0 is the standard
deviation of Y (�) and � > 0 is a scale parameter for the correlation. A
similar situation is considered in Benes, Bodlak, M�ller & Waagepetersen
(2001). We impose independent hyper priors p1, p2, and p3 on �, �, and
� = log�, respectively. The posterior density is thus

�(
; �; �; �jx) / p1(�)p2(�)p3(�)

� exp

�
� k
k2=2 +

X
i2I

(~yini � Ai exp(~yi))

�
; (27)

cf. (25). Note that ~y is a function of (
; �; �; �).
As in Christensen & Waagepetersen (2001), Christensen et al. (2000),

and Benes et al. (2001) we use a hybrid algorithm with a systematic MCMC
updating scheme for the full conditional distribution of each of the four pa-
rameters 
; �; �; �. For 
 we use a truncated Langevin-Hastings algorithm
where the gradient by (27) is still given by (26). For � we use also a truncated
Langevin-Hastings algorithm with gradient

rtrun(�) =
�
ni �minfH;Ai exp(~yi)g

�
i2Iext

D +
@

@�
log p1(�)

where D is the design matrix with rows given by z(ci), i 2 I (as ni = Ai = 0
for cells outside W , we need only to specify D for center points contained in
W ). The same truncation constantH is used in in the two Langevin-Hastings
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algorithms, and as before the variances in the proposal distributions are tuned
so that acceptance rates about 0:57 are obtained. Finally, random walk
Metropolis updates are used for � and log�, respectively, with acceptance
rates around the optimal value 0:23 (Roberts, Gelman & Gilks 1997).

6.3 Example 1: Weed plants (continued)

For the weed data, B is the union of the 45 observation frames and we use a
discretization of the Gaussian �eld where each of the 45 frames is subdivided
into 6 quadratic cells of side length 10 cm. The covariance matrix of the 270
dimensional vector ~Y is decomposed using the Choleski decomposition. The
covariate vector is z(�) = (z1(�); z2(�)) = (1; �2) for � = (�1; �2) 2 B, and we
use the exponential correlation function r(k�k) = exp(�k�k). The hyper pri-
ors are chosen to be p1(�) / 1; � 2 R2 , p2(�) / exp(�10�5=�)=�; � > 0, and
p3(�) / 1; log 0:75 < � < log 75. The improper prior p1 is completely 
at,
and the improper p2 yields an essentially 
at prior for log � on (0;1). The
limits for the log uniform prior p3 were chosen subjectively in order to ac-
commodate a reasonable range of strengths of correlation. For the discretized
LGCP one can check as in Christensen & Waagepetersen (2001) that these
priors yield a proper posterior but strictly speaking we do not know whether
a proper posterior is also obtained for the original LGCP. One may therefore
consider the possibility of restricting the supports of � and � to large but
bounded regions.

The hybrid algorithm described at the end of Section 6.2 is used for
the computations. In order to improve mixing of the Markov chain we use
a reparametrization where (z2(ci))i2I is normalized to have zero mean and
maximum absolute value equal to one. The posterior distributions shown in
Figure 5 are computed from time series obtained by subsampling each 10th
of 200; 000 scans of the hybrid algorithm; here a scan means an update of
each of 
; �; �; � in a systematic order. Plots of the time series (omitted)
suggest that equilibrium is attained after around 400 scans and according to
estimated autocorrelations, the states in the time series are uncorrelated for
lags greater than 30. The posterior means of �1 and �2 are �4:11 and 0:003,
i.e. very close to the maximum likelihood estimates for the inhomogeneous
Poisson process considered in Section 5.5. The posterior means of � and �
are 0:47 and 3:48. The value � = 3:48 yields correlations 0:40 and 0:05 at
distances 30 cm and 100 cm, respectively. Note that the posterior for � is
very sensitive to the choice of prior | one can in fact verify that the posterior
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support will always contain the prior support. The posterior mean of ~Y is
shown in Figure 6 where large posterior means of ~Yi coincide with cells Ci
containing many weed plants.

Figure 7 is similar to Figure 4. It shows the summary statistic Linhom;�̂(r)�
r and the estimate of g(r) from Section 5.5 but now with envelopes calculated
from simulations under the posterior predictive distribution (Gelfand 1996)
for the LGCP. That is, approximately independent posterior realizations of
(�; �; �; Y ) are sampled from the MCMC sample and conditionally on each
such a realization a simulation of X is drawn as discussed in Section 6.2.2.
The clustering of the weed plants is accommodated by the LGCP model but
both summary statistics fall below the envelopes for distances greater than
20 cm. As noted in Section 5.5 the linear model for m may be too in
exible.
Perhaps it is necessary to use a model for m which allows for rapid changes
in the intensity as e.g. between the second and third row in Figure 1. In Brix
& M�ller (2001) only distances up to 20 cm were considered in the model
checking.

6.4 Other speci�c models for Cox processes

So far we have concentrated much on LGCPs. Below we describe brie
y
two other interesting classes of Cox processes which can be used for non-
parametric Bayesian modelling: the Heikkinen & Arjas (1998) model and shot
noise G Cox processes (SNGCP) (Brix 1999). We introduce these models by
specifying their random intensity function � on a bounded region R � R2 .

In Heikkinen & Arjas (1998) �(�) =
P

k �k1Ak(�) where fAkg is the
Voronoi tessellation generated by a point process of nuclei fykg � R, i.e. Ak
is the set of points in R closer to yk than to any other nuclei. The nuclei
follow a homogeneous Poisson process restricted to R, and conditionally on
fykg, flog�kg is modelled by a conditional autoregression (Besag 1974).

The construction of a SNGCP is a bit more complicated. Now, �(�) =P
j k(�; uj)
j where k is a kernel (for simplicity we assume that k(�; u) is a

density function for a continuous random variable), and f(uj; 
j)g � E �
[0;1) where E is a given planar region (a more general setting is considered
in Wolpert & Ickstadt, 1998). Typically in applications, E = R, or in order
to reduce edge e�ects, R � E where E is much larger than R. Further,
f(uj; 
j)g is a Poisson process with intensity measure

�(A�B) = (�(A)=�(1� �))�
Z
B


���1 exp(��
)d
; A � E; B � [0;1);
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where � < 1 and � � 0 are parameters with � > 0 if � � 0, and � is a
locally �nite measure (or, as in Brix, 1999, a nonnegative and nonzero Radon
measure). If � < 0, we obtain a kind of modi�ed Neyman-Scott process
as fujg is a Poisson process with intensity measure (�=j�j)�, and fujg is
independent of the \marks" f
jg, which in turn are mutually independent
and follow a common Gamma distribution �(j�j; �) (in a usual Neyman-Scott
process, all marks are equal and deterministic). The situation is less simple
for � � 0 as fujg is not locally �nite. For � = 0, we have a Poisson/gamma
model (Daley & Vere-Jones 1988, Wolpert & Ickstadt 1998). As noticed
in Wolpert & Ickstadt (1998) we may extend the model by replacing the
parameter � with a positive function �(u); u 2 E, and rede�ning

�(A� B) = (1=�(1� �))

Z
A

Z
B


���1 exp(��(u)
)�(du)d
:

The models are reviewed and compared with LGCPs in M�ller (2001a),
particularly in connection to epidemiological applications.

7 Models and simulation based inference for

Markov point processes

Markov or Gibbs point processes arose in statistical physics for the descrip-
tion of large interacting particle systems, see e.g. Ruelle (1969), Preston
(1976), and Georgii (1988). Van Lieshout (2000) provides a recent account of
the state of the art of Markov point processes in spatial statistics; see also the
reviews in Ripley (1977), Baddeley & M�ller (1989), and Stoyan et al. (1995).
In Section 7.1 we concentrate on the case of a �nite point process speci�ed
by a density with respect to a Poisson point process so that a local Markov
property is satis�ed. Pseudo likelihood estimation for Markov processes is
considered in Sections 7.2{7.3 and maximum likelihood inference based on
MCMC in Sections 7.4{7.5. Bayesian analysis is surveyed in Section 7.6.
Simulation procedures for Markov point processes using Metropolis-Hastings
algorithms and spatial birth-death processes are considered in Sections 7.7{
7.8, while Section 7.9 concerns perfect simulation.
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7.1 De�nitions and properties

In the remaining part of this chapter we consider a �nite point process X
which is absolutely continuous with respect to Poisson(S; �) where �(S) <1.
Its density is denoted f . The point process may be extended to a larger
region and f may depend on points outside S, for example in order to take
care of edge e�ects. However, we usually suppress such dependences and
write f(x) for x 2 Nf , where Nf = fx � S : n(x) < 1g denotes the
set of �nite point con�gurations in S. We equip Nf with the �-algebra
Nf = fF 2 N : F � Nfg. So by de�nition of a �nite Poisson process,
for events F 2 Nf ,

P (X 2 F ) =
1X
n=0

exp(��(S))=n!
Z
� � �
Z

1[fx1; : : : ; xng 2 F ]

f(fx1; : : : ; xng)�(dx1) � � ��(dxn) (28)

where the term for n = 0 is read as exp(��(S))1[; 2 F ]f(;). An example
of such a density is given by the density (3) for a Poisson process, but in
the following we shall construct much more interesting models exhibiting
interactions between the points. Often f is assumed to be hereditary, that
is,

f(x) > 0) f(y) > 0 for y � x: (29)

This amounts to the positivity condition in the Hammersley-Cli�ord theorem
for Markov random �elds, see e.g. Besag (1974).

In many applications we have a pairwise interaction point process,

f(x) /
Y
�2x

�(�)
Y

f�;�g�x

�(f�; �g) (30)

where � is a non-negative function for which the right hand side is integrable
with respect to Poisson(S; �). A standard example is the Strauss process
(Strauss 1975), where

�(�) = � and �(f�; �g) = 
1[d(�;�)�R]; (31)

setting 00 = 1. Here � > 0, 0 � 
 � 1, and R > 0 are parameters (if 
 > 1
we do not in general have integrability, cf. Kelly & Ripley, 1976). If 
 = 1
we obtain X � Poisson(S; ��), while for 
 < 1 there is repulsion between
R-close pairs of points in X. The special case where 
 = 0 is called a hard
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core point process with hard core R as balls of diameter R and with centers
at the points in X are not allowed to overlap. The Strauss process can be
extended to a multiscale point process (Penttinen 1984) where

�(f�; �g) = 
i if Ri�1 < d(�; �) � Ri (32)

with R0 = 0 < R1 < : : : < Rk = 1, 
k = 1, and k � 2; integrability is
ensured if 
1 = 0 and 
2 � 0; : : : ; 
k�1 � 0, or if 0 < 
1 � 1 and 0 � 
2 �
1; : : : ; 0 � 
k�1 � 1. A collection of other examples of pairwise interaction
point processes can be found in van Lieshout (2000).

A fundamental characteristic is the Papangelou conditional intensity de-
�ned by

��(x; �) = f(x [ �)=f(x); x 2 Nf ; � 2 S n x; (33)

taking a=0 = 0 for a � 0 (Kallenberg 1984). For example, for the pairwise
interaction point process (30),

��(x; �) = �(�)
Y
�2x

�(f�; �g):

Heuristically, ��(x; �)�(d�) can be interpreted as the conditional probability
of X having a point in an in�nitesimal region containing � and of size �(d�)
given the rest of X is x. If f is hereditary, then there is a one-to-one corre-
spondence between f and ��. Often in applications f / h is only speci�ed
up to proportionality, but ��(x; �) = h(x [ �)=h(x) does not depend on the
normalizing constant.

Integrability of a given function h with respect to Poisson(S; �) may be
implied by stability conditions in terms of ��. Local stability means that
�� is uniformly bounded and f is hereditary; this implies integrability. A
weaker condition for integrability is Ruelle stability (Ruelle 1969) meaning
that h(x) � ��n(x) for some positive constants �; � and all x 2 Nf . As
shown later in this section, local stability also plays an important role in
simulation algorithms. Local stability is satis�ed by many point process
models (Geyer 1999, Kendall & M�ller 2000). One example, where Ruelle
but not local stability is satis�ed, is a Lennard-Jones model (Ruelle 1969);
this is a pairwise interaction point process (30) with �(�) = � > 0 constant
and log�(f�; �g) = ar6 � br12 for r = jj� � �jj, where a > 0 and b > 0 are
parameters.

The role of the Papangelou conditional intensity is similar to that of the
local characteristics of a Markov random �eld when de�ning local Markov
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properties. Let� be an arbitrary symmetric relation on S, let for the moment
f : Nf ! [0;1) denote any function, and de�ne �� as in (33). If f is
hereditary and if for any x 2 Nf and � 2 S n x, ��(x; �) depends on x only
through the neighbours � 2 x to �, i.e. those � 2 x with � � �, then f is said
to be a Markov function. By the Hammersley-Cli�ord-Ripley-Kelly theorem
(Ripley & Kelly 1977), f is Markov if and only if f is of the form

f(x) =
Y
y�x

�(y); x 2 Nf ; (34)

where � is a so-called interaction function, i.e. a function � : Nf ! [0;1)
with the property that �(y) = 1 if there are two distinct points in y which
are not neighbours. If especially f is a density with respect to Poisson(S; �),
we have a Markov density function with normalizing constant �(;). Then
X � f is said to be a Markov point process. Combining (28) and (34) we
easily obtain a spatial Markov property: for Borel sets A;B � S so that no
point in A is a neighbour to any point in B, XA and XB are conditionally
independent given XC where C = S n (A [ B).

If f is hereditary and for all x 2 Nf , all � 2 S n x, and some �nite R > 0
we have that ��(x; �) = ��(x \ b(�; R); �) where b(�; R) denotes the closed
ball with center � and radius R, then f is said to be of �nite interaction range
R. Then f is obviously Markov with respect to the �nite range neighbour
relation given by � � � if and only if d(�; �) � R. So Strauss and multiscale
point processes are Markov. For the Norwegian spruce data in Figure 2,
where a disc b(�;m�) speci�es the in
uence zone of a tree located at �, it is
natural to consider a Markov model with � de�ned by

(�;m�) � (�;m�), b(�;m�) \ b(�;m�) 6= ;; (35)

i.e. trees are only allowed to interact when their in
uence zones overlap. In
Section 7.5 we consider a Markov model for the spruces with respect to the
relation (35).

Many other Markov models can be constructed by specifying di�erent
kinds of relations and interaction functions, using (34) and checking of course
for integrability in each case. In fact pairwise interaction point processes are
useful models for regularity/inhibition/repulsion but not so much for clus-
tering/attraction. Models for both types of interactions may be constructed
by allowing higher order interaction terms, see e.g. Baddeley & van Lieshout
(1995), Geyer (1999), and M�ller (1999). Moreover, the concept of a Markov
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function can be extended in di�erent ways, whereby even more 
exible mod-
els are obtained, see Baddeley & M�ller (1989), van Lieshout (2000), and the
references therein.

By allowing f to depend on points outside S, it is possible to extend
Markov point processes to in�nite Gibbs point processes, but questions like
existence, uniqueness or not (phase transition behaviour), and stationarity
may be hard to answer; we refer the interested reader to Preston (1976) and
Georgii (1988) for the mathematical details.

The Papangelou conditional intensity will also play a key role in the
sequel concerning statistical inference and simulation procedures for �nite
point processes.

7.2 Pseudo likelihood

Consider a parametric model f� / h�; � 2 �; for the density of a spatial
point process X with respect to � = Poisson(S; �). In general, apart from
the Poisson case, the normalizing constant

Z� =

Z
h�(x)�(dx) (36)

=
1X
n=0

exp(��(S))=n!
Z
� � �
Z
h�(fx1; : : : ; xng)�(dx1) � � ��(dxn)

cannot be evaluated explicitly. In order to avoid this problem, Besag (1977a)
extended the de�nition of the pseudo likelihood function for Markov random
�elds (Besag 1975) to the Strauss process by an approximation given by an
auto-Poisson lattice process (Besag, Milne & Zachary 1982). Based on this
derivation a general expression of the pseudo likelihood for point processes is
stated in Ripley (1988). The pseudo likelihood for point processes is derived
by a direct argument in Jensen & M�ller (1991) as follows.

Suppose that each density f� is hereditary and Ruelle stable. Let T � S
be an arbitrary Borel set. For x 2 Nf , de�ne the pseudo likelihood on T by

PLT (�; x) = exp(��(T )) lim
i!1

miY
j=1

f�(xAij jxSnAij );

where fAij : j = 1; : : : ; mig; i = 1; 2; : : : ; are nested subdivisions of T
such that mi ! 1 and mi[max1�j�mi

�(Aij)]
2 ! 0 as i ! 1. Further,
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f�(xAij jxSnAij ) is a conditional density for XAij given that XSnAij = xSnAij :

f�(xAij jxSnAij) =
f�(xAij [ xSnAij )R

f�(y [ xSnAij )d�Aij (y)
if the denominator is strictly positive, and f�(xAij jxSnAij) = 0 otherwise. By
Theorem 2.2 in Jensen & M�ller (1991), for � almost all x 2 Nf the pseudo
likelihood on T is well-de�ned and given by

PLT (�; x) = exp

�
�
Z
T

���(x; �)d�(�)

� Y
�2xT

���(x n f�g; �) (37)

where ��� is the Papangelou conditional intensity associated to f�. Note that
the pseudo likelihood function is unaltered whether ��� is based on f� or on
the conditional density f�(xT jxSnT ). Usually in applications, either T = S or
T = f� 2 S : b(�; R) � Wg in order to reduce edge e�ects when XW = x is
observed within a window W � S and all densities f� have �nite interaction
range R (here the ball b(�; R) is closed).

Themaximum pseudo likelihood estimate (MPLE) is found by maximizing
(37). For certain models, consistency and asymptotic normality of the MPLE
are established in Jensen & M�ller (1991), Jensen & K�unsch (1994), Mase
(1995), and Mase (1999). Intuitively, as the pseudo-likelihood only depends
on the local dependence structure, global information may better be taken
into account when using the likelihood function. In fact the asymptotic
variance of the MPLE can be much larger than for the MLE, in particular
for spatial point processes with high dependence. Note that (37) agrees with
the likelihood function for a Poisson process when ���(x; �) depends only on
�, so for point processes with weak interaction the MPLE and MLE may be
expected to be close.

Assume now that the density f� belongs to an exponential family,

f�(x) = b(x) exp(� � t(x))=Z�; x 2 Nf ; � 2 �; (38)

where � = f� 2 Rp :
R
b(x) exp(� � t(x))�(dx) < 1g, � is the usual inner

product, b : Nf ! [0;1) is hereditary, and t : Nf ! Rp . Then
���(x; �) = b(x; �) exp(� � t(x; �)) (39)

where b(x; �) = b(x [ �)=b(x) and t(x; �) = t(x [ �) � t(x). Proposition 2.3
in Jensen & M�ller (1991) states that PLT (�; x) is log concave, and gives
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a condition for strict concavity. Hence, if the MPLE exists and belongs
to the interior of �, it is the solution to the pseudo likelihood equation
(d=d�) logPLT (�; x) = 0, which is equivalent toZ

T

b(x; �)t(x; �) exp(� � t(x; �))d�(�) =
X
�2xT

t(x n f�g; �): (40)

Maximum pseudo likelihood estimation based on (37) is computationally
equivalent to maximum likelihood estimation in an inhomogeneous Poisson
process. In practice the integrals in (37) and (40) may be approximated by
numerical methods. As noticed in Berman & Turner (1992) and Baddeley &
Turner (2000), standard software such as Splus for �tting generalized linear
models can be used to provide an approximate MPLE as follows.

Consider again the case (39), partition T into cells Ci, and let ci 2 Ci
denote a given \center point". Let uj; j = 1; : : : ; m denote a list of these
center points and the points in xT . Then the integral in (37) is approximated
by Z

T

���(x; �)d�(�) �
mX
j=1

���(x n uj; uj)wj; (41)

where wj = �(Ci)=(1 + x(Ci)) if uj 2 Ci. Note that the approximation (41)
involves a \discontinuity error", since for uj 2 x, ���(x n uj; uj) is in general
not equal to the limit of ���(x; �) as � ! uj, cf. the discussion in Baddeley &
Turner (2000). The advantage of including xT in the sum in (41) is that we
obtain

logPLT (�; x) �
mX
j=1

(yj log�
�
j � ��j)wj; (42)

where yj = 1[uj 2 x]=wj and ��j = ���(x; uj). The right side of (42) is
formally equivalent to the log likelihood of independent Poisson variables yj
with means ��j taken with weights wj. If b(x; uj) > 0, j = 1; : : : ; m, then
(42) can easily be maximized using standard software for generalized linear
models taking log b(x; uj) as an o�set term. Moreover, if b(�; �) = 1, then we
have a log linear model

log��j = � � t(x; uj)
setting t(x; uj) = t(x n uj; uj) when uj 2 x.
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7.3 Example 2: Norwegian spruces (continued)

For the point pattern of spruce locations we consider a multiscale process
(32) with k = 5 and Ri = 1:1 � i; 0 < 
i � 1; i = 1; : : : ; 4. The minimal
interaction range is thus less or equal to 4:4 | a value suggested by the
estimated summary statistics in Figure 3. We use the approximation (41)
with T = [0; 56]�[0; 38] partitioned into 56�38 quadratic cells Ci, i = (k; l) 2
f0; : : : ; 55g�f0; : : : ; 37g, each of unit area and with center points c(k;l) = (k+
0:5; l+ 0:5). We have a log linear model with � = (log �; log
1; : : : ; log 
4) 2
R � (�1; 0]4 and t(x; uj) = (1; s[j; 1]; : : : ; s[j; 4]), where s[j; i] denotes the
number of points � 2 x n uj with Ri�1 < k� � ujk � Ri, i = 1; : : : ; 4. Using
the Splus routine glm() with the call

glm(y�s[,1]+ : : :+s[,4],family=poisson(link=log),weights=w);

and with y, w, and s constructed as above, the estimates �0:84, �3:35,
�1:38, �0:62, �0:15 for log�, log 
1, : : :, log 
4 are obtained. We later on
in Section 7.5 compare these estimates with maximum likelihood estimates
obtained using MCMC, see Section 7.4 and Section 7.7.

A biologically more interesting model is obtained by treating the spruce
data as a marked point pattern where the stem diameters are used in the
modelling. This approach is considered in (Goulard et al. 1996) who discuss
pseudo-likelihood inference for marked point processes with the spruce data
as one of the examples. We further discuss a marked point process approach
in Section 7.5.

7.4 Likelihood inference

Consider again a parametric model of densities f� / h�; � 2 �; with respect
to Poisson(S; �), and where a closed expression for the normalizing constant
Z� given by (36) is unknown. In this section we discuss how to �nd the
maximum likelihood estimator (MLE) �̂ and the likelihood ratio statistic for
hypotheses testing using MCMC methods. For simplicity we assume that
the support fx : h�(x) > 0g does not depend on � 2 �. Furthermore, E�
denotes expectation with respect to X � f�.

Assume that a realization X = x is observed. In the exponential fam-
ily case (38), �̂ is the solution to the likelihood equation E�t(X) = t(x).
This suggest to approximate E�t(X) by Monte Carlo methods, e.g. combined
with Newton-Raphson (Penttinen 1984) or the EM-algorithm or stochastic

36



approximation/gradient methods. Geyer (1999) advocates the use of other
methods based on importance sampling as described below; see also Geyer &
Thompson (1992), Geyer & M�ller (1994), Gu & Zhu (2001), and the refer-
ences therein. Suppose that  2 � is an initial guess of �̂, e.g. the MPLE.
Then

Z�=Z = E 
�
h�(X)=h (X)

�
(43)

can be estimated by a sample X1; X2; : : : from a Harris recurrent Markov
chain with invariant density f , see Section 7.7. Hence the logarithm of the
likelihood ratio

f�(x)=f (x) =
�
h�(x)=h (x)

�
=
�
Z�=Z 

�
is approximated by

ln(�) = log

�
h�(x)

h (x)

�
� log

�
1

n

nX
i=1

h�(Xi)

h (Xi)

�
: (44)

From (44) we may obtain an approximate MLE �̂n. De�ning the importance
weights

w�; ;n(x) =
h�(x)=h (x)Pn

i=1 h�(Xi)=h (Xi)

and for any function k : Nf ! Rp ,

E�; ;nk(X) =
nX
i=1

k(Xi)w�; ;n(Xi);

we obtain approximate score functions, etc. by replacing exact expectations
by Monte Carlo expectations. For example, in the exponential family case
(38) the score function is approximated by

rln(�) = t(x)� E�; ;nt(X); (45)

and the Fisher information by

�r2ln(�) = V ar�; ;nt(X); (46)

and ln(�) is concave so that Newton-Raphson is feasible. Note that �̂n is
a function of both x and X1; : : : ; Xn. Asymptotic normality of the Monte
Carlo error

p
n(�̂n � �̂) as n!1 is established in Geyer (1994).
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The approximations (44){(46) are only useful for � suÆciently close to
 . When  is not close to �̂, Geyer & Thompson (1992) propose to use
an iterative procedure with a \trust region", but one should be particular
careful if the likelihood function is multi-modal.

A natural requirement is that ln(�) has �nite variance. This is the case
if the chain is geometrically ergodic and E jh�(X)=h (X)j2+� <1 for some
� > 0 (Theorem 1 in Chan & Geyer (1994)); or if just E jh�(X)=h (X)j2 <1
provided the chain is reversible (Corollary 3 in Roberts & Rosenthal (1997)).
For example, for the Strauss process (31), if � = (�; 
; R) and  = (� 0; 
0; R0)
with �; � 0; R; R0 > 0 and 
; 
0 2 [0; 1], then E jh�(X)=h (X)j2 < 1 if and
only if 
 � p
0.

In order to estimate Z�=Z and hence the log likelihood ratios when �
and  are far apart umbrella sampling and the method of reverse logistic
regression have been proposed, see Geyer (1991) and Geyer (1999). It is
however our experience that these methods are often numerically unstable
due to large variances for ratios of unnormalized densities. We turn therefore
now to another technique called path sampling. The advantages of using this
approach over the importance sampling approach is discussed in Gelman &
Meng (1998).

Brie
y, path sampling works as follows. Suppose that � � Rp , � !
logh�(X) is di�erentiable for � 2 �, and (d=d�)h�(X) is locally dominated
integrable along a continuous di�erentiable path �(s) 2 �; 0 � s � 1 where
 = �(0) and � = �(1). Letting V�(X) = (d=d�) logh�(X) and �0(s) =
d�(s)=ds, the identity

log
�
Z�=Z 

�
=

Z 1

0

E�(s)V�(s)(X)�0(s)Tds (47)

is straightforwardly derived. Note that for many exponential family models
(38), Monte Carlo estimation is more stable for E�(s)V�(s)(X) = E�(s)t(X) in
(47) than for E [h�(X)=h (X)] = E exp((� �  ) � t(X)) in (43). The right
hand side in (47) can be approximated by a Riemann sum using a discrete grid
of points �(si); i = 1; : : : ; m, generating independent Markov chains X i

t ; i =
1; : : : ; m, with invariant densities f�(si), and estimating E�(si)V�(si)(X) by
Monte Carlo; Berthelsen & M�ller (2001b) combine this with independent
runs of the chains, starting with a perfect simulation (see Section 7.9) for
each chain. Alternatively, a Markov chain (Xt; St) de�ned on E � [0; 1] may
be used; see Gelman & Meng (1998) for details.
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Often in applications we can choose  or � so that Z or Z� is known.
For example, for the Strauss process (31), when (�;R) is �xed and � = f
 2
(0; 1]g, we may choose � = 1 so that Z� is the normalizing constant of a
Poisson process. Then by (47), for 0 <  < 1,

log
�
Z1=Z 

�
=

Z 1

 

E

X

f�;�g�x

1[d(�; �) � R]=
 d
: (48)

Thereby an estimate of logZ is obtained. Repeating this for di�erent val-
ues of (�;R), the entire likelihood surface, the likelihood ratio statistic for
a speci�ed hypothesis (e.g. that 
 = 1), etc., can be approximated. For de-
tails, see Berthelsen & M�ller (2001b) who also determine the distribution
of the approximate likelihood ratio statistic by making further perfect and
independent simulations.

Similar methods apply for missing data situations. Suppose that only
XW = x is observed within a window W � S. Let V = S nW , Y = XW , and
Z = XV (which is unobserved). Recall that if X � � = Poisson(S; �), then
Y � �W = Poisson(W;�W ) and Z � �V = Poisson(V; �V ) are independent,
where �A denotes the restriction of � to A. So if X � f�, then Y has density

f�;W (x) =

Z
f�(x [ z)�V (dz)

with respect to �W . Note that Z�(x) =
R
h�(x [ z)�V (dz) is the normalizing

constant of the conditional density f�;V (zjx) / h�(x [ z) with respect to �V .
Consequently, the logarithm of the likelihood ratio

f�;W (x)=f ;W (x) =
�
Z�(x)=Z (x)

�Æ�
Z�=Z 

�
can be approximated by

ln;W (�) = log

�
1

n

nX
i=1

h�(x [ Zi)
h (x [ Zi)

�
� log

�
1

n

nX
i=1

h�(Xi)

h (Xi)

�
(49)

where Z1; Z2; : : : is a sample from a Harris recurrent Markov chain with
invariant density f�;V (zjx), andX1; X2; : : : is a chain as in (44). Alternatively,
path sampling can be used for estimating each of the terms log

�
Z�(x)=Z (x)

�
and log

�
Z�=Z 

�
.
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7.5 Example 2: Norwegian spruces (continued)

For the spruce data we consider two di�erent models: �rst a multiscale model
as in Section 7.3 where we ignore the stem diameters and, second, a biologi-
cally more realistic model where overlap of the in
uence zones (see Section 2.2
and Figure 2) of the trees is penalized.

For the multiscale process the likelihood is maximized using Newton-
Raphson with the score function and Fisher information approximated by
(45) and (46), respectively. We apply a trust region procedure where  and
� initially are taken equal to the maximum likelihood estimate under the Pois-
son model (i.e. with log 
i = 0, i = 1; : : : ; 4). When the output ~� of a Newton-
Raphson iteration falls outside the trust region

Q5
i=1[ i � 0:05;  i + 0:05]

new approximations (45) and (46) are calculated with the previous  value
replaced by ~�. The Newton-Raphson procedure converges to the estimate
�̂ = (�0:38;�3:69;�1:49;�0:71;�0:30) for which the repulsion is stronger
than for the pseudo likelihood estimate obtained in Section 7.3. We also max-
imize the likelihood under the null hypothesis 
1 = 
2 = 
3 = 
4 = 
, that is
for the Strauss process with R = 4:4, and obtain the estimate (�1:27;�0:44)
for (log �; log 
). The left plot in Figure 8 shows the interaction functions
corresponding to �̂ and the estimate under the null hypothesis.

Using path sampling we �nally compute the log likelihood ratio statistic
for the null hypothesis. Letting �0 = (�1:27;�0:44;�0:44;�0:44;�0:44) and
�1 = �̂, we use the path �(s) = �0 + (�1 � �0)s. The integral (47) is approxi-
mated as follows: for each of 11 quadrature points �(k=10), k = 0; : : : ; 10, the
integrand values E�(k=10)V�(k=10)(X)�0(k=10)T are replaced by Monte Carlo es-
timates and the integral with respect to s is �nally approximated using the
trapezoidal rule. The right plot in Figure 8 shows the Monte Carlo estimates
of E�(k=10)V�(k=10)(X)�0(k=10)T together with the trapezoidal approximation.
The log ratio logZ(�1)=Z(�0) is equal to 68 and the value of �2 times the log
likelihood ratio statistic is 44 which is highly signi�cant according to stan-
dard asymptotic results for the likelihood ratio statistic. Alternatively one
may consider a parametric bootstrap where the observed log likelihood ratio
statistic is compared with the distribution of the log likelihood ratio statistic
under the �tted Strauss model. Speci�cally we compute �2 times the log
likelihood ratio statistic from 99 simulations under the �tted Strauss model
(proceeding exactly as for the observed data), obtaining values between 0:06
and 15:66, so the bootstrap also provides strong evidence against the Strauss
model.
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Neither the multiscale nor the Strauss model are very satisfactory from
a biological point of view. A more realistic model can be obtained if the
in
uence zones are included in the modelling so that low probability is
assigned to point patterns with large area of overlaps between the in
u-
ence zones. Let mlo and mup denote the minimal and maximal observed
radii for the in
uence zones. For marked points (x1; m1) and (x2; m2) in
S = [0; 56]� [0; 38]� [mlo; mup] we de�ne interaction functions �1 and �2 by

�1((xi; mi)) = �k if k(mup �mlo)=6 < mi �mlo � (k + 1)(mup �mlo)=6

where �k > 0 and k = 0; : : : ; 5, and

log�2(f(x1; m1); (x2; m2)g) = jb(x1; m1) \ b(x2; m2)j log 

where 0 < 
 � 1. The function �1 allows modelling of the intensities of points
with di�erent values of the marks and �2 models the degree of repulsion in
the point pattern. The marked point process is �nally given by the pairwise
interaction density

f(f(x1; m1); : : : ; (xn; mn)g) /
nY
i=1

�1((xi; mi))
Y
i<j

�2(f(xi; mi); (xj; mj)g)

with respect to the standard Poisson point process restricted to [0; 56] �
[0; 38]� [mlo; mup]. Proceeding as for the multiscale process using Newton-
Raphson and path sampling we compute maximum likelihood estimates and
the likelihood ratio statistic for the null hypothesis �0 = �1 = � � � = �5 =
�. The maximum likelihood estimates are (�1:23;�0:34; 0:53;�0:40;�0:80;
�0:67;�1:10) for (log �0; : : : ; log�5; log 
) in the full model and (�0:33;�1:07)
for (log �; log 
) under the reduced model. The log likelihood ratio statistic
is �25 which is highly signi�cant according to both standard asymptotics
and a parametric bootstrap.

We conclude by giving some computational details. The samples used
in the Newton-Raphson optimization for Monte Carlo estimation of the
score function and Fisher information were of length 5000 and obtained
by subsampling each 200th state of a Metropolis-Hastings chain generated
as described in Section 7.7. The Monte Carlo estimates of the integrands
E�(k=10)V�(k=10)(X)�0(k=10)T in the path sampling procedure were computed
from samples of length 1000 also obtained by subsampling each 200th state
of a Metropolis-Hastings chain. The in
uence of the sample lengths and
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subsampling intervals on the Monte Carlo error of the various Monte Carlo
estimates is a subject that deserves further study. The simulations for the
parametric bootstrap were obtained by subsampling each 1000th state of a
Metropolis-Hastings chain to obtain approximately uncorrelated simulations.
A more appropriate approach would be to generate independent samples us-
ing perfect simulation, see Section 7.9.

7.6 Bayesian inference

Below we shortly comment on some of the rather few Bayesian contributions
for Markov point processes which so far have been published.

Suppose we are extending the situation considered at the beginning of
the previous section to a Bayesian setting with a prior on �. The posterior
distribution for �jX = x is complicated by the fact that the normalizing con-
stant Z� in the likelihood term is usually unknown. Heikkinen & Penttinen
(1999) suggest a Bayesian smoothing technique for estimation in pairwise
interaction processes, where the likelihood function is approximated by the
multiscale point process (32) having a large number of �xed change points
R1; : : : ; Rk�1. For convenience, they condition on the observed number n(x)
of points. A Gaussian Markov chain prior for � = (log 
1; : : : ; log 
k�1) is
chosen so that large di�erences j log 
i � log 
i�1j are penalized. As the full
posterior analysis is considered to be too demanding, they concentrate on
�nding the posterior mode, using ideas from MCMC MLE as given in Pent-
tinen (1984) and Geyer & Thompson (1992). Berthelsen & M�ller (2001b)
consider a similar situation, without conditioning on n(x) but imposing a
prior on k and R1; : : : ; Rk�1, and �nding the normalizing constant of the
likelihood term by path sampling so that a full Bayesian analysis is possible.

Lund, Penttinen & Rudemo (1999) consider a situation where an unob-
served point process X is degraded by independent thinning, random dis-
placement, a simple censoring mechanism, and independent superposition-
ing with a Poisson process of \ghost points" Z; this is related to aerial
photographs of trees disturbed by the image analysis process, cf. Lund &
Rudemo (2000). A known pairwise interaction prior on X is imposed in
Lund et al. (1999), so its normalizing constant is unimportant when dealing
with the posterior distribution for X given Y and certain other model param-
eters. Perfect simulation for this posterior is discussed in Lund & Th�onnes
(2000) and M�ller (2001b).

Finally, we mention in passing that Bayesian cluster models, using a
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locally stable prior density for the mother points, are studied in Baddeley &
van Lieshout (1993), van Lieshout (2000), and Loizeaux & McKeague (2001).
Here the parameters for the prior density for the mother points are assumed
to be known, and local stability of the posterior density may be established.
In particular, Loizeaux & McKeague (2001) discuss perfect simulation for
the posterior distribution, and applies this to data on cases of leukemia.

7.7 Metropolis-Hastings algorithms

In this and the following sections we concentrate on how to make simula-
tions from a �nite spatial point process X with a density f with respect
to Poisson(S; �) where 0 < �(S) < 1. Conditional simulation given that
the number of points n(X) = n is �xed may be done by any standard algo-
rithm for updating n components (X1; : : : ; Xn) with density fn(x1; : : : ; xn) /
f(fx1; : : : ; xng) with respect to the product measure ��� � ��� (n times), e.g.
by the classical Metropolis algorithm (Metropolis, Rosenbluth, Rosenbluth,
Teller & Teller 1953) or by Gibbs sampling (Ripley 1979); see the survey
in M�ller (1999). Incidentally the purpose in Metropolis et al. (1953) was
to simulate a hard core point process, and also the Gibbs sampler, which is
now widely used in statistics, was �rst introduced in spatial statistics (and in
statistical physics) in connection to random �elds and spatial point processes.

We follow Geyer & M�ller (1994) and de�ne a Metropolis-Hastings chain
X0; X1; : : : as follows. For technical reasons, assume that f is hereditary,
cf. (29). De�ne the state space E of the chain as the set of �nite point
con�gurations which are feasible with respect to f , i.e. E = fx 2 Nf : f(x) >
0g. Let �� = �=�(S) denote the normalization of the measure �. Now, for
Xi�1 = x 2 E, with probability 1=2 we propose to add a point � � �� to x,
and else we generate a uniformly selected point � 2 x and propose to delete
� from x (if x = ; we set � = ;). In the former case we return Xi = x [ �
with probability minf1; r(x; �)g where r(x; �) = ��(x; �)�(S)=(n(x)+1), and
we retain Xi = x otherwise. In the latter case we return Xi = x n � with
probability minf1; 1=r(x n �; �)g (setting this to 1 if x = ;), and we retain
Xi = x otherwise.

The algorithm provides a simple example of Peter Green's reversible jump
MCMC algorithm (Green 1995, Waagepetersen & Sorensen 2001). Its theo-
retical properties are studied in Geyer & M�ller (1994), Geyer (1999), and
M�ller (1999). The chain is straightforwardly seen to be reversible with re-
spect to f . Since f is hereditary, the state ; can be reached with probability
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1 within a �nite number of steps from any other state x 2 E. It thereby
follows that the chain is irreducible, and that f speci�es the unique invariant
distribution. As it can stay in ; with a positive probability, it is aperiodic.
Assuming local stability, geometrical ergodicity of the chain can be estab-
lished, and it becomes uniformly ergodic if and only if f(x) = 0 whenever
n(x) is suÆciently large, cf. the abovementioned references.

The algorithm can obviously be modi�ed by using other kinds of propos-
als for the addition or deletion of a point, and by incorporating the possibility
of making a \�xed dimension move" as mentioned at the beginning of this
section, cf. Geyer & M�ller (1994). Such modi�cations may improve the
mixing properties of the chain, but one should keep in mind that extra pro-
gramming will be needed and the CPU time for each transition will usually
be increased. The algorithm may also be combined with auxiliary variable
techniques. For example, it is combined with simulated tempering in Mase,
M�ller, Stoyan, Waagepetersen & D�oge (1999) in order to make simulations
of hard core point processes with a high density of points feasible.

7.8 Simulations based on spatial birth-death processes

Let the situation be as at the beginning of the previous section. Preston
(1977) notice that under suitable conditions, (approximate) realizations of
X � f may be obtained by running a spatial birth-death process Y = fYt :
t � 0g for a suÆcient long time. In this section we consider a coupling con-
struction for the simplest case, which becomes useful for making simulations;
this construction is also used in Section 7.9 for making perfect simulations.

Assume again that local stability is satis�ed and let K � �� denote an
upper bound on the Papangelou conditional intensity. We start by describing
how a spatial birth-death process D = fDt : t � 0g with equilibrium distri-
bution Poisson(S;K�) can easily be generated. This is next used to generate
the abovementioned process Y by a thinning procedure so that Dt � Yt for
all t � 0, provided D0 � Y0; we say that D dominates Y .

Suppose that Dt = x = fx1; : : : ; xng 2 Nf is given. Let �0; �1; : : : ; �n be
independent and exponentially distributed with means 1=(K�(S)); 1; : : : ; 1,
respectively. Then the waiting time until the next transition in D is given
by � = minf�0; �1; : : : ; �ng � Exp(K�(S) + n). If � = �0, then we have a
birth: generate a point � � �� = �=�(S) and set Dt+� = Dt [ �. If instead
� = �i with 1 � i � n, then we have a death: set Dt+� = Dt n xi. Note
that (�;Dt+� ) is assumed to be conditionally independent of the previous
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history fDs : s < tg given that Dt = x. So given the initial state D0 it
is straightforward to generate successive transition times and new states for
D. It can be shown that no matter which initial state D0 2 Nf is used, D
converges towards its equilibrium distribution given by � = Poisson(S;K�):
for any F 2 Nf , P (Dt 2 F jD0)! �(F ) as t!1. Moreover, D regenerates
each time Dt = ; and Dt� 6= ; (where Dt� = lims"tDs), and with probability
1, this happens in�nitely often.

The transition times of Y are included in the transition times of D. Sup-
pose again that Dt = x = fx1; : : : ; xng 2 Nf is given, and that Yt = y � x
with y 2 E. In the case of a birth Dt+� = Dt [ �, we let Yt+� = Yt [ �
with probability ��(y; �)=K, and retain Yt+� = Yt otherwise. In the case of a
death, Dt+� = Dt n xi, we set Yt+� = Yt n xi; so Y is unchanged at time t+ �
if xi 62 Yt. Now, given initial states Y0 2 E and D0 2 Nf with Y0 � D0, it
is straightforward to generate successive transition times and new states for
Y by thinning from D as just described. It can be shown that for all initial
states (D0; Y0) 2 Nf � E with D0 � Y0, Y converges towards its equilibrium
density f as t ! 1. Further, Y regenerates each time Yt = ; and Yt� 6= ;,
and with probability 1, this happens in�nitely often. Hence by the renewal
theorem, for any measurable function k : E ! [0;1),

1

t

Z t

0

k(Ys)ds! Ek(X) as t!1 (50)

almost surely. Finally, D and Y are each reversible, but (D; Y ) is in general
not reversible. See Preston (1977) and M�ller (1989) for further details, and
Berthelsen & M�ller (2001a) for extensions to more general cases of spatial
birth-death processes and other kind of spatial jump processes.

If Y is generated on a �nite time interval [0; t], (50) may be used for esti-
mating expectations. However, Metropolis-Hastings simulations as described
in Section 7.7 seem more popular in practice, possibly due to their simplicity.
However, spatial birth-death processes have advantages for perfect simulation
as demonstrated in the following section.

7.9 Perfect simulation

Since the seminal paper by Propp & Wilson (1996), perfect or exact simu-
lation has been an intensive area of research. The term perfect simulation
rather than exact simulation has been introduced in Kendall (1998) to em-
phasize that the output of the algorithms are only exact up to de�ciencies in
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the pseudo random number generator applied in the computer implementa-
tion of the algorithm, and since very long runs may be omitted due to time
constraints, which possibly is causing a bias in the output, cf. the discussion
in Kendall & M�ller (2000).

Perfect simulation techniques seem particular applicable for many spatial
point process models, see e.g. Kendall (1998), H�aggstr�om, van Lieshout &
M�ller (1999), Th�onnes (1999), Kendall & M�ller (2000), and Berthelsen &
M�ller (2001b); see also the surveys M�ller (2001b), Berthelsen & M�ller
(2001a), and the references therein. In this section we follow Kendall (1998)
and Kendall & M�ller (2000) and show how the coupling construction of the
spatial birth-death processes Y and D introduced in Section 7.8 can be used
for making perfect simulations from a locally stable density f .

Recall that fDt : t � 0g is reversible with invariant distribution � =
Poisson(S;K�). Hence we can easily start in equilibriumD0 � �, and extend
the process backwards in time to obtain fDt : t � 0g, using the same proce-
dure as for forwards simulations of D. Let : : : ; T�2 < T�1 < T1 < T2 < : : :
denote the times where Dt = ; and Dt� 6= ;, such that T�1 � 0 < T1. As D
regenerates at these time instances, the cycles of D

: : : ; fDt : T�2 � t < T�1g; fDt : T�1 � t < T1g; fDt : T1 � t < T2g; : : :

are i.i.d. Imagine that we generate Y within each cycle of D, setting �rst
YTi = ; for i 2 Z n f0g as D dominates Y , and then using the forwards
thinning procedure described in Section 7.8. Then f(Dt; Yt) : �1 < t <1g
is a continuous time stationary process, so for any �xed time t we have that
Yt � f .

This means that a perfect simulation Y0 � f can be obtained by �rst
simulating fDt : 0 � t � T�1g backwards in time, starting in equilibrium
at time 0, and then generate fYt : T�1 � t � 0g forwards in time by the
thinning procedure. For this we actually only need to generate the jump
chain of fDt : 0 � t � T�1g, i.e. the states Dt where a backwards transition
occurs, since this contains the jump chain of fYt : T�1 � t � 0g. However,
T�1 can be infeasible large, cf. Berthelsen & M�ller (2001b), so alternative
algorithms as described below are used in practice.

One possibility is to use upper and lower processes de�ned as follows.
Let again D0 � �, denote Z�1; Z�2; : : : the jump chain of fDt : t < 0g
when considered backwards in time, and denote : : : ;W�2;W�1 the states of
fYt : t < 0g at the times where the jumps of fDt : t < 0g occur when
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considered forwards in time. Note that D0 = Z�1, Y0 = W�1, and the
jump chain of fYt : t < 0g agrees with the jumps of : : : ;W�2;W�1. For
n = 1; 2; 3 : : :, we de�ne below the upper process Un = fUn

t : t = �n; : : : ;�1g
and the lower process Ln = fLnt : t = �n; : : : ;�1g so that

Lnt = Un
t ) Lns = Un

s for s = t; : : : ;�1; (51)

and
Lnt � Wt � Un

t � Zt: (52)

The coalescence property (51) and the sandwiching property (52) imply that
if Lnt = Un

t for some �n � t � 0, then by induction Lns = Ws = Un
s for

s = t; : : : ;�1, so Un
�1 =W�1 = Y0 � f .

We now consider the coupling construction for Z and W , and thereby
realize how to extend this to a coupling construction for upper and lower
processes satisfying (51) and (52). Let R�1; R�2; : : : be independent and
uniformly distributed on [0; 1], and independent of Z�1; Z�2; : : :. For each n,
since ; � W�n � Z�n, we set �rst U

n
�n = Z�n and L

n
�n = ;. Then we iterate

as follows for t = �n + 1; : : : ;�1: If a death happens so that Zt = Zt�1 n �,
thenWt =Wt�1 n�, and so we set Un

t = Un
t�1 n� and Lnt = Lnt�1 n�. If instead

a birth Zt = Zt�1 [ � happens, then Wt = Wt�1 [ � if Rt < ��(Wt�1; �)=K,
while Wt =Wt�1 is unchanged otherwise; so we set

Un
t = Un

t�1 [ � if Rt < maxf��(x; �)=K : Lnt�1 � x � Un
t�1g (53)

and Un
t = Un

t�1 otherwise, and set

Lnt = Lnt�1 [ � if Rt < minf��(x; �)=K : Lnt�1 � x � Un
t�1g (54)

and Lnt = Lnt�1 otherwise. By induction, (51) and (52) are satis�ed, and
Ln and Un are seen to be the maximal respective minimal lower and upper
processes with these properties. Hence, if

M = inffn > 0 : Ln�1 = Un
�1g

denotes the �rst time a pair of lower and upper processes coalesce we have
that UM

�1 � f . We call M the coalescence time. Note that by induction we
have the following funnelling property,

Ln�1
t � Lnt � Un

t � Un�1
t ; �n � t > 0: (55)
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So for n = 1; 2; 3; : : :, we may generate pairs of upper and lower processes
as described above, until Ln�1 = Un

�1, and then return Un
�1 = UM

�1. It is,
however, usually more eÆcient to use a doubling scheme: for n = 1 gener-
ate Z�1; R�1; U

1; L1, and for n = 2; 4; 8; : : :, generate Z�n; R�n; : : : ; Z�1�n=2;
R�1�n=2; U

n; Ln, until Un
�1 = Ln�1; if N denotes the �rst such n where this

happens, then return UN
�1 � f . This follows from the fact that UN

�1 = UM
�1,

sinceM � N and because of (55). As noticed in Propp &Wilson (1996), N �
4M . As observed in Berthelsen & M�ller (2001b), the doubling scheme can
be improved slightly by using the scheme n = m;m+1; m+2; m+4; m+8; : : :,
where �m denotes the �rst time a point in Z�1 is born.

It may be time consuming to �nd the maximum and minimum in (53)
and (54) unless the Papangelou conditional intensity satis�es certain mono-
tonicity properties: we say that f is attractive if ��(x; �) � ��(y; �) whenever
x � y; and repulsive if ��(x; �) � ��(y; �) whenever x � y; notice that in
both cases we easily obtain the maximum and minimum in (53) and (54). As
a matter of fact many point process models satisfy one of these conditions.
For instance, the Strauss process (31) is repulsive.

Fern�andez, Ferrari & Garcia (1999) introduce another perfect simulation
algorithm based on spatial birth-death processes, but without using upper
and lower processes, and with no requirement of monotonicity properties.
The algorithm is reviewed and compared with the one using upper and lower
processes in Berthelsen & M�ller (2001b). In general, if f is attractive or
repulsive, the algorithm described in this section is the most eÆcient.
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Figure 1: Positions of weed plants when the design is rotated 90Æ.
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Figure 2: Positions of Norwegian spruces. The radii of the discs equal 5 times
the stem diameters.
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but for G, F , J , and g.
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Figure 4: Left plot: solid line is L̂inhom;�̂(r) � r for weed plants; dashed
horizontal line is average of Linhom;�̂(r)� r functions computed from 39 sim-
ulations under the �tted Poisson model; dotted lines are 2:5% and 97:5%
envelopes for L̂inhom;�̂(r) � r obtained from the 39 simulations. Right plot:
as left plot, but for the pair correlation function.
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Figure 5: Posterior distributions of �1, �2, �, and �. The solid lines indicate
the prior distributions.
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Figure 6: Posterior means of ~Y . Values range between �0:60 (light grey)
and 0:97 (dark grey). 62
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Figure 7: Left plot: solid line is L̂inhom;�̂(r) � r for weed plants (see Sec-
tion 5.5); dashed horizontal line is average of Linhom;�̂(r)� r functions com-
puted from 39 simulations under the posterior predictive distribution; dotted
lines are 2:5% and 97:5% envelopes for L̂inhom;�̂(r)� r obtained from the 39
simulations. Right plot: as left plot, but for the pair correlation function.
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Figure 8: Left: estimated multiscale interaction function �(f�; �g) (see (32))
plotted as a function of distance r = k�� �k; solid line is for �̂ and dotted is
for the estimate under the null hypothesis (the Strauss model). Right: Monte
Carlo estimates of E�(k=10)V�(k=10)(X)�0(k=10)T, k = 0; : : : ; 10 and curve cor-
responding to trapezoidal approximation.
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