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Abstract. Spatial birth-and-death processes, spatial birth-and-catastrophe processes,
and more general types of spatial jump processes are studied in detail. Particularly,
various kinds of coupling constructions are considered, leading to some known and some
new perfect simulation procedures for the equilibrium distributions of di�erent types
of spatial jump processes. These equilibrium distributions include many classical Gibbs
point process models and a new class of models for spatial point processes introduced
in the text.

1 Introduction

Many dynamic systems of interacting \objects" evolving in time can
be described by a stochastic process Xt, where t � 0 is the time.
Often the objects can be viewed as points living in some appropriate
space S, so that Xt � S for all times t. For example, S could be
a planar or spatial region; or a space for some geometric objects
like line segments or discs. One class of models for such stochastic
processes is spatial jump processes.

In this contribution we consider the case of �nite spatial jump
processes, i.e. when Xt is a �nite subset of S. Recall that in general a
jump process is a continuous-time Markov process X = fXt : t � 0g
with piecewise constant sample path (Feller 1971). More precisely, let
x and y be �nite subsets of a given arbitrary space S. Conditionally
on the current state Xt = x and the previous history fXs : s < tg,
the waiting time �x to the next jump (i.e. Xs stays in x for t � s <
t+ �x, and Xt+�x 6= x) is exponentially distributed and depends only
on x. Furthermore, conditionally on both Xt = x, fXs : s < tg,
and �x, the next state Xt+�x = y follows some probability measure
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Px which only depends on x so that either x � y or x � y. In the
special case where each jump consists in adding/deleting exactly one
point, we have a spatial birth-and-death process (Preston 1977).

Spatial jump processes are interesting for several reasons. They
provide a large class of models for spatio-temporal processes, which
e.g. may describe many interacting particle systems studied in physics.
As we shall demonstrate, they also provide mathematical tractable
models for spatio-temporal processes. Speci�cly, we consider di�erent
coupling techniques which allow us to study the ergodic behaviour
and characterise the equilibrium distribution for a large class of mod-
els in the reversible case as well as in the irreversible case. Further-
more, due to certain thinning techniques and since the sample paths
are piecewise constant, spatial jump processes can often easily be
simulated on a computer. Particularly, we extend the ideas of Propp
& Wilson (1996) and use the thinning techniques for various per-
fect (or exact) simulation algorithms based on dominated coupling
from the past (Kendall 1998, Kendall & M�ller 2000). As in Kendall
& M�ller (2000), we prefer the term \perfect simulation" instead
of \exact simulation", since random number generators always have
defects and an algorithm may fail to deliver a simulation within
practical constraints of time.

Currently perfect simulation is a hot research topic in statistics
and applied probability, and as such the perfect simulation part (Sec-
tions 3.2 and 4.2) is of its own interest. Perfect simulation techniques
have proven to be particular useful in statistical physics, spatial
statistics, and stochastic geometry. A recent review on perfect simu-
lation in stochastic geometry is given in M�ller (2001). H�aggstr�om,
van Lieshout & M�ller (1999) and Georgii (2000) deal with perfect
simulation and some aspects of phase transition in the Widom &
Rowlinson (1970) model and related models. For a survey on the
historic development of perfect simulation and a comprehensive list
of references, see http://www.dbwilson.com/exact.

In this contribution we dicuss various constructions of spatial
jump processes, study the ergodicity properties of these processes,
characterise their equilibrium distributions, and show how to start
spatial jump processes in equilibrium by the use of perfect simu-
lation techniques. Readers interested in a further discussion of the
statistical and computational aspects (using perfect simulations) are
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referred to Berthelsen & M�ller (2001). Furthermore, many of the
ideas in the perfect simulation part of the text apply to Gibbs
sampling (also known in statistical physics as the heat-bath algo-
rithm) and other Metropolis-Hastings algorithms for spatial point
processes (H�aggstr�om et al. 1999, Th�onnes 1999, M�ller & Schladitz
1999, M�ller 2001, Kendall & M�ller 2000).

The text is organized as follows. Section 2 provides some back-
ground material on simple jump processes (i.e. when the position of
points is ignored), which becomes useful when we later couple sim-
ple jump processes with spatial jump processes. Section 3 concerns
spatial birth-and-death processes and a description and compari-
son of the perfect simulation algorithms in Kendall & M�ller (2000)
and Fern�andez, Ferrari & Garcia (1999). Section 4 concerns spatial
birth-and-catastrophe processes, i.e. when a jump consists in either
adding a new point or deleting all existing points. Finally, Section 5
comments on more general cases of spatial jump processes.

2 Simple jump processes

This section is a short diversion into simple jump processes as they
will eventually control everything which goes on in this text. See for
example Norris (1997) and Asmussen (1987) for more details.

A simple jump process N = fNt : t � 0g is a continuous time
Markov process with state space IN0 = f0; 1; 2; : : :g and piecewise
constant right-continuous paths. It can formally be constructed as
follows. Let J1 < J2 < J3 : : : be the times at which N makes a jump,
and set J0 = 0. Further, for all n 2 IN = f1; 2; : : :g, let

Hn =

(
Jn � Jn�1 if Jn <1
1 otherwise

be the holding times, and set Mn = NJn. The discrete time Markov
chainM = fMn : n 2 IN0g is called the jump chain (or the embedded
Markov chain). For any n 2 IN and any i 2 IN0, the conditional
distribution of Hn given H1; : : : ; Hn�1;M0; : : : ;Mn�1 = i is Exp(qi),
the exponential distribution with mean 1=qi, where qi > 0 is a given
parameter. Furthermore, for any j 2 IN0nfig,

IP(Mn = jjH1; : : : ; Hn;M0; : : : ;Mn�1 = i) = qij=qi;
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where the qij � 0 are given parameters so that qi =
P

j 6=i qij. The
matrix Q = fqij : i; j 2 IN0g with qii = �qi is called the generator of
N .

In other words, conditionally on Nt = i, the waiting time �i to
the next jump is independent of the previous history fNs : s < tg,
and �i � Exp(qi). Moreover, conditionally on both Nt = i, fNs : s <
t+ �ig, and �i, we have that Nt+�i jumps to j with probability qij=qi
for j 6= i.

In the sequel we impose the following technical conditions, which
are commented below.

Conditions:

(i) � = f�i : i 2 IN0g is a given probability density function where
the support I = fi : �i > 0g is given by either I = IN0 or I =
f0; : : : ; lg for some l 2 IN0.
(ii) Q is irreducible, i.e. for all distinct i; j 2 I exist i0; i1; : : : in 2 I
such that i0 = i, in = j, and qi0i1 : : : qin�1in > 0.
(iii) � is invariant for Q, i.e. �Q = 0.
(iv) Q is non-explosive, i.e. IP(

P
nHn <1jN0 = i) = 0 for all i 2 I;

see Fig. 1.

J1 J2 J3 J4

1H H H2 3 4

J0

H

t

Fig. 1. Example of an explosive simple jump process.

Remarks:

(a) Condition (i) is a kind of hereditary condition on �. It is equiva-
lent to assuming that the support is of the form I = f0; 1; : : : ; lg or
I = IN0.
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(b) Conditions (ii) and (iii) imply that � is the unique invariant
distribution for Q.
(c) Sometimes we assume that Q and � are in detailed balance, i.e.

�iqij = �jqji for all i; j 2 IN0: (1)

(d) Detailed balance implies that � is invariant for Q. Combin-
ing (ii), (iv), and (1) we obtain reversibility of N .
(e) Condition (iv) holds if and only if the only bounded solution to
Qk = k for column vectors k = (k0; k1; : : :)

T is k = (0; 0; : : :)T (see
e.g. Asmussen (1987)). A suÆcient condition for this is supi2I qi <
1.
(f) Conditions (ii) and (iv) imply positive recurrence, i.e. for any
i 2 I, the time between two consecutive occurrences of i in N has
�nite mean.
(g) Conditions (i){(iv) imply convergence towards �, see e.g. Theo-
rem 3.6.2 in Norris (1997) or Theorem II.4.6 in Asmussen (1987).
(h)For later purposes we notice that the jump chain has invariant dd
density �0i / qi�i, and it is positive recurrent (by Theorems 3.4.1 and
3.5.3 in Norris (1997), the jump chain is recurrent; and recurrence
implies positive recurrence as the support I is countable). Further-
more, let L be the number of jumps in a cycle of the jump chain,
i.e. the number of jumps between two successive zeros in the jump
chain. Then by Kac's theorem (Meyn & Tweedie 1994),

IEL = 1=�00: (2)

3 Spatial birth-and-death processes

3.1 General properties based on coupling constructions

This section considers �nite spatial birth-and-death processes de-
�ned on some rather arbitrary space S, cf. Section 3.1.2. Section 3.1.1
concerns the simplest case where S is a singleton; this case corre-
sponds to a simple jump process with jumps of the type i ! i � 1.
The general case is described in Section 3.1.2, using a coupling to a
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dominating simple birth-and-death process. Section 3.1.3 discusses
a detailed balance condition and an extension of the concept of local
stability (Ruelle 1969). Section 3.1.4 considers how to construct in
an easy way a spatial birth-and-death process by thinning from a
simpler dominating spatial birth-and-death process, extending ideas
in Kendall (1998) and Kendall & M�ller (2000). This coupling con-
struction will also be used in Section 3.2 for perfect simulation pur-
poses.

3.1.1 The simple case

A simple jump process with generator Q is a simple birth-and-death
process if qij = 0 whenever ji� jj > 1. For convenience set bi = qi;i+1
and di+1 = qi+1;i for i 2 IN0. Throughout this section we assume that

�ibi = �i+1di+1 > 0 whenever �i+1 > 0: (3)

This assumption is equivalent to the conditions (i){(iii) and the de-
tailed balance condition (1) in Section 2. Regarding the �nal con-
dition (iv) in Section 2, by Reuter & Ledermann (1953), a simple
birth-and-death process is non-explosive ifX

i2I

1

bi
=1: (4)

In the sequel we often refer to the following Examples 1{3.

Example 1: Consider a standard immigration birth-and-death pro-
cess, i.e. bi � � > 0 and di+1 = i+1 for i 2 IN0. Clearly, (3) and (4)
are satis�ed, and

�i = e���i=i! (5)

is Poisson. By (h) in Section 2, �0i+1 / �i+1 + �i. Hence by (2),
IEL = 2e�.

Example 2: For i 2 IN0, let bi = p and di+1 = 1�p, where 0 < p < 1
2
.

Then (3) and (4) are satis�ed, and

�i = (1� q)qi (6)

is geometric with parameter q = p=(1� p). The corresponding jump
chain is a random walk with re
ecting barrier at 0. Using (h) and
(2), we obtain that IEL = 2q=(1� q).
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Example 3: In this example we start by specifying � and then
determine the birth and death rates such that (3) and (4) hold.
Assume that

�i =
� (i+ �)

� (�)i!
(1� q)�qi (7)

is negative binomial, where � > 0 and 0 < q < 1. Letting q =
p=(1� p), one solution to (3) is an extension of Example 2 such that

bi = p(i+ �)=(i+ 1) and di+1 = 1� p:

Then (4) is seen to hold.

3.1.2 The spatial case

In the spatial case we consider stochastic processes X = fXt : t � 0g
de�ned on a metric space S with metric d(�; �). We equip S with the
Borel �-algebra B and let � denote an arbitrary di�use probability
measure on B (here \di�use" means that �(f�g) = 0 for all � 2 S).
For simplicity we consider Xt to be a �nite subset of S, though
everything in the sequel easily extend to the case where Xt is allowed
to have multiple points (then � is not necessarily di�use). For any
�nite x � S, let n(x) denote the number of points in x. The state
space of Xt is 
 =

S1
i=0
i, where 
i = fx � S : n(x) = ig

is the set of �nite point con�gurations of cardinality i; note that

0 = f;g where ; denotes the empty point con�guration. We equip

 with the smallest �-algebra F making the mappings nB(x) =
n(x \ B) measurable for all bounded B 2 B. For technical reasons
S is assumed to be a Polish space (i.e. every Cauchy sequence is
convergent, and S admits a countable dense set). Then 
 is a Polish
space with respect to the Hausdor� (or Prohorov) metric, and its
Borel �-algebra is equal to F ; for details, see Daley & Vere-Jones
(1988). Finally, for x 2 
 and � 2 S, we write xn� for xnf�g, and
x [ � for x [ f�g.

Now, consider a spatial birth-and-death process X. We specify
this by two measurable functions �; Æ : 
 � S ! [0;1). For any
x 2 
, �(x; �) is the birth rate at which a point � 2 S is added to
x, and if x 6= ;, Æ(xn�; �) is the death rate at which a point � 2 x is
deleted from x. Roughly speaking, for an in�nitesimal time interval
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[t; t+ dt] and an in�nitesimal ball d� with centre �,

IP(Xt+dt n x is a point in d� jXt = x) � �(x; �)�(d�)dt;

IP(Xt+dt = xn� jXt = x) � Æ(xn�; �)dt;
IP(more than one jump in [t; t+ dt]jXt = x) � 0:

More precisely, de�ne in a similar way as in Section 2, the jump times
J1 < J2 < : : :, the holding times H1; H2; : : :, and the jump chain
Y = fYn : n 2 IN0g for X, where Y0 = X0. Further, for x 2 
, let
B(x) =

R
S
�(x; �)�(d�) andD(x) =

P
�2x Æ(xn�; �) be the total birth

and death rates, assumingB(x) <1 and settingD(;) = 0. Then the
conditional distribution of Hn given H1; : : : ; Hn�1; Y0; : : : ; Yn�1 = x
is Exp (B(x) +D(x)). If we also condition on Hn, the probability for
a birth at time Jn is B(x)=(B(x) + D(x)). If we further condition
on that a birth happens at time Jn, then Yn = x [ �, where � has
density �(x; �)=B(x) with respect to �. If we instead condition on
that a death happens at time Jn, then Yn = xn�, where � 2 x is
selected with probability Æ(xn�; �)=D(x).

It remains to clarify if such a spatial birth-and-death process is
non-explosive. Given a generator Q for a non-eplosive simple birth-
and-death process N as in Section 3.1, we assume henceforth that

�(x; �) = bn(x)�b(x; �) and Æ(x; �) = dn(x)+1 �d(x; �)=(n(x) + 1) (8)

where
0 � �b � 1 and �d � 1 (9)

are measurable functions. By (8) and (9),

B(x) � bn(x) and D(x) � dn(x): (10)

It is then possible to couple N and X so that

Nt � n(Xt) for all t � 0 (11)

if N0 � n(X0). Brie
y, (X;N) is a jump process where X and N
evolve independently of each other as long as Nt > n(Xt), while if
Nt = n(x) = n and Xt = x, (Xt; Nt) jumps to (x0; n0) with a rate
speci�ed as follows:

�(x; �) for (x0; n0) = (x [ �; n+ 1),
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bn � B(x) for (x0; n0) = (x; n + 1),

dnÆ(xn�; �)=D(x) for (x0; n0) = (xn�; n� 1),

(D(x)� dn)Æ(xn�; �)=D(x) for (x0; n0) = (xn�; n).
By (10) and (11), since Q is non-explosive, it is intuitively clear that
X is non-explosive. A formal proof can be found in Preston (1977).

Combining (f) in Section 2, (11), and the renewal theorem (see
e.g. Theorem V.1.2 in Asmussen (1987)), we obtain the following
results. Write Xt� for the state of X just before time t, let T =
infft > 0 : Xt� 6= ;; Xt = ;g be the return time to ; when X0 = ;,
and set � = IE(T jX0 = ;). Then ; is an ergodic atom, i.e. � < 1.
Hence X jumps to ; in�nite often, and at each such jump time X
regenerates (i.e. X at such a time is independent of its past history).
As t ! 1, Xt converges in distribution towards an equilibrium
distribution �, say, independent of the initial state of X0, i.e. for
all bounded functions f : 
 ! IR which are continuous almost
everywhere with respect to � ,

IE[f(Xt)jX0]!
Z

f(x)�(dx) as t!1: (12)

Further,

�

Z
f(x)�(dx) = IE

�Z T

0

f(Xt)dt

����X0 = ;
�
; (13)

and the support of � is given by

supp(�) = 
0 [
�fx1; : : : ; xng 2 
 : n 2 IN and

�(fx1; : : : ; xi�1g; xi) > 0 for i = 1; : : : ; n
	
: (14)

Finally, we often have geometrically fast convergence towards �,
cf. M�ller (1989). For instance, this is the case when bi and di are
speci�ed as in Examples 1{3.

3.1.3 Detailed balance and local stability conditions

Let the situation be as in Section 3.1.2. In this section we discuss
a detailed balance condition which characterises � in (13). Further-
more, we motivate an extension of the important concept of local
stability (Ruelle 1969, Geyer 1999, Kendall & M�ller 2000).
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In order to specify the invariant distribution �, we assume that �
is an unnormalised density with respect to the probability measure

� =
1X
i=0

�i�i (15)

where � is given by (3), �0 is the probability measure concentrated at
the empty point con�guration, and �i (i � 1) denotes the distribu-
tion for a binomial point process given by i independent points in S
with common distribution �. If � is a Poisson distribution with mean
�, then � is simply a Poisson point process with intensity measure
��. Note that for a point process Z � �, conditionally on n(Z) = i,
Z has unnormalised density � with respect to �i, i.e. no matter the
choice of �.

Now, as in Ripley (1977), we obtain that the detailed balance
condition,

�b(x; �)�(x) = �d(x; �)�(x [ �) > 0 whenever �(x [ �) > 0 (16)

ensures that � has a density proportional to �, and X is time re-
versible with respect to � (Ripley (1977) assumes � to be Poisson,
but we do not need to make this restriction). Note that (9) and (16)
always imply that � is non-increasing,

�(x [ �) � �(x) (17)

which in turn implies integrability of � with respect to � no matter
the choice of �. We refer to (17) as local stability of � with respect
to � for the following reasons.

Geyer (1999) and Kendall & M�ller (2000) consider the common
case (5) where � is Poisson and

�(x[ �) � K�(x); �d � 1; �b(x; �) =

(
�(x [ �)=�(x) if �(x) 6= 0

0 otherwise

(18)
for some constant K (independent of x and �). Then points are
dying with uniform rate 1, and �b is the Papangelou conditional in-
tensity (Kallenberg 1984, Daley & Vere-Jones 1988). Note that (18)
implies (16), and the existence of the uniform upper bound K on �b
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is local stability in the sense of Ruelle (1969). As we can replace �
in (5) by � 0 = �K, and � in (18) by �0(x) = �(x)=Kn(x), we can
without loss of generality assume K = 1. Then (9) and (17) are
satis�ed.

On the other hand, if � is not Poisson, then in general we do
not have Ruelle local stability. For instance, let � be given by (6),
and let ~� =

P
i ~�i�i where ~�i = e�1=i! is Poisson. Then ~�(x) =

�(x)qn(x)n(x)! is the corresponding unnormalised density with re-
spect to ~�, but (17) does not ensure that

~�(x [ �)=~�(x) = (�(x [ �)=�(x))q(n(x) + 1)

is bounded by a constant K.
We now consider two examples where (17) is satis�ed. The �rst

example is frequently used later in the text, and it shows the e�ect of
the speci�cation of �. The other demonstrates that the speci�cation
of � and � sometimes requires a little thought.

Example 4: Suppose that

�(x) = 
sR(x) (19)

where sR(x) =
P

f�;�g�x 1l[d(�; �) � R], and 0 � 
 � 1 and R � 0
are given parameters. In the case where � is Poisson, we obtain a
usual Strauss process (Strauss 1975, Kelly & Ripley 1976); if further

 = 0, we have a Gibbs hard core process (taking 00 = 1 in (19)).
Clearly, � is non-increasing.

Simulated realisations of di�erent Strauss processes are shown
in Fig. 2. For this the perfect simulation algorithm in Section 3.2.2
has been used. Due to the thinning procedure in that algorithm (as
illustrated later in Fig. 4), the �rst point pattern in Fig. 2 contains
the two others.

Fig. 3 shows the mean number of points for di�erent values of

 when � is either Poisson or geometric; the means are estimated
by Monte Carlo methods using the perfect simulation algorithms in
Sections 3.2.2 and 4.2. In the geometric case, for 
 close to 1, the
mean is very sensitive to changes in 
, while for 
 not close to 1, the
number of points is very small.
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Fig. 2. Simulation of a usual Strauss process (�i / �i=i!) on S = [0; 1]2, when � = 100,
R = 0:05, and 
 = 1; 0:5; 0 (from left to right).

10
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Fig. 3. Mean number of points versus 
 in a usual Strauss process (�i / �i=i! ; upper
curve) and in a \geometric-Strauss" process (�i / qi; lower curve). In both models,
R = 0:05 and � has mean 100 (i.e. � = 100 and q = 100=101). Each mean number of
points is estimated from 500 i.i.d. samples.

Example 5: Assume that S � IRk has Lebesgue measure 1, � is the
uniform distribution on S, and �i / �i=i! is Poisson. Consider an
area interaction point process with unnormalised density

�(x) = 
��(Ux)

with respect to � (Widom & Rowlinson 1970, Baddeley & van Lies-
hout 1995, H�aggstr�om et al. 1999, M�ller 2001). Here Ux = [�2xball(�; R)
where ball(�; R) denotes the closed ball centred in � with radius R,
and R > 0 and 
 � 0 are given parameters. The process is said to
be attractive for 
 > 1 and repulsive for 
 < 1, as

�(x [ �)=�(x) = 
��(Ux[�nUx) (20)

is non-decreasing (
 > 1) or non-increasing (
 < 1) in x. It fol-
lows from (20) that (17) holds in the attractive case but not in the

12



repulsive case. In the latter case we therefore rede�ne � by taking
�i / (�
�B)

i
=i! where B is the volume of a ball in IRk with radius

R, and rede�ne � by

�(x) = 
n(x)B��(Ux):

Then (17) is satis�ed.

3.1.4 Coupling construction

Consider again the situation in Section 3.1.2. This section presents
a coupling constructing where X is obtained by thinning from a
dominating spatial birth-and-death process D, which is easily con-
structed. The coupling construction extends that of Kendall (1998)
and Kendall & M�ller (2000), and it is advantageous for simulation
of X as the computation of the integral B(x) =

R
S
�(x; �)�(d�) is

not needed. Furthermore, the coupling construction becomes later
useful for perfect simulation.

As will be clari�ed below, we need to assume that

bi�1 � bi and di=i � di+1=(i+ 1) for i 2 Inf0g: (21)

For instance, (21) is satis�ed in Examples 1{3.
The dominating process D has birth and death rates

�D(x; �) = bn(x) and ÆD(x; �) = dn(x)+1=(n(x) + 1):

This choice corresponds to a maximal birth rate and a minimal death
rate in (8), cf. (9). By (16), D has invariant distribution �. As the
total birth and death rates satisfy

BD(x) = bn(x) and DD(x) = dn(x);

we can take N = n(D). The process Dt; t � 0; can easily be gen-
erated: The simple birth-and-death process N is straightforwardly
generated, and Dt; t � 0; is constructed forwards in time by

Nt = Nt� + 1) Dt = Dt� [ �t;
Nt = Nt� � 1) Dt = Dt�n�t;

where �t � � and �t is a uniformly selected point from Dt� (and
where �t and �t are independent of the history of D before time t).
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We wish to couple X to D so that D dominates X in the sense
that

Xt � Dt for all t � 0: (22)

For simplicity, as in Kendall (1998) and Kendall & M�ller (2000), we
consider the case where di / i. This is ful�lled in Example 1. Further
we assume that �d and �b are speci�ed by (18) where � satis�es (17).
Then Xt can be constructed iteratively for t � 0 as follows. Each
time Nt = Nt� + 1 we associate to the birth in D at time t a mark
Rt � Uniform[0; 1] which is independent of fDs : 0 � s � tg and
previous marks Rs; 0 � s < t. Initially let X0 � D0 and then

Nt = Nt� )Xt = Xt� (23)

Nt = Nt� + 1)Xt =

(
Xt� [ �t if Rt � �b(Xt�; �t)bn(Xt�)=bNt�

Xt� otherwise
(24)

Nt = Nt� � 1)Xt = Xt�n�t: (25)

Clearly this construction satis�es (22) as illustrated in Fig. 4. It is
straightforwardly veri�ed that the birth and death rates of X are
given by (8). Note that (22) and (24) imply the need of the �rst
restriction in (21).

Example 3 (and hence also Example 2) does not satisfy di / i,
but it is still to some extend possible to use the coupling construction
above, letting now di = (1� p)i and bi = (i+�)p. Then the detailed
balance condition (1) is ful�lled, and Q is non-explosive as (4) is
satis�ed.

Now, consider the situation where we neither assume di / i nor
that �b and �d are speci�ed by (18). In general we have that (22)
together with (25) imply a lower bound on the death rate

Æ(xn�; �) = dn(x) �d(xn�; �)=n(x) � dn(y)=n(y) for

� 2 x; y 2 
; x � y; x 6= ;:
This explains why the second restriction in (21) is needed. By (8),
for each � 2 Xt�, we need a rate

dn(Xt�)
�d(Xt�n�; �)=n(Xt�)� dn(Dt�)=n(Dt�) (26)

for deleting � from X but not from D. In the coupling construction
below we show how this is possible. However, readers who prefer to
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skip these technical details should move on to Section 3.2 where only
the construction in (23){(25) is used.

The process Xt is iteratively generated forwards in time t � 0 as
follows. Initially let X0 � D0, and let Xt = Xt� whenever Nt = Nt�.
Consider �rst the case t = 0. Set x = Xt, i = n(x), and j = n(Dt).
Let � = minfs > t : Ns� 6= Nsg be the �rst jump time in N after
time t. In accordance with (26), for each � 2 x, de�ne

a� = di �d(xn�; �)=i� dj=j and A(x) =
X
�2x

a�; (27)

setting A(x) = 0 if x = ;. Then generate � 0 � Exp(A(x)) (indepen-
dently of � and the history of D and X before and including time
t), setting � 0 = 1 if A(x) = 0. If � 0 < � � t, then increase t by � 0

and set Xt = xn�, where � 2 x is chosen with probability a�=A(x)
(independently of � , � 0, and the history of D and X before time t).
Else set t = � and let

Nt = Nt� + 1) Xt =

(
x [ �t if Rt � �b(x; �t)bi=bj

x otherwise
(28)

Nt = Nt� � 1) Xt = xn�t; (29)

where in (28) we associate to the birth inD a markRt � Uniform[0; 1]
(independent of � , � 0, the history of D before and including time t,
and the history of X before time t). Repeating this procedure it
is straightforwardly veri�ed that (22) is satis�ed and the birth and
death rates of X are given by (8).

3.2 Perfect simulation

In this section we discuss perfect simulation procedures based on
coupling from the past (Propp & Wilson 1996) for a point process
with a distribution � with respect to � in (15). We assume that
� is the equilibrium distribution of a spatial birth-and-death pro-
cess satisfying the conditions in Sections 3.1.2 and 3.1.4. We use the
coupling construction in Section 3.1.4 in two ways, extending the
methods of Kendall & M�ller (2000) in Sections 3.2.1 and 3.2.2, and
of Fern�andez et al. (1999) in Section 3.2.3. Finally, in Section 3.2.3
we compare the methods and report on some empirical �ndings.
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D

X

t

t

0

S

S

Fig. 4. Illustration of the coupling construction when �d � 1, X0 � D0 and S = [0; 1].
Top: the dominating process D. Bottom: the target process X obtained by thinning
from D as described in (24).

Throughout this section we assume for simplicity that di / i, and
�d and �b are speci�ed by (18) where � satis�es (17). However, it is
possible to extend our perfect samplers to the case of the more com-
plicated coupling construction described at the end of Section 3.1.4.

3.2.1 Dominated coupling from the past

In this section we describe the simplest version of dominated coupling
from the past (dominated CFTP), also called horizontal CFTP, cf.
the survey in M�ller (2001). For further details on dominated CFTP
in a general setting, see Kendall & M�ller (2000). Re�ned versions
of dominated CFTP are given in Sections 3.2.2 and 3.2.3.

The basic idea in dominated CFTP is as follows. Start the domi-
nating process D from Section 3.1.4 in equilibrium at time 0, and ex-
tend it both forwards and backwards in time. This is generally easily
done, sinceD has equilibrium distribution � andD is time reversible.
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Further, for all forwards births DtnDt� 6= ; with �1 < t <1, gen-
erate independent marks Rt � Uniform[0; 1], where the Rt's are in-
dependent of fDt : �1 < t <1g. Let �i; i 2 IN0; denote the times
D enters ;, i.e. D�i� 6= ; and D�i = ;, and assume that �i < �i+1
for all i 2 IN0. For each i 2 IN0, construct a target process Xt on
the time interval [�i; �i+1] in exactly the same way as in Section 3.1.4
except that we are now starting with X�i = ;. Then (D;X) regen-
erates each time D enters ;, Xt � Dt for all �1 < t < 1, and X
is a spatial birth-and-death process with equilibrium distribution �,
where � has unnormalised density �. Because of time-stationarity of
(D;X), for any two �xed times, e.g. 0 and �1, X0 andX�1 follow the
same distribution, which is then the invariant distribution �. Hence
X0 � �.

Let �T; � 0 denote the �rst time that D enters ; when D is
generated backwards from time 0. As ; is an ergodic atom, T; is
�nite almost surely. Note that for the generation of X0, it suÆces to
consider the jump chains of D and X on the time interval [�T;; 0].
Let T 0

; be the number of jumps D makes on [�T;; 0]. As illustrated
in Fig. 5, for the perfect simulation procedure described above, we
need only to

(I) generate D0 � �;

(II) generate the jump chain of D (together with the marks for
forwards births), for T 0

; steps backwards in time from time 0;

(III) construct the jump chain of fXt : �T; � t � 0g forwards in
time;

(IV) return X0 � �.

However, for many applications T 0
; will be infeasibly large as

shown in the following example.

Example 6: Consider the jump chain f: : : ;M�2;M�1;M1;M2; : : :g
from Section 2 when this is in equilibrium and extended to all times
n 2 ZZnf0g. Let L0 = T 0

; + T 00
; where T 0

; = inffn 2 IN : M�n =
0g and T 00

; = inffn 2 IN : Mn = 0g. By reversibility, T 0
; and T 00

;

are identically distributed, so IET 0
; = IEL0=2. By time-stationarity,

IP(L0 = l) = IP(L = l)l=IEL, hence IEL0 � IEL, i.e. IET 0
; � IEL=2.

Combining this with (2), it is straightforwardly derived that

IET 0
; � ��=�1 (30)
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0�T;

X0 � �

D0 � �
D

t
X

Fig. 5. Illustration of the idea behind dominated CFTP.

where �� denotes the mean of the distribution �.
Consider �rst the Poisson case �i / �i=i!. By (30), IET 0

; � e� is
at least exponentially growing in �. For example, if � = 100 (corre-
sponding to �� = 100),

IET 0
; � e100 � 2:7� 1043: (31)

Consider next the case where �i / qi� (i + �)=i! is negative bi-
nomial as in Example 3, where � > 0 and 0 < q < 1. Let di = i and
bi = (i + �)q (as noticed in Section 3.1.4, Q is then non-explosive).
By (30),

IET 0
; � (1� q)�(1+�): (32)

If (1 � q)1�� � �q(1 + q), a better bound is obtained as follows.
The probability for a transition i ! i + 1 in M is q(i + �)=(q(i +
�) + i). As i increases, q(i + �)=(q(i + �) + i) decreases towards
p � q=(1 + q) < 1=2. Hence it suÆces to consider a random walk
fSn : n 2 IN0g starting in S0 = N0 and with IP(Sn+1 � Sn = 1) =
1 � IP(Sn+1 � Sn = �1) = p, since we can couple the random walk
to M so that T 00

; � T0 where T0 = inffn 2 IN0 : Sn = 0g. By Wald's
identity, N0 = (1� 2p)IE(T0jN0), and so IEN0 � (1� 2p)IET 00

; , i.e.

IET 0
; � �q(1 + q)=(1� q)2: (33)

For instance, in the case of a geometric distribution (� = 1), this is
a better bound than that in (32) when q > (

p
5� 1)=2 � 0:618, and

we obtain
IET 0

; � 20100 (34)
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if q = 100=101 and � = 1 (corresponding to �� = 100).
This indicates that the running time may be much smaller in the

geometric case than in the Poisson case (at least when �� = 100 in
both cases). In the geometric case we expect the distribution of T 0

; to
be heavy-tailed so that very long running times may occur. However,
in the negative binomial case with � � 1, a smaller coalescence time
is obtained using the algorithm in Section 4.2.

3.2.2 Upper and lower processes

A faster perfect simulation procedure can be obtained by construct-
ing upper and lower processes U s = fU s

t : s � t � 0g and Ls =
fLs

t : s � t � 0g for s � 0. These ar constructed forward in time as
follows. Initially set U s

s = Ds and Ls
s = ;. For s < t � 0, if d = Dt�,

u = U s
t�, and l = Ls

t�, let

Dt = d ) U s
t = u and Ls

t = l;

Dt = dn�t ) U s
t = un�t and Ls

t = ln�t; (35)

Dt = d [ �t ) U s
t =

(
u [ �t if Rt � �max(d; u; l; �t)

u otherwise

and Ls
t =

(
l [ �t if Rt � �min(d; u; l; �t)

l otherwise;
(36)

where

�max(d; u; l; �) = maxf�b(x; �)bn(x)=bn(d) : l � x � ug; (37)

�min(d; u; l; �) = minf�b(x; �)bn(x)=bn(d) : l � x � ug: (38)

Other choices of �max and �min are possible and may be convenient
for computational reasons, cf. the discussion at the end of this sec-
tion.

The construction in (35){(38) ensures the sandwiching property

Ls
t � Xt � U s

t � Dt; s � t � 0; (39)

the funnelling property,

Ls0

t � Ls
t � U s

t � U s0

t ; s � s0 � t � 0; (40)
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and the coalescence property,

Ls
t = U s

t ) Ls
t0 = U s

t0 for s � t � t0 � 0; (41)

see Fig. 6. Hence once a pair of upper and lower processes have
coalesced, they stay in coalescence, and at time 0 they are equal to
X0 � �.

Now the perfect simulation algorithm works as follows. Pick a
sequence of times : : : s2 < s1 < 0; where limi!1 si = �1. Then
start D in equilibrium at time 0 and generate it backwards until
time s1. For forwards birth times t 2 [s1; 0] inD, generate i.i.d. marks
Rt � Uniform[0; 1] independent of D. Then generate the upper and
lower processes U s1 and Ls1 as in (35){(36). If U s1 and Ls1 are in a
common state at time 0 then stop. If not then extend D (together
with the marks for forwards births) further backwards from t = s1
to t = s2, construct U s2 and Ls2, and check if U s2

0 = Ls2
0 . This

backwards-forwards step is repeated until the upper and lower chains
have coalesced by time 0, i.e. at the coalescence time �Ts = supfsi :
U si
0 = Lsi

0 g. By (39), we have U�Ts
0 = X0 and hence U�Ts

0 � �. This
procedure is illustrated in Fig. 6.

s1

D

�T; s3 = �Ts

t
s2

LS3

0

X LS1LS2

US2

US3

US1

X0 = U
�Ts
0

� �

D0 � �

Fig. 6. Illustration of sandwiching, funnelling, and coalescence properties.

Notice that we need only to generate the jump chains of D and
the upper and lower processes. Hence it is sensible to let fsig �
fJ�ig, where : : : J�2 � J�1 < 0 are the jump times of D before time
0. As �Ts � �T � J�n(D0), where �T = supfs � 0 : U s

0 = Ls
0g

is the \true coalescence time", it is natural to let s1 � J�n(D0).
For eÆciency reasons a doubling scheme is usually used (Propp &
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Wilson 1996), i.e.

s1 = J�n; s2 = J�2n; s3 = J�4n; s4 = J�8n; : : : ; (42)

where n 2 IN is a user-speci�ed parameter. Then we write Tn for Ts.
Note that T 0 � T 0

n for the coalescence times in the jump chains, i.e.
T 0 and T 0

s are de�ned by �T = J�T 0 and �Ts = J�T 0s . The doubling
scheme can be re�ned by letting

s1 = J�T 0
min
; s2 = J�T 0

min
�n; s3 = J�T 0

min
�2n; s4 = J�T 0

min
�4n; : : : ; (43)

writing Tn;min for Ts, and where T 0
min = inffk 2 IN0 : DJ�k \D0 = ;g

speci�es the number of jumps D has to go through from the �rst
point in D0 is born until time zero. Often in applications, Tn � T;,
T 0
n � T 0

; and T 0
n;min � T 0

n; this is illustrated later in Example 7.
The calculation of �max and �min is particular simple in the fol-

lowing cases. A point processes is attractive respectively repulsive
if

�b(x; �) � �b(y; �) whenever x � y; � 62 y; (44)
�b(x; �) � �b(y; �) whenever x � y; � 62 y: (45)

For example, for the point processes considered in Examples 4 and 5,
either (44) or (45) is satis�ed. In the attractive case (44) we obtain
by (21) and (37){(38),

�max(d; u; l; �) = �b(u; �)bn(u)=bn(d);

�min(d; u; l; �) = �b(l; �)bn(l)=bn(d):

In the repulsive case (45), it is computational convenient to rede�ne
�max and �min by

�max(d; u; l; �) = �b(l; �)bn(u)=bn(d);

�min(d; u; l; �) = �b(u; �)bn(l)=bn(d):

Then the perfect simulation algorithm still works as (39){(41) hold.
Note that it is only in the attractive case that U s and Ls are individ-
ual Markov chains. Observe also that in Fig. 2, the point pattern for

 = 0 is not contained in that for 
 = 0:5. This is possible because
the Strauss model is non-attractive.
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3.2.3 Clan of ancestors

An alternative perfect simulation algorithm is given by Fern�andez
et al. (1999). We assume that � has �nite range of interaction, i.e.
there exists an R < 1 such that for any x 2 
 and � 2 Snx,
�b(x; �) = �b(x \ ball(�; R); �). This is ful�lled in Examples 4 and 5.

The algorithm is based on two central concepts de�ned as follows.
Consider again the coupling construction in Section 3.1.4. When
we have a birth Dt = Dt� [ �t, the parents of � = �t is the set
pa(�) = Dt� \ ball(�; R) (we suppress in the notation that pa(�)
depends on Dt�). Whether Xt = Xt� [ � or Xt = Xt� in (24)
depends on Dt� only through pa(�), or in fact only through those
points in pa(�) which have not been accepted earlier in the thinning
of D. In this sense whether � should be added to X depends not
only on its parents, but also on the parents of its parents, and so
on. Therefore we de�ne recursively the ith generation ancestors of
� by pai(�) = [�2pai�1(�)pa(�), i = 2; 3; : : :, where pa1(�) = pa(�)
(again we suppress the dependence of D when de�ning pai(�)). Fur-
thermore, let an(�) = [i2INpai(�) be the union of all generations
of ancestors of �. If � 2 D0, then the points in an(�) are the only
points which can have any in
uence on whether � is in X0 or not.
So C(D0) = [�2D0

an(�) [ D0 is the set of all points in D which
can have any in
uence on the con�guration of X0. In other words, if
[�TC ; 0] is the time interval in which the points in C(D0) are living,
then TC � T;, and X0 is una�ected if we set X�TC = ; and generate
Xt forwards in time t � �TC as usual. We refer to C(D0) as the clan

of ancestors. An example of a clan is shown in Fig. 7.
Now, brie
y the perfect simulation algorithm works as follows

(noticing that we only need to generate the relevant jump chains).
Let D0 � �. As noticed above we only need to generate the dom-
inating process D back until time �TC , which may be determined
as follows. Initially all points in D0 are set to be in the clan. Then
whenever a member of the clan dies in D (when D is considered
backwards in time), e.g. Dt = Dt� [ f�tg, all points in Dt� within
distance R of �t are the parents of �t and are therefore added to the
clan. When all members of the clan have died, we have found the
time TC and the generation of D stops. Finally, we set X�TC = ;,
construct Xt, t � �TC , as in Section 3.2.1, and return X0 � �.
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As noticed, TC � T;, and it is not hard to see that T � TC . Simi-
larly, T 0 � T 0

C � T 0
;, where TC = �J�T 0C . Note that the running time

of the algorithm depends only on �b through R, and no monotonicity
properties such as (44) and (45) are required.

Example 7: Consider a Gibbs hard core process as given by (19)
with 
 = 0 and hard core parameter R � 0. Let S be a unit square,
and � a homogeneous Poisson point process of rate � = 100. Fig. 8
shows the mean coalescence times of T 0

C , T 0
n, and T 0

n;min versus R,
when n = 1 in the doubling schemes. For all values of R in Fig. 8, the
mean coalescence times are much smaller than IET 0

; � e100, cf. (31).
For small values of R, the clan method and the re�ned doubling
scheme are almost equal (in the sense that IE(T 0

C) � IE(T 0
n;min)) and

slightly better than the (ordinary) doubling scheme (where the mean
coalesce times are about 2/3 smaller). As R increases, T 0

n and T 0
n;min

do not increase as rapidly as T 0
C , and the clan method is clearly

slower than both doubling schemes for large values of R. This is not
so surprising, as an increase in R implies an increase in the number
of parents for each point, and hence a larger clan reaching further
back in time. The speci�cation of � is of course also crucial: T 0

C tends
to be smaller than T 0

n for small values of �, while the opposite is the
case for large values of �.

t

S

�TC 0

Fig. 7. Example of a clan of ancestors where shaded blocks represents members of the
clan.
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Fig. 8. Mean coalescence times versus the hard core parameter R for a hard core
process. Full line: IE(T 0

C); upper dotted line: IE(T 0

n); lower dotted line: IE(T 0

n;min). Each
mean value is estimated from 500 independent perfect simulations.

4 Spatial birth-and-catastrophe process

4.1 Description and construction

4.1.1 The simple case

We start by specifying a simple birth-and-catastrophe process N =
fNt : t � 0g with generator Q given by qi+1;0 = di+1 and qi;i+1 = bi,
while all other o�-diagonal elements are zero. Hence qi = bi+di for all
i 2 IN0, setting d0 = 0. Note that di now has another interpretation
than in Section 3.

As in Section 2, (i){(iv) are assumed to hold. For simplicity we
assume that I = IN0 and di+1 > 0 and bi > 0 for all i 2 IN0. Then (ii)
is satis�ed. Further (iii) is equivalent to that both

�i+1 = �0
b0
q1

b1
q2
� � � bi

qi+1
; i 2 IN0; (46)

and

lim
n!1

b0 � � � bi
q1 � � � qi = 0 (47)

are satis�ed. To see this, rewrite �Q = 0 as

�0b0 =
1X
i=1

�idi and �ibi = �i+1qi+1 for all i 2 IN0: (48)

>From the latter equation, using induction, we obtain (46). Combin-
ing the equations in (48),

�0b0 =
1X
i=1

�i�1bi�1 � �ibi = �0b0 � lim
i!1

�ibi;
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whereby (47) is obtained.

4.1.2 The spatial case

We next construct a spatial birth-and-catastrophe process X = fXt :
t � 0g, proceeding along similar lines as in Sections 3.1.2{3.1.4. The
process is speci�ed by two measurable functions � : 
 �S ! [0;1)
and Æ : 
 ! [0;1), where for any x 2 
, �(x; �) is the birth rate at
which a point � 2 S is added to x, and if x 6= ;, Æ(x) is the catastro-
phe rate a which all points are deleted from x. As in Sections 2
and 3.1.2, let J1 < J2 < : : : be the jump times,H1; H2; : : : the holding
times, and Y = fYn : n 2 IN0g the jump chain of X with Y0 = X0.
The conditional distribution ofHn givenH1; : : :Hn�1; Y0; : : : ; Yn�1 =
x is Exp(B(x)+Æ(x)), where B(x) =

R
S
�(x; �)�(d�) is the total birth

rate (assuming B(x) <1) and we set Æ(;) = 0. If we also condition
on Hn, the probability for a birth at time Jn is B(x)=(B(x) + Æ(x)).
If we further condition on that a birth happens at time Jn, then
Yn = x[� where � has density �(x; �)=B(x). If instead a catastrophe
happens at time Jn, then Yn = ;.

We assume that � and Æ are related to the rates for N by

�(x; �) = bn(x)�b(x; �) and Æ(x) = dn(x) �d(x); (49)

where 0 � �b � 1 and �d � 1 are measurable functions. Then, by (49),
B(x) � bn(x) and Æ(x) � dn(x). Furthermore, we assume that d1 �
d2 � : : :. Then X and N can be coupled so that N dominates n(X)
as in (11). Brie
y, (X;N) is a jump process where a transition from
(x; n) to (x0; n0) happens with a rate given as follows, where m =
n(x) � n:

bn for (x0; n0) = (x; n+ 1) and m < n,

�(x; �) for (x0; n0) = (x [ �; n) and m < n,

�(x; �) for (x0; n0) = (x [ �; n+ 1) and m = n,

bn � B(x) for (x0; n0) = (x; n + 1) and m = n,

dn for (x0; n0) = (;; 0) and m � n,

Æ(x)� dn for (x0; n0) = (;; n) and m � n.

As in Section 3.1.2 we obtain the following: X is non-explosive; ; is
an ergodic atom at which X regenerates; as in (12), Xt converges in
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distribution towards an equilibrium distribution �, say, independent
of the initial state ofX0 as t!1; and � has a support given by (14).

The equilibrium distribution is uniquely characterised by the
equations

B(;)�(;) =
Z
x 6=;

Æ(x)�(dx) (50)

and Z
Fi

[B(x) + Æ(x)]�(dx) =

ZZ
x[�2Fi

�(x; �)�(d�)�(dx) (51)

for all i 2 IN and Fi 2 F with Fi � 
i (this follows from (56) in
Section 5). If � has an unnormalised density � with respect to �
given by (15), then (50) and (51) become

b0�0�(;)
Z

�b(;; �)�(d�) =
1X
i=1

di�i

Z
�d(x)�(x)�i(dx) (52)

andZ
Fi

�i�(x)

�
bi

Z
�b(x; �)�(d�) + di �d(x)

�
�i(dx) =

ZZ
x[�2Fi

�i�1bi�1�b(x; �)�(x)�i�1(dx): (53)

Using (48), then (52) and (53) are easily seen to be satis�ed if, for
example, � is non-increasing as in (17), �b is the Papangelou intensity
as in (18), and

�d(x) = 1 +
�
bn(x) �B(x)

�
=dn(x) for x 6= ;:

In the sequel we assume that �b and �d are de�ned in this way
for a given unnormalised density � which is non-increasing. These
assumptions imply that the total rates in N and X agree in the sense
that for any x 2 
, B(x) + Æ(x) = qn(x). In other words, if Xt = x,
the waiting time � to the next jump is Exp(qn(x))-distributed, and
we may generate � � � and return Xt+� = x [ � with probability
�(x; �)=qn(x), and return Xt+� = ; otherwise.
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4.2 Perfect simulation

In this section we show that the simple perfect simulation procedure
in Section 3.2.1 is feasible when the dominating simple jump process
is of the irreversible type presented in Section 4.1. In addition to
the assumptions in Section 4.1, we assume for simplicity that qi � 1
is constant for all i 2 IN and b0 � b1. Equivalently, by (48), bi =
�i+1=�i � 1 is non-decreasing for i 2 IN0, and di = 1 � bi for i 2
IN. Hence the Poisson case �i / �i=i! is excluded, since �i+1=�i =
�=(i+1) is decreasing in i. If �i / � (i+�)qi=i! is negative binomial
(Example 3), �i+1=�i = q(i+�)=(i+1) � 1 is non-decreasing if and
only if � � 1.

Now, a coupling construction is easily speci�ed: Suppose Nt is
generated for all times t � 0, and for all jump times t of Nt, there
are generated mutually independent points �t � � and numbers Rt �
Uniform[0; 1] (independent of N). Let n(X0) � N0 and generate Xt

forwards in time t > 0 as follows. Suppose that Xt� = x and Nt� = j
with n(x) = i � j. IfNt = j is unchanged, thenXt = x is unchanged,
while

Nt 6= j ) Xt =

(
x [ �t if Nt = j + 1 and Rt � �b(x; �t)bi=bj

; otherwise:
(54)

Since fbjg is non-decreasing, we obtain a spatial birth-and-catastro-
phe process with rates as required, and by induction, Nt � n(Xt) for
all t � 0.

For perfect simulation, we let N0 � � and imagine that Nt is
generated backwards in time t � 0 until it reaches zero, i.e. at time
� ~T; � supft � 0 : Nt = 0g. The number of jumps in [� ~T;; 0]
is simply given by N0, since Nt can only move one step up when
considered forwards in time between � ~T; and 0. Hence, in accordance
with (54), we let Y0 = ; and generate Yi, i = 1; : : : ; N0, by

Yi =

(
Yi�1 [ �i if Ri � �b(Yi�1; �i)bn(Yi�1)=bi�1

; otherwise;
(55)

where �i � � and Ri � Uniform[0; 1]. Since Y0; : : : ; YN0
can be con-

sidered as the part of the jump chain of Xt (\started in the in�nite
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past") where t 2 [� ~T;; 0], we conclude that YN0
� � (a formal argu-

ment follows exactly the same lines as in Section 3.2.1).
So perfect simulation is very simple:

(I) generate N0 � �;

(II) generate the jump chain Y0; : : : ; YN0
;

(III)return YN0
� �.

The number of jumps is given by N0 � �. This should be compared
to the case in Example 6: If �i / qi is geometric, �� = q=(1� q) is
(1 + q)=(1� q) times smaller than the lower bound on IET 0

; in (33).
Hence it is much faster; for example, (1+q)=(1�q) = 201 if �� = 100,
cf. (34).

Unless �b is very close to 1 (corresponding to a weak interaction),
we might by (55) expect n(YN0

) to be small. This is in accordance
with the observations in Example 4, and it explains why the per-
fect simulation algorithm is so fact. Furthermore, in contrast to the
algorithms in Section 3.2, there is no need for storing any informa-
tion: our perfect sampler is a simple example of a so called read-once
algorithm (Wilson 2000).

5 The general case

In a general setting, a spatial jump process X = fXt : t � 0g may be
speci�ed by measurable functions �; Æ : 
 � 
 ! [0;1), where for
any x 2 
, �(x; y) is the rate at which a point con�guration y 2 

is added to x, and if z = x [ y 2 
, Æ(x; y) is the rate at which y is
deleted from z; in order to ensure that the process really jumps, we
set �(x; ;) = 0 and Æ(x; ;) = 0. Let further B(x) =

R
�(x; y)�(dy)

andD(z) =
P

x�z Æ(x; znx), where � is de�ned as in (15) with respect
to a given probability density function � = f�ig on IN0. Then X can
be de�ned in terms of its jump times, holding times, and jump chain
in the same way as in Section 3.1.2. Especially, for the jump chain
fYng, in case of a transition Yn = x [ y given that Yn�1 = x, y has
density �(x; �)=B(x) with respect to � (assuming B(x) < 1), and
in case of a transition Yn = x given that Yn�1 = z = x [ y, y has
been selected with probability Æ(x; y)=D(z).

Let us, as before, restrict attention to the non-explosive case. For
instance, X is non-explosive if B(x) + D(x) is uniformly bounded.
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By Proposition 8.1 in Preston (1977), a probability measure � on
(
;F) is invariant if and only ifZ

Fi

[B(x) +D(x)]�(dx) =

ZZ
x[y2Fi

�(x; y)�(dy)�(dx) +

Z X
x�z:x2Fi

Æ(x; znx)�(dz) (56)

for all i 2 IN0 and Fi 2 F with Fi � 
i. Here invariance means
that Xt � � for all t � 0 if X0 � �. In particular, if X converges in
distribution towards �, then � is the unique invariant distribution.
For example, assume that Q and � are in balance, cf. (1), and

�(x; y) = qn(x);n(x)+n(y)�b(x; y)

and

Æ(x; y) = qn(x)+n(y);n(x) �d(x; y)=

�
n(x) + n(y)

n(x)

�
:

Then, if � is an unnormalised density for � with respect to �, there
is a detailed balance condition:

�(x)�b(x; y) = �(x [ y) �d(x; y) for all x; y 2 
: (57)

It is straightforwardly veri�ed that this implies both (56) and re-
versibility of X.

In Sections 3.1 and 4.1 we demonstrated that a coupling of X
to a simple jump process N is very useful. However, at the present
level of generality it seems diÆcult to specify a coupling so that N
dominates n(X). Probably we need to consider this problem case by
case; indeed the coupling constructions in Sections 3.1 and 4.1 de-
pend much on the choice of � and Æ. For making perfect simulations
from a given invariant distribution �, we may simply try to use one
of the algorithms in Sections 3.2 and 4.2.

Example 8: Let �i / �i=i! be Poisson, where � > 0,

qi;i+j = pi(�(1� p))j=j!; qi+j;i =
�
i+j
i

�
pi(1� p)j;

where 0 < p < 1, and

�d � 1; �b(x; y) = �(x [ y)=�(y);
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with � > 0 non-increasing. Then the detailed balance conditions (1)
and (57) are satis�ed, and X develops as follows. Suppose that Xt =
x. Then

(I) with rate pn(x)e�(1�p), �rst propose a birth x! x [ y, drawn
from a Poisson process with intensity measure �(1�p)�, next
with probability �(x [ y)=�(x) accept x [ y, and retain x
otherwise;

(II) with rate 1 make an independent thinning of the points in x,
where each point is retained with probability p.

Note that nothing may happen with rate 2pn(x) (namely if y = ; in (I)
or all points are retained in (II)). Observe also that y is independent
of x in (I), and the retention probability p does not depend on x in
(II).

Both N and X are non-explosive as qi = pie�(1�p) + 1� 2pi and
B(x)+D(x) � qn(x) are bounded. It is easily seen that qi;i+j � qi�k;i+j
for all integers 0 < k � i and j � 1 if and only if p � �=(2 + �).
Hence, if p � �=(2+�), we obtain that N dominatesX by specifying
a jump process (X;N) as follows. The rate for a jump (x; n) !
(x0; n0) is as follows:

�(x; y) for (x0; n0) = (x [ y; n(x [ y)) and n < n0,

qn;n0 �
R
n(x[y)=n0 �(x; y)�(dy) for x0 = x and n < n0,

�(x; y) for (x0; n0) = (x [ y; n) and n(x [ y) � n,

qn;n0 for x0 = xny and n0 � n� n(y).

Because of this domination, we have the usual ergodicity proper-
ties: ; is an ergodic atom at which X regenerates, and X converges
in distribution towards � (independent of the initial state of X0).

It is tempting to try to extend this coupling construction to a
dominating spatial jump process D � X, but this idea fails because
of the accept-rejection step (I). However, we can still simulate X0

from its equilibrium distribution as any of the perfect simulation
algorithms in Section 3.2 apply (for any � > 0 and 0 < p < 1).
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