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1 Introduction

Recent progress in string theory has stimulated interest in solitons in noncommu-

tative �eld theories [1, 2, 3]. Several authors have found explicit solitons in gauge

theories with and without matter �elds [4, 5, 6, 7, 8]. In [9] solitons in scalar �eld

theories were studied and it was shown that in the case of an in�nite noncommu-

tativity parameter �, where the kinetic term in the action can be neglected, large

families of solitons exist. This is in a stark contrast to the commutative case where

there are no solitons [10]. Various aspects of solitons in noncommutative scalar �eld

theories are discussed in [11, 12, 13, 14, 15, 16, 17, 18, 19]. For background and a

recent review of some of these results, see [20].

The problem we discuss can be formulated either in terms of functions on R2d,

or, by applying a quantization map, in terms of operators on L2(Rd), as explained

e.g. in [9, 20]. In this paper we do not make use of the former formulation, except

for some technical purposes in the �nal section. Thus we de�ne solitons as critical

points of the energy functional

S(') = Tr

 
dX

k=1

['; a�k][ak; '] + �V (')

!
;

where ak and a�k are the standard annihilation and creation operators of the d-

dimensional harmonic oscillator, V is a potential, � a positive parameter (called the

noncommutativity parameter), and ' is a self-adjoint operator on L2(Rd).

In [21] we established the existence of spherically symmetric solitons in even

dimensional scalar �eld theories under fairly general conditions on the potential,

provided � is suÆciently large and we proved that no spherically symmetric solutions

can exist for small �.

Throughout the present paper we assume that V is twice continuously di�eren-

tiable and positive, except for a second order zero at x = 0. Furthermore, we assume

that V 0(x) is strictly negative for x < 0 and has exactly two zeroes at positive values

t and s corresponding to a local maximum and a local minimum of V , see Fig. 1.

The techniques developed here can be adapted to potentials with more local max-

ima and minima. For the proof of Theorem 5 and for the discussion of stability in

higher dimensions, we shall assume that V is analytic, although this assumption can

presumably be relaxed.
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Our results can be divided into two classes, one concerning general solitons and

another concerning solitons that are diagonal in the harmonic oscillator basis con-

sisting of the joint eigenfunctions of a�kak. In the d = 1 case the latter solitons

correspond to rotationally invariant functions under the quantization map but in

higher dimensions these solitons correspond to functions that are invariant under

rotations in each of the d quantization planes. For d > 1 the rotationally invariant

solitons are those which are functions of the number operator N .

In the �rst category we have the following results for any nonzero critical point

' of S:

� ' is a positive operator, whose operator norm satis�es

k'k � s

independently of the value of �.

� ' is of trace class and TrV 0(') = 0.

� There exists a nonzero constant c depending only on the potential V such that

the Hilbert-Schmidt norm of ', denoted k'k2, satis�es

k'k2 � c��
d
2 :

As a corollary we �nd that any family '� of solitons depending smoothly on

the noncommutativity parameter � (in a sense made precise in Section 3) has

a diverging energy at some strictly positive value of �. Hence, such families

cannot exist for arbitrarily small values of �. This result can be viewed as a

noncommutative version of Derrick's theorem [10].

Of results in the second category we mention, in particular, the following.

� For any �nite rank spectral projection P of the number operatorN =
Pd

k=1 a
�
kak

there exists a maximal smooth family

(�P ;1) 3 � 7! '�

of solitons such that V 00('�) > 0 and

'� ! sP as � !1 :
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� If d = 1 and P equals the projection PN onto the space spanned by the N +1

lowest eigenstates ofN , the solitons '� are stable for � suÆciently large. For all

other P the corresponding solitons are unstable in their full range of existence.

� For P = P0 the corresponding solitons are stable for all d � 1 in their full

range of existence.

This paper is organized as follows. In a preliminary section we describe the math-

ematical setting of the problem, recall results from [21] and prove some technical

results on general properties of solitons.

In Section 3 we establish the main existence theorem for solitons. We actually

give two proofs, one elementary, generalizing [21], based on an analysis of the di�er-

ence equation for the eigenvalues of ' obtained from the Euler-Lagrange equation

for the variational problem for S, and another proof based on an application of a

�xed point theorem. While less elementary, the latter approach has the advantage

of giving smoothness of the solitons as a function of �. A related existence proof has

been obtained independently in [24].

The results on stability are proven in Section 4, which also contains a discussion

of the extension of our approach to higher dimensions without giving full details,

except in the case P = P0.

Finally, in Section 5 we prove non-existence of smooth families of solitons for

small values of �. It should be stressed that this result only rules out the existence

of smooth families contrary to the nonexistence theorem in [21] for rotationally

invariant solitons which rules out the existence of any rotationally invariant solitons

for � smaller than some positive �0 depending only on V and d. It is an interesting

unsolved question whether this stronger result also holds without the assumption of

rotational invariance .

Another interesting unsolved problem concerns existence of general non-rotation-

ally invariant solutions, in particular the so called multi-soliton solutions described

in [9]. The solitons discussed in this paper are special cases corresponding to over-

lapping solitons sitting at the origin. In [17] and [23] properties of moduli spaces

of multi-solitons are discussed perturbatively in ��1. The latter paper contains a

discussion of stability perturbatively to �rst order in ��1. Stability of scalar solitons

under radial uctuations is also discussed in [22].
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2 General properties of solitons

Solitons in a noncommutative 2d-dimensional scalar �eld theory with a potential V

are �nite energy solutions to the variational equation of the energy functional

S(') = Tr

 
dX

k=1

['; a�k][ak; '] + �V (')

!
; (1)

where a�k and ak are the usual raising and lowering operators of the d-dimensional

simple harmonic oscillator and ' is a self-adjoint operator on L2(Rd). We assume

that the potential V is at least twice continuously di�erentiable with a second order

zero at x = 0 and that V (x) > 0 if x 6= 0. Hence, �niteness of the potential

energy �TrV (') requires ' to belong to the space H2 of Hilbert-Schmidt operators.

Consequently, S is de�ned and �nite on the spaceH2;2 of self-adjoint Hilbert-Schmidt

operators ' for which [ak; '] is also Hilbert-Schmidt. We note that H2;2 is a Hilbert

space with norm k � k2;2 given by

k'k22;2 =
X
k

Tr (['; a�k][ak; ']) + Tr '2 =
X
k

k[ak; ']k22 + k'k22 ; (2)

where k � k2 denotes the Hilbert-Schmidt norm. It is easy to see that the space H0

consisting of operators that are represented by �nite matrices (i.e. matrices with

only �nitely many non-zero entries) in the standard harmonic oscillator basis form

a dense subspace of H2;2.

The variational equation of the functional (1) is

2
dX

k=1

[a�k; [ak; ']] = ��V 0('): (3)

We regard this equation as an equality between two Hilbert-Schmidt operators on

L2(Rd). Thus, a solution ' to Eq. (3) belongs to H2;2 and has the property that

the left hand side of Eq. (3), interpreted as a quadratic form on the domain of N 1

2 ,

where N denotes the number operator

N =
dX

k=1

a�kak ;

is Hilbert-Schmidt. We denote the space of such operators by D. Alternatively, D
is the space of operators ' in H2;2 such that the linear form

H2;2 3  7!
X
k

Tr ([a�k;  ][ak; ']) (4)
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is continuous in the Hilbert Schmidt norm k � k2.
This operator theoretic formulation of the problem is the most convenient one for

our discussion of the existence and stability results in Sections 3 and 4. For the non-

existence results in Section 5 we shall also make use of the alternative formulation

in terms of ordinary functions and a quantization map (see e.g. [20]). Choosing

the harmonic oscillator eigenstates jn1; : : : ; ndi, ni = 0; 1; : : :, a�kakjn1; : : : ; ndi =

nkjn1; : : : ; ndi, as the basis for the Hilbert space L2(Rd), rotationally symmetric

functions correspond, under the standard Weyl quantization, to diagonal operators

whose eigenvalues only depend on n1 + � � �+ nd. If we consider a diagonal operator

with eigenvalues �n, n = 0; 1; 2; : : :, Eq. (3) reduces, for d = 1, to [9, 11]

(n+ 1)�n+1 � (2n+ 1)�n + n�n�1 =
�

2
V 0(�n); n � 1 (5)

�1 � �0 =
�

2
V 0(�0): (6)

Summing the second order �nite di�erence equation for �n from n = 0 to n = m

yields the �rst order equation

�m+1 � �m =
�

2(m+ 1)

mX
n=0

V 0(�n); m � 0: (7)

A necessary condition for the energy to be �nite is clearly that

�m ! 0 as m!1: (8)

Actually, this condition implies ' 2 H2;2 by Lemma 1 below. In [21] we proved the

existence of solutions to Eq. (7) satisfying the boundary condition (8) under fairly

general conditions on the potential V . In the next section we generalize that result.

In addition to the conditions on V which have been imposed above we assume

that V has only one local minimum in addition to x = 0. Let the other local

minimum be at s > 0. Let r 2 (0; s) be a point where V has a local maximum and

for technical convenience assume that V 0 does not vanish except at 0; r and s. Then

V 0(x) < 0 for x < 0 or x 2 (r; s) and V 0(x) > 0 for x > s or x 2 (0; r) (see Fig. 1).

The following result which will be needed in the next section was proven in

[21]. We state the result for d = 1, but its generalisation to arbitrary d � 1 is

straightforward as explained in [21].
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V 0(x)
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Figure 1: A graph of the derivative of a generic potential V which satis�es our
assumptions.

Lemma 1. Let f�mg be a sequence of real numbers which satisfy Eq. (7). If �n > s

for some n then f�mg is increasing for m � n and �m !1 as m!1. If �n � 0

for some n then f�mg is decreasing for m � n and �m ! �1 as m!1.

If the sequence f�mg also satis�es the boundary condition (8) and the �m's are

not all zero then

(i) 0 < �m < s, for all m.

(ii) �m tends monotonically to 0 for m large enough.

(iii)
P

m V
0(�m) = 0 and

P
m �m <1.

Dropping the assumption of rotational symmetry we have the following gener-

alization of (i) and (iii), which, apart from being of some independent interest, we

will use in Section 5. The remainder of the present section is not needed for the

existence and stability results in the following two sections.

Lemma 2. Let ' be a nonzero solution to Eq. (3). Then

(i) the operator ' is positive and its norm satis�es the inequality

k'k � s: (9)
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(ii) ' is of trace class and Tr (V 0(')) = 0.

Before proving the above lemma we need the following result, where '� denote

the positive and negative parts of a bounded selfadjoint operator ', de�ned by

' = '+ � '� ; '+'� = 0 ; '� � 0 : (10)

Lemma 3. The maps

' 7! '�

are well de�ned and continuous from H2;2 to itself.

Proof. Since

k'�k2 � k'k2; (11)

it suÆces to show that, for all k,

k[ak; '�]k2 � const k[ak; ']k2: (12)

We will prove below that this holds with the constant equal to
p
3. Since H0 is

dense in H2;2 we can assume ' 2 H0. It is clear that the spectral projections of

�nite rank operators corresponding to non-zero eigenvalues belong to H0 and the

same applies to the spectral projections of '�. In order to estimate the norms of

'� it is convenient to write

'+ =
1

2�i

Z


z

z � '
dz ; (13)

where  is a simple closed positively oriented contour in the complex plane enclosing

the positive eigenvalues f�ig of ' but not the non-positive eigenvalues f�jg. Then

[ak; '+] =
1

2�i

Z


1

z � '
[ak; ']

1

z � '
zdz : (14)

Denoting the spectral projection corresponding to �i by ei and the one of �j by fj,

we have
1

z � '
=
X
i

1

z � �i
ei +

X
j

1

z � �j
fj : (15)

Inserting the above identity into Eq. (14) and computing residues one obtains

[ak; '+] = e+[ak; ']e+ +
X
i;j

�i
�i � �j

(ei[ak; ']fj + fj[ak; ']ei) ; (16)
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where e+ =
P

i ei is the support projection of '+. Hence,

Tr ([ak; '+]
�[ak; '+]) = Tr (e+[ak; ']

�e+[ak; ']e+)

+
X
i;j

 
�i

�i � �j

!2

Tr (ei[ak; ']
�fj[ak; ']ei + fj[ak; ']

�ei[ak; ']fj)

� Tr (e+[ak; ']
�[ak; ']e+)

+
X
i;j

Tr (ei[ak; ']
�fj[ak; ']ei + fi[ak; ']

�ej[ak; ']fi)

� 3Tr ([ak; ']
�[ak; ']); (17)

where we used the fact that

0 � �i
�i � �j

� 1: (18)

Clearly, the same estimate applies to Tr ([ak; '�]
�[ak; '�]) and the claimed result

follows.

Proof of Lemma 2. (i) We �rst show that ' � 0. Suppose on the contrary that

'� 6= 0. Then, since V 0(�'�) < 0, we have for any integer n > 2 that

2
dX

k=1

Tr ('n
�[a

�
k; ['; ak]]) = �Tr ('n

�V
0(')) < 0 : (19)

But, using the cyclicity of the trace,

Tr ('n
�[a

�
k; ['; ak]]) = Tr ('n

�[a
�
k; ['+; ak]])� Tr ('n

�[a
�
k; ['�; ak]])

= Tr ([a�k; '
n
�]['�; ak])� Tr ([a�k; '

n
�]['+; ak])

=
X

p+q=n�1

Tr ('p
�[a

�
k; '�]'

q
�['�; ak])

� X
p+q=n�1

Tr ('p
�[a

�
k; '�]'

q
�['+; ak])

=
X

p+q=n�1

Tr ('
p

2

�[a
�
k; '�]'

q
�['�; ak]'

p

2

�)

+Tr ('
1

2

+['�; ak]'
n�2
� [a�k; '�]'

1

2

+) + Tr ('
1

2

+[a
�
k; '�]'

n�2
� ['�; ak]'

1

2

+)

� 0 ; (20)

which contradicts the inequality (19).

To prove the inequality in (i) we note that the equation of motion (3) implies

that

k'k�n�Tr ('nV 0(')) = 2
X
k

Tr (k'k�n'n[a�k; ['; ak]])
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= �2X
k

k'k�nTr [a�k; 'n]['; ak] < 0: (21)

We also have

lim
n!1

k'k�n�Tr ('nV 0(')) = �V 0(k'k)Tr e ; (22)

where e is the spectral projection of the operator ' corresponding to the eigenvalue

k'k. In particular,

�V 0(k'k)Tr e � 0 ; (23)

which implies the desired inequality by the assumed form of the potential V .

(ii) Let Pm, m = 0; 1; 2; : : :, denote the orthogonal projection onto the eigenspace

of the number operator N corresponding to eigenvalue m, and set

�m = Tr (Pm') : (24)

Then the equation of motion (3) gives

1

2
� Tr (PmV

0(')) = (m+ 1)�m+1 � (2m + d)�m + (m+ d� 1)�m�1: (25)

Summing this identity over m � n we get (as in the spherically symmetric case)

(n+ 1)�n+1 � (n+ d)�n = �
X
i�n

Tr (PiV
0(')); (26)

and, �nally, summing over n � p,

�p+1 � �0 = �
X
n�p

1

(n+ 1)

0
@(d� 1)�n +

X
i�n

Tr (PiV
0('))

1
A : (27)

Besides this equation we shall also make use of the fact that

V 0(') = a' +O('2) (28)

for some positive constant a as a consequence of the assumptions made on V . Since

' is Hilbert-Schmidt it follows from this that V 0(') is of trace class if and only if '

is of trace class. We �rst prove that this is the case if (and only if) limm!1 �m = 0

and in this case, Tr V 0(') = 0. In fact, by (28),

X
i�n

Tr Pi(V
0(')) =

X
i�n

(a�i + ci) ; (29)

where
P

i ci is absolutely convergent while all the terms in
P

i�n �i are positive, since

' is a positive operator by (i). It follows that the sum
P

i�nTr PiV
0(') has a limit
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L, �nite or +1, as n ! 1. On the other hand, it follows from our assumptions

that the right hand side of Eq. (27) converges as p!1 and consequently, since the

�m's are nonnegative, L must be zero. Hence, Eq. (29) implies that
P

i �i converges,

i.e., ' is of trace class, and the trace L of V 0(') is zero as claimed.

It remains to show that �m ! 0 as m!1. Assume this is not the case. ThenP
i �i = +1 and therefore, by Eq. (29), we have

X
i�m

Tr (PiV
0(')) > 1 (30)

for m large enough. Thus, by Eq. (27),

�p � �
X

n�p�1

1

n + 1

X
i�n

Tr (PiV
0(')) � const ln p ; (31)

for p large enough. Repeating the argument with the inductive assumption �p �
const pl, for suÆcienly large p, where l is a nonegative integer, leads to �p �
const pl+1 for p suÆceiently large. Hence, �m increases faster than any power of

m, if it does not tend to zero. But this is not possible since, by the Cauchy-Schwarz

inequality,

�2m = (Tr Pm')
2 � Tr (Pm'

2)Tr Pm � const md�1Tr (Pm'
2) (32)

and hence, X
m

�2m
md�1

�X
m

Tr (Pm'
2) = k'k22 <1 : (33)

This �nishes the proof of Lemma 2.

3 Existence

We now proceed to discuss the existence of rotationally invariant solutions to Eq.

(3). Let t be the location of the maximum of V 0 in the interval [0; s] and let w be

the location of the minimum of V 0 in the same interval (see Fig. 1). As above we

denote by P0; P1; : : : the orthogonal projections onto the eigenspaces of the number

operator of the d-dimensional harmonic oscillator. The purpose of this section is to

prove the following theorem.

Theorem 1. For any projection P on L2(Rd), which is the sum of a �nite number

of the projections Pn, there is a unique maximal family '�; � > �P , of rotationally
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invariant solutions of Eq. (3), which depends smoothly on �, i.e., is continuously

di�erentiable with respect to the norm k � k2;2, and ful�lls

V 00('�) > 0 ; (34)

as well as

'� ! s P (35)

in Hilbert-Schmidt norm as � !1.

Proof. We shall give two proofs of existence of solutions for suÆciently large �.

The �rst proof is an extension of the proof given in [21] for P = P0. For simplicity

we restrict to d = 1 and to P = P0 + � � �PN , the adaptation of the arguments to

arbitrary d � 1 being explained in [21].

First, assume � is so large that

�

2(N + 1)
jV 0(w)j � w: (36)

In this case we claim there is a unique � 2 [w; s) such that if we set �0 = � and

de�ne �i for i > 0 by the recursion (7) then

�0 > �1 > : : : �N � w (37)

and �N+1 = 0. In order to prove the claim we begin by choosing �0 close to but

smaller than s so that (37) holds, which clearly is possible. Then �N > �N+1 by

(7), and if �N+1 = 0 we are done. Note that all the �i's depend continuously on

�0 and �N+1 ! s as �0 ! s. If �N+1 < 0 we increase �0 until �N+1 = 0 and the

inequalities (37) still hold because �1; : : : �N all increase with �0. If �N+1 > 0 we

decrease �0 until �N+1 = 0 and (37) still holds due to the inequality (36). This

proves the existence of �.

Next take � still larger, if necessary, so that

V 0(t) � (N + 1)jV 0(�)j: (38)

This is clearly possible because � ! s as � ! 1. We now claim there exists

�� 2 (�; s) such that if we take �0 = �� then (37) holds and �N+1 = �N+2, i.e.

0 =
�

2(N + 2)

N+1X
i=0

V 0(�i): (39)
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In order to verify the existence of �� we note that, as a consequence of (7), for �0

greater than but close to � we have �N+1 is greater than but close to 0, and �N+1

increases with �0. Hence, in view of (38) and the fact that �1; : : : ; �N are also

increasing functions of �0, there is a �0 � � 2 (�; s) such that

V 0(�N+1) = �
NX
i=0

V 0(�i) (40)

which establishes the claim. We note that for �0 = � we have �N+1 2 (0; t).

If a sequence f�ig obeys the recursion (7) and has the property �0 > �1 > : : : >

�p, but �p+1 � �p, we say that the sequence turns at p. We note that in this case

�p > 0 by Lemma 1 and if �p+1 = �p then �p+2 > �p+1 by (7).

De�ne the set

A = f�0 2 [�; ��] : f�ig turns at some pg: (41)

By construction � =2 A and �� 2 A. Put �0 = inf A. Since each �i depends

continuously on the initial value �0 it follows that �0 =2 A.
Now consider the sequence de�ned by �0 = �0 and Eq. (7). Since this sequence

does not turn it is monotonically decreasing. In order to show that this sequence

provides a solution to our problem it therefore suÆces to show that �i ! 0 as i!1.

Suppose �i becomes negative for some i. Then Lemma 1 implies that �i ! �1.

By the continuity of �i as a function of �0 it follows that for �0 suÆciently close to

�0 the sequence �i tends monotonically to �1 but this contradicts the de�nition

of �0. We conclude that the limit limi!1 �i = a � 0 exists and by (7) we have

V 0(a) =
2

�
lim
i!1

(�i+1 � �i) = 0: (42)

Hence, a = 0 since �i < r for i > N . This completes the proof of the existence of

rotationally invariant solutions '� for large enough � and it follows easily from the

construction that '� ! sP in operator norm as � !1.

It is worth while noting that the proof given here shows that the sequence of

eigenvalues f�ig of '� is strictly decreasing for � large enough. This is special

for the choice of projection P made above. The same technique can be applied to

demonstrate existence of solutions converging to any projection of the type stated in

the theorem, but since this result as well as the claim of di�erentiability are obtained
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in a more uniform manner by the second method of proof, we shall not discuss that

approach in more detail here. Also, the above proof can easily be generalized to

establish the existence of solutions which converge to �nite rank operators of the

form tP + sP 0, PP 0 = 0, as � !1.

The second proof of existence is by use of a �xed point theorem. Let us �rst

note that the operator �, de�ned by

�' =
dX

k=1

[a�k; [ak; ']] ; (43)

is self-adjoint and positive on H2 with domain D. Indeed, as explained in Section

5, it is unitarily equivalent to the standard Laplace operator on L2(R2d) via a

quantization map �W : L2(R2d) ! H2, which justi�es the notation � for this

operator in the remainder of this proof. Given a bounded self-adjoint operator B

on L2(Rd), it de�nes by left multiplication a bounded self-adjoint operator on H2,

which we shall also denote by B. By the Kato-Rellich theorem �+B is self-adjoint

with domain D. Assuming B � c > 0 we have � + B � c and hence � + B maps

D bijectively onto H2 with bounded inverse

(� +B)�1 � c�1 : (44)

The same statement holds if B is of the form

B =
1X
n=0

bnPn (45)

and we restrict � + B to D0 = D \ H0
2, where H0

2 is the Hilbert subspace of H2

consisting of diagonal operators of the form (45). This follows by using that H0
2 cor-

responds under the quantization map �W to rotation invariant functions in L2(R2d)

on which the Laplace operator is known to be self-adjoint. Alternatively, one can

use the explicit form

�' = �
1X
n=0

f(n+ d)�n+1 � (2n+ d)�n + n�n�1gPn ; (46)

where ' =
P1

n=0 �nPn, and the domain D0 consists of those ' which ful�ll

1X
n=0

j(n+ d)�n+1 � (2n+ d)�n + n�n�1j2 <1 : (47)
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Since � +B is a closed symmetric operator it suÆces to verify that the orthogonal

complement to its range is f0g. But it is easily seen that ' belongs to this orthogonal

complement if and only if

(n+ d)�n+1 � (2n+ d)�n + n�n�1 = bn�n; (48)

for n � 0. The proof of Lemma 1 shows that any non-trivial solution f�ng of this

recursion relation diverges to �1, since bn � c > 0. Hence ' = 0 if ' 2 H0
2, as

desired.

As a consequence, we note that for � � 0 and B and c as above, the operator

��+B has a bounded inverse on H0
2 ful�lling

(��+B)�1 � c�1 ; (49)

the case � = 0 being obvious.

In view of these preparatory remarks, we rewrite Eq. (3) as

��'+ V 0(') = 0 ; (50)

where � = 2��1. Then  0 = sP is a solution for � = 0. Since  0 2 H0
2 and

V 00( 0) � minfV 00(0); V 00(s)g � c0 > 0 ; (51)

by assumption, we can, for � � 0, further rewrite the equation in the form

' = (��+V 00( 0))
�1fV 00( 0) 0+V

0( 0)�V 0(')�V 00( 0)( 0�')g � T�(') : (52)

Since V is C2 by assumption we have

kV 0(')� V 0( 0)� V 00( 0)('�  0)k2 = o(k'�  0k2) ; (53)

and also

k(��+ V 00( 0))
�1V 00( 0) 0 �  0k2 = �k(��+ V 00( 0))

�1� 0k2 � c1� ; (54)

where c1 = c�10 k� 0k2.
For ' in the ball

B"( 0) = f' 2 H0
2 : k'�  0k2 � "g ; (55)
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we then have

kT�(')�  0k2 � c1� + o(1)k'�  0k2 ; (56)

and hence, T�(') 2 B"( 0) if � and " are suÆciently small. Similarly, one sees that

kT�(')� T�( )k2 � o(1) k'�  0k2 ; (57)

so T� is a contraction onB"( 0), if � and " are suÆciently small. Fixing " accordingly,

Banach's �xed point theorem implies the existence of a unique solution  � of Eq.

(50) in B"( 0) for 0 � � � Æ and Æ small enough.

For 0 � �; �0 � Æ, we have

 �� �0 = (��+V 00( 0))
�1f(�0��)� �0+V 0( �0)�V 0( �)�V 00( 0)( �� �0)g (58)

from which we get

k � �  �0k2 � c2j�� �0j+ o(k � �  �0k2) ; (59)

where the constant c2 depends only on �0, and we have assumed " is small enough

such that V 00( �) > 0. This inequality implies that  � is a Lipschitz continuous

function of � if " is small enough. In turn, Eq. (58) implies that  � is di�erentiable

in the k � k2-norm with

d �
d�

= (��+ V 00( 0))
�1� � : (60)

By standard arguments, the family  �; 0 � � < Æ extends to a maximal family,

di�erentiable in the k � k2-norm, and such that V 00( �) > 0.

It remains to establish the stronger claim of smoothness in the norm k � k2;2 for
� > 0. In order to obtain this, it is suÆcient to verify that the bijective operator

(��+ V 00('))�1 from H2 onto D0 is bounded, when is D0 equipped with the k � k2;2-
norm, for � > 0 and V 00(') > 0. It is straightforward to verify that under these

conditions (�� + V 00('))�1 is bounded (and �� + V 00(') as well, in fact), when D0

is equipped with the norm

k'k4;2 =
�
k�'k22 + k'k22

� 1

2 ; (61)

which is easily seen to be stronger than k � k2;2. In addition, simple estimates show

that the derivative given by Eq. (60) is continuous in this norm.
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This completes the proof of the theorem with '� =  � for � = 2��1.

We remark that the above argument can easily be generalized to prove the exis-

tence of solutions to Eq. (3) which converge to sP , where P is a projector onto space

spanned by a �nite number of the joint eigenfunctions of the number operators a�kak.

As remarked above, these solutions are not rotationally invariant but only invariant

under rotations in the d two-dimensional quantization planes.

4 Stability

In this section we study the stability of solutions to Eq. (3) in the case d = 1.

Extension to d > 1 is briey discussed at the end of the section.

A solution ' is de�ned to be stable if the second functional derivative of the

action S at ' is a positive semide�nite quadratic form at ', i.e.,

�(!) � 1

2

d2

d�2
S('+ �!)

�����
�=0

� 0 : (62)

The natural domain of de�nition of the quadratic form � depends generally both

on the potential V and on '. Under the previously stated assumptions on V the

domain contains at least the space H0 for the rotationally symmetric solutions that

we consider here. If � is continuous with respect to the norm k�k2;2 it is suÆcient to
show stability for perturbations ! inH0. Since the kinetic term in S(') is quadratic,

continuity of � means that the second functional derivative of V is a continuous

quadratic form with respect to the Hilbert-Schmidt norm. This continuity is easy

to check, using the analytic functional calculus, if V is analytic in a neighborhood

of the interval [0; s] which we will assume to be the case from now on. For this

reason we restrict attention below to ! 2 H0. Our results about stability can be

summarized in the following three theorems.

Theorem 2. Let ' be a rotationally invariant, �nite energy solution to (3) with

a nondegenerate spectrum and let �0; �1; : : : denote the eigenvalues of ' in the har-

monic oscillator basis. Then ' is unstable unless f�ng is a decreasing sequence.

This theorem implies that only the solutions corresponding to P = P0+ : : :+PN

in Theorem 1 can possibly be stable. By abuse of notation we denote this solution

by 'N , for a �xed value on �, in the remainder of this section.
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Theorem 3. The solution '0 of Eq. (3) constructed in the previous section is stable

for all values of � in the maximal range.

Theorem 4. For any N � 0 the solution 'N constructed in the previous section is

stable for � suÆciently large.

We note that Theorem 3 implies Theorem 4 in the case N = 0. We choose to

state and prove Theorem 3 separately because it is stronger than Theorem 4 for

N = 0 and the proof is simpler. In the proof of Theorem 4 we have to rely on

asymptotic expansions of the eigenvalues for large � which are not needed in the

proof of Theorem 3. We remark further that solutions with eigenvalues �n some of

which lie in the region where V 00 < 0 are in general unstable but one can construct

examples of stable solutions with eigenvalues in the region where V 00 < 0.

Before proving the theorems we do some groundwork and establish notation. Let

K(') = Tr ['; a�][a; ']

=
1X

n;m=0

jhnj[a; ']jmij2 (63)

denote the kinetic energy functional. Let ' be a rotationally invariant solution of

Eq. (3) with a nondegenerate spectrum. Then we can write

' + �! = U�
� '�U� (64)

where U� is unitary and '� is diagonal in the harmonic oscillator basis. It follows

that
d2

d�2
S('+ �!)

�����
�=0

= 2K(!) + �
d2

d�2
Tr V ('�)

�����
�=0

: (65)

Notice that the assumption ! 2 H0 implies that only �nitely many of the eigenvalues

and eigenvectors of ' are perturbed, and we can apply standard non-degenerate

perturbation theory. Let �n(�) denote the eigenvalue of '� which converges to �n as

�! 0. Then �n(�) is real analytic in �, and

d2

d�2
Tr V ('�)

�����
�=0

=
1X
n=0

�
�00n(0)V

0(�n) + (�0n(0))
2V 00(�n)

�
: (66)

From standard perturbation theory we know that

�0n(0) = hnj!jni (67)

18



and

�00n(0) = 2
X
m6=n

jhnj!jmij2
�n � �m

: (68)

The condition for stability can therefore be written as

�(!) = K(!) + �
X
m6=n

jhnj!jmij2
�n � �m

V 0(�n) +
�

2

1X
n=0

jhnj!jnij2V 00(�n)

= K(!) + �
X
m<n

jhnj!jmij2V
0(�n)� V 0(�m)

�n � �m
+
�

2

1X
n=0

jhnj!jnij2V 00(�n)

� 0: (69)

We remark that the last term in � is nonnegative if V 00(�n) � 0 for all n. The

kinetic energy term can be written

1X
n;m=0

jpn + 1 hn+ 1j!jmi � pm hnj!jm� 1ij2 ; (70)

where
p
m hnj!jm� 1i is set to zero for m = 0, and we see that the kinetic energy

couples the matrix elements of ! to their nearest neighbours along diagonals with

n �m �xed. On the other hand, the potential part of � does not couple di�erent

matrix elements of !. Note that hnj!jmi = hmj!jni� since ! is self-adjoint but

otherwise the matrix elements of ! can be chosen arbitrarily.

Proof of Theorem 2. We will show that there exists a perturbation ! such that

�(!) < 0 unless the �n's are decreasing. We take ! such that hnj!jmi = 0 for

jn�mj 6= 1. Then we can write

�(!) =
1X
n=0

�
jpn+ 1 hn+ 1j!jni � pn hnj!jn� 1ij2

+jpn+ 1 hn+ 1j!jn+ 2i � pn+ 2 hnj!jn+ 1ij2
�

+�
1X
n=0

jhnj!jn+ 1ij2
�n � �n+1

(V 0(�n)� V 0(�n+1)) : (71)

The above expression is quadratic in the variables

�n = hn+ 1j!jni; (72)

n = 0; 1; 2; : : :. Assuming without loss of generality that the �n's are real we have

�(!) = 2
X
n;m

qnm�n�m ; (73)
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where the symmetric matrix qnm has only nonvanishing matrix elements on the

diagonal and next to the diagonal which are given by

qnn = 2(n+ 1) + n (74)

qnn+1 = �pn+ 1
p
n + 2 (75)

qnn�1 = �pnpn + 1; (76)

where

n =
�

2

V 0(�n+1)� V 0(�n)

�n+1 � �n
: (77)

We need to show that qnm is a positive semide�nite matrix. This is most easily done

by diagonalising qnm, using elementary row and column operations, and verifying

that the diagonal entries C0; C1; : : : in the resulting diagonal matrix C are non-

negative. In the �rst step we divide the �rst row by q00, multiply it by �q10 and

add the resulting row to the second row. Then we see that the �rst two diagonal

entries of C are

C0 = q00 (78)

C1 = q11 � q210
q00

: (79)

Inductively we �nd

Ck = qkk � q2kk�1
Ck�1

: (80)

We can evaluate C0 and C1 directly using the equation of motion (5) and �nd

C0 = 2
�2 � �1
�1 � �0

; (81)

C1 = 3
�3 � �2
�2 � �1

: (82)

Now it is straightforward to prove from Eq. (80) by induction that

Ck = (k + 2)
�k+2 � �k+1
�k+1 � �k

(83)

and we conclude that Ck > 0 for all k if and only if the sequence f�ng is monotone.

Obviously, the sequence cannot be increasing since �n > 0 for all n and �n ! 0 as

n!1.

Proof of Theorem 3. Let �n be the eigenvalue of '0 corresponding to the eigen-

vector jni, n = 0; 1; 2; : : :. Since V 00(�n) � 0 for all n, by hypothesis, and the kinetic
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energy only couples the matrix elements of ! along diagonals it is suÆcient and also

necessary, in view of Eq. (69), to prove that

�k(!) � X
n�m=k

 
jhnj[a; !]jmij2 + jhmj[a; !]jnij2 + �jhnj!jmij2V

0(�n)� V 0(�m)

�n � �m

!

� 0 (84)

for k � 1. For each �xed k the argument is quite similar to the proof of the previous

theorem. We put �n = hn+kj!jni which can be assumed to be real for the purpose

of proving positivity. We see that �k(!) is a quadratic form 2Qk in the variables �n.

As in the previous proof the matrix representing Qk has only nonvanishing matrix

elements on the diagonal and next to it, and they are given by

qnn = 2n+ 1 + k + n (85)

qnn�1 = �
q
n(n + k) (86)

qnn+1 = �
q
(n + 1)(n+ 1 + k) (87)

and

n =
�

2

V 0(�n)� V 0(�n+k)

�n � �n+k
: (88)

The positivity of this form is equivalent to the positivity of the numbers Cn de�ned

inductively by

C0 = 1 + k + 0 (89)

and

Cn = 2n+ 1 + k + n � n(n + k)

Cn�1
; n = 1; 2; : : : (90)

by the same row and column argument as in the proof of Theorem 1. The case

k = 1 is taken care of by the argument in Theorem 1 since the eigenvalues �n form

a decreasing sequence. In order to prove the positivity of Cn for general values of k

we observe, using Eq.(5), that

qnn = (2n+k+1)
�n+1 � �n+k+1
�n � �n+k

+n
��n ���n+k+1
�n � �n+k

+(n+k)
��n+1 ���n+k
�n � �n+k

; (91)

where ��n = �n�1 � �n ; n � 1: Furthermore,

��n > ��n+1 (92)
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for n � 1, since V 0(�n) > 0 for n � 1 in the case at hand, N = 0. We have

C0 = (k + 1)
�1 � �k+1
�0 � �k

+ k
��1 ���k
�0 � �k

(93)

and therefore, since ��1 � ��k,

C0 � (k + 1)
�1 � �k+1
�0 � �k

: (94)

Finally, using Eqs. (91) and (92), it follows by induction that

Cn � (n + 1 + k)
�n+1 � �n+k+1
�n � �n+k

(95)

and the proof is complete.

Proof of Theorem 4. We only need to consider N � 1. As explained in the

proof of Theorem 3 it suÆces to show that there exists a number �c such that

the Ci's, de�ned inductively by Eqs. (89) and (90), are positive for each value of

k = 0; 1; 2; : : :, provided � � �c. Note that for k = 0 we simply have i =
1
2
�V 00(�i).

We begin by discussing the case k = 0 and choose �c such that

V 00(�m) � 0 (96)

for � � �c and m = 0; 1; : : :. Then C0 � 1 and it follows easily by induction that

Cm � m + 1 for m > 0.

The case k = 1 follows from the proof of Theorem 2 since f�ng is by construction
monotonically decreasing.

In general fV 0(�n)g is not a positive decreasing sequence for n � 1 so the argu-

ment used in the proof of Theorem 3 does not generalize and we will need to use

information about the asymptotic behaviour of the eigenvalues of 'N as � !1.

We begin by analysing the asymptotic beahaviour of the eigenvalues of 'N re-

garded as functions of �. By Theorem 1 we can write the eigenvalues as

�i(�) = s� ri(�); i = 0; 1; : : : ; N (97)

�i(�) = ri(�); i = N + 1; N + 2; : : : ; (98)

where ri(�)! 0 as � !1 for all i. The potential function V is assumed to be C2

and V 00(0) > 0, V 00(s) > 0 so the equation of motion (7) used for m = 0 implies

that

r0(�)� r1(�) = ��
2
[V 00(s)r0(�) + o(r0(�))] (99)
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which shows that �r0(�) ! 0 as � ! 1. Repeating this argument for the next

values of m we �nd that

�ri(�)! 0; i = 0; 1; : : :N � 1: (100)

Using (100) in the equation of motion form = 0; 1; : : : ; N�1 we �nd by an analogous
argument that

�2ri(�)! 0; i = 0; 1; : : :N � 2: (101)

Continuing in the same vein we obtain

�N�iri(�)! 0 as i = 0; 1; : : :N � 1: (102)

Using (102) in Eq. (7) with m = N gives

�V 0(�N(�))! �2(N + 1)s; (103)

which implies

rN(�) =
2(N + 1)s

V 00(s)�
+ o(��1): (104)

Continuing this argument we �nd

rN(�) � dN
�
; rN�1(�) � dN�1

�2
; : : : ; r0(�) � d0

�N+1
; (105)

where

dN =
2(N + 1)s

V 00(s)
: (106)

We do not need the explicit values of di for i = 0; : : :N � 1. Using (105) in Eq. (7)

with m = N + 1 yields

rN+1(�) � dN+1

�
; (107)

where

V 00(0)dN+1 = V 00(s)dN = 2(N + 1)s : (108)

Taking now m > N + 1 in Eq. (7) we �nd

�ri(�)! 0 as � !1 (109)

for i � N + 2. Continuing the analysis in the same fashion as for i � N we obtain

the bound

ri(�) = O(�N�i) (110)
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for i � N + 2. This completes our discussion of the behaviour of the eigenvalues of

'N for large �.

We now use the asymptotic behaviour of the �i's to �nd the asymptotic behaviour

of the i's. This is a straightforward calculation using Eq. (5) and Eqs. (105)-(110).

The results can be summarized as follows:

k = 2

m � N � 2 : m =
�

2
V 00(s) +O(1) (111)

m � N + 1 : m =
�

2
V 00(0) +O(1) (112)

m = N � 1 : m = �(N + 1) +
(N + 2)dN+1 + dN

s�
+O(��2) (113)

m = N : m = �(N + 1) +
NdN � dN+1

s�
+O(��2) (114)

k � 3

m+ k � N : m =
�

2
V 00(s) +O(1) (115)

m � N + 1 : m =
�

2
V 00(0) +O(1) (116)

m + k = N + 1 : m = �(N + 1) +
(N + 1)dN + (N + 2)dN+1

s�
+O(��2)(117)

m = N : m = �(N + 1) +
(N + 1)dN+1 +NdN

s�
+O(��2) (118)

m + k = N + 2 : m = �NdNÆk3 + (N + 2)dN+1

s�
+O(��2) (119)

m = N � 1 : m = �(N + 2)dN+1Æk3 +NdN
s�

+O(��2) (120)

All other cases : m = O(��2): (121)

All the correction terms to the above asymptotic expressions are uniform in k and

m for � � �c and �c suÆciently large.

We are now ready to show that Cm > 0 for all k � 2 provided � is suÆciently

large. First, we note that it is an immediate consequence of the preceding asymptotic

formulae and the recursion relations (89) and (90) that Cm > 0 for n � N � k and

� � �c, if �c is large enough. It is convenient to separate the discussion of the

remaining values of m into two cases depending on whether N � k � 0 or not.
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Case I. N � k � 0. By Eqs. (111) and (115),

C0 = k + 1 + 0 � k + 1 +
�

2
V 00(s) +O(1): (122)

Choosing �c suÆciently large we also have

0; : : : ; N�k > 0 (123)

and by induction

Cm � m + k + 1 + m � �

2
V 00(s) +O(1) (124)

for m = 0; 1; : : : ; N � k.

I.a. Assume �rst that k = 2. Then we �nd, using the asymptotic formulae

above,

CN�1 = N +
(N + 2)dN+1 � (N � 2)dN

s�
+O(��2) (125)

and

CN =
4dN + (N2 + 3N + 4)dN+1

Ns�
+O(��2): (126)

Choosing �c large enough CN�1 and CN are positive and

CN+1 = 2(N + 1) + 3 + N+1 � (N + 1)(N + 3)

CN

� 2�V 00(0)

N2 + 3N + 4
+O(1): (127)

For � suÆciently large CN+1 � N + 2 and it follows by induction that Cm � m + 1

for m � N + 2 if �c is so large that m � 0 for m � N + 2.

I.b. Assume next that k = 3. Then we �nd by a calculation similar to the one

in I.a:

CN�2 = N � 1 +
3dN + (N + 2)dN+1

s�
+O(��2) (128)

CN�1 = N +
3(N + 2)(dN + dN+1)

(N � 1)s�
� NdN

s�
+O(��2) (129)

CN =
(N + 1)dN+1 � 3dN

s�
+ 3

(N + 2)(N + 3)(dN+1 + dN)

N(N � 1)s�
+O(��2)(130)

CN+1 =
�

2

18(N + 1)V 00(0)

(N + 1)3 + 11N + 17
+O(1): (131)

Choosing �c suÆciently large the above coeÆcients are all positive and taking �c so

large that CN+1 � N + 2 and m � 0 for m � N + 2 we conclude by induction that

all the Cm's are positive.
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I.c. Now we consider the case k � 4. The calculation is analogous to the one

given above for k = 2 and k = 3. We evaluate CN+1�k; CN+2�k; : : : CN to order ��1

and �nd that CN+1�i = N + 2� i+O(��1) for i = 2; : : : ; k and then

CN �
 
N + 1 + k

(N + k) � � � (N + 2)

N � � � (N + 2� k)

!
dN+1

s�
+O(��2) (132)

CN+1 � �

2
V 00(0)

0
@1� (N + 1 + k)

 
N + 1 + k

(N + k) � � � (N + 2)

N � � � (N + 2� k)

!�11A+O(1) :

Noting that the coeÆcient of � in the last expression is positive we proceed to show

by induction as before that Cm > 0 for all m provided �c is chosen large enough.

Case II. k � N + 1. Again it is convenient to split the argument into di�erent

subcases.

II.a. If N + 1 = k = 2 then from the asymptotic formulae we �nd

C0 = 1 +
3d2 + d1

s�
+O(��2) (133)

C1 =
4d1 + 8d2

s�
+O(��2) (134)

C2 � �

4
V 00(0) +O(1) (135)

and the argument can be completed by induction as before, provided �c is taken

large enough.

II.b. In the case N = 1 and k � 3 we �nd

C0 = k + 1� 3d2Æk3 + d1
s�

+O(��2) (136)

C1 = k +

 
2� 3Æk3

1 + k

!
d2
s�

+
kd1

(k + 1)s�
+O(��2): (137)

Choosing �c suÆciently large we �nd that C0 > 0, C1 � 2 and m > 0 for m � 2. It

follows as before that Cm � m + 1 for m � 2.

II.c. Consider N + 1 = k = 3. The crucial coeÆcients in this case are C2 which

is of order ��1 and C3 which diverges at large �. We �nd

C2 =
33d3 + 27d2

s�
+O(��2) (138)

� 198

V 00(0)�
+O(��2) (139)

and consequently

C3 =
9V 00(0)�

22
+O(1): (140)
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Taking �c large we can now complete the argument by induction as before.

II.d. The case N = 2 and k � 4 is quite similar to II.b. We omit the details

which are straightforward.

II.e. Consider the case N+1 = k � 4. We calculate the Cm inductively, starting

with C0 and keeping terms to order ��1. We �nd eventually

CN�1 = N +
(N + 1)(N + 2) � � � (2N)

2 � 3 � � � (N � 1)

 
dN + dN+1

s�

!
� NdN

s�
+O(��2) (141)

and after a short calculation

CN � (N + 1)dN+1

s�

 
1 +

(N + 2)(N + 3) � � � (2N + 1)

2 � 3 � � �N
!
+O(��2) (142)

which implies

CN+1 � �

2
V 00(0)

0
@1� 2

 
1 +

(2N + 1)!

N !(N + 1)!

!�11A+O(1) (143)

and allows us to complete the argument by induction provided �c is large enough.

II.f. The remaining cases N � 3 and k � N+2 are simpler than those discussed

above. One �nds that none of the Cm's approaches zero for large �. We omit the

details.

This completes the proof of Theorem 4.

We end this section by commenting briey on how to extend the stability re-

sults to dimensions d > 1. Even though the eigenvalues of the rotationally invariant

operators are degenerate in this case the extension of the formula (69) for the sta-

bility functional � is straightforward to derive if the potential V is analytic in a

neighborhood of the interval [0; s], as we are assuming.

If we have a solution ' =
P
�nPn to Eq. (3), we �nd by the analytic functional

calculus that

�(!) =
1X
n=0

 
2n+ d+

�

2
V 00(�n)

!
kPn!Pnk22

+ 2
X
m<n

 
n+m + d+

�

2

V 0(�n)� V 0(�m)

�n � �m

!
kPn!Pmk22

� 2
dX

k=1

X
n;m

q
(nk + 1)(mk + 1)hn+ Ækj!jm+ Ækihnj!jmi ; (144)

where, as usual, the Pn are the spectral projections of the number operator, and

the standard harmonic oscillator basis vectors are jni, where n = (n1; : : : ; nd) is a
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multi-index of non-negative integers. Furthermore, Æ1; : : : ; Æd denotes the standard

orthonormal basis for Rd.

We see that � only couples the matrix elements of ! diagonally, i.e., it suÆces

to show that �(!) � 0 for

hnj!jmi = 0 unless n�m = �` ; (145)

where ` is an arbitrary integer multi-index, with j`j � `1 + � � �+ `d � 0.

Consider �rst the case j`j = 0, in which the second sum on the right hand side

of Eq. (144) does not contribute. If V 00(�n) � 0 for all n, we have

�(!) � �0
1(!) + � � �+ �0

d(!) ; (146)

where

�0
k(!) =

X
jnj=jmj

(nk +mk + 1)jhnj!jmij2

� 2
X

jnj=jmj

q
(nk + 1)(mk + 1)hn+ Ækj!jm+ Ækihnj!jmi : (147)

The contribution to this expression from any �xed values of ni and mi, for i 6= k, is

a quadratic form in the the matrix elements

hnj!jmi = hn1; : : : ; mk + `k; : : : ; ndj!jm1; : : : ; mk; : : : ; mdi ; (148)

that may be assumed to be real. It is a simple matter to verify that this quadratic

form is positive de�nite. Therefore, so is �(!) for j`j = 0, provided the condition

V 00(�n) � 0 holds.

For j`j 6= 0 the �rst sum on the right hand side of Eq. (144) does not contribute.

For the coeÆcient of kPn!Pmk22 in the second sum one obtains the value

(n+m + d)
�n+1 � �m+1

�n � �m
+ n

��n ���m+1

�n � �m
+m

��n+1 ���m
�n � �m

(149)

by using Eq. (3) in the form

(n+ d)��n � n��n�1 =
�

2
V 0(�n) ; (150)

where �� = �n+1 � �n, n � 1. This allows us to write

1

2
�(!) = �1(!) + � � �+ �d(!) ; (151)
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where

�k(!) =
X

n=m+`

f(nk +mk + 1)
�n+1 � �m+1

�n � �m

+ nk
��n ���m+1

�n � �m
+mk

��n+1 ���m
�n � �m

gjhnj!jmij2

� 2
X

n=m+`

q
(nk + 1)(mk + 1)hn+ Ækj!jm+ Ækihnj!jmi : (152)

Considering terms with �xed values of ni; mi; i 6= k, in this expression one obtains

a quadratic form in the matrix elements that can be handled by an analysis similar

to the one that was carried out for the case d = 1. We do not elaborate further

on the general case here but note that the analysis of the one-soliton case, N = 0,

of Theorem 3, generalises immediately to �k. This result is obtained by observing

that the sequence f��ng is again decreasing in this case as a consequence of Eq.

(150) since V 0(�n) > 0 for n � 1. Thus, Theorem 3 also holds for d > 1.

5 Nonexistence of smooth families

In [21] we proved that rotationally symmetric solutions to Eq. (3) do not exist for

suÆciently small values of �. The purpose of this section is to prove non-existence of

smooth families of solutions for small � without assuming rotational symmetry. By

a smooth family of solutions we mean a mapping from an interval I � R to H2;2,

I 3 � 7! '� 2 H2;2; (153)

which is continuously di�erentiable in the norm topology of H2;2.

The proof is based on three lemmas below which are most conveniently estab-

lished by representing operators by functions via a quantization map. The Weyl or

Weyl-Wigner quantization is perhaps the best known quantization map. It can be

de�ned as the mapping �W which to a function f(x; p) of 2d variables, x; p 2 Rd,

associates an operator �W (f) on L2(Rd) whose kernel KW (f) is given by

KW (f)(x; y) = (2�)�d
Z
Rd
f
�
x + y

2
; p
�
ei(x�y)�pdp : (154)

It is obvious that �W maps Schwartz functions on R2d bijectively onto operators

whose kernels are Schwartz functions and also maps tempered distributions onto
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operators whose kernels are tempered distributions. More important for the follow-

ing is the easily veri�able fact that �W maps L2(R2d) isometricaly (up to a factor

(2�)d=2) onto the space of Hilbert-Schmidt operators on L2(Rd),

k�W (f)k22 =
Z
R2d

jKW (f)(x; y)j2 dxdy = (2�)�d
Z
R2d

jf(x; p)j2 dxdp: (155)

We shall �nd it more convenient to use the so called Kohn-Nirenberg quantization

� for which the kernel K(f) of �(f) is given by

K(f)(x; y) = (2�)�d
Z
Rd
f(x; p) ei(x�y)�pdp: (156)

The quantization map � clearly has the same properties as the ones we described

for �W above. Likewise, the following properties of � are shared by �W except for

the last one:

(a) If �(f) is of trace class then

Tr �(f) =
Z
Rd
K(f)(x; x)dx = (2�)�d

Z
R2d

f(x; p)dxdp : (157)

(b) If g depends only on x we have

�(g(x)) = g(x) ; (158)

where the right hand side is to be interpreted as a multiplication operator.

(c) If h depends only on p we have

�(h(p)) = h(
1

i
rx) : (159)

(d) If g and h are as above, then

�(g(x)f(x; p)h(p)) = g(x)�(f)h(
1

i
rx) : (160)

From (b) and (c) it follows that

ak =
1p
2
(xk + @xk) =

1p
2
�(xk + ipk) (161)

and

a�k =
1p
2
(xk � @xk) =

1p
2
�(xk � ipk) : (162)
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From the de�nition of � one then obtains

[ak; �(f)] =
1p
2
�(@xkf + i@pkf) (163)

and

[a�k; �(f)] =
�1p
2
�(@xkf � i@pkf) : (164)

Consequently,

2
X
k

[a�k; [ak; �(f)]] = �(�f) ; (165)

where � is the Laplace operator on R2d, and the (complexi�cation of) the space D
introduced in Section 2 is just the image under � of the domain of de�nition of the

self-adjoint operator �. Notice, however, that contrary to �W the quantization map

� does not generally map real-valued functions to self-adjoint operators.

There is to our knowledge no known simple characterisation of the subspace of

L2(R2d) consisting of functions f such that �(f) is of trace class. We shall need

the following result, depending crucially on property (d) above, concerning such

functions. Here k � k1 denotes the standard trace norm.

Lemma 4. Suppose f is a square integrable function such that �(f) is of trace

class. Then its Fourier transform F(f) is bounded and its uniform norm kF(f)k1
satis�es the inequality

kF(f)k1 � k�(f)k1: (166)

Proof. First, note that �(e�i��x) = e�i��x and �(e�ip��) = e���rx are unitary opera-

tors. Hence,

�(e�i��xf(x; p)e�ip��) = e�i��x�(f)e���rx (167)

is of trace class and using properties (a) and (d) above we have

F(f)(�; �) =
Z
R2d

e�i��xf(x; p)e�ip��dxdp

= Tr f�(e�i��xf(x; p)e�ip��)g = Tr fe�i��x�(f)e���rxg ; (168)

and hence

jF(f)(�; �)j � Tr (j�(f)j) = k�(f)k1 ; (169)

which proves the assertion.
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Using the above result we get the following a priori estimate relating the Hilbert-

Schmidt and trace norms of any solution of Eq. (3).

Lemma 5. There exists a constant C, depending only on V , such that any solution

' of Eq. (3) ful�lls

k'k2 � C�
d
2k'k1: (170)

Proof. Since both ' and V 0(') are Hilbert-Schmidt there exist square integrable

functions f and F such that ' = �(f) and V 0(') = �(F ). By Eq. (165) the equation

of motion (3) may be written as

�f + �F = 0 (171)

or, equivalently,

F(f)(�; �) = ��
j�j2 + j�j2F(F )(�; �): (172)

Using Lemma 4 and the fact that for an appropriate constant c,

kF(F )kL2 = (2�)2dkV 0(')k2 � ck'k2; (173)

we get

(2�)dk'k22 = kF(f)k2L2

=
Z
j�j2+j�j2�Æ2

jF(f)j2 d�d� +
Z
j�j2+j�j2>Æ2

jF(f)j2 d�d�

=
Z
j�j2+j�j2�Æ2

jF(f)j2 d�d� + �2
Z
j�j2+j�j2>Æ2

jF(F )j2
(j�j2 + j�j2)2 d�d�

� const Æ2dkF(f)k21 +
�2

Æ4
kF(F )k2L2

� const Æ2dk'k21 + c
�2

Æ4
k'k22 (174)

for some constant c. If we now let Æ4 = c�2, the result follows.

Our next goal is to obtain a lower bound on the Hilbert-Schmidt norm of solutions

to Eq. (3) .

Lemma 6. There exists a constant C 0, depending only on the potential V , such that

any non-zero solution ' of Eq. (3) satis�es the inequality

C 0��
d
2 � k'k2: (175)
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Proof. Let ' =
P

n �nPn be the spectral decomposition of ', and set, for a > 0,

'<a =
X
�n<a

�nPn and '�a =
X
�n�a

�nPn: (176)

By our assumptions about V we can �x a > 0 and a constant c1 such that V 0('<a)

is positive and

k'<ak1 � c1kV 0('<a)k1 : (177)

Now, using that k'k � s and Tr (V 0(')) = 0 by Lemma 2, we can estimate

kV 0('<a)k1 as follows:

kV 0('<a)k1 = �Tr (V 0('�a)) � kV 0('�a)k1 � c2k'�ak1 (178)

for an appropriate constant c2. Thus,

k'<ak1 � c3k'�ak1 ; (179)

where c3 = c1c2. From this we deduce

k'k1 = k'<ak1 + k'�ak1
� (1 + c3)k'�ak1
� c4k'k22 ; (180)

where c4 = (1 + c3)=a. Finally, from (180) and the a priori estimate of Lemma 5,

we get

k'k1 � Cc4�
d
2k'k2k'k1 (181)

from which the claimed inequality follows.

We are now in a position to prove the announced non-existence result.

Theorem 5. Let V be analytic on a neighbourhood of the interval [0; s]. Suppose

(a; b] 3 � 7! '� 2 H2;2 ; (182)

where 0 � a < b, is a smooth map such that '� is a nonzero solution of the equation

of motion (3) for each � 2 (a; b). Then a > 0.

Proof. Since '� is a solution to Eq. (3) the derivative of the energy S('�) with

respect to � is given by
d

d�
S('�) = Tr V ('�): (183)
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This is easy to prove using the analytic functional calculus. Since V is positive

de�nite, it satis�es an estimate of the form

V (') � const '2 (184)

and hence, by Lemma 6,
d

d�
S('�) � CV �

�d; (185)

where the constant CV depends only on V (but not on the given family of solutions).

Hence, for d > 1, the function

� 7! S('�) +
CV

d� 1
��d+1 (186)

is increasing. Now suppose that a = 0. Then

S('�) � S('b) +
CV

d� 1
(b�d+1 � ��d+1) (187)

which contradicts positivity of S('�) for small �.

For d = 1 the expresion CV
d�1

��d+1 in (186) should be replaced by �CV ln � and

the same conclusion holds. This proves the theorem.
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