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Abstract

Recently, systematic sampling on the circle and the sphere has been studied

by Gual-Arnau and Cruz-Orive (2000) from a design-based point of view. In

this note, it is shown that their mathematical model for the covariogram is

in a model-based statistical setting a special case of the p-order shape model,

suggested in Hobolth et al. (1999, 2000) for planar objects without landmarks.

Bene�ts of this observation include an alternative variance estimator, applicable

in the original problem of systematic sampling. In a wider perspective, the

paper contributes to the discussion concerning design-based versus model-based

stereology.
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1 Introduction

In stereology, the aim is typically to make inference about a population of spatial ob-
jects from geometric samples of the objects such as line and plane sections. The objec-
tive is not to reconstruct the objects, but instead to make inference about quantitative
properties such as volume or surface area. If a typical object from the population can
be regarded as a realization of a stochastic process R, then the quantitative property
of interest can be expressed as a function f of R. Using a geometric sampling design
�, independent of R, a predictor f̂(R; �) of f(R) can often be constructed, based on
reasoning from stochastic geometry, which is design-unbiased, i.e.

E(f̂(R; �)jR) = f(R):

It is part of the methodology of design-based stereology to construct a design-unbiased
estimator �̂2R(�) of the conditional variance

�2R = Var(f̂(R; �)jR):

The estimator �̂2R(�) thus satis�es

E(�̂2R(�)jR) = �2R:

Usually �̂2R(�) is based on the empirical covariogram.
In most cases it is of interest to make statements about the population of objects

and not only about the sampled objects. A relevant quantity is here the prediction
error

E(f̂(R; �)� f(R))2:
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Using that f̂(R; �) and �̂2R(�) are design-unbiased, the prediction error can be rewrit-
ten as

E(f̂(R; �)� f(R))2 (1.1)

= Var
�
f̂(R; �)� f(R)

�
= Var

�
E(f̂(R; �)� f(R)jR)

�
+ E

�
Var(f̂(R; �)� f(R)jR)

�
= E

�
Var(f̂(R; �)jR)

�
= E�2R = E�̂2R(�): (1.2)

Therefore, �̂2R(�) or an average of such estimators for a sample of objects can be
regarded as an unbiased estimator of the prediction error.

In the present paper we propose the alternative of using a likelihood-based method
of estimating the prediction error. The discussion is centred around the example
where R = fR(2�t) 2 R : 0 � t � 1g is a 2� periodic stochastic process and

f(R) =

Z
1

0

R(2�t)dt

is the quantity of interest. Based on n � 2 equally spaced measurements

fR(2�(�+ j=n)) : j = 0; : : : ; n� 1g

of the stochastic process R, with � uniformly distributed in [0; 1=n], Gual-Arnau
and Cruz-Orive (2000) have recently suggested a design-unbiased estimator of the
conditional variance of

f̂(R; �) =
1

n

n�1X
j=0

R(2�(�+ j=n)): (1.3)

In this paper we suggest a parametric model for R with a covariance structure similar
to that of Gual-Arnau and Cruz-Orive (2000). The prediction error is estimated by
inserting the maximum likelihood estimates of the model parameters into a closed
form parametric expression for the prediction error. The proposed estimator of the
prediction error is optimal under the suggested model for R.

The paper is organised as follows. In Section 2 we recall the design-based variance
estimation of Gual-Arnau and Cruz-Orive (2000), while the likelihood-based variance
estimation is carried out in Section 3. In Section 4 it is shown that the proposed model
is a special case of the p-order shape model, suggested in Hobolth et al: (1999, 2000)
for planar objects without landmarks. It is also pointed out that a similar discussion
about estimation procedures has taken place in the geostatistical community during
the last decade.

2 Design-based variance estimation

Let R = fR(2�t) 2 R : 0 � t � 1g be a 2� periodic stochastic process, which is of
bounded variation, square integrable and piecewise continuous, and let � � U[0; 1=n]
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be independent of R. If we de�ne f̂(R; �) as in (1.3), then Cruz-Orive and Gual-Arnau
(2000) treat the problem of estimating the conditional variance Var(f̂(R; �)jR = r).
In particular they show that, cf. Gual-Arnau and Cruz-Orive (2000, Corollary 2.1),

Var(f̂(R; �)jR = r) =
X

k2Znf0g

ckn; (2.1)

where

ck =

Z
1

0

g(t)e�2�iktdt; k 2 Z;

are the Fourier coeÆcients of the covariogram

g(t) =

Z
1

0

r(2�h)r(2�(h+ t))dh; 0 � t � 1:

Here and throughout the paper we use periodic extensions of the functions (i.e.
r(2�(x + k)) = r(2�x); k 2 Z). Note that ck is real and ck = c�k because
g(1� t) = g(t). The covariogram

g(t) =
X
k2Z

cke
2�ikt = c0 + 2

1X
k=1

ck cos(2�kt); (2.2)

is modelled by a polynomium of order 2p; p 2 N . The fact that g(t) = g(1� t) causes
restrictions on the coeÆcients of the polynomium. Gual-Arnau and Cruz-Orive (2000,
p. 635) show that in fact the polynomium only depends on two real parameters �0; �,
and that the Fourier coeÆcients of g take the form

c0 = �0 �
X

k2Znf0g

ck; ck =
(2p)!

k2p
�; k 2 Z n f0g; (2.3)

where c0; � > 0. Unbiased estimators of g(0) and g(1=n) are obtained by

ĝ(0) =
1

n

n�1X
j=0

r(2�(�+ j=n))2;

ĝ(1=n) =
1

n

n�1X
j=0

r(2�(�+ j=n))r(2�(�+ (j + 1)=n));

and using the formula for the Bernoulli polynomium, cf. e.g. Abramovitz and Stegun
(1970, p. 805),

B2p(t) =
(�1)p�1(2p)!

(2�)2p
2

1X
k=1

cos(2�kt)

k2p
; 0 � t � 1; p 2 N ;

3



an unbiased estimator of Var(f̂(R; �)jR = r) given by

ĝ(0)� ĝ(2�=n)

n2p
1

1�B2p(1=n)=B2p
; (2.4)

is obtained, where B2p = B2p(0) is the Bernoulli number of order 2p. Note that

2n(ĝ(0)� ĝ(2�=n)) =
n�1X
j=0

�
r(2�(�+ j=n))� r(2�(�+ (j + 1)=n)

�2
;

and thus the estimator is based on �rst-order di�erences.

3 Model-based setting

Now we recast the models and estimation procedures of Gual-Arnau and Cruz-Orive
(2000) in terms of a stationary, random periodic process R with mean � and covariance
function

�(t) =
X
k2Z

�ke
2�ikt = �0 + 2

1X
k=1

�k cos(2�kt); 0 � t � 1:

Note that the �k's are real because �(1� t) = �(t). If we make a Fourier expansion
of the random covariogram

G(t) =

Z
1

0

R(2�h)R(2�(h+ t))dh = C0 + 2
1X
k=1

Ck cos(2�kt)

then ECk = �k; k � 1; and EC0 = �0 + �2. Accordingly, the covariogram model
(2.3) corresponds to a covariance function �(t) with

�0 = �0 �
X

k2Znf0g

�k; �k =
(2p)!

k2p
�; k 2 Znf0g: (3.1)

Note that

�(0) = �0 +
X

k2Znf0g

�k = �0;

which means that �0 determines the variance and �=�0 the correlation structure.
In a model-based setting, the aim is to estimate the error involved in using

f̂(R; �) =
1

n

n�1X
j=0

R(2�(�+ j=n))
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as a predictor of f(R) =
R
1

0
R(2�t)dt. In terms of model parameters the prediction

error is given by, cf. (1.1), (2.1) and (3.1),

E(f̂(R; �)� f(R))2 = E(Var(f̂(R; �)jR))

=
X

k2Znf0g

�kn

= �
X

k2Znf0g

(2p)!

(kn)2p

= (�1)p�1(2�)2pB2p
1

n2p
�: (3.2)

Note that the prediction error will be the same if we �x � = 0, say.
We can use the procedure suggested by Gual-Arnau and Cruz-Orive (2000) for

obtaining an unbiased estimator of the prediction error in the model-based setting.
Another approach is to estimate � in the parametric model for R by maximum like-
lihood estimation. Suppose for instance that the process R is Gaussian. Then the
vector

Rn =
�
R(2��); R(2�(�+ 1=n)); : : : ; R(2�(�+ (n� 1)=n))

�T
follows a multivariate normal distribution with mean (�; : : : ; �)T = �1Tn and an n�n
circulant covariance matrix

� = circ
�
�(0); �(1=n); : : : ; �((n� 1)=n)

�
:

The covariance matrix can be diagonalised by the complex n � n discrete Fourier
transformmatrixW with entries wjk = e2�ijk=n=n; 0 � j; k � n�1, cf. e.g. Wei (1990,
Chapter 10). Let wk denote the (k+1)'th coloumn of W so that W = [w0; : : : ; wn�1]

and let W � = W
T
denote the complex conjugate of W . Then

W ��W = diag(~�0; : : : ; ~�n�1)

is a diagonal matrix with

~�j = w�
j�wj =

X
k2Z

�j+nk; j = 0; : : : ; n� 1;

on the diagonal. Note that only the parameter � is present in the expression of
~�j; j = 1; : : : ; n�1, while both � and �0 are present in the expression of ~�0. Similarly
we �nd that

(Rn � �1n)
���1(Rn � �1n) = (Rn � �1n)

�nWW ���1nWW �(Rn � �1n)

=
(f̂ � �)2

~�0
+

n�1X
j=1

�̂j
~�j

=
(f̂ � �)2

~�0
+ �

n�1X
j=1

�̂j
~�j
;
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where

f̂ = f̂(R; �); �̂j = �̂j(R; �) = w�
jRnR

�
nwj; j = 0; : : : ; n� 1;

and

~�j = ~�j=� =
X
k2Z

(2p)!

(j + nk)2p
; j = 1; : : : ; n� 1: (3.3)

Thus the suÆcient statistic is given by

T = (f̂ ; f̂ 2;
n�1X
j=1

�̂j=~�j):

According to the Rao-Blackwell theorem any function of T is the minimum variance
estimator of its mean value. Furthermore it follows from the theory of exponential
families that T is complete, and hence

�̂ =
1

n� 1

n�1X
j=1

�̂j
~�j

is the unique unbiased estimator of � with minimum variance. Using the real discrete
Fourier transform matrix similar calculations show that �̂ follows a ��2(n�1)=(n�1)
distribution, and therefore we can supply the point estimate of � with a con�dence
interval. This is an important option which does not exist in a design-based setting.

The likelihood-based estimator of � is a weighted sum of the squared length of
the discrete complex Fourier coeÆcients �̂j. It is clear from (3.3) that the weights ~�j
depend crucially on the order 2p of the polynomium. Below we discuss how p relates
to the smoothness of the sample paths, and may be considered as a third parameter
in the model.

We estimate the prediction error by, cf. (3.2),

(�1)p�1(2�)2pB2p
1

n2p
�̂: (3.4)

It is worth noticing that for n = 2 and n = 3 this estimator actually coincides
with the estimator (2.4) of Gual-Arnau and Cruz-Orive (2000). Note also that in a
design-based setting, (3.4) is an unbiased estimator of Var(f̂(R; �)jR = r) under the
covariogram model (2.3).

4 Discussion

4.1 The p-order shape model

The model (3.1) is a special case of the p-order model suggested in Hobolth et al.
(1999, 2000) which appears to be very natural for modelling the shape of planar
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objects K without landmarks. In this setting K is assumed to be star-shaped with
respect to a �xed point z 2 K, and R(2�t) is the radius-vector function evaluated at
2�t, i.e. the distance from z to the boundary of K along a line with angle 2�t relative
to a �xed axis. In the p-order model the �k's are determined by

�0 � 0; ��1k = ~�+ ~�k2p; k 2 Znf0g; (4.1)

where ~� � 0; ~� > 0; p > 1=2. Note that in this model p is a parameter and not
a �xed integer as in (2.3). For ~� = 0 and 1=~� = (2p)!� we get the model (3.1). In
Hobolth et al. (2000) it is discussed how the parameters (~�; ~�; p) relates to the shape
of the object. The parameter p determines the smoothness of the object boundary.
In the Gaussian case the sample paths are k times continuously di�erentiable, where
k is the integer satisfying p 2]k � 1=2; k + 1=2[. For �xed p, ~� determines the global
shape while ~� determines the local shape. Furthermore, it can be argued that �1
relates to asymmetry of K relative to z 2 K, so the regression model (4.1) should
for geometrical reasons only be considered for jkj � 2. In Hobolth et al. (2000) it is
demonstrated how the three parameters can be estimated using maximum likelihood.
Based on the observed information it is also possible to determine con�dence intervals
of the parameters.

In geometric examples, R is typically a power (2 or 3) of the radius-vector function.
In such cases, a Gaussian assumption may not be appropriate. Hobolth et al. (2000)
provide tools for analysing non-Gaussian processes in this context.

4.2 Covariogram versus likelihood-based methods

The estimation procedure of Gual-Arnau and Cruz-Orive (2000) is based on the em-
pirical covariogram, while we suggest a likelihood-based method. In the geostatistical
community a discussion of the two procedures have taken place during the last decade,
and has resulted in a move towards the adoption of likelihood-based methods (Dig-
gle et al., 1998, p. 305). We refer the interested reader to the recent monograph
Stein (1999) and references therein for more information on parameter estimation
using covariogram- or likelihood-based methods. We believe that a corresponding
discussion is needed among the stereologists and we hope with this paper to have
contributed in a constructive manner to such a discussion.
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