
ON A SEMILINEAR BLACK AND SCHOLES PARTIAL

DIFFERENTIAL EQUATION FOR VALUING AMERICAN OPTIONS.

PART I: VISCOSITY SOLUTIONS AND WELL-POSEDNESS

FRED E. BENTH, KENNETH H. KARLSEN, AND KRISTIN REIKVAM

Abstract. Using the dynamic programming principle in optimal stopping theory, we
derive a semilinear Black and Scholes type partial di�erential equation set in a �xed
domain for the value of an American (call/put) option. The nonlinearity in the semilinear
Black and Scholes equation depends discontinuously on the American option value, so
that standard theory for partial di�erential equation does not apply. In fact, it is not
clear what one should mean by a solution to the semilinear Black and Scholes equation.
Guided by the dynamic programming principle, we suggest an appropriate de�nition of
a viscosity solution. Our main results imply that there exists exactly one such viscosity
solution of the semilinear Black and Scholes equation, namely the American option value.
In other words, we provide herein a new formulation of the American option valuation
problem. Our formulation constitutes a starting point for designing and analyzing \easy
to implement" numerical algorithms for computing the value of an American option. The
numerical aspects of the semilinear Black and Scholes equation are addressed in [7].
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1. Introduction

From the works by Bensoussan [4] and Karatzas [20], it is well known that the arbitrage-
free price of an American option is the solution of an optimal stopping problem. Roughly
speaking, the solution of the optimal stopping problem can be determined via two major
methodologies: One is based on the quasi-variational inequality formulation in the sense
of Bensoussan and Lions [5, 6] (see also [18]), while the other is based on free boundary
problem formulation due to McKean [25] and van Moerbeke [32]. It is well known that there
is no (known) explicit solution formula for the value of an American option, as opposed
to European options for which an analytical formula exists. Consequently, with both
methodologies one must use numerical algorithms to determine the price of an American
option. However, the two methodologies lend themselves to di�erent numerical algorithms,
each with its own advantages and disadvantages (see, e.g., the review paper [27]).
In this paper we present and analyze a di�erent formulation of the valuation problem

for American options, which to our knowledge has not appeared in the literature before.
We shall focus on American call and put options for which the payo� at exercise is given
by g(x) = (x�K)+ and g(x) = (K�x)+ respectively. K is the contracted strike price. In
our formulation, there are no \side constraints" that need to be ful�lled (as in the quasi-
variational inequality formulation) nor is there a free boundary that need to be determined
(as in the free boundary problem formulation). Hence the proposed formulation constitutes
a starting point for designing \easy to implement" numerical algorithms for computing the
value of an American option. Roughly speaking, in the new formulation we seek a function
v = v(t; x) (its regularity requirements will be discussed later) that satis�es v(T; x) = g(x)
and the following semilinear partial di�erential equation of the Black and Scholes type:

(1.1) @tv + (r � d)x@xv +
1

2
�2x2@2xv � rv = �q(x; v);

where x � 0, t 2 [0; T ); r; d; � are given constants; and the nonlinear reaction term q takes
the form

(1.2) q(x; v) =

(
0; g(x)� v < 0;

c(x); g(x)� v � 0;

for a \cash ow" function c = c(x) de�ned as

(1.3) c(x) =

(
(dx� rK)+; call option;

(rK � dx)+; put option:

Note that (1.1) is set in a �xed domain. However, the nonlinearity v 7! q(x; v) in (1.1)
is discontinuous, and this is the \price" we have to pay for not having a free boundary
explicitly present in our formulation. The fact that v 7! q(x; v) is discontinuous also implies
that it is not clear how one should interpret the semilinear Black and Scholes equation (1.1)
(luckily the dynamic programming principle will provide some guidance here). In fact, the
semilinear partial di�erential equation as it stands in (1.1) does not uniquely identify the
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American option value V as its solution unless it is appropriately interpreted (we will come
back to this later).
Before explaining the connection between the American option valuation problem and

the semilinear Black and Scholes equation (1.1), we would like to stress that our interest in
(1.1) is ultimately linked to a desire to design \easy to implement" numerical algorithms.
Indeed, in our companion paper [7] we demonstrate that the semilinear Black and Scholes
equation can be used to construct very simple numerical algorithms for valuing American
options. Using the mathematical framework developed herein, we also prove in [7] that the
approximate solutions generated by the algorithms converge to the American option value
as the discretization parameters tend to zero.
Referring to Section 3 for details, we will now briey try to explain the origin of the

semilinear Black and Scholes equation (1.1) and, in particular, how it should be interpreted.
Since we want to avoid going into too much details in the introduction, let us here only say
that the following formulation of the American option valuation problem comes from the
dynamic programming principle in optimal stopping theory: Find a function v = v(t; x)
that satis�es v(T; x) = g(x) and

(1.4)

8><
>:
@tv + (r � d)x@xv +

1
2
�2x2@2xv � rv = 0; when v > g;

�c(x) � @tv + (r � d)x@xv +
1
2
�2x2@2xv � rv � 0; when v = g;

@tv + (r � d)x@xv +
1
2
�2x2@2xv � rv = �c(x); when v < g;

where x � 0, t 2 [0; T ), and c(x) is de�ned in (1.3). In (1.4), the region de�ned by v > g
is known as the hold (or continuation) region and the region de�ned by v = g is known
as the exercise (or optimal stopping) region. The natural candidate solution for (1.4) is
of course the American option value V . It is well known that V � g, so that a posteriori
we see that the region de�ned by v < g in (1.4) (and the equation that is de�ned on it) is
irrelevant. However, it will become apparent later that it is technically convenient to have
the region de�ned by v < g explicitly present in the formulation (1.4).
To connect (1.4) to the semilinear Black and Scholes equation (1.1), we recall that

for a locally bounded function f : RN ! R of N(� 1) variables, its upper and lower
semicontinuous envelopes, denoted by f� and f

� respectively, are de�ned as

(1.5) f �(x) = lim sup
y!x

f(y); f�(x) = lim inf
y!x

f(y):

Observe now that

(1.6) q�(x; v) =

(
0; g(x)� v < 0;

c(x); g(x)� v � 0;
q�(x; v) =

(
0; g(x)� v � 0;

c(x); g(x)� v > 0:

Using (1.6), the dynamic programming inequalities in (1.4) can be stated compactly as

(1.7)

(
@tv + (r � d)x@xv +

1
2
�2x2@2xv � rv � �q�(x; v);

@tv + (r � d)x@xv +
1
2
�2x2@2xv � rv � �q�(x; v):

A function v that satis�es the �rst inequality in (1.7) is called a subsolution. A function
v that satis�es the second inequality in (1.7) is called a supersolution. A solution of (1.1)
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is a function v that is simultaneously a sub- and supersolution. In other words, we shall
take the dynamic programming inequalities in (1.7) as the very de�nition of a solution to
(1.1) (we refer to Section 4 for precise statements). At this stage, we would like to remind
the reader of the work by Ishii [16] on a class of �rst order Hamilton-Jacobi equations with
discontinuous Hamiltonians. It is a truly remarkable fact that the dynamic programming
interpretation (1.7) of the semilinear Black and Scholes equation (1.1) is nothing but an
adaption of the solution concept used by Ishii [16].
Summing up, our starting point is the dynamic programming inequalities in (1.4) (they

are derived in Section 3). Being familiar with the work by Ishii [16], we observe then that
(1.4) can be taken as the de�nition of a solution to a certain partial di�erential equation,
namely the semilinear Black and Scholes equation (1.1). Of course, it is not clear a priori
that (1.1) (when understood in sense of (1.4)) uniquely identi�es the American option
value as its solution. One can say that it is a purpose of this paper to prove that is so.
Heuristically, it is not diÆcult to see why the American option value V ought to satisfy

the semilinear Black and Scholes equation. But to easily see this, we need to use the free
boundary problem formulation [25, 32] and some properties of the free boundary (at a
heuristic level we may allow ourselves to do so). Letting x(t) denote the free boundary, it
is known that x(t) > K (x(t) < K) for a call option (put option). Furthermore, V = x�K
(V = K � x) in the exercise region, which coincides with the region x � x(t) (x � x(t)).
We see from these properties that the reaction term q(x; v) in the semilinear Black and
Scholes equation (1.1) vanishes in the hold region x < x(t) (x > x(t)), while it is strictly
positive in the exercise region x � x(t) > K (x � x(t) < K). Using this, it is a simple
exercise (plug in and equate) to check that V satis�es (1.1).
Motivated by Jamshidian [19] and Barone-Adesi and Elliott [3], Kholodnyi [22] has on

a heuristic level already observed that the American option value V should satisfy (1.1).
Kholodnyi used (as above) the free boundary formulation and its properties [25, 32] to argue
in favor of this. In fact, the work in [22] was the initial motivation for the present study.
But we stress that the free boundary problem formulation does not lead to the correct
interpretation of (1.1); it can can be used only as a heuristic motivation for setting up
(1.1). The rigorous correct way to derive (1.1) goes via the dynamic programming principle
in optimal stopping theory and it results in (1.4). As an attempt to understand (1.1) from
a rigorous mathematical point of view, in [22] the theory of semigroups generated by
multivalued operators in weighted Sobolev spaces is applied to a version of (1.1) where the
discontinuous reaction term q de�ned in (1.2) has been replaced by a continuous function.
However, this analysis does not apply to (1.1).
In Section 6 we give yet another heuristic motivation for the semilinear Black and Scholes

equation (1.1). There we claim that (1.1) can be viewed as an in�nitesimal version of the
well known early exercise premium representation of the American option [9, 17, 23]. This
claim comes from setting up an integral version of (1.1) in terms of the heat kernel.
As already mentioned several times, the value of an American option can be found as

the solution of a free boundary problem. Free boundary problems occur in a variety of
areas in applied science and the philosophy of embedding the solution of such a problem
in a larger (�xed) domain is surely not a new one. Many methods for doing so have
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been developed over the years (the quasi-variational inequality formulation provides an
example). We refer to the books by Crank [12] and Elliott and Ockendon [14] for an
overview of some of these methods. We would like to mention the papers by Rogers [30]
and Berger, Ciment, and Rogers [8], which deal with a free boundary problem arising in
the modeling of absorption of oxygen in tissue. These authors rewrite their free boundary
problem in terms of a heat equation with a nonlinear reaction term. The authors then use
the semilinear heat equation as a motivation for setting up a certain numerical algorithm
for their free boundary problem. Also, let us mention the recent papers by Badea and
Wang [1, 2] which formulate the American option valuation problem in terms of a partial
di�erential equation that does not \see" the free boundary. These authors derive and
analyze a weak variational inequality for the time value u := v � g of an American call
option. Although there are some similarities, the formulations and the mathematical tools
used in [8, 30] and [1, 2] are di�erent from ours.
A technical aspect that was set aside in the discussion above was the regularity of the

solution of (1.1) (in the sense of (1.4)). Unfortunately, the natural solution candidate for
(1.1) might not possess all the continuous derivatives up to �rst order in t and second order
in x, and as such does not satisfy (1.1) pointwise everywhere. In other words, (1.1) might
not admit a classical (C1;2) solution. To have a exible mathematical framework in which
one can easily prove existence, uniqueness, and convergence of approximate solutions, one
needs to relax the notion of classical solution so as to allow functions that are not necessarily
C1;2 as (generalized) solutions. This can be achieved successfully by introducing the notion
of viscosity solutions, which allows merely continuous functions to be solutions of fully
nonlinear �rst and second order partial di�erential equations. We refer to Crandall, Ishii,
and Lions [11] and Fleming and Soner [15] for a general overview and introduction to the
theory of viscosity solutions.
In this paper, the semilinear Black and Scholes equation (1.1) is interpreted in the sense

of viscosity solutions. Roughly speaking, a viscosity solution of (1.1) is a function that
satis�es (1.4) in the viscosity solution sense. Remarkably, this de�nition can be viewed as
an adaption to (1.1) of Ishii's de�nition [16] of a viscosity solution for a class of �rst order
Hamilton-Jacobi equations with discontinuous Hamiltonians. The main theoretical results
in this paper implies that there exists exactly one viscosity solution of the semilinear Black
and Scholes equation (1.1), and this unique viscosity solution is the American option value
V . In other words, our formulation of the American option valuation problem (1.1) makes
sense when interpreted in terms of (1.4).
The rest of this paper is organized as follows: In Section 2, we recall some basic parts of

the arbitrage-free option valuation theory as well as the quasi-variational inequality and free
boundary problem formulations. In Section 3, we motivate and derive the semilinear Black
and Scholes equation. In Section 4, we de�ne what is meant by a viscosity solution of the
semilinear Black and Scholes equation. The well-posedness (existence and uniqueness) of
the viscosity solution is proved in Section 5. Finally, Section 6 is devoted to a representation
formula for the viscosity solution, which we show is the well known decomposition of an
American option value as the sum of the corresponding European option value and an
early exercise premium.
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2. American option valuation theory

In this section, we review some results concerning the valuation of American (call and
put) options written on a dividend paying stock. We refer to the text books by DuÆe
[13], Karatzas and Shreve [21], and Musiela and Rutkowksi [26] for further references and
historical accounts on the problem of pricing American options. Another excellent reference
is the review paper by Myneni [27], which deals exclusively with American options.
Suppose that the price dynamics of a dividend paying stock X(s) = X t;x(s) is governed

by a geometric Brownian motion (under the equivalent martingale measure Q), i.e., it
evolves according to the stochastic di�erential equation

(2.1) dX(s) = (r � d)X(s) ds+ �X(s) dW (s); s 2 (t; T ];

where d � 0 is the constant dividend yield for the stock, r � 0 is the risk-free interest rate,
� > 0 is the volatility, fW (s) j s 2 [0; T ]g is a standard Brownian motion, and T is the
expiration time of the option contract. Starting at time t with initial condition X(t) = x,
it is well known that the arbitrage-free value of an American option is given by

(2.2) V (t; x) = sup
t���T

E
t;x
�
e�r(��t)g(X(�))

�
;

where the supremum is taken over all Ft stopping times � 2 [t; T ] and E
t;x denotes the

expectation under the equivalent martingale measure Q conditioned on X(t) = x. In this
paper we will focus on the payo� function g : R ! R given by

(2.3) g(x) =

(
(x�K)+; call option;

(K � x)+; put option;

where K > 0 is the strike price of the contract.
We recall that V (t; x) de�ned in (2.2) is the value function of an optimal stopping

problem. The following dynamic programming principle holds (see, e.g., Shiryayev [31]):
For any " � 0, let

(2.4) �" = � t;x" := inf
�
s 2 [t; T ]

��V �s;X t;x(s)
� � g

�
X t;x(s)

�
+ "
	
:

Then �" will be an "-optimal stopping time. For any stopping time t � � � �",

(2.5) V (t; x) = E
t;x
�
e�r(��t)V (�;X(�))

�
:

Choosing " = 0, it is well known that �0 is an optimal stopping time and the process

(2.6) M(s) := e�r(s�t)V
�
s;X t;x(s)

�
; t � s � �0

is a martingale. From (2.5) one can derive the following dynamical programming principle
for the optimal stopping problem (see Krylov [24]): For any stopping time � 2 [t; T ], we
have

(2.7) V (t; x) = sup
t���T

E
t;x
�
1f�<�ge

�r(��t)g(X(�)) + 1f���ge
�r(��t)V (�;X(�))

�
:

By choosing � = T , we immediately get

(2.8) V (t; x) � E
t;x
�
e�r(��t)V (�;X(�))

�
;
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for any stopping time � 2 [t; T ]. Note also that by choosing � = t, we obtain V (t; x) � g(x)
(which is the so-called early exercise constraint).
As already mentioned in Section 1, the value function V de�ned in (2.2) (i.e., the Amer-

ican option value) can be found via two main methodologies.
The �rst is based on the formulation of Bensoussan and Lions [6, 5]. One determines V

by solving the following quasi-variational inequality:

(2.9)

(
max

�
LBSv(t; x)� rv(t; x); g(x)� v(t; x)

�
= 0; (t; x) 2 QT ;

v(T; x) = g(x); x 2 [0;1):

To simplify the notation, we have used LBS to designate the usual linear Black and Scholes
di�erential operator

LBS = @t + (r � d)x@x +
1

2
�2x2@2x:

Moreover, QT denotes the time-space cylinder QT = [0; T )� [0;1). Note that the quasi-
variational inequality in (2.9) can be stated equivalently as

v � g; LBSv � rv � 0; (v � g)(LBSv � rv) = 0:

It is well known that the value function V is the unique solution (in the sense of Bensoussan
and Lions [6, 5]) of the quasi-variational inequality (2.9) (see, e.g., Jaillet, Lamberton, and
Lapeyre [18]). We mention also that quasi-variational inequalities and optimal stopping
problems can be studied in the sense of viscosity solutions (see, e.g., [28, 29]).
We recall in the passing that the price of a European option with payo� g solves the

Black and Scholes partial di�erential equation

(2.10)

�LBSv(t; x)� rv(t; x) = 0; (t; x) 2 QT ;

v(T; x) = g(x); x 2 [0;1):

In the second main methodology for determining V , one solves a free boundary problem
formulated by McKean [25] and van Moerbeke [32] (see, e.g., [27] for an overview). Letting
x(t) denote the free boundary, we introduce the sets

C(t) =
(
(0; x(t)); call option;

(x(t);1); put option;
S(t) =

(
[x(t);1); call option;

(0; x(t)]; put option:

Then the free boundary problem takes the following form: Determine a function v(t; x)
and a free boundary x(t) such that8>>><

>>>:
LBSv(t; x)� rv(t; x) = 0; t 2 [0; T ); x 2 C(t);
v(T; x) = g(x); x 2 [0;1);

v(t; x) = g(x); t 2 [0; T ]; x 2 S(t);
@xv(t; x) = �1; t 2 [0; T ]; x 2 S(t);

where \�1 = 1" for the call option, \�1 = �1" for the put option.
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It is well known that the free (or optimal exercise) boundary x(t) possesses the following
properties for t 2 [0; T ):

(2.11)

8><
>:
x(t) > max

�
r
d
K;K

�
(call option); x(t) < min

�
r
d
K;K

�
(put option);

x 2 C(t)() v(t; x) > g(x); LBSv(t; x)� rv(t; x) = 0;

x 2 S(t)() v(t; x) = g(x); LBSv(t; x)� rv(t; x) < 0:

We note that if d = 0, an American call option is equal to a European call with the same
strike price (i.e., we do not need to calculate the free boundary). Analogously, if r = 0,
an American put is equal to a European put with the same price (i.e., we do not need to
calculate the free boundary in this case either).
For later use, we end this section by stating some well known properties possessed by

the value function V :

Proposition 2.1. The value function V de�ned in (2.2) belongs to C
�
QT

�
and satis�es

0 � V (t; x) �
(
K; put;

x; call;
(t; x) 2 QT :

Proof. The continuity of V is taken from Karatzas and Shreve [21]. The lower and upper
bounds on V are derived using 0 � g(x) � K for the put and 0 � g(x) � x for the call
(see, e.g., Pham [29]). �

In fact, it well known that V 2 C1;2(QT )
T
C
�
QT

�
except across the free boundary where

it is only continuously di�erentiable in the second variable. However, our mathematical
framework presented in Section 4 only requires continuity of candidate solutions. In the
rest of the paper we adopt the notation C1;2, meaning the set of functions that are once
continuously di�erentiable in t and twice continuously di�erentiable in x. Moreover, C
denotes the set of continuous functions.

3. The semilinear Black and Scholes equation

Starting o� from (2.2), we derive in this section the semilinear Black and Scholes equation
for valuing American (call/put) options. The derivation is formal since the American option
value V is assumed to be C1;2(QT )

T
C
�
QT

�
regular. We dispense with this regularity

requirement in the sections that follows. This non-technical section serves as a motivation
for setting up the semilinear Black and Scholes equation and how to interpret it.
Note from (2.2) that the early exercise constraint holds, i.e.,

(3.1) V � g on QT ;

where g is de�ned in (2.3). Applying Itô's formula to the process

Y (s) := e�r(s�t)V
�
s;X t;x(s)

�
; s 2 [t; T ];

yields

dY (s) = e�r(s�t)(LBS � r)V
�
s;X t;x(s)

�
ds+ e�r(s�t)@xV

�
s;X t;x(s)

�
dW (s):
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Using (2.8), we get LBSV (t; x) � rV (t; x) � 0 for all (t; x) 2 QT . On the other hand, if
s 2 [t; �0] for �0 de�ned in (2.4) with " = 0, then Y (s) =M(s) whereM(s) is given in (2.6).
Hence, Y (s) is a martingale. This immediately implies that LBSV (t; x) � rV (t; x) = 0 in
the continuation region. In conclusion, the following relations must hold for the value of
an American option:

V � g; LBSV � rV � 0; (V � g)(LBSV � rV ) = 0 :

From this we get:

(3.2) LBSV (t; x)� rV (t; x) = 0; when V (t; x) > g(x) (continuation region);

and

(3.3) LBSV (t; x)� rV (t; x) � 0; when V (t; x) = g(x) (exercise region):

In the exercise region LBSV � rV is nonpositive. However, as we will see, it is possible to
derive a lower bound on LBSV � rV in this region as well. To this end, �x a point (t; x) in
the exercise region. Since V 2 C1;2, V (t; x) = g(x), and V � g everywhere, we say that V
touches g from above at (t; x), i.e., (t; x) is a local maximizer of g � V . Since the payo�
function has a kink at x = K (and hence cannot be touched from above by a C1;2 function
there), we conclude that either x < K or x > K. In what follows, we consider the call
option, see (2.3). If x < K, we must necessarily have that

@tV (t; x) = 0; @xV (t; x) = 0; @2xV (t; x) � 0:

Plugging this into the equation, we get LBSV (t; x) � rV (t; x) � 0. However, in view of
(3.3), we conclude that

(3.4) LBSV (t; x)� rV (t; x) = 0; when V (t; x) = g(x) and x < K :

On the other hand, when x > K we must have

@tV (t; x) = 0; @xV (t; x) = 1; @2xV (t; x) � 0:

Plugging this into the equation, we now �nd LBSV (t; x)�rV (t; x) � �(dx�rK). However,
since (dx� rK) should not become negative in view of (3.3), we conclude that

LBSV (t; x)� rV (t; x) � �(dx� rK)+; when V (t; x) = g(x) and x > K:

Summing up, we see that in the exercise region the American call option value satis�es the
following inequalities:

(3.5) �(dx� rK)+ � LBSV (t; x)� rV (t; x) � 0; when V (t; x) = g(x):

Similarly, one show that in the exercise region the American put option value (2.3) satis�es

(3.6) �(rK � dx)+ � LBSV (t; x)� rV (t; x) � 0; when V (t; x) = g(x):

Using the \cash ow" function c = c(x) de�ned in (1.3), we can state (3.5) and (3.6) as

(3.7) �c(x) � LBSV (t; x)� rV (t; x) � 0; when V (t; x) = g(x):
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Remark 3.1. Let us discuss the meaning of (3.7). We restrict our discussion to the call
option. To this end, suppose d > r and consider (3.5). Let x(t) denote the free boundary
of the American call option value. If we take into account the properties (2.11) about the
free boundary, we see that in the exercise region there actually holds that V = x � K.
Plugging this into the Black and Scholes operator, we get

(3.8) LBSV (t; x)� rV (t; x) = �(dx� rK); when V (t; x) = g(x):

In other words, (3.7) is in fact an equality. The point that we would like to stress is the
following one: We are interested in a new, independent formulation of the American option
valuation problem which does not use any a priori knowledge about the free boundary!
Hence, at each point (t; x) in the exercise region (V (t; x) = g(x)), we cannot claim that
the equation in (3.8) holds, but in general only that the inequalities in (3.7) hold (see also
Remark 3.2 below). The inequalities in (3.7) (not only the equation in (3.8)) are built
into the formulation that we suggest below. The analysis in this paper shows that our
formulation uniquely identi�es the American option value (2.2) as its solution.

Motivated by the fact that the American option value V satis�es (3.2) and (3.7), we
introduce now the notions of classical sub- and and supersolutions for the American option
valuation problem. We de�ne a classical solution of the same problem to be a function
that is simultaneously a sub- and supersolution (this coincides with (1.4)).
We say that a function v 2 C1;2(QT )

T
C
�
QT

�
is a classical subsolution of the American

option valuation problem if vjt=T � g on [0;1) and the following inequalities hold on QT :

(3.9)

8><
>:
LBSv(t; x)� rv(t; x) � 0; when v(t; x) > g(x);

LBSv(t; x)� rv(t; x) � �c(x); when v(t; x) = g(x);

LBSv(t; x)� rv(t; x) � �c(x); when v(t; x) < g(x):

Note that the American option value V is a classical subsolution whenever it is smooth
enough. Since (2.2) satis�es the early exercise constraint (3.1), the last inequality in (3.9)
does not matter. Indeed, it has been introduced here only for technical reasons.
Similarly, we say that a function v 2 C1;2(QT )

T
C
�
QT

�
is a classical supersolution of

the American option valuation problem if vjt=T � g on [0;1) and the following inequalities
hold on QT :

(3.10)

8><
>:
LBSv(t; x)� rv(t; x) � 0; when v(t; x) > g(x);

LBSv(t; x)� rv(t; x) � 0; when v(t; x) = g(x);

LBSv(t; x)� rv(t; x) � �c(x); when v(t; x) < g(x):

Note that the American option value V is a classical supersolution whenever it is smooth
enough, and that the last inequality in (3.10) is again irrelevant since (3.1) holds.
To continue, we introduce the functions

H�(�) =

(
0; � < 0;

1; � � 0;
H�(�) =

(
0; � � 0;

1; � > 0:
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Observe that H� and H� are respectively the upper and lower semicontinuous envelopes
(see (1.5) for their de�nitions) of the Heaviside function

(3.11) H(�) =

(
0; � < 0;

1; � � 0:

Of course, since H is upper semicontinuous, H� � H. Let us introduce the nonlinear
functions q�; q� : R � R ! [0;1) de�ned by

q�(x; v) = c(x)H�(g(x)� v); q�(x; v) = c(x)H�(g(x)� v):

Using q�; q�, we can write the classical subsolution inequality (3.9) more compactly as

(3.12) LBSv(t; x)� rv(t; x) � �q�(x; v(t; x)); (t; x) 2 QT ;

and the classical supersolution inequality (3.10) more compactly as

(3.13) LBSv(t; x)� rv(t; x) � �q�(x; v(t; x)); (t; x) 2 QT :

Observe that q� and q� are respectively the upper and lower semicontinuous envelopes of
the nonlinear function q = q(x; v) de�ned by

(3.14) q(x; v) = c(x)H(g(x)� v):

Since v 7! q(x; v) is upper semicontinuous, q� � q.
We now introduce the semilinear Black and Scholes equation

(3.15) LBSv(t; x)� rv(t; x) = �q(x; v(t; x)); (t; x) 2 QT :

We augment (3.15) with the terminal condition

(3.16) v(T; x) = g(x); x 2 [0;1):

Any function v : QT ! R that is simultaneously a classical sub- and supersolution
(i.e., v satis�es (3.12) and (3.13)) is called a classical solution of the semilinear Black and
Scholes equation (3.15). If v also satis�es the terminal condition (3.16), we call v a classical
solution of the terminal value problem (3.15){(3.16).

Remark 3.2. We note that v 7! q(x; v) is a discontinuous and nonincreasing mapping.
We remark that the monotonicity property of v 7! q(x; v) is of fundamental importance
for the existence and uniqueness program carried out in Section 5.
We stress that since the nonlinearity v 7! q(x; v) is discontinuous, we can in general

only interpret the semilinear Black and Scholes equation via (3.12) and (3.13), and not
\pointwise" as it stands in (3.15) (even if C1;2 solutions are sought). Let us illustrate this
further by an example, which can be seen as a continuation of Remark 3.1. Suppose that
we do not know the position of the free (exercise) boundary x(t) for the value V of an
American call option, so that the situation r

d
K < x(t) < K cannot a priori be excluded

(although we know that this can never happen if we use a posteriori information (2.11)
about the free boundary). Pick a point (t; x) such that r

d
K < x < x(t), which implies

V (t; x) = g(x) = 0. Then the semilinear Black and Scholes equation (3.15) reads

LBSV (t; x)� rV (t; x) = �(dx� rK) < 0:
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However, this is wrong since the dynamic programming principle (see (3.4)) tells us that

LBSV (t; x)� rV (t; x) = 0:

What we would like stress here is that with our interpretation of the semilinear Black and
Scholes equation (3.15) (see, e.g., (3.5)), we allow for the possibility that LBSV � rV = 0
at some points in the exercise region! In some sense, it is this exibility that allows us to
carry out the well-posedness program in Section 5.

Whenever the value V of an American option belongs to C1;2(QT )
T
C
�
QT

�
, we have

immediately that it is a classical solution of (3.15){(3.16) (in the sense of (3.12) and (3.13)).
We would like to dispense with the regularity assumption V 2 C1;2

�
QT

�
. We will achieve

this by interpreting (3.9) and (3.10) in the sense of viscosity solutions (see Crandall, Ishii,
and Lions [11] and Fleming and Soner [15]). The notion of viscosity solution only requires
that V 2 C(QT ). Roughly speaking, we de�ne a viscosity solution of the semilinear Black
and Scholes equation (3.15) as a function v : QT ! R that is simultaneously a viscosity
subsolution of (3.12) and a viscosity supersolution of (3.13) (see Section 4 for details).
Remarkably, this notion of viscosity solution is very much in the spirit of the one used by
Ishii [16] for �rst order Hamilton-Jacobi equations with discontinuous Hamiltonians.
As stated in the following theorem, the terminal value problem (3.15){(3.16) constitutes

a new formulation of the American option valuation problem.

Theorem 3.1 (American option valuation problem). The American (call and put) option
valuation problem is equivalent to �nding a function v : QT ! R that satis�es (3.16) and
the semilinear Black and Scholes equation (3.15) in the sense of viscosity solutions.

This theorem is a consequence of the results in Section 5.

4. Viscosity solutions

In this section we introduce the notion of viscosity solutions for the semilinear Black and
Scholes equation (3.15). As we have mentioned before, this notion is based on interpreting
(3.15) in terms of (3.12) and (3.13), which are then understood in the sense of viscosity
solutions. The resulting de�nition of a viscosity solution coincides with the one used by
Ishii [16] when applied to (3.15). For a general introduction to viscosity solution theory,
we refer to Crandall, Ishii, and Lions [11] and Fleming and Soner [15].
We shall need the following spaces of semicontinuous functions on QT :

USC
�
QT

�
=
n
v : QT ! R [ f�1g �� v is upper semicontinuous

o
;

LSC
�
QT

�
=
n
v : QT ! R [ f+1g �� v is lower semicontinuous

o
:

Based on (3.12) and (3.13), we introduce the following notion of viscosity solutions:
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De�nition 4.1. (i) A locally bounded function v 2 USC
�
QT

�
is a viscosity subsolution

of (3.15) if and only if 8� 2 C1;2
�
QT

�
we have:(

for each (t; x) 2 QT being a local maximizer of v � �;

LBS�(t; x)� rv(t; x) + q�(x; v(t; x)) � 0:
(4.1)

If, in addition, vjt=T � g on [0;1), then v is a viscosity subsolution of (3.15)-(3.16).
(ii) A locally bounded function v 2 LSC �QT

�
is a viscosity supersolution of (3.15) if and

only if 8� 2 C1;2
�
QT

�
we have:(

for each (t; x) 2 QT being a local minimizer of v � �;

LBS�(t; x)� rv(t; x) + q�(x; v(t; x)) � 0:
(4.2)

If, in addition, vjt=T � g on [0;1), then v is a viscosity supersolution of (3.15)-(3.16).
(iii) A function v 2 C �QT

�
is a viscosity solution of (3.15) if and only if it is simultaneously

a viscosity sub- and supersolution of (3.15). If, in addition, vjt=T = g on [0;1), then v is
a viscosity solution of the terminal value problem (3.15)-(3.16).

Remark 4.1. For notational brevity, we use from now on the terms subsolution and
supersolution instead of viscosity subsolution and viscosity supersolution. Furthermore,
it is well known that we can replace \local" by \strict local" or \global" or \strict global".
We can also assume that the extremum value of v�� is zero. From now on we will assume
that the extremum points are strict and the corresponding extremum value of v�� is zero.

Lemma 4.1. Suppose v is a subsolution (supersolution) of (3.15) for x > 0. Then v is
also a subsolution (supersolution) for x � 0.

Proof. Suppose (�t; 0) is a local maximum of v � �, � 2 C1;2
�
QT

�
. We may assume that

v(�t; 0)� �(�t; 0) = 0. De�ne the function  "(t; x) = v(t; x) � �(t; x) � "
x
. Let (t"; x") be a

local maximum point of  ", which exists in view of the upper semicontinuity of  " and the
fact that  "(0; 0) = �1. Obviously, we have x" > 0. Standard arguments will reveal that
the sequence (t"; x") of local maximum points of  " satis�es

(4.3) (t"; x")! (�t; 0); v(t"; x")! v(�t; 0);
"

x"
! 0; as " # 0:

For the moment, let us assume that (4.3) holds. Then, since v is a subsolution for x > 0,

(4.4) q�(x"; v(t"; x")) � �LBS�(t"; x") + rv(t"; x") +
�
(r � d)� �2

� "
x"
:

From the upper semicontinuity of q� and (4.3), we have

q�(�t; v(�t; 0)) � lim sup
"#0

q�(x"; v(t"; x")) � �LBS�(�t; 0) + rv(�t; 0);

from which it follows that the subsolution property holds. Similarly, we can prove that the
supersolution property holds by replacing � "

x
by "

x
in the de�nition of  ". �

To prove that the viscosity solution is unique, we shall need a formulation of sub- and
supersolutions based on the so-called semijets.
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De�nition 4.2. For a function v 2 USC
�
QT

�
(LSC

�
QT

�
), the second order superjet

(subjet) of v at (t; x) 2 QT , which is denoted by P2;+v(t; x) (P2;�v(t; x)), is de�ned as the
set of triples (a; p;X) 2 R

3 such that

v(s; y) � (�) v(t; x) + a(s� t) + p(y � x) +
1

2
X(y � x)2 + o

�js� tj+ (y � x)2
�
;

as QT 3 (s; y) ! (t; x). The closure P2;+
v(t; x) (P2;�

v(t; x)) is de�ned as the set of
(a; p;X) 2 R

3 for which there exists a sequence (tk; xk; pk; Xk) 2 R
4 such that

(tk; xk; v(tk; xk); pk; Xk)! (t; x; v(t; x); p;X)

as k " 1 and (ak; pk; Xk) 2 P2;+v(tk; xk) (P2;�v(tk; xk)) for all k.

Recall that (a; p;X) 2 P2;+v(t; x) (P2;�v(t; x)) with (t; x) 2 QT if and only if there
exists � 2 C1;2

�
QT

�
such that �(t; x) = v(t; x), @t�(t; x) = a, @x�(t; x) = p, @2x�(t; x) = X,

and v�� has a maximum (minimum) at (t; x) (see, e.g., [15]). We therefore have following
equivalent de�nition of sub- and supersolutions based on the semijets.

De�nition 4.3. (i) A locally bounded function v 2 USC
�
QT

�
is a subsolution of (3.15)

if and only if, 8(t; x) 2 QT and 8(a; p;X) 2 P2;+v(t; x),

a + (r � d)xp+
1

2
�2x2X � rv(t; x) + q�(x; v(t; x)) � 0:

(ii) A locally bounded function v 2 LSC
�
QT

�
is a supersolution of (3.15) if and only if,

8(t; x) 2 QT and 8(a; p;X) 2 P2;�v(t; x),

a + (r � d)xp+
1

2
�2x2X � rv(t; x) + q�(x; v(t; x)) � 0:

Remark 4.2. Thanks to the upper semicontinuity of q� and the lower semicontinuity of q�,
the sub- and supersolution inequalities in De�nition 4.3 continue to hold when the semijets

P2;+ and P2;� are replaced by their respective closures P2;+
and P2;+

.

Later we prove a uniqueness result for the viscosity solution. To this end, we need the
maximum principle for semicontinuous functions, which is restated here in a form suitable
for our application.

Theorem 4.1 (Crandall, Ishii, and Lions [10, 11]). With t; x; y 2 R, let v(t; x);�v(t; y)
be (locally) upper semicontinuous functions and '(t; x; y) be a function that is (locally)
once continuously di�erentiable in t and twice continuously di�erentiable in (x; y). Let
(t'; x'; y') be a local maximum of the function

(t; x; y) 7! v(t; x)� v(t; y)� '(t; x; y);

which is assumed to be de�ned and upper semicontinuous in a neighborhood of (t'; x'; y').
Suppose that there is a � > 0 such that for every M > 0 there is a constant C such that(

a � C if (a; p;X) 2 P2;+v(t; x); jx� x'j+ jt� t'j � �; jv(t; x)j+ jpj+ jXj �M;

b � C if (b; q; Y ) 2 P2;�v(t; x); jx� x'j+ jt� t'j � �; jv(t; x)j+ jqj+ jY j �M:
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Then for any � > 0 there exist two numbers a'; b' 2 R and two symmetric 2� 2 matrices
X'; Y' such that

(a;Dx'(t'; x'; y'); X') 2 P2;+
v(t'; x'); (b;�Dy'(t'; x'; y'); Y') 2 P2;�

v(t'; y');

�
�
1

�
+
D2'(t'; x'; y')

�I
�
�
X' 0
0 �Y'

�
� D2'(t'; x'; y') + �

�
D2'(t'; x'; y')

�2
;

and a' � b' = @t'(t'; x'; y'). The norm of a symmetric 2 � 2 matrix A is de�ned as

kAk = sup
n
jhA�; �ij

��� � 2 R
2 ; j�j � 1

o
.

5. Well-posedness

The purpose of this section is to prove the following well-posedness theorem for the
semilinear Black and Scholes equation (3.15):

Theorem 5.1. There exists at most one viscosity solution v : QT ! R of the terminal
value problem (3.15){(3.16). Moreover, this v satis�es

0 � v(t; x) � C1 + C2x; (t; x) 2 QT ;

where C1 = 0 and C2 = 1 for the call option and C1 = K and C2 = 0 for the put. Finally,
v coincides with the American option value V .

The proof of this theorem will be divided into two steps. First (Theorem 5.2), we show
that American option value (2.2) is a viscosity solution of (3.15){(3.16), thereby providing
the existence result. We only need the continuity and growth property of the American
option value (2.2), while information about the free boundary is not used. Secondly (The-
orem 5.3), we prove a comparison principle for sub- and supersolutions, which implies
uniqueness of the viscosity solution.
For the existence result, the following lemma will be useful.

Lemma 5.1. The payo� function g de�ned in (2.3) is a subsolution of (3.15).

Proof. We prove the lemma for the call option g(x) = (x � K)+. The proof for the put
option is similar and it is thus omitted. We have �ve cases to consider. If x > max

�
K; r

d
K
�

(Case 1), we have g(x) = x�K and q�(x; g(x)) = dx� rK. We plug this directly into the
Black and Scholes operator and equate:

LBSg(x)� rg(x) + q�(x; g(x)) = 0:

If x < min
�
K; r

d
K
�
(Case 2), we have g(x) = 0 and q�(x; g(x)) = 0. Plugging this into the

Black and Scholes operator, we trivially obtain

LBSg(x)� rg(x) + q�(x; g(x)) = 0:
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If K < x � r
d
K (Case 3), which is a possible case when d < r, we have g(x) = x�K and

q�(x; g(x)) = 0. We now obtain

LBSg(x)� rg(x) + q�(x; g(x)) = rK � dx � 0:

If r
d
K � x < K (Case 4), which is a possible case when d > r, we have g(x) = 0 and

q�(x; g(x)) = dx� rK. We now obtain

LBSg(x)� rg(x) + q�(x; g(x)) = dx� rK � 0:

If x = K (Case 5), then there is nothing to prove, since one cannot �nd a test function
� 2 C1;2

�
QT

�
such that (x�K)+�� has a local maximum at (t; x) 2 QT when x = K. �

The next theorem shows that the American option value (2.2) is a viscosity solution of
the semilinear Black and Scholes equation.

Theorem 5.2. The value function V (t; x) de�ned in (2.2) is a viscosity solution of the
terminal value problem (3.15)-(3.16).

Proof. By inspection of (2.2), the terminal condition (3.16) is obviously satis�ed by V .
In view of this and Proposition 2.1, it remains to prove that V is a subsolution and a
supersolution of the semilinear Black and Scholes equation (3.15). The proof is inspired
by the heuristic derivation of (3.15) given in Section 3.
We prove �rst that V is a supersolution. Let (t; x) 2 QT be a minimizer of V � � with

� 2 C1;2
�
QT

�
. Note that by Lemma 4.1 we can assume that x > 0. Recall that V � g on

QT , so that

q�(t; V (t; x)) = 0; 8(t; x) 2 QT :

Let � be the exit time for the process (s;X(s)) from a ball with strictly positive radius
and center in (t; x). From (2.8) and Itô's formula, we get

V (t; x) � E
t;x
�
e�r(��t)V (�;X(�))

� � E
t;x
�
e�r(��t)�(�;X(�))

�
= �(t; x) + E

t;x

�Z �

t

e�r(s�t)
�
LBS�(s;X(s))� r�(s;X(s))

�
ds

�
:

Hence

E
t;x

�Z �

t

e�r(s�t)
�
LBS�(s;Xs)� r�(s;X(s))

�
ds

�
� 0:

Dividing by E
t;x [�] > 0 and sending � # t we obtain the desired subsolution inequality

LBS�(t; x)� rV (t; x) = LBS�(t; x)� r�(t; x) � 0:

We prove next the subsolution property. To this end, let

C =
�
(t; x) 2 QT

��V (t; x) > g(x)
	
;

be the hold (or continuation) region and

S =
�
(t; x) 2 QT

��V (t; x) = g(x)
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be the exercise (or optimal stopping) region. Let (t; x) 2 C be a maximizer of V � �,
� 2 C1;2

�
QT

�
. Observe that

q�(x; V (t; x)) = 0; 8(t; x) 2 C:
Therefore, following the argument in the supersolution case above, this time using (2.5),
we obtain the desired subsolution inequality

LBS�(t; x)� rV (t; x) � 0:

Let � 2 C1;2
�
QT

�
be any test function such that V �� has a local maximum at (t; x) 2 S.

Since V (t; x) = g(x) and V � g on QT always holds, we conclude that g � � has a local
maximum at (t; x). Lemma 5.1 then gives

LBS�(t; x)� rV (t; x) + q�(x; V (t; x)) � 0:

This concludes the proof of the subsolution property, and hence the theorem. �

Our next theorem is a comparison principle. The comparison result holds in the class
of semicontinuous sub- and supersolutions satisfying a natural growth condition. Besides
implying uniqueness of the viscosity solution, the comparison principle is used in [7] to
prove convergence of approximate solutions to the semilinear Black and Scholes equation.
In proving the comparison principle, we use the (by now) standard uniqueness machinery
for second order partial di�erential equations [11], which relies on the maximum principle
for semicontinuous functions (see Theorem 4.1 herein). The proof depends fundamentally
on the monotonicity property of the discontinuous nonlinearity v 7! q(x; v).

Theorem 5.3. Suppose v 2 USC �QT

�
is a subsolution of (3.15) and v 2 LSC �QT

�
is a

supersolution of (3.15), satisfying

(5.1) v(T; x) � v(T; x); x 2 [0;1):

Furthermore, suppose that there exists a �nite constant C such that

(5.2) v(t; x);�v(t; x) � C(1 + x); (t; x) 2 QT :

Then we have

(5.3) v � v on QT :

Consequently, there exists at most one viscosity solution of (3.15)-(3.16).

Proof. Suppose that (5.3) holds. Let v1 and v2 be two viscosity solutions satisfying (5.1)
and (5.2). Then (5.3) implies v1 � v2 on QT , and the uniqueness assertion is proved.
In what follows, we prove that (5.3) holds. To this end, we introduce v� = v + �(T � t)

for � > 0. Using the monotonicity of q(x; �), it easy to check that v� is a supersolution of

LBSv(t; x)� rv(t; x) + q(x; v(t; x)) = ��; (t; x) 2 QT :

Instead of comparing v and v, we will compare v and v�. Sending � # 0, we obtain the
desired result (5.3).
We will work towards a contradiction and suppose

(5.4) v
�
t; x
� � v�

�
t; x
�
+ 2Æ;
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for some
�
t; x
� 2 QT and Æ > 0. To overcome the lack of regularity of v; v�, we employ the

classical \doubling of variables" device [11] and look at a maximum of the function

�(t; x; y) = v(t; x)� v�(t; y)�  (x; y); (t; x; y) 2 [0; T ]� [0;1)� [0;1);

where the penalization function  takes the form

 (x; y) =
�

2
jx� yj2 + "

2
e�(T�t)

�
x2 + y2

�
;

for �; � > 1 and " 2 (0; 1). Let

M� = sup
[0;T ]�[0;1)�[0;1)

�(t; x; y);

From (5.2) and the upper semicontinuity of �, we see that M� < 1 and there exists
(t�; x�; y�) 2 [0; T ]� [0;1)� [0;1) (suppressing the dependency on ") such that

(5.5) M� = �(t�; x�; y�):

Observe that

M� � v
�
t; x
�� v�

�
t; x
�� "e�(T�t)x2 � Æ > 0;

for any " that is small enough. Note that this implies

(5.6) v(t�; x�) � v�(t�; y�) + Æ;

for any � > 1 and " suÆciently small.
Using �(T; 0; 0) � �(t�; x�; y�) and (5.2), we �nd

"

2

�
x2� + y2�

� � v�(T; 0)� v(T; 0) + v(t�; x�)� v�(t�; y�) � K + 2C (1 + x� + y�) ;

which implies the existence of a �nite constant C" (depending on ") such that

x�; y� � C":

From this we conclude that there exists a subsequence, still denoted by (t�; x�; y�), which
converges to some (t"; x"; y") 2 [0; T ] � [0;1) � [0;1) as � " 1 (for each �xed "). It is
classical in viscosity solution theory [11] to see that the maxima (t�; x�; y�) satisfy(

x� � y� ! 0 as � " 1 (for each �xed ");

� jx� � y�j2 ! 0 as � " 1 (for each �xed "):

Let us now look at the special case t" = T . Note that

v
�
t; x
�� v�

�
t; x
�� "e�(T�t)x2 � M� � v(t�; x�)� v�(t�; y�):

By the upper semicontinuity of v;�v� and since vjt=T � v�jt=T on [0;1), we can send
� " 1 and then " # 0 in this inequality to obtain

v
�
t; x
�� v�

�
t; x
� � 0:

This contradicts (5.4), and hence t" < T .
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In what follows, we assume t" < T , so that t� < T for any � suÆciently large. An
application of Theorem 4.1 yields the existence of numbers a�; b�; X�; Y� (again suppressing
the dependency on ") such that�

a�; � (x� � y�) + "e�(T�t�)x�; X�

�
2 P2;+

v(t�; x�);�
b�; �(x� � y�)� "e�(T�t�)y�; Y�

�
2 P2;�

v�(t�; y�)

such that a� � b� = � "
2
�e�(T�t�) (x2� + y2�) and the 2 � 2 symmetric matrix

�
X� 0
0 �Y�

�
satis�es (if we choose � = 1

�
in Theorem 4.1) the matrix inequality�

X� 0
0 �Y�

�
� �3� + 2"e�(T�t�)

�� 1 �1
�1 1

�
+

�
"e�(T�t�) +

"2e2�(T�t�)

�

��
1 0
0 1

�
:(5.7)

By the de�nition of viscosity sub- and supersolutions,

a� + (r � d)x�
�
�(x� � y�) + "e�(T�t�)x�

�
+

1

2
�2x2�X� � rv(t�; x�) + q� (x�; v(t�; x�)) � 0;

b� + (r � d)y�
�
�(x� � y�)� "e�(T�t�)y�

�
+

1

2
�2y2�Y� � rv�(t�; y�) + q� (y�; v

�(t�; y�)) � ��:
From the above two inequalities (using also (5.6)), we get

� � �rÆ � "

2
�e�(T�t�)

�
x2� + y2�

�
| {z }

E1(�)

+(r � d)
�
�(x� � y�)

2 + "e�(T�t�)
�
x2� + y2�

��| {z }
E2(�)

+
1

2
�2x2�X� � 1

2
�2y2�Y�| {z }

E3(�)

+(q� (x�; v(t�; x�))� q� (y�; v
�(t�; y�)))| {z }

E4(�)

;
(5.8)

It follows now that

lim sup
�"1

E1(�) = �"�e�(T�t")x2"; lim sup
�"1

E2(�) = (r � d)"e�(T�t")2x2":

Furthermore, it is classical in viscosity solution theory [11] to use (5.7) as follows:

lim sup
�"1

E3(�) = lim sup
�"1

"�
X� 0
0 �Y�

��
x�
y�

�
�
�
x�
y�

�#

� lim sup
�"1

"�
3� + 2"e�(T�t�)

� jx� � y�j2

+

�
"e�(T�t�) +

"2e2�(T�t�)

�

��
x2� + y2�

�#
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= "e�(T�t")2x2":

It remains to estimate the \non-standard" term E4(�). Choose � so large that

jx� � y�j � Æ

2
:

Using this and (5.6), we get

g(y�)� v�(t�; y�) = g(x�)� v�(t�; y�) + (g(y�)� g(x�))

� g(x�)� v�(t�; y�)� Æ

2

� g(x�)� v(t�; x�) +
Æ

2
:

By inspection of the possible values of H� and H�, we see that

�c(y�) � E4(�) � max (0; c(x�)� c(y�)) :

Using the continuity of c(�) yields
lim sup
�"1

E4(�) � 0:

Therefore, from (5.8) and the estimates just derived, we conclude that

� � �rÆ + (r � d)"e�(T�t")2x2" + "e�(T�t")2x2" � "�e�(T�t")x2" � 0;

if � is chosen suÆciently large. This is the desired contradiction, and the proof of the
theorem is now concluded. �

6. Early exercise premium representation

After the works by Carr, Jarrow, and Myneni [9], Jacka [17], and Kim [23] (see also
[13, 26, 27]), it is well known that the price of an American option may be decomposed
into the price of the corresponding European option and an early exercise premium. In this
section we derive (at an informal level) this decomposition using the integral formulation
of the semilinear Black and Scholes equation (3.15). Turning this around, we can view
the semilinear Black and Scholes equation(3.15) as an in�nitesimal (partial di�erential
equation) version of the early exercise premium representation of the American option.
In what follows, we let v : [0; T ] � [0;1) ! R denote the unique viscosity solution of

(3.15)-(3.16). First, let us de�ne the function

!(s; y) := e�y+�sv
�
T � s=�̂2; ey

�
;

where �̂2 = 1
2
�2 and we have done the following change-of-variables:

x = ey; t = T � s=�̂2:

The constants � and � are de�ned as

� =
1

2

�
(r � d)=�̂2 � 1

�
; � = �2 + r=�̂2:
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Straightforward calculations, using (3.15), reveal that ! satis�es the following semilinear
heat equation:

(6.1) @s!(s; y) = @2y!(s; y) + ~q(s; y; !); (s; y) 2 �0; �̂2T �� R;

with the initial condition

!(y; 0) = e�yg(ey); y 2 R:

The reaction term ~q takes the form

~q(s; y; !) =
1

�̂2
e�y+�sc(ey)H

�
e�y+�sg(ey)� !

�
;

where H(�) is de�ned in (3.11). Denote by p(s; y) the fundamental solution of (6.1), i.e.,

p(s; y) =
exp

�
�y2

4s

�
p
4�s

:

An integral formulation of the equation for !(s; y) then looks like

(6.2) !(s; y) =

Z
R

!(z; 0)p(s; y � z) dz +

Z s

0

Z
R

~q(�; z; !(�; z))p(s� �; y � z) dz d�;

for s 2 [0; �̂2T ] and y 2 R. Letting

�(�; z) = 1fe�z+��g(ez)�!(�;z)g;
the integral expression (6.2) may also be written as

!(s; y) =

Z
R

e�zg(ez)p(s; y � z) dz

+

Z s

0

Z
R

�(�; z)
1

�̂2
e�z+��c(ez)p(s� �; y � z) dz d�:

(6.3)

Recalling that v(t; x) = e��y��s!(s; y) with s = �̂2(T � t) and y = lnx, and using (6.3),
we �nd

v(t; x) = e�� ln x��̂2�(T�t)!
�
�̂2(T � t); lnx

�
= e�r(T�t)e�� lnx��̂2�2(T�t)!

�
�̂2(T � t); lnx

�
= e�r(T�t)

Z
R

e��(lnx�z)��̂
2�2(T�t)g(ez)

exp
�
� (ln x�z)2

2�2(T�t)

�
p
2��2(T � t)

dz

+ e�r(T�t)
Z �̂2(T�t)

0

Z
R

 
�(�; z)e��(ln x�z)��̂

2�2(T�t)+��

� 1

�̂2
c(ez)

exp
�
� (ln x�z)2

2�2(T�t��=�̂2)

�
p
2��2 (T � t� �=�̂2)

!
dz d�
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= e�r(T�t)
Z
R

e��(lnx�z)��̂
2�2(T�t)g(ez)

exp
�
� (ln x�z)2

2�2(T�t)

�
p
2��2(T � t)

dz

+

Z �̂2(T�t)

0

Z
R

 
�(�; z)e�r(T�t��=�̂

2) 1

�̂2
e��(lnx�z)��̂

2�2(T�t��=�̂2)

� 1

�̂2
c(ez)

exp
�
� (ln x�z)2

2�2(T�t��=�̂2)

�
p
2��2 (T � t� �=�̂2)

!
dz d�:

Denote by I1 the �rst integral and I2 the second. Introduce � through the change of variable

z = lnx+ (r � d� �̂2)(T � t) + ��:

Hence dz = � d� and I1 becomes

I1 = e�r(T�t)
Z
R

 
e�(r�d��̂

2)(T�t)+�����̂2�2(T�t)

� g
�
xe(r�d��̂

2(T�t))+��
� exp

�
� [(r�d��̂2)(T�t)+��]

2

2�2(T�t)

�
p
2��2(T � t)

!
� d�

= e�r(T�t)
Z
R

g
�
xe(r�d��̂

2)(T�t)+��
� exp

��1
2
�2(T � t)

�p
2�(T � t)

d�

= e�r(T�t)E t;x [g (X(T ))] ;

where the stochastic process X(s) is de�ned in (2.1). Consider now I2. Observe that

1fe�z+��g(ez)�!(�;z)g = 1fe�z+��g(ez)�e�z+��v(T��=�̂2;ez)g = 1fv(T��=�̂2;ez)�g(ez)g:

Making the change of variables

z = lnx +
�
r � d� �̂2

� �
T � t� �=�̂2

�
+ �� and u = T � �=�̂2

in the integral I2, we get

I2 =

Z �̂2

0

Z
R

 
e�r(T�t��=�̂

2)1n
v
�
T��=�̂2;xe(r�d��̂

2)(T�t��=�̂2)+��
�
�g

�
xe(r�d��̂

2)(T�t��=�̂2)+��
�o

� 1

�̂2
c
�
xe(r�d��̂

2)(T�t��=�̂2)+��
� exp

�
� �2

2(T�t��=�̂2)

�
p
2� (T � t� �=�̂2)

!
d� d�

=

Z T

t

Z
R

e�r(u�t)1n
v
�
u;xe(r�d��̂

2)(u�t)+��
�
�g

�
xe(r�d��̂

2)(u�t)+��
�o

� c
�
xe(r�d��̂

2)(u�t)+��
� exp

�
� �2

2(u�t)

�
p
2�(u� t)

d� du
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=

Z T

t

e�r(u�t)E t;x
�
c (X(u))1fv(u;X(u))�g(X(u))g

�
du

= E
t;x

�Z T

t

e�r(u�t)c (X(u))1fv(u;X(u))�g(X(u))g du

�
:

We know that v � g. Hence

1fv(u;X(u))�g(X(u))g = 1fv(u;X(u))=g(X(u))g:

But v(x; t) = g(x) only when (x; t) is a point in the stopping region, i.e.,

1fv(u;X(u))=g(X(u))g = 1fX(u)<x(u)g;

where x(u) is the free (early exercise) boundary. Therefore

(6.4) v(t; x) = e�r(T�t)E t;x [g (X(T ))] + E
t;x

�Z T

t

e�r(u�t)c (X(u))1fX(u)<x(u)g du

�
:

We recognize (6.4) as the separation of the American option price into the corresponding
European option price plus an early exercise premium [9, 13, 17, 23, 26, 27].
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