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Abstract

Concrete examples are given of multivariate di�usions, which are either

time-reversible with an invariant density that can be determined explicitly,

or, in the case of the Cox-Ingersoll-Ross type process, have other attractive

features, including an agglomeration property and a description in terms

of time-changes of a multivariate Brownian motion with a certain drift and

covariance.
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1. Introduction

The theory of one-dimensional di�usions is well understood: one can easily deter-
mine the range of the di�usion, whether it is transient or recurrent, and if there is
an invariant probability for the di�usion, simple explicit expressions are typically
available. In higher dimensions the situation is much more obscure (when not
considering just independent one-dimensional di�usions), and a main purpose of
this paper is to present some concrete examples of multivariate di�usions that
have at least some attractive analytic features { not too many examples are found
in the literature. An alternative title of the paper might have been `In search of
nice di�usions'.
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the Danish National Research Foundation.



In Section 2 we focus on time-reversible di�usions. In general, �nding an
invariant density for a multivariate di�usion (assuming this density to exist) ap-
pears quite hopeless and one would expect any kind of expression for the density
to be extremely complicated and unwieldy. But as in the case of ordinary Markov
chains, imposing time-reversibility makes things much easier. Apart from the ex-
amples at the end of the section, Section 2 contains a discussion of the problems
arising when trying to �nd an invariant density in general, and how they simplify
if the di�usion is symmetric, see Silverstein's work [11] and [12]. The discussion is
intended to supplement the very readable account by Kent [7], but perhaps from
a slightly di�erent angle, leading to a simple method for verifying reversibility.

The �nal Section 3 deals with one particular model, which in dimension 1 is
simply the classical Cox-Ingersoll-Ross process from mathematical �nance. The
multivariate version however was constructed with a view to its mathematical
properties rather than its possible relevance to �nance. The processes in the
model are never reversible, in fact they do not have an invariant probability, but
can be (at least in two dimensions) recurrent, and of course also transient.

2. Examples of time-reversible di�usions

Let X be a d�dimensional time-homogeneous di�usion moving inside an open,
simply conected subset D � R

d . We assume that X is the unique strong solution
to a stochastic di�erential equation (SDE) driven by a d�dimensional Brownian
motion B;

dXt = b (Xt) dt+ � (Xt) dBt (2.1)

plus an initial condition specifying X0; where the drift b : D ! R
d and the

di�usion matrix � : D ! R
d�d are both smooth (at least continuous { in the

examples they will be C1) with the squared di�usion matrix

C(x) := �(x)�T (x)

satisfying that C(x) is strictly positive de�nite for all x 2 D: This assumption
implies in particular that there are no absorbing states insideD; and that from any
x 2 D; X can move in any direction with a non-degenerate di�usion component.
It is however part of our assumptions also that X never hits the boundary @D of

D (boundary relative to the compact set R
d
; R = [�1;1]) which forces some

(unspeci�ed) constraints on the behaviour of b and C near @D { in the examples
we verify directly that X never hits @D: Because X can move freely, everywhere
inside D without hitting @D; it follows that the transition densities p (t; x; y) for
X are conservative and form the minimal fundamental solution of the equation

Axp (t; x; y) = @tp (t; x; y) (x; y 2 D; t > 0) ; (2.2)
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A denoting the di�erential operator determining the in�nitesimal generator for
X; see (2.6) below, with the subscript x meaning that the di�erentiations are per-
formed with respect to x: (For the precise formulation of the preceding statement,
see the theorem by S. Itô [5], quoted as Theorem 1.1 in Kent [7]. Note that the
transition densities there are with respect to the measure Æ�1=2(x) dx; where

Æ(x) := det
�
1
2
C(x)

�
(2.3)

i.e.

P (Xt 2 B jX0 = x) =

Z
B

p (t; x; y) Æ�1=2(y) dy).

Remark 1. For d = 1, D = ]`; r[ is an open interval with �1 � ` < r � 1:
The reader is reminded that in order for X never to hit e.g. the left boundary
point ` it is necessary and suÆcient that (i) or (ii) be satis�ed:

(i) S(`) = �1;

(ii) S(`) > �1 and
R x
`
(S(y)� S(`))� (y) dy =1 for one (hence all) x 2 D:

Here S is an arbitrary scale function, i.e. S has derivative

S 0(x) = exp

�
�
Z x

x0

2b(y)

�2(y)
dy

�
(2.4)

for some x0 2 D; and � is the density of the corresponding speed measure,

�(x) =
1

�2(x)S 0(x)
: (2.5)

The very nice expository paper [7] by John Kent in particular describes a
simple method by which to identify time-reversible di�usions and their invariant
measure. Here we shall give an alternative that is perhaps even simpler, which we
then illustrate by the examples at the end of this section. First a brief discussion
of invariant measures.

Let f 2 C2(D): By Itô's formula

df(Xt) = Af(Xt) dt+ dMf
t ;

where A is the di�erential operator

Af(x) =
dX

i=1

bi(x)@xif(x) +
1
2

dX
i;j=1

Cij(x)@
2
xixj

f(x); (2.6)
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and Mf is the continuous local martingale

Mf
t =

dX
i=1

Z t

0

@xif(Xs)
dX

j=1

�ij (Xs) dBj;s;

in particular Mf
0 � 0:

Now, let D (X) denote the space of C2(D)�functions f that are bounded and
such that Af is bounded. For f 2 D (X) ; since

Mf
t = f(Xt)� f(X0)�

Z t

0

Af(Xs) ds;

it is clear that Mf (viewed as a function of time t and ! 2 
; the underlying
probability space) is uniformly bounded on all sets [0; T ] � 
 with 0 � T < 1;
hence Mf is a true martingale with expectation 0; so that if � is the distribution
of X0;

E�f(Xt) = � (f) +

Z t

0

E�Af(Xs) ds: (2.7)

Notation. We write P � for the probability on 
 if X0 has law � and E� for the
corresponding expectation. If � = "x0 is degenerate at x0 2 D; we simply write
P x0; Ex0: Of course � (f) =

R
D
f(x) � (dx) :

Now suppose that X has an (necessarily unique) invariant probability �; i.e.
� is a probability on D such that

E�g(Xt) = � (g)

for all t � 0 and, say, all bounded and measurable g : D ! R: Then from (2.7)
with � = � it follows that

� (Af) = 0 (f 2 D(X)) (2.8)

which is of course the standard equation for determining �:
It is essential that in (2.8) only suitable f such as f 2 D(X) are used: for any

continuous h it is easy to solve the di�erential equation Af = h on D and doing
this for h > 0 would render (2.8) non-sensical. Thus

Proposition 2.1. Suppose that for some bounded function h : D ! R with
h > 0; the di�erential equation Af = h on D has a bounded solution f: Then X
does not have an invariant probability.
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The condition on h may be relaxed: if an invariant probability exists it will
have an (almost everywhere) strictly positive density with respect to Lebesgue
measure, hence it suÆces that h > 0 on a subset of D of strictly positive Lebesgue
measure.

We now again assume that X does have an invariant probabilty �: Then �
has a density, also denoted by � and using (2.8) for f 2 C2

K(D) � D(X) (C2
K(D)

denoting the f 2 C2(D) with compact support) together with partial integration
yields Z

D

dx f(x)

 
�
X
i

@xi (�bi) (x) +
1
2

X
i;j

@2xixj (�Cij) (x)

!
= 0;

i.e. since C2
K(D) is dense in L2 (`D) (with `D Lebesgue measure on D),

�
X
i

@xi (�bi) (x) +
1
2

X
i;j

@2xixj (�Cij) (x) = 0 (x 2 D); (2.9)

which is the well known di�erential equation satis�ed by the invariant density for
a di�usion.

Although, at least in many cases, (2.9) will have precisely one solution �
which is a density (see e.g. Theorem 5.1 in Kent [7]), it is a major problem if one
wants to actually �nd �; that (2.9) also has a host of irrelevant solutions { this
together with the fact that second order partial di�erential equations are mostly
too tough to solve anyway makes (2.9) fairly useless. We shall now discuss briey
how one may deduce integrated versions of (2.9) that, although still unsolvable
for d � 2, at least have the merit of having (probably) a solution that is unique
up to proportionality.

Suppose �rst that d = 1: Then (2.9) becomes

� (�b)0 + 1
2

�
��2

�00
= 0 (2.10)

and by integration,
��b + 1

2

�
��2

�0
= constant. (2.11)

To �nd the invariant density � one must here take the constant to be 0;

��b + 1
2

�
��2

�0
= 0; (2.12)

as will be argued shortly, and thus �nds that

�(x) / 1

�2(x)
exp

Z x

x0

2b(y)

�2(y)
dy; (2.13)

i.e., as is well known, � is proportional to the density of the speed measure, see
(2.5) and (2.4).
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The argument that the constant in (2.11) should be 0 is simple: since D = ]`; r[
is an open interval, it is clear that any f 2 C2(D) such that the derivative f 0 has
compact support belongs to D(X) and hence, using partial integration, (2.8) may
be written Z r

`

dx f 0(x)
�
(�b) (x)� 1

2

�
��2
�0
(x)
�
= 0;

which implies (2.12) since the allowed collection of derivatives f 0 is dense in
L2
�
`]`;r[

�
:

The trick used here for d = 1 does not apply if d � 2: for d = 1; if f 0 has
compact support, f is constant to the left of that support and constant to the
right of the support, but the two constants may be di�erent. By contrast, if
d � 2 and all the partial derivatives @xif have compact support, then f is simply
constant outside a compact set K (all the partial derivatives vanish outside DnK;
and because d � 2 this set is connected), thus for some constant k; f�k 2 C2

K(D)
and applying (2.8) to f is the same as using f � k:

To arrive at an integrated version of (2.8) one may instead proceed as follows,
where for simplicity we assume that d = 2 and in order for the method to work
must assume that all bi and all Cij are bounded on D: �x some probability on R
with compact support and a smooth (twice continuously di�erentiable) density  
and distribution function 	: Because all bi and Cij are bounded, for any (a1; a2) 2
D and any c > 0 suÆciently small,

f (x1; x2) =
�
�1 + �1	

�
x1�a1

c

�� �
�2 + �2	

�
x2�a2

c

��
belongs to D(X) for all �1; �2; �1; �2 2 R.. Applying (2.8) to f then gives

I + II + III + IV + V = 0 (2.14)

where (with x = (x1; x2)),

I =

Z
dx1 dx2 � (x) b1(x)

�1
c
 
�
x1�a1

c

� �
�2 + �2	

�
x2�a2

c

��
;

II =

Z
dx1 dx2 � (x)

�
�1 + �1	

�
x1�a1

c

��
b2(x)

�2
c
 
�
x2�a2

c

�
;

III =

Z
dx1 dx2 �(x)

1
2
C11(x)

�1
c2
 0
�
x1�a1

c

� �
�2 + �2	

�
x2�a2

c

��
;

IV =

Z
dx1 dx2 �(x)C12(x)

�1
c
 
�
x1�a1

c

�
�2
c
 
�
x2�a2

c

�
;

V =

Z
dx1 dx2 �(x)

1
2
C22(x)

�
�1 + �1	

�
x1�a1

c

��
�2
c2
 0
�
x2�a2

c

�
:
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Taking limits as c ! 0; using the weak convergence of the probabilities with
densities 1

c
 
�
x�a
c

�
towards "a (the probability degenerate at a) together with

partial integration, while allowing �1; �2; �1; �2 to vary, eventually results inZ
dx2

�
(�b1) (a1; x2)� 1

2
@x1 (�C11) (a1; x2)

�
= 0; (2.15)

Z
dx1

�
(�b2) (x1; a2)� 1

2
@x2 (�C22) (x1; a2)

�
= 0 (2.16)

and Z
a2

dx2
�
(�b1) (a1; x2)� 1

2
@x1 (�C11) (a1; x2)

�
(2.17)

+

Z
a1

dx1
�
(�b2) (x1; a2)� 1

2
@x2 (�C22) (x1; a2)

�
+ (�C12) (a1; a2)

= 0;

where e.g.
R
a2
dx2 is the integral over fx2 : x2 > a2; (a1; x2) 2 Dg.

It could well be argued that the system (2.15), (2.16), (2.17) of equations is
even harder to solve than (2.9), but the point is that it may well be true that up to
proportionality the � solving the equations is unique. Note that (2.9) follows from
(2.17) di�erentiating (formally) once with respect to a1 and once with respect to
a2:

From now on, apart from the assumption that X has an invariant probability
�;make the additional assumption thatX is time-reversible. Equivalently, subject
to P � it holds for any T > 0 that (XT�t)0�t�T has the same law as (Xt)0�t�T : Now,

in general, under P � the process (XT�t)0�t�T has the same law as
�
X̂t

�
0�t�T

;

where X̂ is also a di�usion with invariant probability �, X̂0 has distribution �;
and it is well known (see e.g. Hansen and Scheinkmann [4], Section 4, and Nelson
[8] for the original result) that X̂ has drift vector b̂ and squared di�usion matrix
Ĉ given by

b̂i(x) = �bi(x) + 1

�(x)

X
j

@xj (�Cij) (x); Ĉij(x) = Cij(x):

Thus X is reversible i� for all i; b̂i � bi; or

� (�bi) (x) +
1
2

X
j

@xj (�Cij) (x) = 0 (1 � i � d; x 2 D) ; (2.18)
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an equation that for each i resembles the integrated equation (2.12) and that
for d = 1 reduces to that equation, con�rming the well known fact that one-
dimensional di�usions on an open interval that have an invariant probability are
time-reversible.

Of course a multivariate di�usion will typically not be reversible. In order to
�nd examples of reversibility, we shall now make one further simplifying assump-
tion:

Assumption A. For all i 6= j; Cij � 0 on D:

If Assumption A holds, by the earlier assumption that C(x) be strictly positive
de�nite for all x 2 D; it follows that

Cii(x) > 0 (1 � i � d; x 2 D) : (2.19)

Of course examples of reversible di�usions not satisfying Assumption A may
be obtained from those that do by transformation: Y = �(X) with � : D ! D0

a suitably smooth bijection.
Under Assumption A, (2.18) reduces to

� (�bi) (x) +
1
2
@xi (�Cii) (x) = 0 (1 � i � d; x 2 D) : (2.20)

Notation. If x = (x1; : : : ; xd) 2 D; write xni = (x1; : : : ; xi�1; xi+1; : : : ; xd) and
write x = xni; xi in order to express x in terms of xni and xi: Also, for each xni;
write Dxni for the section

Dxni =
�
xi : xni; xi 2 D

	
:

For the main result, which we now state, let X be a di�usion satisfying As-
sumption A, but do not assume that X has an invariant probability.

For a = (a1; : : : ; ad) 2 D; de�ne

qai (x) =
1

Cii(x)
exp

Z xi

ai

2bi
�
xni; yi

�
Cii

�
xni; yi

� dyi (2.21)

simultaneously for all i; for all x in an open neighborhood Ua � D of a such that
for each i; xni; yi 2 D whenever yi belongs to the open interval with endpoints ai
and xi:

Theorem 2.2. Suppose that X satis�es Assumption A.
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(i) If the d equations (2.20) have a common strictly positive solution �; then
that solution is uniquely determined up to proportionality.

(ii) Suppose that all bi; Cii 2 C2(D): Then, in order that the d equations (2.20)
have a common strictly positive solution �; it is necessary and suÆcient that
for all a 2 D;

@2xixj
�
log qai (x)� log qaj (x)

�
= 0 (i 6= j; x 2 Ua) : (2.22)

(iii) If the d equations (2.20) have a common solution � which is a density, then
� > 0 on D and X is time-reversible with invariant density �:

Note. In order to check whether a di�usion X is reversible and to �nd the
invariant density, one �rst veri�es (2.22) and then determines the (up to propor-
tionality) unique solution to the system (2.20) { as will be shown in the examples,
this is not diÆcult. The main advantage of (2.20) over the general equation (2.9)
is of course that a second-order partial di�erential equation has been replaced by
a system of �rst order equations, which because of Assumption A can be solved
trivially, but which for di�usions with an invariant probability can be uesd only if
the di�usions are also time-reversible. See also Kent's remark, [7], p. 828. As will
be argued in the proof, (2.18) is precisely his fundamental system (4.3) of balance
equations.
Proof. (i) Let a 2 D and for x 2 Ua, rewrite the i'th equation from (2.20) as

@xi log (�Cii) (x) =
2bi
Cii

(x)
�
xi 2 Dxni

�
;

which has the complete solution

e�i(x) = Ri

�
xni
�
qai (x) (2.23)

on Ua; with q
a
i given by (2.21) and Ri an arbitrary function of xni: In particular

�(x) = RÆ
i

�
xni
�
qai (x) (x 2 Ua)

for all i; and if also the e�i from (2.23) are identical and strictly positive on Ua;e�i � e� > 0 for all i; it follows immediately that

@xi (log�(x)� log e�(x)) = 0

for all i; i.e. e� � ka� on Ua for some constant ka: Letting a vary and patching to-
gether these identities on overlapping open sets Ua; it follows since D is connected
that e� � k� on D for some constant k:
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(ii) Suppose that � > 0 solves (2.20) so that for each a 2 D by (2.23),

�(x) = Ri

�
xni
�
qai (x) (1 � i � d; x 2 Ua) :

Then, trivially
@2xixj log�(x) = @2xixj log q

a
i (x)

and by symmetry
@2xixj log�(x) = @2xixj log q

a
j (x)

and (2.22) follows. If conversely (2.22) holds, take j = 1; i 6= 1 and solve (2.22)
to obtain

log qa1(x)� log qai (x) = �i
�
xni
�� �1

�
xn1
�

(x 2 Ua)

for arbitrary functions �i; �1: Thus

qai (x) exp �i
�
xni
�
= qa1(x) exp �1

�
xn1
�

on Ua for all i; and denoting the common function �; which is certainly > 0;
since it is of the form (2.23) for all i; it solves (2.20) on Ua: Patching together the
solutions from di�erent Ua we obtain a solution to (2.20) everywhere on D:

(iii) As noted above, p. 3, the transition densities p (t; x; y) for X with respect
to the measure Æ�1=2(x) dx are conservative and form the minimal fundamental so-
lution to the equation (2.2) in the sense of Kent [7], the de�nition p. 822. To show
that �, the density solving (2.20) (which is > 0 by (ii)), is the invariant density
for X and that X is reversible, it suÆces to show that p(t; x; y) is v�symmetric,
where v = Æ1=2�; i.e. that

p(t; x; y)=v(y) = p(t; y; x)=v(x) (x; y 2 D; t > 0) ; (2.24)

see Kent [7], equation (4.1): by integration

P � (Xt 2 B) =

Z
D

dx �(x)P x (Xt 2 B)

=

Z
D

dx

Z
B

dy �(x)p(t; x; y)Æ�1=2(y)

and since by (2.24)

�(x)p(t; x; y)Æ�1=2(y) = Æ�1=2(x)p(t; y; x)�(y)

we obtain

P � (Xt 2 B) =
Z
B

dy �(y)

Z
D

dx Æ�1=2(x)p(t; y; x) = �(B)
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showing that � is invariant and by Kent [7], Theorem 6.1, that X is reversible.
It remains to establish (2.24). But by Kent [7], Theorem 4.1, v�symmetry

holds i� the balance equations (4.3) hold,

1
2

X
j

Cij @xjv =
ebiv (1 � i � d) (2.25)

on D; where ebi is the net drift (Kent [7], p. 823),ebi = bi � 1
2
Æ1=2

X
j

@xj
�
Æ�1=2Cij

�
: (2.26)

We have here given the general form of (2.25) without using Assumption A,
and complete the proof by showing that if � solves (2.18), then v = Æ1=2� solves
(2.25) (and in fact, conversely).

Using (2.18) and (2.26), (2.25) becomes

1
2

X
j

Cij @xj
�
Æ1=2�

�
= 1

2
Æ1=2

X
j

�
@xj (�Cij)� Æ1=2� @xj

�
Æ�1=2Cij

��
: (2.27)

But on the left

Cij @xj
�
Æ1=2�

�
= Cij� @xjÆ

1=2 + CijÆ
1=2 @xj�

and since
Æ1=2@xjÆ

�1=2 = �Æ�1=2@xjÆ1=2
we get on the right that

Æ1=2
�
@xj (�Cij)� Æ1=2� @xj

�
Æ�1=2Cij

��
= Æ1=2Cij @xj�+ Æ1=2� @xjCij � Æ1=2

�
� @xjCij � Cij�Æ

�1=2 @xjÆ
1=2
�

= Cij� @xjÆ
1=2 + CijÆ

1=2 @xj�

and (2.27) follows.

The proof of (iii) is the most diÆcult part of the proof of the theorem. Here
are some comments on a more direct, but incomplete argument.

Notice �rst that if Assumption A holds and � > 0 solves (2.20), then the
generator has the form

Af =
1

2�

X
i

�
@xi (�Cii) @xif + �Cii @

2
xixi

f
�

=
1

2�

X
i

@xi (�Cii @xif) : (2.28)
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If furthermore � is a density, in order to show that � is invariant, it suÆces to
show for f 2 C2

K(D) that
�(�tf) = �(f) (2.29)

for all t � 0; �t denoting the transition operator

�tf (x) = Exf (Xt) :

Using (2.7) with � = � gives

�(�tf) = �(f) +

Z t

0

� (�sAf) ds

and since �sAf = A�sf so that �sf 2 D(X) if f 2 D(X); to deduce (2.29) it
suÆces to show that � (Af) = 0 for all f 2 D(X): But by (2.28),

2� (Af) =

Z
D

X
i

@xi (�Cii @xif) dx

and integrating the i'th term by �xing xni and provided (for convenience), Dxni =i
`xni; rxni

h
is an open interval, one �nds integrating over xi, that � (Af) = 0 if

lim
xi"rxni

(�Cii @xif) (x) = lim
xi#`xni

(�Cii @xif) (x) = 0: (2.30)

A proof of this would certainly exploit that X never hits @D and that f 2 D(X):
for d = 1 one needs to show e.g. that with D = ]`; r[

lim
x#`

�
��2f 0

�
(x) = 0: (2.31)

Now, since � is a density, by Remark 1, S(`) = �1 (and S(r) =1; meaning pre-
cisely that X is recurrent), and since ��2 = 1=S 0; if we de�ne �(x) = 2�(x)Af(x)
it follows from (2.28) that for ` < x < x0 < r;Z x0

x

dy � (y) =
�
��2f 0

�
(x0)� f 0(x)

S 0(x)

whence for � 2 ]`; x0[ ;Z x0

�

dxS 0(x)

�Z x0

x

dy � (y)� ���2f 0� (x0)� = � (f(x0)� f(�)) : (2.32)

For � # ` the right hand side stays bounded since f is bounded. Since � is a
density and Af is bounded, � is Lebesgue-integrable on D so

lim
x#`

�Z x0

x

dy � (y)� ���2f 0� (x0)� =

Z x0

`

dy � (y)� ���2f 0� (x0) = � (x0) (2.33)
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exists. But since S(`) = �1; in order for the left hand side of (2.32) to stay
bounded, it follows that �(x0) = 0 for all x0 2 D and then (2.31) is obtained
letting x0 # ` in (2.33). An analogous proof of (2.30) for d � 2 appears diÆcult.

We conclude this section with three examples of reversible di�usions. In all
three examples there are explicit formulas for the conditional moments (in Ex-
ample 2.4, provided they exist) which is an additional attractive feature of the
models. How to �nd the moments is explained in the following

Remark 2. Let X be a general di�usion just satisfying (2.1) and suppose that
L is a �nite-dimensional vector space of functions f 2 C2(D) such that Af 2 L
for all f 2 L (simplest: L is the one-dimensional eigenspace determined by an
eigenfunction for A). If (fq)1�q�r is a basis for L, we may write

Af = Gf (2.34)

where G 2 R
r�r is a matrix of constants and f is the column vector (fq)1�q�r :

By (2.7),

�tf(x) = f(x) +

Z t

0

G (�sf) (x) ds (x 2 D) (2.35)

provided all fq(Xs) are P
x�integrable and provided each of the local martingales

M
fq
t =

dX
i=1

Z t

0

@xifq(Xs)
X
j

�ij(Xs) dBj;s

is a true martingale under each P x: In that case (2.35) gives @t�tf = G�tf with
the boundary condition �0f = f so that

�tf(x) = etGf(x) (x 2 D) : (2.36)

The integrability conditions required for this formula to hold may be checked
as follows: if X has an invariant probability �; and all fq are ��integrable, sinceZ

D

� (dx) Ex jfq(Xs)j = � (jfqj) <1

it follows (at least for ��almost all x) that fq(Xs) is P
x�integrable. Similarly, if

for all functions

�j(x) =

 X
i

@xifq(x)�ij(x)

!2

(1 � j � d)

13



are ��integrable one veri�es that for ��almost all x the quadratic variation�
Mfq

�
t
=
X
j

Z t

0

�j (Xs) ds

has �nite Ex�expectation, which is enough to render Mfq a true P x�martingale.
A particularly nice case of the setup arises when L is the space of polynomials

of degree � p for some p 2 N : Then the invariance, AL � L, holds for all p pro-
vided each bi(x) is a polynomium of degree � 1 and each Cij(x) is a polynomium
of degree � 2; conditions that are satis�ed in all the three examples below in
this section, and also by the aÆne term structure models used in �nance, see
DuÆe and Kan [3], (where the Cij are of degree � 1). Thus, with the conditions
satis�ed, the conditional moments

�t

 
dY

i=1

xpii

!
= Ex

dY
i=1

Xpi
t

with all pi 2 N0 may be found from (2.36) provided they exist and the relevant
local martingales are true martingales.

Note that since A1 = 0; the constant functions may always be included in L,
and it is not really required that the basis f satisfy the linear relationship (2.34) {
it is suÆcient that there is a vector c of constant functions such that Af = c+Gf:

Example 2.3. Let X be a d�dimensional Ornstein-Uhlenbeck (OU) process (ho-
mogeneous Gaussian di�usion), i.e. D = R

d and

dXt = (A+BXt) dt+D dWt

with A 2 R
d the constant drift vector, B = (bij) 2 R

d�d the (constant) linear
drift matrix and D 2 R

d�d the di�usion matrix, assumed to be non-singular and
where as usual we write C = DDT . (In this example we write W instead of B for
the Brownian motion). It is well known that X has an invariant probability � i�
Re� < 0 for all (complex) eigenvalues of B; and in that case

� = N
��B�1A;�

�
;

the Gaussian distribution on Rd with mean vector �B�1A and covariance matrix
�; which is the unique symmetric solution of the equation

C +B� + �BT = 0:

� can be expressed explicitly as

� =

Z 1

0

esBCesB
T

ds; (2.37)
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but only in special cases does this unpleasant integral involving matrix exponen-
tials reduce to something simple.

We shall now see when X is reversible and therefore impose Assumption A in
order to use Theorem 2.2,

C = diag
�
�21 ; : : : ; �

2
d

�
with all �2i > 0 constants. (For this example, the diagonal structure is of course
no restriction: for an arbitrary OU process X with C non-singular, there is a
non-singular F 2 R

d�d such that Y = FX is OU with a diagonal C).
Taking a = 0; q0i = qi from (2.21) becomes

qi(x) =
1

�2i
exp

Z xi

0

2

�2i

 
biiyi +

X
j 6=i

bijxj

!
dyi

=
1

�2i
exp

 
bii
�2i
x2i +

2

�2i

X
j 6=i

bijxixj

!
:

Using (2.22) we see that X is reversible i� for all i; j;

bij
�2i

=
bji
�2j
; (2.38)

equivalently C�1B = BTC�1: Since, apart from a factor not depending on xi;
qi(x) = �(x); it follows directly that the (i; j)'th element of ��1 is �2bij=�2i ; i.e.

� = �1
2
B�1C = �1

2
C
�
BT
��1

;

a fact also con�rmed by (2.37) since (2.38) implies that e.g. esBC = CesB
T

:

Example 2.4. As in the previous example, D = R
d and also the drift bi(x) is

the same, now conveniently written as

bi(x) = ai +
X
j

bijxj;

but with Assumption A in force we now take

Cii(x) = �i +
X
j

ijx
2
j

with all �i > 0; all ij � 0 and ii > 0: The coeÆcients in the SDE for X then
satis�es the standard Lipschitz and linear growth conditions ensuring that the
equation has a unique strong solution once the initial condition X0 is speci�ed.
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It appears that only a special structure yields reversibility. To simplify, take
ai = 0 and bij = 0 for i 6= j: Then

@2xixj log q
a
i (x) = @xj

�
�@xi logCii(x) +

2biixi
Cii(x)

�
=

4xixj
C2
ii(x)

(iiij � biiij)

and in order for this to be symmetric in i and j (see (2.22)), it is natural that the
Cii are proportional functions,

Cii(x) = �i

 
1 +

X
j

Æjx
2
j

!

with all Æj > 0: Thus ij = �iÆj and (2.22) is seen to hold i� there is a constant
� such that

bii
�iÆi

= �

for all i: Next,

q0i (x) =
1

Cii(x)
exp

Z xi

0

2biiy
2
i

�i

�
1 + Æiy2i +

P
j 6=i Æjx

2
j

� dyi
= Ri

�
xni
�
Cii(x)

��1

which is enough to identify

�(x) /
 
1 +

X
j

Æjx
2
j

!��1

: (2.39)

Since this is integrable i� � < 1 � d
2
; we conclude from Theorem 2.2 that X is

reversible if

dXi;t = biiXi;t dt+

vuut�i

 
1 +

X
j

ÆjX2
j;t

!
dBi;t (2.40)

with all �i and Æj > 0 and all bii= (�iÆi) = � < 1 � d
2
; and that the invariant

density is then given by (2.39).
Suppose now that in (2.40) all bii = b 2 R, all �i = � > 0 and all Æj = Æ � 0

(do not assume reversibility). (The case Æ = 0 is included for reference: if,
say, x0 = 0; then the Xi are (for b 6= 0) iid one-dimensional Ornstein-Uhlenbeck
processes starting from 0; and if b = 0; � = 1; then X is a standard d�dimensional
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Brownian motion. For d = 1; a process of the type (2.40) was used by Bibby and
S�rensen [1]).

De�ning the radial part R = (
P
X2

i )
1=2

and the direction vector Y = X=R
one �nds that

dR =
�
bR + d�1

2
�RU

�
dt+R

p
�U d eB; (2.41)

dYi = �d�1
2
�UYi dt+

p
�U
X
j

(Æij � YiYj) dBj

where

U =
1

R2
+ Æ;

while eB =
X
i

Z �

0

Yi dBi

de�nes a standard one-dimensional Brownian motion. It follows that R is itself a
di�usion and that if in addition b = 0; there is a skew-product representation of
X:

Yi = Bsph
i

�
�

Z �

0

Us ds

�
;

with Bsph a standard Brownian motion on the unit sphere Sd�1 independent of R;
cf. Rogers and Williams [10] (35.19) { the essentials for the classical skew-product
representation of Brownian motion quoted there carries over to the example here
(with the Brownian case appearing for Æ = 0; � = 1).

Example 2.5. In this example we start with a density � and then look for re-
versible di�usions satisfying Assumption A that have � as invariant density. Let

D =
�
x 2 R

d : all xi > 0; s < 1
	

where s =
P
xi; and let � be the density for a Dirichlet distribution on D; i.e.

� (x) /
 Y

i

x�i�1i

!
(1� s)��1 ; (2.42)

where all �i > 0 and � > 0:
To �nd the desired reversible di�usion satisfying Assumption A, we need to

�nd bi and Cii such that

@xi log� = �@xi logCii +
2bi
Cii

: (2.43)
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We have

@xi log� =
�i � 1

xi
� �� 1

1� s

and taking
Cii(x) = ixi(1� s)

it is immediate that (2.43) is satis�ed if

bi(x) =
1
2
i (�i(1� s)� �xi) :

Much the nicest case is when all i =  > 0; and we are thus looking at

dXi;t =
1
2
 (�i(1� St)� �Xi;t) dt+

q
Xi;t (1� St) dBi;t: (2.44)

It remains to check for what values of the parameters,X stays inside D! For
d = 1; X is the Jacobi di�usion, see e.g. Karlin and Taylor [6], p. 335,

dXt =
1
2
 (�1(1�Xt)� �Xt) dt+

p
Xt (1�Xt) dBt; (2.45)

which is known to stay inside ]0; 1[ precisely when �1 � 1 and � � 1; cf. Remark
1, and � is then the density for a beta distribution. By analogy we claim (without
proof) that for d � 2; X stays inside D if all �i � 1 and � � 1 and from Theorem
2.2 it then follows that X is reversible with invariant density � given by (2.42).

Since D is bounded, all conditional moments for D can be found by the receipt
in Remark 2. Also note that X has the following agglomeration property: write

f1; : : : ; dg =
d0[
k=1

Ik

with the Ik mutually disjoint and non-empty and assume that d0 < d: De�ning

Yk =
X
Ik

Xi

it is easily checked that Y is a d0�dimensional process of the same type as X;

dYk;t =
1
2
e �e�k(1� St)� e�Yk;t� dt+qeYk;t (1� St) d eBk;t;

where S =
P
Yk =

P
Xi and

e = ; e�k =X
Ik

�i; e� = �:

In particular S is a one-dimensional Jacobi di�usion with (see (2.45)) �1 =
P
�i

and ; � the same as for X:
We propose the name multivariate Jacobi di�usion for X given by (2.44).
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3. A multivariate Cox-Ingersoll-Ross type process

This section is entirely devoted to one example of a di�usion which, although
never reversible, has other attractive analytical features.

For d = 1; the (standard) Cox-Ingersoll-Ross process (CIR), Cox et al. [2] is
given by

dXt = (a + bXt) dt+ �
p
Xt dBt (3.1)

where a; b 2 R and � � 0 (with � = 0 a trivial, uninteresting case). This is a
process on ]0;1[ i� 2a � �2; and if � > 0 and in addition b < 0; X is reversible
(since d = 1) with invariant density

�(x) / x
2a

�2
�1 exp

�
2b
�2
x
�
; (3.2)

i.e. the invariant probability is a gamma-distribution.
Recall that special cases of (3.1) arise by considering R2 when Æ = 0 in (2.41)

above. If in addition � = 1; the result is of course best known as a squared Bessel
process.

For d � 2 we propose the following generalization, which is quite di�erent
from the aÆne term structure models introduced by DuÆe and Kan [3]: let D =
]0;1[d ; de�ne

Z =
Y
i

Xi; Zni =
Y
j;j 6=i

Xj

and consider

dXi;t =

�
ai
Zni;t

+ biXi;t

�
dt+

s
Xi;t

Zni;t
dB�

i;t (1 � i � d) (3.3)

where all ai; bi 2 R: Here, B� =
�
B�
i

�
i�i�d

denotes a Brownian motion with co-

variance matrix �; i.e. B� is continuous with B�
0 � 0 and stationary independent

increments such that for s < t; B�
t � B�

s is Gaussian with mean vector 0 and
covariance matrix (t� s) �: In particular, if 	 2 R

d�d satis�es 		T = �; we
may write Bt = 	Wt with W a standard d�dimensional Brownian motion. (We
need not assume that � is non-singular. But the case � = 0 is trivial since then
(3.3) reduces to an ordinary di�erential equation, so the condition rank(�) � 1 is
subsumed below).

The �rst and immediate problem to ask is for what values of the ai; bi and
�, (3.3) has a solution X that moves on D: Starting X from a point in D; the
solution is well de�ned on [0; � [ ; where � is the stopping time

� = inf ft : Xi;t = 0 for some ig = inf ft : Zt = 0g ;
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so the problem amounts to determining those values of the parameters for which
� =1 a.s., no matter from where in D the process starts.

Suppose for a moment that � = diag (�21 ; : : : ; �
2
d). Fix i and note that whenever

Zni;t is close to some given value z > 0; Xi behaves like a CIR process (3.1)
with a = ai=z; b = bi and � = �i=

p
z; and that this CIR-process stays strictly

positive and �nite at all times i� 2ai � �2i ; a condition that does not depend on z:
Therefore, in this case, the condition 2ai � �2i for all i should suÆce for making
X a di�usion on D: One can do better however, and we now claim that X is well
de�ned as a di�usion with strictly positive and �nite coordinates at all times i�
2a � �2; where

a =
X
i

ai; �2 =
X
i

�ii:

The proof of this claim rests on a simple observation that in fact motivated
the de�nition (3.3) of X: Introduce Zni;j =

Q
k:k 6=i;j for i 6= j and use Itô's formula

to obtain

dZ =
X
i

Zni

(�
ai
Zni

+ biXi

�
dt+

s
Xi

Zni
dB�

i

)

+1
2

X
i;j:i6=j

Zni;j

s
XiXj

ZniZnj
d
�
B�
i ; B

�
j

�
:

Since d
�
B�
i ; B

�
j

�
= �ij dt this reduces to

dZ =

 
a+ 1

2

X
i;j:i6=j

�ij + bZ

!
dt+

p
Z
X
i

dB�
i

with
b =

X
i

bi:

But we may write X
i

dB�
i =  dB1

where B1 is a standard one-dimensional Brownian motion and

2 =
X
i;j

�ij:

Thus Z; which is well de�ned on [0; � [ ; on that interval behaves like a CIR process
(3.1) with

a = a+ 1
2

X
i;j:i 6=j

�ij; b = b; � = ; (3.4)
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and the condition 2a � �2 for a CIR-process to stay strictly positive (and �nite)
now yields the desired necessary and suÆcient condition for X to be a di�usion
on D: Hence, from now on we assume that

2a � �2:

By a similar application of Itô's formula it is easy to prove that X has the
following agglomeration property: write

f1; : : : ; dg =
d0[
k=1

Ik

with the Ik mutually disjoint and non-empty, assume that d0 < d and de�ne

Yk =
Y
Ik

Xi:

Then the d0�dimensional process Y = (Yk)1�k�d0 satis�es a SDE of the form (3.3),

dYk =

 
a�k
Z�
nk

+ b�kYk

!
dt+

s
Yk
Z�
nk

dB�
k (1 � i � d)

where Z�
nk =

Q
`6=k Y` = Z=Yk and

a�k =
X
Ik

ai +
1
2

X
i;j2Ik:i6=j

�ij; b�k =
X
Ik

bi;

and B� is a d0�dimensional Brownian motion with covariance matrix �� given by

��k` =
X
i2Ik

X
j2I`

�ij:

We shall now comment on the long-term behaviour of X: The key observation
here is that by Itô's formula

d logXi =

��
ai � 1

2
�ii

� 1
Z
+ bi

�
dt+

1p
Z
dB�

i (3.5)

which immediately shows that the process logXi;t� bit is a time-change (see. e.g.
Rogers and Williams [10], Proposition (30.10)) of a Brownian motion with drift,
the same time-change applying to all coordinates Xi: More precisely, suppose

21



that X0 � x0 is a �xed, arbitrary point in D and de�ne the strictly increasing
and continuous process

At =

Z t

0

1

Zs

ds

with the inverse
�u = inf ft : At = ug

de�ned for 0 � u < A1 :=
R1
0
Z�1
s ds � 1: Then �0 � 0; each �u is a stopping

time with respect to the �ltration (Ft)t�0 generated by X (or B�) and by (3.5),
simultaneously for all u < A1;

logXi;�u � log xi;0 � bi�u =
�
ai � 1

2
�ii

� Z �u

0

1

Zs

ds+

Z �u

0

1p
Zs

dB�
i;s

=
�
ai � 1

2
�ii

�
u+

Z �u

0

1p
Zs

dB�
i;s: (3.6)

The last term is a local martingale with respect to the �ltration (F�u)u�0 ; and
checking the quadratic variations for each i and the cross-variations between two
of the local martingales, and using L�evy's characterization of Brownian motion,
Rogers and Williams [10], Theorem (33.1) or Revuz and Yor [9], Theorem 3.6, it
emerges that eB�

i;u :=

Z �u

0

1p
Zs

dB�
i;s (1 � i � d; u � 0)

is, provided
A1 =1 P x0 � a.s. (3.7)

a Brownian motion with covariance matrix �: We have shown that if (3.7) holds,
then

logXi;�u � log xi;0 � bi�u (1 � i � d; u � 0)

de�nes a d�dimensional Brownian motion with drift vector
�
ai � 1

2
�ii

�
1�i�d

and
covariance matrix �:

Now, the scale function for Z has derivative

S 0(x) / x�
2a

�2 e�
2b

�2
x

with a; b; � as in (3.4). Therefore S(0) = �1 always, and S(1) = 1 i� either
b < 0 or b = 0 and 2a = �2: From this it follows that if b > 0; then lim

t!1
Zt = 1

P x0�a.s. for all x0 2 D so that Z, and therefore also X; is transient. If b = 0;
2a = �2; Z is recurrent but has no invariant probability { Z is null recurrent.
Therefore (3.7) holds, and if in addition all bi = 0; 2ai = �ii (which is compatible
with (3.4)), we see that logX is a time-changed Brownian motion with no drift
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and covariance �; in particular X is null recurrent if d = 2 and transient for
d > 2:

Finally, if b < 0; Z has as stationary probability the gamma distribution given
by (3.2), and by the ergodic theorem

lim
t!1

1

t

Z t

0

1

Zs

ds =

� � 2b
2a��2

if 2a > �2;

1 if 2a = �2
(3.8)

P x0�a.s. for all x0 2 D: But the limit in (3.8) equals

lim
u!1

1

�u

Z �u

0

1

Zs

ds = lim
u!1

u

�u
;

and we see from (3.6) that

lim
u!1

1

u
logXi;�u = �bi 2a� �2

2b
+
�
ai � 1

2
�ii

�
:

If, for some i; the right hand side is 6= 0; logXi;�u { and therefore also logXi;t {
will converge to �1; and Xi; and therefore Z; is transient. The case remaining
is when for all i;

bi
2a� �2

2b
= ai � 1

2
�ii

or equivalently
bi

b

�
2�a� ��2

�
= 2ai � �ii (1 � i � d); (3.9)

and this is the only case, where there is hope that X may have an invariant
probability. But for i 6= j given, from (3.6) and (3.9) it follows that for some
constant c;

logXi;t � xi;0 + c (logXj;t � xj;0) = eB�
i;At

+ c eB�
j;At

:

On the right is a time-changed one-dimensional Brownian motion with drift 0:
Combining this with the behaviour of At for large t (At � kt for some constant
k > 0), it is clear that the right hand side can never be given a stationary start,
hence X never has an invariant density. We do not know when X is null recurrent
{ from simulations, if (3.9) holds, this appears true if d = 2; but what happens
if d � 3 is not known: (On the lack of an invariant density: one may of course
look directly for cases where X could be reversible, using the results from Section
2. Assuming that � = diag (�21 ; : : : ; �

2
d) it is readily seen that (2.22) holds i�

2bi=�
2
i = � is the same for all i; and that the only candidate for an invariant

density is

�(x) / e�z
Y

x
2ai=�

2

i

i ;
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where z =
Q
xi; which is never Lebesgue-integrable on D!)

Two �nal comments on the model discussed in this section: (i) we have not
required � to be non-singular, in particular one or more B�

i may vanish in which
case Xi has di�erentiable sample paths; (ii) �xing i = 1 say and focusing on X1

alone, one may view 1=Zn1 as a stochastic volatility entering the description of X1

and the whole model as a (nicely structured) type of stochastic volatility model.

Acknowledgement. I would like to thank Marc Yor for his many comments on
some of the examples presented here, and also for reminding me about the power
of time-change methods.
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