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Abstract

In this paper we study the bijection, introduced by Bercovici and Pata in [BP2], between

the classes of in�nitely divisible probability measures in classical and in free probability.

We prove certain algebraic and topological properties of that bijection (in the present paper

denoted �), and those properties are then used to show, in particular, that � maps the class

of classically selfdecomposable probability measures onto the natural free counterpart, that

we de�ne here. Further, we study L�evy processes in free probability and use the properties

of � to construct stochastic integrals w.r.t. such processes. In particular, we derive the free

analogue of the integral representation of selfdecomposable random variables.
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1 Introduction

The concept of selfdecomposability of probability measures is due to Paul L�evy. In the
present paper we study a free analogue of selfdecomposability, i.e. a selfdecomposability
concept formulated in the theory of non-commutative probability and free independence.
In that theory, free independence, which was introduced by Voiculescu in 1982 (see [Vo1]),
plays a role somewhat similar to that of independence in classical probability.

Voiculescu's pioneering papers has led to an extensive body of work, cf. the papers cited
below and references given in those. For survey material, see [VDN], [Vo4], [Bi2] and
[HP1]. In particular, close analogies as well as intriguing di�erences between in�nite
divisibility in the classical and in the non-commutative sense have been uncovered, as we
shall indicate.

The origin of the idea of free independence came from Voiculescu's study of the free
group von Neumann factors, in which free independence may be naturally encountered.
Voiculescu later discovered that free independence also appears in the study of the asymp-
totic behaviour of independent large (Gaussian) random matrices. The starting point of
the latter approach to free independence is Wigner's semi-circle law, which occurs as a
limiting distribution of eigenvalue distributions of large selfadjoint random matrices with
complex entries. This law plays in the theory of free probability the same role as the nor-
mal or Gaussian law in classical probability. Wigner's approach was through the study of
the asymptotic behaviour of the mean values Eftrn[(X

(n))p]g, where (X(n))p is the p-th
power of the n�n random matrix X(n), and trn is the normalized trace on the set Mn(C )
of complex n � n matrices. Voiculescu took the broader view of looking at mean values
of the form

E
�
trn(X

(n)
i1
X

(n)
i2
� � �X

(n)
ip )

	
;

where the X
(n)
i are independent n � n random matrices, with i ranging over a �nite set

f1; 2; :::; rg. Under suitable conditions these moments will, as in the case r = 1, converge
and determine a limit object, and free independence expresses how the independence
of X

(n)
1 ; X

(n)
2 ; :::; X

(n)
r is re
ected in properties of that object (see Voiculescu's original

paper [Vo3] for the precise formulation). Since in general the matrices do not commute,
free independence constitutes a truly 'non-commutative' probabilistic concept. However,
the most general and concise way to de�ne free independence is through operator algebra
theory, and this links the theory of free independence more closely to quantum mechanics.

2



We refer, in passing, to recent related work on random matrices: See [HP2], [Th], [Ge],
[Si], [HT1], [HT2] and references given there.

Of key importance to the theory of classical in�nite divisibility is the L�evy-Khintchine
formula for the logarithm of the characteristic function of an element of the class ID(�)
of in�nitely divisible laws. There is a similar formula for free in�nite divisibility, and
the two L�evy-Khintchine formulae are linked, in a natural way, by a bijection � - that
we shall refer to as the Bercovici - Pata bijection - between the elements of ID(�) and
the elements of the free counterpart ID(�) of ID(�). In particular, under this bijection
the Gaussian law corresponds to the Wigner (or semi-circle) law, and, as was shown by
Bercovici and Pata in [BP2], the class S(�) of stable laws corresponds to the class S(�)
of free stable laws.

In this paper we establish some basic properties of �. Further, we introduce a concept
of free selfdecomposability, de�ned in operator algebraic terms, and show, using those
properties, that - with L(�) denoting the class of selfdecomposable laws in the classical
sense - the subclass �(L(�)) of ID(�) corresponds exactly to free selfdecomposability.

In�nite divisibility is intimately connected to the concept of L�evy processes, i.e. stochastic
processes with independent and identically distributed increments. A recent account of
the theory of in�nite divisibility and L�evy processes is given by Sato in [Sa1]; see also
[Be1],[Be2],[Be3],[LeG] and [BMR] for more specialised aspects. The properties of �,
that we derive, also provide the possibility to translate from classical L�evy processes to
free counterparts of those processes. We begin an investigation of this. In particular we
establish the existence of stochastic integrals (of functions) w.r.t. free L�evy processes, and
we use this to prove the free analogue of the integral representation of selfdecomposable
random variables (cf. [Wo] and [JV]). We mention, in that connection, the paper [BiS]
by Biane and Speicher, in which they establish stochastic integration (of processes) w.r.t.
the free Brownian motion.

The paper is organized as follows: In section 2 we provide background material from
classical probability, free probability and from operator theory. Subsection 2.1 is a short
summary of the basic theory of selfdecomposability in classical probability. In Subsec-
tion 2.2 we introduce the notion of free independence, and in Subsection 2.3 we summarize
the basic results on free additive convolution and the main tool thereof: the Voiculescu
transform. In Subsection 2.4 we introduce the concept of free in�nite divisibility and the
free version of the L�evy-Khintchine formula. In the �rst part of the main body of the
paper (Sections 3-4), the exposition is based on the analytical function tools described in
Subsections 2.3-2.4. In particular, this avoids stating the results in terms of unbounded
operators. However, the last two sections of the paper (Sections 5-6) deal with free L�evy
processes, which are, by de�nition, processes of, in general, unbounded operators. Conse-
quently, we give, in Subsection 2.5, a short account of the theory of unbounded operators
a�liated with a �nite von Neumann algebra.

In Section 3 we introduce the Bercovici-Pata bijection �, and study its basic properties.
We prove that � is a homomorphism, in the sense that it preserves the a�ne structure
on the set ID(�). We prove also that � is a homeomorphism w.r.t. weak convergence of
probability measures. These properties of � form the key tools for the results derived
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in the following sections. In Section 4 we de�ne selfdecomposability in free probability,
and prove that this notion implies free in�nite divisibility. Subsequently then, we prove
that free selfdecomposability corresponds exactly to classical selfdecomposability via the
mapping �. In Section 5, we introduce the notion of L�evy processes in free probability,
and we show how the mapping � gives rise, in a natural way, to a one to one (in law)
correspondence between classical and free L�evy processes. Finally, in Section 6, we use the
properties of � to carry over the construction of stochastic integrals of continuous func-
tions w.r.t. classical L�evy processes to a corresponding integral w.r.t. free L�evy processes.
We then prove that the integral representation of a classically selfdecomposable random
variable also holds, verbatim, in the free case. We end by mentioning the connection to
Ornstein-Uhlenbeck type processes.

Acknowledgement. It is a pleasure to express our gratitude to U�e Haagerup for many
enlightening discussions.

2 Preliminaries

The present section brie
y reviews relevant background material on classical selfdecom-
posability, free independence and operator theory.

2.1 Selfdecomposability in classical probability

Denoting, for the classical case, the classes of Gaussian, stable, selfdecomposable and
in�nitely divisible laws by G(�), S(�), L(�) and ID(�) we have the hierarchy

G(�) � S(�) � L(�) � ID(�): (2.1)

Brie
y, the stable laws are those that occur as limiting distributions for n!1 of a�ne
transformations of sums X1 + � � � + Xn of independent identically distributed random
variables (subject to the assumption of uniform asymptotic neglibility). Dropping the
assumption of identical distribution one arrives at the class L(�). Finally, the class ID(�)
of all in�nitely divisible distributions consists of the limiting laws for sums of independent
random variables of the form Xn1+ � � �+Xnkn (again subject to the assumption of uniform
asymptotic neglibility). An alternative characterisation of selfdecomposability says that
(the distribution of) a random variable Y is selfdecomposable if and only if for all c in
]0; 1[ the characteristic function f of Y (i.e. the Fourier transform of the distribution of
Y ) can be factorised as

f(�) = f(c�)fc(�); (2.2)

for some characteristic function fc (which then, as can be proved, necessarily corresponds
to an in�nitely divisible random variable Yc). In other words, considering Yc as indepen-
dent of Y we have a representation in law

Y
d
= cY + Yc:
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This latter formulation makes the idea of selfdecomposability of immediate appeal from
the viewpoint of mathematical modeling. Yet another key characterisation is given by
the following result which was �rst proved by Wolfe in [Wo] and later generalized and
strengthened by Jurek and Verwaat ([JV], cf. also Jurek and Mason, [JM, Theorem 3.6.6]):
A random variable Y has law in L(�) if and only if Y has a representation of the form

Y
d
=

Z 1

0

e�t dXt; (2.3)

where Xt is a L�evy process satisfying Eflog(1 + jX1j)g <1. The process X = (Xt)t�0 is
termed the background driving L�evy process or the BDLP corresponding to Y .

We mention next how the selfdecomposable measures on R are characterized in terms of
their L�evy-Khintchine representation. Recall that a probability measure � on R (with
the Borel �-algebra) is in�nitely divisible if and only if its characteristic function f� has
a representation (the L�evy-Khintchine representation) of the form:

log f�(u) = i
u+

Z
R

�
eiut � 1�

iut

1 + t2

�1 + t2

t2
�(dt); (u 2 R); (2.4)

where 
 is a real constant and � is a �nite measure on R. In that case, the pair (
; �) is
uniquely determined.

2.1 De�nition. Let � be an in�nitely divisible probability measure on R, and let 

and � be, respectively, the (uniquely determined) real constant and �nite measure on R

appearing in (2.4). We say then that the pair (
; �) is the generating pair for �.

In the literature, there are several alternative ways of writing the above representation.
In recent literature, the following version seems to be preferred (see e.g. [Sa1]):

log f�(u) = i
0u� 1
2
au2 +

Z
R

�
eiut � 1� iut1[�1;1](t)

�
�(dt); (u 2 R); (2.5)

where 
0 is a real constant, a is a non-negative constant and � is a measure on R satisfying
the conditions:

�(f0g) = 0 and

Z
R

minf1; t2g �(dt) <1;

i.e. � is a L�evy measure. The relationship between the two representations (2.4) and (2.5)
is the following:

a = �(f0g);

�(dt) =
1 + t2

t2
� 1Rnf0g(t) �(dt);


0 = 
 +

Z
R

t
�
1[�1;1](t)�

1

1 + t2

�
�(dt):
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Now, it follows from [Sa1, Corollary 15.11] that a probability measure � on R is �-
selfdecomposable if and only if its L�evy measure is of the form:

�(dt) =
k(t)

jtj
dt;

where k : R ! R is a non-negative function which is increasing on ]�1; 0[ and decreasing
on ]0;1[.

In this paper we shall use mostly the representation (2.4). We have included the repre-
sentation (2.5) too, since some of the results we refer to in Section 6 are formulated in
terms of that representation.

The class of classically selfdecomposable distributions is wide and includes many special
cases of theoretical and applied interest. Among the probability laws on the positive
half-line, all those which are convolutions of gamma distributions and limit laws of such
convolutions are selfdecomposable. This group of distributions is referred to as generalised
gamma convolutions and have been extensively studied by Bondesson in [Bo]. (It is note-
worthy, in the present context, that Bondesson uses Pick functions, which are essentially
Cauchy transforms, as a main tool in his investigations). An important class of gener-
alized Gamma convolutions are the generalized inverse Gaussian distributions: Assume
that � in R and 
; � in [0;1[ satisfy the conditions: � < 0 ) � > 0, � = 0 ) 
; � > 0
and � > 0 ) 
 > 0. Then the generalized inverse Gaussian distribution GIG(�; �; 
) is
the distribution on R+ with density (w.r.t. Lebesgue measure) given by

g(t;�; �; 
) =
(
=�)�

2K�(�
)
t��1 exp

�
� 1

2
(�2t�1 + 
2t)

	
; t � 0;

where K� is the modi�ed Bessel function of the third kind and with index �. For all
�; �; 
 (subject to the above restrictions) GIG(�; �; 
) is selfdecomposable, and it is not
stable unless � = �1

2
and 
 = 0. For special choices of the parameters, one obtains

the gamma distributions (and hence the exponential and �2 distributions), the inverse
Gaussian distributions, the reciprocal inverse Gaussian distributions1 and the reciprocal
gamma distributions. As concerns distributions on the whole real line, a particularly
important group of examples are the marginal laws of subordinated Brownian motion
with drift, when the subordinator process is generated by one of the generalised gamma
convolutions. The induced selfdecomposability of the marginals follows from a recent
result due to Sato (cf. [Sa2]).

There is a very extensive literature on the theory and applications of stable laws. A
standard reference for the theoretical properties is [ST], but see also [Fe] and [BMR].
In comparison, work on selfdecomposability has up till recently been somewhat limited.
However, a comprehensive account of the theoretical aspects of selfdecomposability, and
indeed of in�nite divisibility in general, is now available in [Sa1]. Applications of selfde-
composability are discussed, inter alia, in [BRT], [Ba], [BS1] and [BS2].

1the inverse Gaussian distributions and the reciprocal inverse Gaussian distributions are, respectively,
the �rst and the last passage time distributions to a constant level by Brownian motion with drift.
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2.2 Free Independence

Free probability is the term given to the combination of the concept of free independence
with non-commutative probability (see [Vo4]). Non-commutative probability is a �eld of
study of probabilistic structures arising out of quantum mechanics. It is not necessary for
present purposes to delineate the �eld further. However, we do need the precise de�nition
of free independence.

Let H be a (complex) Hilbert space and let B(H) denote the vector space of continuous
linear mappings (or operators) a : H ! H. Consider further a state on B(H), i.e. a
positive linear functional � : B(H) ! C such that �(1) = 1, where 1 is the identity
mapping onH2. Given any selfadjoint operator a inB(H), the spectrum sp(a) is contained
in R, and there exists a unique probability measure �a on R, concentrated on sp(a),
satisfying that

�(f(a)) =

Z
R

f(t)�a(dt); (2.6)

for all bounded Borel functions f on R. The measure �a is called the (spectral) distribution
of a w.r.t. � , and we shall also use the notation Lfag (the law of a) for �a.

We say that operators a1; :::; ar inB(H) are freely independent with respect to � if they sat-
isfy the following condition: For any p in N and i1; :::; ip in f1; :::; rg with i1 6= i2; :::; ip�1 6=
ip, we have that

�(Q1(ai1) � � �Qp(aip)) = 0;

for all polynomials Q1; :::; Qp in one variable such that

�(Q1(ai1)) = � � � = �(Qp(aip)) = 0:

The relevance of this de�nition should be evident from the connection to the study of
random matrices mentioned in the Introduction. In several respects, free independence
is conceptually similar to classical independence. For example, if a1; a2; : : : ; ar are freely
independent operators and k 2 f1; 2; : : : ; r � 1g, then any polynomial in a1; : : : ; ak is
freely independent of any polynomial in ak+1; : : : ; ar.

2.3 Free additive convolution and the Voiculescu transform

From a probabilistic point of view, free additive convolution may be considered merely
as a new type of convolution on the set of probability measures on R. Let a and b
be selfadjoint operators in B(H) and note that a + b is selfadjoint too. Denote then
the (spectral) distributions of a, b and a + b by �a, �b and �a+b. If a and b are freely
independent, it is not hard to see that the moments of �a+b (and hence �a+b itself) is

2In quantum physics, � is of the form �(a) = tr(�a), where � is a trace class selfadjoint operator
on H with trace 1, that expresses the state of a quantum system, and a would be an observable, i.e. a
selfadjoint operator on H, the mean value of the outcome of observing a being �(a) = trf�ag.
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uniquely determined by �a and �b. Hence we may write �a � �b instead of �a+b, and we
say that �a � �b is the free additive3 convolution of �a and �b.

Since the distribution �a of a selfadjoint operator a in B(H) is a compactly supported
probability measure on R, the de�nition of free additive convolution, stated above, works
at most for all compactly supported probability measures on R. On the other hand, given
any two compactly supported probability measures �1 and �2 on R, it follows from a free
product construction (see [VDN]), that it is always possible to �nd a Hilbert space H,
a state � on B(H) and free operators a; b in B(H), such that a and b have distributions
�1 and �2 respectively. Thus, the operation � introduced above is, in fact, de�ned on
all compactly supported probability measures on R. To extend this operation to all
probability measures on R, one needs to consider unbounded selfadjoint operators in a
Hilbert space, and then to proceed with a construction similar to that described above.
We postpone a detailed discussion of this matter to Subsection 2.5 (see Remark 2.13),
since, for our present purposes, it is possible to study free additive convolution by virtue
of the Voiculescu transform, which we introduce next (in fact, one may even de�ne free
additive convolution in terms of the Voiculescu transform; see [Vo4]).

By C + (respectively C �) we denote the set of complex numbers with strictly positive
(respectively strictly negative) imaginary part.

Let � be a probability measure on R, and consider its Cauchy (or Stieltjes) transform
G� : C

+ ! C � given by:

G�(z) =

Z
R

1

z � t
�(dt); (z 2 C

+):

Then de�ne the mapping F� : C
+ ! C + by:

F�(z) =
1

G�(z)
; (z 2 C

+);

and note that F� is analytic on C + . It was proved by Bercovici and Voiculescu in [BV,
Proposition 5.4 and Corollary 5.5] that there exist positive numbers � and M , such that
F� has an (analytic) right inverse F�1

� de�ned on the region

��;M := fz 2 C j jRe(z)j � �Im(z); Im(z) > Mg:

In other words, there exists an open subset G�;M of C + such that F� is injective on G�;M

and such that F�(G�;M) = ��;M .

Now the Voiculescu transform �� of � is de�ned by

��(z) = F�1
� (z)� z;

on any region of the form ��;M , where F�1
� is de�ned. It follows from [BV, Corollary 5.3]

that Im(F�1
� (z)) � Im(z) and hence Im(��(z)) � 0 for all z in ��;M .

3The reason for the term additive is that there exists another convolution operation called free multi-

plicative convolution, which arises naturally out of the non-commutative setting (i.e. the non-commutative
multiplication of operators). In the present paper we do not consider free multiplicative convolution.
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The Voiculescu transform �� should be viewed as a modi�cation of Voiculescu's R-
transform (see e.g. [VDN]), since we have the correspondence:

��(z) = R�(
1
z
):

The key property of the Voiculescu transform is the following important result, which
shows that the Voiculescu transform can be viewed as the free analogue of the classical
cumulant function (the logarithm of the characteristic function)4. The result was �rst
proved by Voiculescu for probability measures � with compact support, and then by
Maassen in the case where � has variance. Finally Bercovici and Voiculescu proved the
general case.

2.2 Theorem. ([Vo2],[Ma],[BV]) Let �1 and �2 be probability measures on R, and
consider their free additive convolution �1 � �2. Then

��1��2(z) = ��1(z) + ��2(z);

for all z in any region ��;M , where all three functions are de�ned.

2.3 Remark. We shall need the fact that a probability measure on R is uniquely deter-
mined by its Voiculescu transform. To see this, suppose � and �0 are probability measure
on R, such that �� = ��0 , on a region ��;M . It follows then that also F� = F�0 on some
open subset of C + , and hence (by analytic continuation), F� = F�0 on all of C + . Con-
sequently � and �0 have the same Cauchy (or Stieltjes) transform, and by the Stieltjes
Inversion Formula (cf. e.g. [Ch, page 90]), this means that � = �0.

In [BV, Proposition 5.6], Bercovici and Voiculescu proved the following characterization
of Voiculescu transforms:

2.4 Theorem. ([BV]) Let � be an analytic function de�ned on a region ��;M , for some
positive numbers � and M . Then the following assertions are equivalent:

(i) There exists a probability measure � on R, such that �(z) = ��(z) for all z in a
domain ��;M 0, where M 0 �M .

(ii) There exists a number M 0 greater than or equal to M , such that

(a) Im(�(z)) � 0 for all z in ��;M 0 .

(b) �(z)=z ! 0, as jzj ! 1; z 2 ��;M 0 .

(c) For any positive integer n and any points z1; : : : ; zn in ��;M 0 , the n� n matrix"
zj � zk

zj + �(zj)� zk � �(zk)

#
1�j;k�n

;

is positive de�nite.

4see also Remark 4.3 below.
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Recall that a sequence (�n) of �nite measures on R is said to converge weakly to a �nite
measure � on R, if Z

R

f(t) �n(dt)!

Z
R

f(t) �(dt); as n!1; (2.7)

for any bounded continuous function f : R ! C . In that case, we write �n
w
! �, as

n!1.

2.5 Remark. For later use we note, that since the convergence in (2.7) is w.r.t. a metric,
it follows immediately from the above de�nition, that �n

w
! � if and only if any subse-

quence (�n0) has a subsequence (�n00) which converges weakly to �. This follows also from
the fact, that weak convergence can be viewed as convergence w.r.t. a certain metric on
the set of bounded measures on R (the L�evy metric).

The relationship between weak convergence of probability measures and the Voiculescu
transform was settled in [BV, Proposition 5.7] and [BP1, Proposition 1]:

2.6 Proposition. ([BV],[BP1]) Let (�n) be a sequence of probability measures on R.
Then the following assertions are equivalent:

(a) The sequence (�n) converges weakly to a probability measure � on R.

(b) There exist positive numbers � andM , and a function �, such that all the functions
�, ��n are de�ned on ��;M , and such that

(b1) ��n(z)! �(z), as n!1, uniformly on compact subsets of ��;M ,

(b2) sup
n2N

�����n(z)
z

���! 0, as jzj ! 1, z 2 ��;M .

(c) There exist positive numbers � and M , such that all the functions ��n are de�ned
on ��;M , and such that

(c1) limn!1 ��n(iy) exists for all y in [M;1[.

(c2) sup
n2N

�����n(iy)
y

���! 0, as y!1.

If the conditions (a),(b) and (c) are satis�ed, then � = �� on ��;M .

2.4 In�nite Divisibility w.r.t. Free Additive Convolution

In this subsection we recall the de�nition and some basic facts about in�nite divisibility
w.r.t. free additive convolution. In complete analogy with the classical case, a probability

10



measure � on R is �-in�nitely divisible, if for any n in N there exists a probability measure
�n on R, such that

� = �n � �n � � � �� �n| {z }
n terms

:

It was proved in [Pa] that the class ID(�) of �-in�nitely divisible probability measures
on R is closed w.r.t. weak convergence. For the corresponding classical result, see [GK,
x17, Theorem 3]. As in classical probability, �-in�nitely divisible probability measures
are characterized as those probability measures that have a (free) L�evy-Khintchine rep-
resentation:

2.7 Theorem. ([Vo2],[Ma],[BV]) Let � be a probability measure on R. Then � is �-
in�nitely, if and only if there exist a �nite measure � on R and a real constant 
, such
that

��(z) = 
 +

Z
R

1 + tz

z � t
�(dt) (2.8)

= 
 +

Z
R

� 1

z � t
+

t

1 + t2

�
�(dt); (z 2 C

+); (2.9)

where �(dt) = (1 + t2)�(dt).

Moreover, for a �-in�nitely divisible probability measure � on R, the real constant 
 and
the �nite measure �, described above, are uniquely determined.

Proof. Note �rst that (2.9) follows from (2.8) and the elementary formula:

1 + tz

(z � t)(1 + t2)
=

1

z � t
+

t

1 + t2
:

The equivalence between �-in�nite divisibility and the existence of a representation in
the form (2.8) was proved (in the general case) by Voiculescu and Bercovici in [BV,
Theorem 5.10]. They proved �rst that � is �-in�nitely divisible, if and only if �� has an
extension to a function of the form: � : C + ! C

�[R, i.e. a Pick function multiplied by �1.
Equation (2.8) (and its uniqueness) then follows from the existence (and uniqueness) of
the integral representation of Pick functions (cf. [Do, Chapter 2, Theorem I]). Compared
to the general integral representation for Pick functions, just referred to, there is a linear
term missing on the right hand side of (2.8), but this corresponds to the fact that �(iy)

y
! 0

as y !1, if � is a Voiculescu transform (cf. Theorem 2.4 above). �

2.8 De�nition. Let � be a �-in�nitely divisible probability measure on R, and let 

and � be, respectively, the (uniquely determined) real constant and �nite measure on R

appearing in (2.8). We say then that the pair (
; �) is the free generating pair for �.

The next result, due to Bercovici and Pata, is the free analogue of Khintchine's character-
ization of classically in�nitely divisible probability measures. It plays an important role
in Section 4.
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2.9 De�nition. Let (kn)n2N be a sequence of positive integers, and let

A = f�nj j n 2 N ; j 2 f1; 2; : : : ; kngg;

be an array of probability measures on R. We say then that A is a null array, if the
following condition is ful�lled:

8� > 0: lim
n!1

max
1�j�kn

�nj(R n [��; �]) = 0:

2.10 Theorem. ([BP3]) Let f�nj j n 2 N ; j 2 f1; 2; : : : ; kngg be a null-array of prob-
ability measures on R, and let (cn)n2N be a sequence of real numbers. If the probability
measures �n = �cn � �n1 � �n2 � � � �� �nkn converge weakly, as n!1, to a probability
measure � on R, then � has to be �-in�nitely divisible.

We recall, �nally, the de�nition of �-stable probability measures: For a probability mea-
sure � on R, we denote by T (�) the type of �, i.e. the class of probability measures on R

given by:

T (�) = f (�) j  : R ! R is an increasing a�ne transformationg:

Exactly as in classical probability theory, a probability measure � on R is called �-stable,
if the class T (�) is closed under �. We denote by S(�) the class of �-stable probability
measures on R.

As was noted in [BV, Section 7], �-stability implies �-in�nite divisibility, i.e. we have the
inclusion: S(�) � ID(�), just as in the classical case.

2.5 Unbounded operators a�liated with a W �-probability space

In this subsection, we give, for the readers convenience, a brief account of the theory
of closed, densely de�ned operators a�liated with a �nite von Neumann algebra. We
start by introducing von Neumann algebras. For a detailed introduction to von Neumann
algebras, we refer to [KR], but also the paper [Ne], referred to below, has a nice short
introduction to that subject. For background material on unbounded operators, see [Ru].

Let H be a Hilbert space, and consider, as in Subsection 2.3, the vector space B(H) of
bounded (or continuous) operators a : H! H. Recall that composition of operators con-
stitutes a multiplication on B(H), and that the adjoint operation a 7! a� is an involution
on B(H) (i.e. (a�)� = a). Altogether B(H) is a �-algebra5. For any subset S of B(H), we
denote by S0 the commutant of S, i.e.

S0 = fb 2 B(H) j by = yb for all y in Sg:

A von Neumann algebra acting on H is a subalgebra of B(H), which contains the multi-
plicative unit 111 of B(H), and which is closed under the adjoint operation and closed in

5Throughout this subsection, the � refers to the adjoint operation and not to classical convolution.
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the weak operator topology (see [KR, De�nition 5.1.1]). By von Neumann's fundamental
double commutant theorem, a von Neumann algebra may also be characterized as a sub-
set A of B(H), which is closed under the adjoint operation and equals the commutant of
its commutant: A00 = A.

A trace (or tracial state) on a von Neumann algebra A is a positive linear functional
� : A! C , satisfying that �(111) = 1 and that �(ab) = �(ba) for all a; b in A. We say that �
is a normal trace on A, if, in addition, � is continuous w.r.t. the weak operator topology.
We say that � is faithful, if �(a�a) > 0 for any non-zero operator a in A.

Throughout this paper, we shall use the terminologyW �-probability space for a pair (A; �),
where A is a von Neumann algebra acting on a Hilbert spaceH, and � : A! C is a faithful
normal tracial state on A. In the remaining part of this subsection, (A; �) denotes a W �-
probability space acting on the Hilbert space H.

By a linear operator in H, we shall mean a (not necessarily bounded) linear operator
a : D(a)! H, de�ned on a subspace D(a) of H. For an operator a in H, we say that

� a is densely de�ned, if D(a) is dense in H,

� a is closed, if the graph G(a) = f(h; ah) j h 2 D(a)g of a is a closed subspace of
H�H,

� a is preclosed, if the norm closure G(a) is the graph of a (uniquely determined)
operator, denoted [a], in H,

� a is a�liated with A, if au = ua for any unitary operator u in the commutant A0.

If a is bounded, a is a�liated with A if and only if a 2 A. In general, a selfadjoint
operator a in H is a�liated with A if and only if f(a) 2 A for any bounded Borel function
f : R ! C (here f(a) is de�ned in terms of spectral theory). As in the bounded case, if
a is a selfadjoint operator a�liated with A, there exists a unique probability measure �a
on R, concentrated on the spectrum sp(a), and satisfying thatZ

R

f(t) �a(dt) = �(f(a));

for any bounded Borel function f : R ! C . We call �a the (spectral) distribution of a,
and we shall denote it also by Lfag. Unless a is bounded, sp(a) is an unbounded subset
of R and, in general, �a is not compactly supported.

By A we denote the set of closed, densely de�ned operators inH, which are a�liated with
A. In general, dealing with unbounded operators is somewhat unpleasant, compared to
the bounded case, since one needs constantly to take the domains into account. However,
the following two important propositions allow us to deal with operators in A in a quite
relaxed manner.

2.11 Proposition. (cf. [Ne]) Let (A; �) be a W �-probability space. If a; b 2 A, then
a+ b and ab are densely de�ned, preclosed operators a�liated with A, and their closures
[a+ b] and [ab] belong to A. Furthermore, a� 2 A.

13



By virtue of the proposition above, the adjoint operation may be restricted to an involution
on A, and we may de�ne operations, the strong sum and the strong product, on A, as
follows:

(a; b) 7! [a + b]; and (a; b) 7! [ab]; (a; b 2 A):

2.12 Proposition. (cf. [Ne]) Let (A; �) be a W �-probability space. Equipped with the
adjoint operation and the strong sum and product, A is a �-algebra.

The e�ect of the above proposition is, that w.r.t. the adjoint operation and the strong sum
and product, we can manipulate with operators in A, without worrying about domains
etc. So, for example, we have rules like

[[a+ b]c] = [[ac] + [bc]]; [a+ b]� = [a� + b�]; [ab]� = [b�a�];

for operators a; b; c in A. Note, in particular, that the strong sum of two selfadjoint
operators in A is again a selfadjoint operator. In the following, we shall omit the brackets
in the notation for the strong sum and product, and it will be understood that all sums
and products are formed in the strong sense.

2.13 Remark. If a1; a2 : : : ; ar are selfadjoint operators in A, we say that a1; a2; : : : ; ar
are freely independent if, for any bounded Borel functions f1; f2; : : : ; fr : R ! R, the
bounded operators f1(a1); f2(a2); : : : ; fr(ar) in A are freely independent in the sense de-
�ned in Subsection 2.2. Given any two probability measures �1 and �2 on R, it follows
from a free product construction (see [VDN]), that one can always �nd a W �-probability
space (A; �) and selfadjoint operators a and b a�liated with A, such that �1 = Lfag and
�2 = Lfbg. As noted above, for such operators a+ b is again a selfadjoint operator in A,
and, as was proved in [BV, Theorem 4.6], the (spectral) distribution Lfa + bg depends
only on �1 and �2. We may thus de�ne the free additive convolution �1 � �2 of �1 and
�2 to be Lfa+ bg.

Next, we shall equip A with a topology; the so called measure topology, which was
introduced by Nelson in [Ne]. For any positive numbers �; �, we denote by N(�; �) the set
of operators a in A, for which there exists an orthogonal projection p in A, satisfying that

p(H) � D(a); kapk � � and �(p) � 1� �: (2.10)

2.14 De�nition. Let (A; �) be a W �-probability space. The measure topology on A, is
the topology on A for which the sets N(�; �), �; � > 0, form a neighbourhood basis for 0.

It is clear from the de�nition of the sets N(�; �) that the measure topology satis�es the
�rst axiom of countability. In particular, all convergence statements can be expressed in
terms of sequences rather than nets.

2.15 Proposition. (cf. [Ne]) Let (A; �) be a W �-probability space and consider the
�-algebra A. We then have
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(i) Scalar-multiplication, the adjoint operation and strong sum and product are all
continuous operations w.r.t. the measure topology. Thus, A is a topological �-
algebra w.r.t. the measure topology.

(ii) The measure topology on A is a complete Hausdor� topology.

We shall note, next, that the measure topology on A is, in fact, the topology for conver-
gence in probability. Recall �rst, that for a closed, densely de�ned operator a in H, we
put jaj = (a�a)1=2. In particular, if a 2 A, then jaj is a selfadjoint operator in A (see [KR,
Theorem 6.1.11]), and we may consider the probability measure Lfjajg on R.

2.16 De�nition. Let (A; �) be a W �-probability space and let a and an, n 2 N , be
operators in A. We say then that an ! a in probability, as n ! 1, if jan � aj ! 0 in
distribution, i.e. if Lfjan � ajg ! �0 weakly.

If a and an, n 2 N , are selfadjoint operators inA, then, as noted above, an�a is selfadjoint
for each n, and Lfjan � ajg is the transformation of Lfan � ag by the mapping t 7! jtj,
t 2 R. In this case, it follows thus that an ! a in probability, if and only if an � a ! 0
in distribution, i.e. if and only if Lfan � ag ! �0 weakly.

From the de�nition of Lfjan � ajg, it follows immediately that we have the following
characterization of convergence in probability:

2.17 Lemma. Let (A; �) be aW �-probability space and let a and an, n 2 N , be operators
in A. Then an ! a in probability, if and only if

8� > 0: �
�
1]�;1[(jan � aj)

�
! 0; as n!1:

2.18 Proposition. (cf. [Te]) Let (A; �) be a W �-probability space. Then for any posi-
tive numbers �; �, we have

N(�; �) =
�
a 2 A

�� ��1]�;1[(jaj)
�
� �

	
; (2.11)

where N(�; �) is de�ned via (2.10). In particular, a sequence an in A converges, in the
measure topology, to an operator a in A, if and only if an ! a in probability.

Proof. The last statement of the proposition follows immediately from formula (2.11)
and Lemma 2.17. To prove (2.11), note �rst that by considering the polar decomposition
of an operator a in A (cf. [KR, Theorem 6.1.11]), it follows that N(�; �) = fa 2 A j
jaj 2 N(�; �)g. From this, the inclusion � in (2.11) follows easily. Regarding the reverse
inclusion, suppose a 2 N(�; �), and let p be a projection in A, such that (2.10) is satis�ed
with a replaced by jaj. Then, using spectral theory, it can be shown that the ranges of
the projections p and 1]�;1[(jaj) only have 0 in common. This implies that � [1]�;1[(jaj)] �
�(111� p) � �. We refer to [Te] for further details. �

Finally, we shall need the fact that convergence in probability implies convergence in
distribution, also in the non-commutative setting. The key point in the proof given below
is that weak convergence can be expressed in terms of the Cauchy transform (cf. [Ma,
Theorem 2.5]).
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2.19 Proposition. Let (an) be a sequence of selfadjoint operators a�liated with a W �-
probability space (A; �), and assume that an converges in probability, as n ! 1, to
a selfadjoint operator a a�liated with (A; �). Then an ! a in distribution too, i.e.
Lfang

w
! Lfag, as n!1.

Proof. Let x; y be real numbers such that y > 0, and put z = x + iy. Then de�ne the
function fz : R ! C by

fz(t) =
1

t� z
=

1

(t� x)� iy
; (t 2 R);

and note that fz is continuous and bounded with supt2R jfz(t)j = y�1. Thus, we may
consider the bounded operators fz(an); fz(a) 2 A. Note then that (using strong products
and sums),

fz(an)� fz(a) = (an � z111)�1 � (a� z111)�1

= (an � z111)�1
�
(a� z111)� (an � z111)

�
(a� z111)�1

= (an � z111)�1(a� an)(a� z111)�1:

(2.12)

Now, given any positive numbers �; �, we may choose N in N , such that an� a 2 N(�; �),
whenever n � N . Moreover, since kfz(an)k; kfz(a)k � y�1, we have that fz(an); fz(a) 2
N(y�1; 0). Using then the rule: N(�1; �1)N(�2; �2) � N(�1�2; �1 + �2), which holds for
all �1; �2 in ]0;1[ and �1; �2 in [0;1[ (see [Ne, Formula 17']), it follows from (2.12) that
fz(an)�fz(a) 2 N(�y�2; �), whenever n � N . We may thus conclude that fz(an)! fz(a)
in the measure topology, i.e. that Lfjfz(an) � fz(a)jg

w
! �0, as n ! 1. Using now the

Cauchy-Schwarz inequality for � , it follows that���(fz(an)� fz(a))
��2 � �(jfz(an)� fz(a)j

2) � �(111) =

Z 1

0

t2 Lfjfz(an)� fz(a)jg(dt)! 0;

as n ! 1, since supp(Lfjfz(an) � fz(a)jg) � [0; 2y�1] for all n, and since t 7! t2 is a
continuous bounded function on [0; 2y�1].

Finally, let Gn and G denote the Cauchy transforms for Lfang and Lfag respectively.
From what we have established above, it follows then that

Gn(z) = ��(fz(an)) �! ��(fz(a)) = G(z); as n!1;

for any complex number z = x + iy for which y > 0. By [Ma, Theorem 2.5], this means
that Lfang

w
! Lfag, as desired. �

3 The Bercovici-Pata Bijection

The bijection to be de�ned next was introduced by Bercovici and Pata in [BP2].

3.1 De�nition. By the Bercovici-Pata bijection �: ID(�)! ID(�) we denote the map-
ping de�ned as follows: Let � be a measure in ID(�), and consider its generating pair
(
; �) (see De�nition 2.1). Then �(�) is the measure in ID(�) that has (
; �) as free
generating pair (see De�nition 2.8).
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Since the �-in�nitely divisible (respectively �-in�nitely divisible) probability measures
on R are exactly those measures that have a (unique) L�evy-Khintchine representation
(respectively free L�evy-Khintchine representation), it follows immediately that � is a
(well-de�ned) bijection between ID(�) and ID(�). In this section we shall study some
algebraic and topological properties of �.

Let � be a measure on R. Then for any constant c in R n f0g, we denote by Dc� the
measure on R given by:

Dc�(B) = �(c�1B);

for any Borel set B. Moreover, we put D0� = �0; the Dirac measure at 0. Thus, using
integration terminology, we have Dc�(dt) = �(c�1dt), whenever c 6= 0.

The following lemma is contained (implicitly) in [Fe, Section XVII.8]. Since the lemma
plays an important role in the proof of Theorem 3.5 below, and for the sake of complete-
ness, we include a proof.

3.2 Lemma. Let � be a �-in�nitely divisible probability measure on R with L�evy-
Khintchine representation given by:

log f�(u) = i
u+

Z
R

�
eiut � 1�

iut

1 + t2

�1 + t2

t2
�(dt)

= i
u+

Z
R

�
eiut � 1�

iut

1 + t2

� 1
t2
�(dt); (u 2 R);

where 
 is a real constant, � is a �nite measure on R and (1 + t2)�(dt) = �(dt). Then for
any c in R the L�evy-Khintchine representation for Dc� is given by:

log fDc�(u) = i�cu+ c2
Z
R

�
eiut � 1�

iut

1 + t2

� 1
t2
Dc�(dt)

= i�cu+

Z
R

�
eiut � 1�

iut

1 + t2

�c2 + t2

t2
Dc�(dt); (u 2 R);

(3.1)

where

�c = 
c+ c(1� c2)

Z
R

t

1 + (ct)2
�(dt):

Proof. We note �rst that the second equality in (3.1) follows from the �rst by a standard
calculation. To prove the �rst equality in (3.1), note that for any u in R,

log fDc�(u) = log
�R

R
eiut Dc�(dt)

�
= log

� R
R
eicut �(dt)

�
= log f�(cu)

= i
(cu) +

Z
R

�
ei(cu)t � 1�

i(cu)t

1 + t2

� 1
t2
�(dt);

and that

c2
Z
R

�
eiut � 1�

iut

1 + t2

� 1
t2
Dc�(dt) = c2

Z
R

�
eiu(ct) � 1�

iu(ct)

1 + (ct)2

� 1

(ct)2
�(dt)

=

Z
R

�
eicut � 1�

icut

1 + (ct)2

� 1

t2
�(dt):
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Therefore,

log fDc�(u)� c2
Z
R

�
eiut � 1�

iut

1 + t2

� 1

t2
Dc�(dt)

= i
cu+

Z
R

h�
eicut � 1�

icut

1 + t2

�
�
�
eicut � 1�

icut

1 + (ct)2

�i 1
t2
�(dt)

= iu
�

c+ c

Z
R

� t

1 + (ct)2
�

t

1 + t2

� 1
t2
�(dt)

�
= i�cu;

where �c is a constant (not depending on u). Since

t

1 + (ct)2
�

t

1 + t2
=

(1� c2)t3

(1 + (ct)2)(1 + t2)
;

we �nd that

�c = 
c+ c

Z
R

� (1� c2)t3

(1 + (ct)2)(1 + t2)

� 1

t2
�(dt) = 
c+ c(1� c2)

Z
R

t

1 + (ct)2
�(dt);

and this completes the proof. �

Our next objective is to prove the free analogue of Lemma 3.2. We start with the following

3.3 Lemma. Let � be a probability measure on R, and let � andM be positive numbers
such that the Voiculescu transform �� is de�ned on ��;M (see Subsection 2.3). Then for
any constant c in R n f0g, �Dc� is de�ned on jcj��;M = ��;jcjM , and

(i) if c > 0, then �Dc�(z) = c��(c
�1z) for all z in c��;M ,

(ii) if c < 0, then �Dc�(z) = c��(c�1z) for all z in jcj��;M .

In particular, for a constant c in [�1; 1], the domain of �Dc� contains the domain of ��.

Proof. (i) This is a special case of [BV, Lemma 7.1].

(ii) Note �rst that by virtue of (i), it su�ces to prove (ii) in the case c = �1.

We start by noting that the Cauchy transform G� (see Subsection 2.3) is actually well-

de�ned for all z in C nR (even for all z outside supp(�)), and that G�(z) = G�(z), for all

such z. Similarly, F� is de�ned for all z in C n R, and F�(z) = F�(z), for such z.

Note next that for any z in C n R, GD�1�(z) = �G�(�z), and consequently

FD�1�(z) = �F�(�z) = �F�(�z):

Now, since ���;M = ��;M , it follows from the equation above, that FD�1� has a right

inverse on ��;M , given by F�1
D�1�(z) = �F�1

� (�z), for all z in ��;M . Consequently, for z in
��;M , we have

�D�1�(z) = F�1
D�1�(z)� z = �F�1

� (�z)� z = �(F�1
� (�z)� (�z)) = ���(�z);

as desired. �
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3.4 Lemma. Let � be a �-in�nitely divisible probability measure on R with free Levy-
Khintchine representation given by:

��(z) = 
 +

Z
R

1 + tz

z � t
�(dt) = 
 +

Z
R

� 1

z � t
+

t

1 + t2

�
�(dt); (z 2 C

+);

where 
 is a real constant, � is a �nite measure on R and �(dt) = (1+ t2)�(dt). Then for
any c in R, the free L�evy-Khintchine representation for Dc� is given by:

�Dc�(z) = �c + c2
Z
R

� 1

z � t
+

t

1 + t2

�
Dc�(dt)

= �c +

Z
R

�1 + tz

z � t

��c2 + t2

1 + t2

�
Dc�(dt);

(3.2)

where

�c = 
c+ c(1� c2)

Z
R

t

1 + (ct)2
�(dt):

Proof. Note �rst that the second equality in (3.2) follows easily from the �rst one by a
standard calculation.

We start by proving the �rst equality in (3.2) in the case where c > 0. Note for this, that
by Lemma 3.3,

�Dc�(z) = c��(c
�1z) = c
 + c

Z
R

� 1

c�1z � t
+

t

1 + t2

�
�(dt)

= c
 +

Z
R

� c2

z � ct
+

ct

1 + t2

�
�(dt):

Note next that

c2
Z
R

� 1

z � t
+

t

1 + t2

�
Dc�(dt) = c2

Z
R

� 1

z � ct
+

ct

1 + (ct)2

�
�(dt)

=

Z
R

� c2

z � ct
+

c3t

1 + (ct)2

�
�(dt):

From the two calculations above, it follows that

�Dc�(z)� c2
Z
R

� 1

z � t
+

t

1 + t2

�
Dc�(dt) = c
 +

Z
R

� ct

1 + t2
�

c3t

1 + (ct)2

�
�(dt) = �c;

where �c is a constant (not depending on z). Using then the equality:

ct

1 + t2
�

c3t

1 + (ct)2
=

c(1� c2)t

(1 + t2)(1 + (ct)2)
;

it follows that

�c = 
c+

Z
R

c(1� c2)t

(1 + t2)(1 + (ct)2)
�(dt) = 
c+ c(1� c2)

Z
R

t

1 + (ct)2
�(dt): (3.3)
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This completes the proof in the case c > 0.

It remains to consider the case where c 2 ]�1; 0]. Note here that the case c = 0 follows
trivially. We proceed to the case c = �1. By Lemma 3.3, we get that

�D�1�(z) = ���(�z) = �
 �

Z
R

� 1

�z � t
+

t

1 + t2

�
�(dt)

= �
 �

Z
R

� 1

�z � t
+

t

1 + t2

�
�(dt)

= �
 +

Z
R

� 1

z � (�t)
+

�t

1 + (�t)2

�
�(dt)

= �
 +

Z
R

� 1

z � t
+

t

1 + t2

�
D�1�(dt);

where we have used that 
 is real. The above calculation shows that the lemma holds for
c = �1. Finally, for general c in ]�1; 0[, note that Dc� = DjcjD�1�, and therefore, by
virtue of the cases c = �1 and c > 0, it follows that

�Dc�(z) = �c + jcj
2

Z
R

� 1

z � t
+

t

1 + t2

�
DjcjD�1�(dt)

= �c + c2
Z
R

� 1

z � t
+

t

1 + t2

�
Dc�(t);

where (cf. (3.3)),

�c = (�
)jcj+

Z
R

jcj(1� jcj2)t

(1 + t2)(1 + (jcjt)2)
D�1�(dt) = 
c+

Z
R

c(1� c2)t

(1 + t2)(1 + (ct)2)
�(dt)

= 
c+ c(1� c2)

Z
R

t

1 + (ct)2
�(dt):

This concludes the proof. �

3.5 Theorem. The Bercovici-Pata bijection �: ID(�) ! ID(�), has the following (al-
gebraic) properties:

(i) If �1; �2 2 ID(�), then �(�1 � �2) = �(�1)� �(�2).

(ii) If � 2 ID(�) and c 2 R, then �(Dc�) = Dc�(�).

(iii) For any constant c in R, we have �(�c) = �c.

Proof. (i) For j in f1; 2g, let (
j; �j) be the generating pair for �j (so that 
j is a real
constant and �j is a �nite measure on R). Then since

log f�1��2(u) = log f�1(u) + log f�2(u);
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it follows readily that the generating pair for �1 � �2 is (
1 + 
2; �1 + �2). Similarly, since
the free generating pair for �(�j) is (
j; �j), and since

��(�1)��(�2)(z) = ��(�1)(z) + ��(�2)(z);

it follows that the free generating pair for �(�1)��(�2) is (
1+
2; �1+�2). By de�nition
of �, it follows thus that �(�1 � �2) = �(�1)� �(�2), as desired.

(ii) Suppose � has generating pair (
; �). Then (
; �) is the free generating pair for �(�).
Now, by Lemma 3.2, the generating pair for Dc� is (�c;

c2+t2

1+t2
�Dc�(dt)), where

�c = 
c+ c(1� c2)

Z
R

t

1 + (ct)2
�(dt):

According to Lemma 3.4, that same pair is also the free generating pair for Dc(�(�)).
Hence, by de�nition of �, �(Dc�) = Dc(�(�)), as desired.

(iii) This follows from the fact that both the generating pair and the free generating pair
for �c is (c; 0). �

3.6 Corollary. The bijection �: ID(�) ! ID(�) is invariant under a�ne transforma-
tions, i.e. if � 2 ID(�) and  : R ! R is an a�ne transformation, then

�( (�)) =  (�(�)):

Proof. Let  : R ! R be an a�ne transformation, i.e.  (t) = ct + d, (t 2 R), for some
constants c; d in R. Then for a probability measure � on R,  (�) = Dc� � �d, and also
 (�) = Dc�� �d. Assume now that � 2 ID(�). Then by Theorem 3.5,

�( (�)) = �(Dc� � �d) = Dc�(�)� �(�d) = Dc�(�)� �d =  (�(�));

as desired. �

As a consequence of the corollary above, we get a short proof of the following result, which
was proved by Bercovici and Pata in [BP2].

3.7 Corollary. ([BP2]) The bijection �: ID(�)! ID(�) maps the �-stable probability
measures on R onto the �-stable probability measures on R.

Proof. Assume that � is a �-stable probability measure on R, and let  1;  2 : R ! R

be increasing a�ne transformations on R. Then  1(�) �  2(�) =  3(�), for yet another
increasing a�ne transformation  3 : R ! R. Now by Corollary 3.6 and Theorem 3.5(i),

 1(�(�))�  2(�(�)) = �( 1(�))� �( 2(�)) = �( 1(�) �  2(�))

= �( 3(�)) =  3(�(�));

which shows that �(�) is �-stable.

The same line of argument shows that � is �-stable, if �(�) is �-stable. �

We end this section by studying some topological properties of �. The key result is the
following theorem, which is the free analogue of a result due to B.V. Gnedenko (cf. [GK,
x19, Theorem 1]).
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3.8 Theorem. Let � be a measure in ID(�), and let (�n) be a sequence of measures in
ID(�). For each n, let (
n; �n) be the free generating pair for �n, and let (
; �) be the
free generating pair for �. Then the following two conditions are equivalent:

(i) �n
w
! �, as n!1.

(ii) 
n ! 
 and �n
w
! �, as n!1.

Proof. (ii) ) (i): Assume that (ii) holds. By Theorem 2.6 it is su�cient to show that

(a) ��n(iy)! �(iy), as n!1, for all y in ]0;1[.

(b) sup
n2N

�����n(iy)
y

���! 0, as y !1.

Regarding (a), note that for any y in ]0;1[, the function t 7! 1+tiy
iy�t

, t 2 R, is continuous

and bounded. Therefore, by the assumptions in (ii),

��n(iy) = 
n +

Z
R

1 + tiy

iy � t
�n(dt) �!

n!1

 +

Z
R

1 + tiy

iy � t
�(dt) = ��(iy):

Turning then to (b), note that for n in N and y in ]0;1[,

��n(iy)

y
=

n
y
+

Z
R

1 + tiy

y(iy � t)
�n(dt):

Since the sequence (
n) is, in particular, bounded, it su�ces thus to show that

sup
n2N

��� Z
R

1 + tiy

y(iy � t)
�n(dt)

���! 0; as y!1: (3.4)

For this, note �rst that since �n
w
! �, as n ! 1, and since �(R) < 1, it follows by

standard techniques that the family f�n j n 2 Ng is tight (cf. [Br, Corollary 8.11]).

Note next, that for any t in R and any y in ]0;1[,��� 1 + tiy

y(iy � t)

��� � 1

y(y2 + t2)1=2
+

jtj

(y2 + t2)1=2
:

From this estimate it follows that

sup
y2[1;1[;t2R

��� 1 + tiy

y(iy � t)

��� � 2;

and that for any N in N and y in [1;1[,

sup
t2[�N;N ]

��� 1 + tiy

y(iy � t)

��� � N + 1

y
:
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From the two estimates above, it follows that for any N in N, and any y in [1;1[, we
have

sup
n2N

��� Z
R

1 + tiy

y(iy � t)
�n(dt)

��� � N + 1

y
sup
n2N

�n([�N;N ]) + 2 � sup
n2N

�n([�N;N ]c)

�
N + 1

y
sup
n2N

�n(R) + 2 � sup
n2N

�n([�N;N ]c):

(3.5)

Now, given � in ]0;1[ we may, since f�n j n 2 Ng is tight, choose N in N , such that
supn2N �n([�N;N ]c) � �

4
. Moreover, since �n

w
! � and �(R) <1, the sequence f�n(R) j

n 2 Ng is, in particular, bounded, and hence, for the chosen N , we may subsequently
choose y0 in [1;1[, such that N+1

y0
supn2N �n(R) �

�
2
. Using then the estimate in (3.5), it

follows that

sup
n2N

��� Z
R

1 + tiy

y(iy � t)
�n(dt)

��� � �;

whenever y � y0. This veri�es (3.4).

(i)) (ii): Suppose that �n
w
! �, as n!1. Then by Theorem 2.6, there exists a number

M in ]0;1[, such that

(c) 8y 2 [M;1[ : ��n(iy)! ��(iy), as n!1.

(d) sup
n2N

�����n(iy)
y

���! 0, as y !1.

We show �rst that the family f�n j n 2 Ng is conditionally compact w.r.t. weak conver-
gence, i.e. that any subsequence (�n0) has a subsequence (�n00), which converges weakly
to some �nite measure �� on R. By [GK, x9, Theorem 3 bis], it su�ces, for this, to show
that f�n j n 2 Ng is tight, and that f�n(R) j n 2 Ng is bounded. The key step in the
argument is the following observation: For any n in N and any y in ]0;1[, we have,

�Im��n(iy) = �Im
�

n +

Z
R

1 + tiy

iy � t
�n(dt)

�
= �Im

�Z
R

1 + tiy

iy � t
�n(dt)

�
= y

Z
R

1 + t2

y2 + t2
�n(dt):

(3.6)

We show now that f�n j n 2 Ng is tight. For �xed y in ]0;1[, note that

ft 2 R j jtj � yg �
�
t 2 R j 1+t2

y2+t2
� 1

2

	
;

so that, for any n in N ,

�n(ft 2 R j jtj � yg) � 2

Z
R

1 + t2

y2 + t2
�n(dt) = �2Im

���n(iy)
y

�
� 2

�����n(iy)
y

���:
Combining this estimate with (d), it follows immediately that f�n j n 2 Ng is tight.
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We show next that the sequence f�n(R) j n 2 Ng is bounded. For this, note �rst that
with M as in (c), there exists a constant c in ]0;1[, such that

c �
M(1 + t2)

M2 + t2
; for all t in R :

It follows then, by (3.6), that for any n in N ,

c�n(R) �

Z
R

M(1 + t2)

M2 + t2
�n(dt) = �Im��n(iM);

and therefore by (c),

lim sup
n!1

�n(R) � lim sup
n!1

�
� c�1 � Im��n(iM)

	
= �c�1 � Im��(iM) <1;

which shows that f�n(R) j n 2 Ng is bounded.

Having established that the family f�n j n 2 Ng is conditionally compact, recall next from
Remark 2.5, that in order to show that �n

w
! �, it su�ces to show that any subsequence

(�n0) has a subsequence, which converges weakly to �. A similar argument works, of
course, to show that 
n ! 
. So consider any subsequence (
n0; �n0) of the sequence of
generating pairs. Since f�n j n 2 Ng is conditionally compact, there is a subsequence (n00)
of (n0), such that the sequence (�n00) is weakly convergent to some �nite measure �� on
R. Since the function t 7! 1+tiy

iy�t
is continuous and bounded for any y in ]0;1[, we know

then that Z
R

1 + tiy

iy � t
�n00(dt) �!

n!1

Z
R

1 + tiy

iy � t
��(dt);

for any y in ]0;1[. At the same time, we know from (c) that


n00 +

Z
R

1 + tiy

iy � t
�n00(dt) = ��n00 (iy) �!n!1

��(iy) = 
 +

Z
R

1 + tiy

iy � t
�(dt);

for any y in [M;1[. From these observations, it follows that the sequence (
n00) must
converge to some real number 
�, which then has to satisfy the identity:


� +

Z
R

1 + tiy

iy � t
��(dt) = ��(iy) = 
 +

Z
R

1 + tiy

iy � t
�(dt);

for all y in [M;1[. By uniqueness of the free L�evy-Khintchine representation (cf. Theo-
rem 2.7) and uniqueness of analytic continuation, it follows that we must have �� = � and

� = 
. We have thus veri�ed the existence of a subsequence (
n00; �n00) which converges
(coordinate-wise) to (
; �), and that was our objective. �

As an immediate consequence of Theorem 3.8 and the corresponding result in classical
probability, we get the following

3.9 Corollary. The Bercovici-Pata bijection �: ID(�) ! ID(�) is a homeomorphism
w.r.t. weak convergence. In other words, if � is a measure in ID(�) and (�n) is a sequence
of measures in ID(�), then �n

w
! �, as n!1, if and only if �(�n)

w
! �(�), as n!1.
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Proof. Let (
; �) be the generating pair for � and, for each n, let (
n; �n) be the generating
pair for �n.

Assume �rst that �n
w
! �. Then by [GK, x19, Theorem 1], 
n ! 
 and �n

w
! �. Since

(
n; �n) (respectively (
; �)) is the free generating pair for �(�n) (respectively �(�)), it
follows then from Theorem 3.8 that �(�n)

w
! �(�).

The same argument applies to the converse implication. �

4 Selfdecomposability in Free Probability

Recall from Subsection 2.1 that a probability measure � on R is �-selfdecomposable if
and only if any (classical) random variable Y with distribution � has, for any c in ]0; 1[, a

decomposition in law of the form: Y
d
= cY + Yc, where Yc is a random variable, which is

independent of Y . In view of this de�nition of �-selfdecomposability, the natural de�nition
of the free counterpart must be as follows: � is �-selfdecomposable if any selfadjoint
operator y with (spectral) distribution � admits, for any c in ]0; 1[, a decomposition in law

of the form: y
d
= cy + yc, where yc is a selfadjoint operator, which is freely independent of

y. If � has unbounded support, the selfadjoint operator y would have to be unbounded.
We prefer, at this point, to avoid dealing with unbounded operators, and instead to
de�ne �-selfdecomposability in terms of the measures themselves, rather than in terms
of corresponding operators. However, our de�nition of �-selfdecomposability, to be given
next, is equivalent to the algebraic formulation stated above. Note that with the notation
used in Section 3, a probability measure � on R is �-selfdecomposable if and only if it
has, for any c in ]0; 1[, a decomposition of the form: � = Dc� � �c, for some probability
measure �c on R.

4.1 De�nition. Let � be a probability measure on R. We say then that � is selfdecom-
posable w.r.t. free additive convolution (or just �-selfdecomposable), if for any c in ]0; 1[
there exists a probability measure �c on R, such that

� = Dc�� �c: (4.1)

By L(�) we denote the class of �-selfdecomposable probability measures on R.

Note that for a probability measure � on R and a constant c in ]0; 1[, there can be only
one probability measure �c, such that � = Dc� � �c. Indeed, choose positive numbers
� and M , such that all three Voiculescu transforms ��, �Dc� and ��c are de�ned on the
region ��;M . Then by Theorem 2.2, ��c is uniquely determined on ��;M , and hence, by
Remark 2.3, �c is uniquely determined too.

4.2 Remark. Let � be a probability measure on R. It follows then from Theorem 2.2,
Lemma 3.3 and Remark 2.3, that � is �-selfdecomposable if and only if there exists, for
each c in ]0; 1[, a probability measure �c on R, such that

��(z) = c��(c
�1z) + ��c(z);

25



for all z in a region ��;M .

4.3 Remark. (Free cumulant transform) Besides the Voiculescu transform and the
R-transform, a third variant, which we denote here by C�, has been studied by, in partic-
ular, Nica and Speicher (cf. e.g. [Ni]). For a probability measure � on R, C� is given by
the equation:

C�(z) = zR(z) = z��(
1
z
);

and is thus de�ned on a region of the form ��1�;M , for suitable positive numbers � and M .
Of course the transformation � 7! C� has a property similar to that of the Voiculescu
transform stated in Theorem 2.2. In fact, C� resembles more closely the classical cumulant
function than the Voiculescu transform and the R-transform do. In particular, w.r.t.
dilation it behaves exactly as the classical cumulant function, i.e.

CDc�(z) = C�(cz); (4.2)

for any probability measure � on R, and any positive constant c. This follows easily from
Lemma 3.3. As a consequence of (4.2), it follows, as in Remark 4.2, that a probability
measure � on R is �-selfdecomposable, if and only if there exists, for any c in ]0; 1[, a
probability measure �c on R, such that

C�(z) = C�(cz) + C�c(z):

In terms of the function C�, the condition for �-selfdecomposability is, thus, exactly
the same as the condition for �-selfdecomposability expressed in terms of the (classical)
cumulant function (cf. (2.2)). We note �nally that the free L�evy-Khintchine representation
of C� takes the form:

C�(z) = 
z +

Z
R

z2 + tz

1� tz
�(dt) = 
z +

Z
R

� tz

1 + t2
+

z2

1� tz

�
�(dt);

where 
; � and � are the same as in Theorem 2.7. Thus, in analogy with the classical
case, the free L�evy-Khintchine representation of C� includes a linear term, rather than a
constant one.

4.4 Lemma. Let � be a �-selfdecomposable probability measure on R, let c be a number
in ]0; 1[, and let �c be the probability measure on R determined by the equation:

� = Dc�� �c:

Let � and M be positive numbers, such that �� is de�ned on ��;M . Then ��c is de�ned
on ��;M as well.

Proof. Choose positive numbers �0 and M 0 such that ��0;M 0 � ��;M and such that �� and
��c are both de�ned on ��0;M 0. For z in ��0;M 0, we then have (cf. Lemma 3.3):

��(z) = c��(c
�1z) + ��c(z):
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Recalling the de�nition of the Voiculescu transform, the above equation means that

F�1
� (z)� z = c��(c

�1z) + F�1
�c (z)� z; (z 2 ��0;M 0);

so that

F�1
�c (z) = F�1

� (z)� c��(c
�1z); (z 2 ��0;M 0):

Now put  (z) = F�1
� (z) � c��(c

�1z) and note that  is de�ned and holomorphic on all
of ��;M (cf. Lemma 3.3), and that

F�c( (z)) = z; (z 2 ��0;M 0): (4.3)

We note next that  takes values in C + . Indeed, since F� is de�ned on C + , we have that
Im(F�1

� (z)) > 0, for any z in ��;M and furthermore, for all such z, Im(��(c
�1z)) � 0, as

noted in Subsection 2.3.

Now, since F�c is de�ned and holomorphic on all of C + , both sides of (4.3) are holomorphic
on ��;M . Since ��0;M 0 has an accumulation point in ��;M , it follows, by uniqueness of
analytic continuation, that the equality in (4.3) actually holds for all z in ��;M . Thus, F�c
has a right inverse on ��;M , which means that ��c is de�ned on ��;M , as desired. �

4.5 Lemma. Let � be a �-selfdecomposable probability measure on R, and let (cn) be
a sequence of numbers in ]0; 1[. For each n, let �cn be the probability measure on R

satisfying

� = Dcn�� �cn:

Then, if cn ! 1 as n!1, we have �cn
w
! �0, as n!1.

Proof. Choose positive numbers � and M , such that �� is de�ned on ��;M . Note then
that, by Lemma 4.4, ��cn is also de�ned on ��;M for each n in N and, moreover,

��cn (z) = ��(z)� cn��(c
�1
n z); (z 2 ��;M ; n 2 N): (4.4)

Assume now that cn ! 1 as n!1. From (4.4) and continuity of �� it is then straight-
forward that ��cn (z) ! 0 = ��0(z), as n ! 1, uniformly on compact subsets of ��;M .
Note furthermore that

sup
n2N

�����cn (z)
z

��� = sup
n2N

�����(z)
z

�
��(c

�1
n z)

c�1n z

���! 0; as jzj ! 1; z 2 ��;M ;

since ��(z)
z

! 0 as jzj ! 1; z 2 ��;M , and since c�1n � 1 for all n. It follows thus from

Proposition 2.6 that �c
w
! �0, for n!1, as desired. �

4.6 Theorem. Let � be a probability measure on R. If � is �-selfdecomposable, then �
is �-in�nitely divisible.
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Proof. Assume that � is �-selfdecomposable. Then by successive applications of (4.1),
we get for any c in ]0; 1[ and any n in N that

� = Dcn��Dcn�1�c �Dcn�2�c � � � ��Dc�c � �c: (4.5)

The idea now is to show that for a suitable choice of c = cn, the probability measures:

Dcnn�;Dcn�1n
�cn; Dcn�2n

�cn; : : : ; Dcn�cn; �cn; (n 2 N); (4.6)

form a null-array (cf. Theorem 2.10). Note for this, that for any choice of cn in ]0; 1[, we
have that

Dcjn
�cn(R n [��; �]) � �cn(R n [��; �]);

for any j in N and any � in ]0;1[. Therefore, in order that the probability measures in
(4.6) form a null-array, it su�ces to choose cn in such a way that

Dcnn�
w
! �0 and �cn

w
! �0; as n!1:

We claim that this will be the case if we put (for example)

cn = e
� 1p

n ; (n 2 N): (4.7)

To see this, note that with the above choice of cn, we have:

cn ! 1 and cnn ! 0; as n!1:

Thus, it follows immediately from Lemma 4.5, that �cn
w
! �0, as n ! 1. Moreover, if

we choose a (classical) real valued random variable X with distribution �, then, for each
n, Dcnn� is the distribution of cnnX. Now, cnnX ! 0, almost surely, as n ! 1, and this
implies that cnnX ! 0, in distribution, as n!1.

We have veri�ed, that if we choose cn according to (4.7), then the probability measures in
(4.6) form a null-array. Hence by (4.5) (with c = cn) and Theorem 2.10, � is �-in�nitely
divisible. �

4.7 Proposition. Let � be a �-selfdecomposable probability measure on R, let c be a
number in ]0; 1[ and let �c be the probability measure on R satisfying the condition:

� = Dc�� �c:

Then �c is �-in�nitely divisible.

Proof. As noted in the proof of Theorem 4.6, for any d in ]0; 1[ and any n in N we have

� = Ddn��Ddn�1�d �Ddn�2�d � � � ��Dd�d � �d;

where �d is de�ned by the case n = 1. Using now the above equation with d = c1=n, we
get for each n in N that

Dc�� �c = � = Dc��Dc(n�1)=n�c1=n �Dc(n�2)=n�c1=n � � � ��Dc1=n�c1=n � �c1=n: (4.8)
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From this it follows that

�c = Dc(n�1)=n�c1=n �Dc(n�2)=n�c1=n � � � ��Dc1=n�c1=n � �c1=n; (n 2 N): (4.9)

Indeed, by taking Voiculescu transforms in (4.8) and using Theorem 2.2, it follows that
the Voiculescu transforms of the right and left hand sides of (4.9) coincide on some region
��;M . By Remark 2.3, this implies the validity of (4.9).

By (4.9) and Theorem 2.10, it remains now to show that the probability measures:

Dc(n�1)=n�c1=n ; Dc(n�2)=n�c1=n; : : : ; Dc1=n�c1=n; �c1=n;

form a null-array. Since cj=n 2 ]0; 1[ for any j in f1; 2; : : : ; n� 1g, this is the case if and
only if �c1=n

w
! �0, as n!1. But since c1=n ! 1, as n!1, Lemma 4.5 guarantees the

validity of the latter assertion. �

4.8 Theorem. Let � be a �-selfdecomposable probability measure on R and let (�c)c2]0;1[
be the family of probability measures on R de�ned by the equation:

� = Dc� � �c:

Then, for any c in ]0; 1[, we have the decomposition:

�(�) = Dc�(�)� �(�c): (4.10)

Consequently, a probability measure � on R is �-selfdecomposable, if and only if �(�)
is �-selfdecomposable, and thus the bijection �: ID(�) ! ID(�) maps the class L(�)
of �-selfdecomposable probability measures onto the class L(�) of �-selfdecomposable
probability measures.

Proof. For any c in ]0; 1[, the measures Dc� and �c are both �-in�nitely divisible (see
Subsection 2.1), and hence, by (i) and (ii) of Theorem 3.5,

�(�) = �(Dc� � �c) = Dc�(�)� �(�c):

Since this holds for all c in ]0; 1[, it follows that �(�) is �-selfdecomposable.

Assume conversely that �0 is a �-selfdecomposable probability measure on R, and let
(�0c)c2]0;1[ be the family of probability measures on R de�ned by:

�0 = Dc�
0
� �0c:

By Theorem 4.6 and Proposition 4.7, �0; �0c 2 ID(�), so we may consider the �-in�nitely
divisible probability measures � := ��1(�0) and �c := ��1(�0c). Then by (i) and (ii) of
Theorem 3.5,

� = ��1(�0) = ��1(Dc(�
0)� �0c) = ��1(Dc�(�)� �(�c))

= ��1(�(Dc� � �c)) = Dc� � �c:

Since this holds for any c in ]0; 1[, � is �-selfdecomposable. �

The corollary below can be proved directly, by using, for example, [BV, Corollary 7.2].
However, by using the corresponding classical result as well as Theorem 4.8 and Corol-
lary 3.7, we can argue without doing any computations.
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4.9 Corollary. Let � be a �-stable probability measure on R. Then � is necessarily
�-selfdecomposable.

Proof. Since � is �-stable, � is also �-in�nitely divisible, so we may consider the �-
in�nitely divisible probability measure �0 = ��1(�). By Corollary 3.7, �0 is �-stable,
and since �-stability implies �-selfdecomposability (cf. [Sa1, Example 15.2]), �0 is also
�-selfdecomposable. Hence, by Theorem 4.8, � = �(�0) is �-selfdecomposable. �

To summarize, we note that it follows from Theorem 4.6 and Corollary 4.9 that we have
the following free counterpart to the hierarchy (2.1):

G(�) � S(�) � L(�) � ID(�); (4.11)

where G(�) denotes the class of semi-circle distributions. Furthermore, the Bercovici-Pata
bijection � maps each of the classes of probability measures in (2.1) onto the corresponding
free class in (4.11).

5 Free L�evy Processes

In this section we introduce and study some basic properties of L�evy processes in Free
Probability. We start by recalling the de�nition of classical L�evy processes.

5.1 De�nition. A real valued stochastic process (Xt)t�0, de�ned on a probability space
(
;F; P ), is called a L�evy process, if it satis�es the following conditions:

(i) whenever n 2 N and 0 � t0 < t1 < � � � < tn, the increments

Xt0 ; Xt1 �Xt0 ; Xt2 �Xt1 ; : : : ; Xtn �Xtn�1 ;

are independent random variables.

(ii) X0 = 0, almost surely.

(iii) for any s; t in [0;1[, the distribution of Xs+t �Xs does not depend on s.

(iv) (Xt) is stochastically continuous, i.e. for any s in [0;1[ and any positive �, we have:
limt!0 P (jXs+t �Xsj > �) = 0.

(v) for almost all ! in 
, the sample path t 7! Xt(!) is right continuous (in t � 0) and
has left limits (in t > 0).

If a stochastic process (Xt)t�0 satis�es conditions (i)-(iv) in the de�nition above, we say
that (Xt) is a L�evy process in law. If (Xt) satis�es conditions (i), (ii), (iv) and (v)
(respectively (i), (ii) and (iv)) it is called an additive process (respectively an additive
process in law). Any L�evy process in law (Xt) has a modi�cation which is a L�evy process,
i.e. there exists a L�evy process (Yt), de�ned on the same probability space as (Xt), and
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such that Xt = Yt with probability one, for all t. Similarly any additive process in law
has a modi�cation which is a genuine additive process. These assertions can be found in
[Sa1, Theorem 11.5].

Note that condition (iv) is equivalent to the condition that Xs+t�Xs ! 0 in distribution,
as t! 0. Note also that under the assumption of (ii) and (iii), this condition is equivalent
to saying that Xt ! 0 in distribution, as t& 0.

We turn now to the non-commutative setting. Let (A; �) be aW �-probability space acting
on a Hilbert space H (cf. Subsection 2.5). By a (stochastic) process a�liated with A, we
shall simply mean a family (Zt)t2[0;1[ of selfadjoint operators in A, which is indexed by the
non-negative reals. For such a process (Zt), we let �t denote the (spectral) distribution
of Zt, i.e. �t = LfZtg. We refer to the family (�t) of probability measures on R as the
family of marginal distributions of (Zt). Moreover, if s; t 2 [0;1[, such that s < t, then,
as was noted in Subsection 2.5, Zt � Zs is, again, a selfadjoint operator in A, and we
may consider its distribution �s;t = LfZt � Zsg. We refer to the family (�s;t)0�s<t as the
family of increment distributions of (Zt).

5.2 De�nition. A free L�evy process (in law), a�liated with a W �-probability space
(A; �), is a process (Zt)t�0 of selfadjoint operators in A, which satis�es the following
conditions:

(i) whenever n 2 N and 0 � t0 < t1 < � � � < tn, the increments

Zt0 ; Zt1 � Zt0 ; Zt2 � Zt1 ; : : : ; Ztn � Ztn�1 ;

are freely independent random variables.

(ii) Z0 = 0.

(iii) for any s; t in [0;1[, the (spectral) distribution of Zs+t � Zs does not depend on s.

(iv) for any s in [0;1[, Zs+t � Zs ! 0 in distribution, as t ! 0, i.e. the spectral
distributions LfZs+t � Zsg converge weakly to �0, as t! 0.

Note that under the assumption of (ii) and (iii) in the de�nition above, condition (iv) is
equivalent to saying that Zt ! 0 in distribution, as t& 0.

5.3 Remark. (Free additive processes I) A process (Zt) of selfadjoint operators in A,
which satis�es conditions (i), (ii) and (iv) of De�nition 5.2, is called a free additive process
(in law). Given such a process (Zt), let, as above, �s = LfZsg and �s;t = LfZt � Zsg,
whenever 0 � s < t. It follows then that whenever 0 � r < s < t, we have

�s = �r � �r;s and �r;t = �r;s � �s;t; (5.1)

and furthermore

�s+t;s
w
�! �0; as t! 0; (5.2)
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for any s in [0;1[.

Conversely, given any family f�t j t � 0g [ f�s;t j 0 � s < tg of probability measures on
R, such that (5.1) and (5.2) are satis�ed, there exists a free additive process (in law) (Zt)
a�liated with aW �-probability space (A; �), such that �s = LfZsg and �s;t = LfZt�Zsg,
whenever 0 � s < t. In fact, for any families (�t) and (�s;t) satisfying condition (5.1), there
exists a process (Zt) a�liated with someW �-probability space (A; �), such that conditions
(i) and (ii) in De�nition 5.2 are satis�ed, and such that �s = LfZsg and �s;t = LfZt�Zsg.
This was noted in [Bi1] and [Vo4]. Note that with the notation introduced above, the
free L�evy processes (in law) are exactly those free additive processes (in law), for which
�s;t = �t�s for all s; t such that 0 � s < t. In this case the condition (5.1) simpli�es to

�t = �s � �t�s; (0 � s < t): (5.3)

In particular, for any family (�t) of probability measures on R, such that (5.3) is satis�ed,
and such that �t

w
! �0 as t& 0, there exists a free L�evy process (in law) (Zt), such that

�t = LfZtg for all t.

Consider now a free L�evy process (Zt)t�0, with marginal distributions (�t). As for (clas-
sical) L�evy processes, it follows then, that each �t is necessarily �-in�nitely divisible.
Indeed, for any n in N we have: Zt =

Pn
j=1(Zjt=n�Z(j�1)t=n), and thus, in view of condi-

tions (i) and (iii) in De�nition 5.2, �t = �t=n� � � ���t=n (n terms). From the observation
just made, it follows that the Bercovici-Pata bijection �: ID(�)! ID(�) gives rise to a
correspondence between classical and free L�evy processes:

5.4 Proposition. Let (Zt)t�0 be a free L�evy process (in law) a�liated with a W �-
probability space (A; �), and with marginal distributions (�t). Then there exists a (clas-
sical) L�evy process (Xt)t�0, with marginal distributions (��1(�t)).

Conversely, for any (classical) L�evy process (Xt) with marginal distributions (�t), there
exists a free L�evy process (in law) (Zt) with marginal distributions (�(�t)).

Proof. Consider a free L�evy process (in law) (Zt) with marginal distributions (�t). Then,
as noted above, �t 2 ID(�) for all t, and hence we may de�ne �0t = ��1(�t), t � 0. Then,
whenever 0 � s < t,

�0t = ��1(�s � �t�s) = ��1(�s) � �
�1(�t�s) = �0s � �

0
t�s:

Hence, by the Kolmogorov Extension Theorem, there exists a (classical) stochastic process
(Xt) (de�ned on some probability space (
;F; P )), with marginal distributions (�0t), and
which satis�es conditions (i)-(iii) of De�nition 5.1. Regarding condition (iv), note that
since (Zt) is a free L�evy process, �t

w
! �0 as t & 0, and hence, by continuity of ��1 (cf.

Corollary 3.9),

�0t = ��1(�t)
w
! ��1(�0) = �0; as t& 0:

Thus, (Xt) is a (classical) L�evy process in law, and hence we can �nd a modi�cation of
(Xt) which is a genuine L�evy process.
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The second statement of the proposition follows by a similar argument, using � rather
than ��1, and that the marginal distributions of a classical L�evy process are necessarily
�-in�nitely divisible. Furthermore, we have to call upon the existence statement for free
L�evy processes (in law) in Remark 5.3. �

5.5 Remark. (Free additive processes II) Though our main objective in this section
are free L�evy processes, we mention, for completeness, that the Bercovici-Pata bijection �
also gives rise to a correspondence between classical and free additive processes (in law).
Thus, to any classical additive process (in law), with corresponding marginal distributions
(�t) and increment distributions (�s;t)0�s<t, there corresponds a free additive process (in
law), with marginal distributions (�(�t)) and increment distributions (�(�s;t))0�s<t. And
vice versa.

This follows by the same method as used in the proof of Proposition 5.4 above, once
it has been established that for a free additive process (in law) (Zt), the distributions
�t = LfZtg and �s;t = LfZt � Zsg, 0 � s < t, are necessarily �-in�nitely divisible
(for the corresponding classical result, see [Sa1, Theorem 9.1]). The key to this result
is Theorem 2.10, together with the fact that (Zt) is actually uniformly stochastically
continuous on compact intervals, in the following sense: For any compact interval [0; b]
in [0;1[, and for any positive numbers �; �, there exists a positive number � such that
�s;t(R n [��; �]) < �, for any s; t in [0; b], for which s < t < s+ �. As in the classical case,
this follows from condition (iv) in De�nition 5.2, by a standard compactness argument
(see [Sa1, Lemma 9.6]). Now for any t in [0;1[ and any n in N , we have (cf. (5.1)),

�t = �0;t=n � �t=n;2t=n � �2t=n;3t=n � � � �� �(n�1)t=n;t: (5.4)

Since (Zt) is uniformly stochastically continuous on [0; t], it follows that the family
f�(j�1)t=n;jt=n j n 2 N ; 1 � j � ng is a null-array, and hence, by Theorem 2.10, (5.4)
implies that �t is �-in�nitely divisible. Applying then this fact to the free additive
process (in law) (Zt � Zs)t�s, it follows that also �s;t is �-in�nitely divisible whenever
0 � s < t.

5.6 Remark. (An alternative concept of free L�evy processes) For a classical L�evy
process (Xt), condition (iii) in De�nition 5.1 is equivalent to the condition that whenever
0 � s < t, the conditional distribution Prob(Xt j Xs) depends only on t� s. Conditional
probabilities in free probability were studied by Biane in [Bi1], and he noted, in particular,
that in the free case, the condition just stated is not equivalent to condition (iii) in De�-
nition 5.2. Consequently, in free probability there are two classes of stochastic processes,
that may naturally be called L�evy processes: The ones we de�ned in De�nition 5.2 and
the ones for which condition (iii) in De�nition 5.2 is replaced by the condition on the
conditional distributions, mentioned above. In [Bi1] these two types of processes were
denoted FAL1 respectively FAL2. We should mention, here, that in [Bi1], the assumption
of stochastic continuity (condition (iv) in De�nition 5.2) was not included in the de�ni-
tions of neither FAL1 nor FAL2. We have included that condition, primarily because it is
crucial for the de�nition of the stochastic integral to be constructed in the next section.
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6 Free Stochastic Integrals and �-selfdecomposable

Variates

As mentioned in Subsection 2.1, a (classical) random variable Y has distribution in L(�)
if and only if it has a representation in law of the form

Y
d
=

Z 1

0

e�t dXt; (6.1)

where (Xt)t�0 is a (classical) L�evy process, satisfying the condition E [log(1+ jX1j)] <1.
The main aim of this section is to establish a similar correspondence between selfadjoint
operators with (spectral) distribution in L(�) and free L�evy processes (in law).

The stochastic integral appearing in (6.1) is the limit, in probability, as R ! 1, of the

stochastic integrals
R R

0
f(t) dXt, i.e. we haveZ R

0

e�t dXt
p
!

Z 1

0

e�t dXt; as R!1;

(the convergence actually holds almost surely; see Proposition 6.3 below). The stochastic

integral
R R

0
e�t dXt is, in turn, de�ned as the limit of approximating Riemann sums.

More precisely, consider a compact interval [A;B] in [0;1[, and for each n in N , let
Dn = ftn;0; tn;1; : : : ; tn;ng be a subdivision of [A;B], i.e.

A = tn;0 < tn;1 < � � � < tn;n = B:

Assume that

lim
n!1

max
j=1;2;::: ;n

(tn;j � tn;j�1) = 0: (6.2)

Moreover, for each n, choose intermediate points:

t#n;j 2 [tn;j�1; tn;j]; j = 1; 2; : : : ; n: (6.3)

Then, for any continuous function f : [A;B]! R, the Riemann sums

Sn =
nX

j=1

f(t#n;j) � (Xtn;j �Xtn;j�1);

converge in probability, as n ! 1, to a random variable S. Moreover, this random
variable S does not depend on the choice of subdivisions Dn (satisfying (6.2)), nor on the
choice of intermediate points t#n;j. Hence, it makes sense to call S the stochastic integral

of f over [A;B] w.r.t. (Xt), and we denote S by
R B

A
f(t) dXt.

The construction just sketched depends, of course, heavily on the stochastic continuity of
the L�evy process in law (Xt) (condition (iv) in De�nition 5.1). A proof of the assertions
made above can be found in [Lu, Theorem 6.2.3]. We show next how the above construc-
tion carries over, via the Bercovici-Pata bijection, to a corresponding stochastic integral
w.r.t. free L�evy processes (in law).
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6.1 Theorem. Let (Zt) be a free L�evy process (in law), a�liated with a W �-probability
space (A; �). Then for any compact interval [A;B] in [0;1[ and any continuous function

f : [A;B] ! R, the stochastic integral
R B

A
f(t) dZt exists as the limit in probability (see

De�nition 2.16) of approximating Riemann sums. More precisely, there exists a (unique)
selfadjoint operator T a�liated with (A; �), such that for any sequence (Dn)n2N of sub-
divisions of [A;B], satisfying (6.2), and for any choice of intermediate points t#n;j, as in
(6.3), the corresponding Riemann sums

Tn =
nX

j=1

f(t#n;j) � (Ztn;j � Ztn;j�1);

converge in probability to T as n!1. We call T the stochastic integral of f over [A;B]

w.r.t. (Zt), and denote it by
R B

A
f(t) dZt.

In the proof below, we shall use the notation:

r
�
j=1

�j := �1 � � � � � �r and
r

�
j=1

�j := �1 � � � �� �r;

for probability measures �1; : : : ; �r on R.

Proof of Theorem 6.1. Let (Dn)n2N be a sequence of subdivisions of [A;B] satisfying
(6.2), let t#n;j be a family of intermediate points as in (6.3), and consider, for each n, the
corresponding Riemann sum:

Tn =

nX
j=1

f(t#n;j) � (Ztn;j � Ztn;j�1) 2 A:

We show that (Tn) is a Cauchy sequence w.r.t. convergence in probability or, equivalently,
w.r.t. the measure topology (see Subsection 2.5). Given any n;m in N , we form the
subdivision

A = s0 < s1 < � � � < sp(n;m) = B;

which consists of the points in Dn [Dm (so that p(n;m) � n +m). Then, for each j in
f1; 2; : : : ; p(n;m)g, we choose (in the obvious way) s#n;j in ft

#
n;k j k = 1; 2; : : : ; ng and s#m;j

in ft#m;k j k = 1; 2; : : : ; mg such that

Tn =

p(n;m)X
j=1

f(s#n;j) � (Zsj � Zsj�1) and Tm =

p(n;m)X
j=1

f(s#m;j) � (Zsj � Zsj�1):

It follows then that

Tn � Tm =

p(n;m)X
j=1

�
f(s#n;j)� f(s#m;j)

�
� (Zsj � Zsj�1):
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Let (�t) denote the family of marginal distributions of (Zt), and then consider a classical
L�evy process (Xt) with marginal distributions (��1(�t)) (cf. Proposition 5.4). For each
n, form the Riemann sum

Sn =
nX

j=1

f(t#n;j) � (Xtn;j �Xtn;j�1);

corresponding to the same Dn and t#n;j as above. Then for any n;m in N , we have also
that

Sn � Sm =

p(n;m)X
j=1

�
f(s#n;j)� f(s#m;j)

�
� (Xsj �Xsj�1):

From this expression, it follows that

LfSn � Smg =
p(n;m)
�
j=1

Df(s#n;j)�f(s
#
m;j )
LfXsj �Xsj�1g

=
p(n;m)
�
j=1

Df(s#n;j)�f(s
#
m;j )

��1(�sj�sj�1);

so that (by Theorem 3.5),

�(LfSn � Smg) =
p(n;m)

�
j=1

Df(s#n;j)�f(s
#
m;j )

�sj�sj�1

= L

n p(n;m)X
j=1

�
f(s#n;j)� f(s#m;j)

�
� (Zsj � Zsj�1)

o
= LfTn � Tmg:

We know from the classical theory (cf. [Lu, Theorem 6.2.3]), that (Sn) is a Cauchy se-
quence w.r.t. convergence in probability, i.e. that LfSn � Smg

w
! �0, as n;m ! 1. By

continuity of �, it follows thus that also

LfTn � Tmg = �(LfSn � Smg)
w
! �(�0) = �0; as n;m!1:

By Proposition 2.18, this means that (Tn) is a Cauchy sequence w.r.t. the measure topol-
ogy, and since A is complete in the measure topology (Proposition 2.15), there exists an
operator T in A, such that Tn ! T in the measure topology, i.e. in probability. Since Tn
is selfadjoint for each n (see Subsection 2.5) and since the adjoint operation is continuous
w.r.t. the measure topology (Proposition 2.15), T is necessarily a selfadjoint operator.

It remains to show that the operator T , found above, does not depend on the choice
of subdivisions (Dn) or intermediate points t#n;j. Suppose thus that (Tn) and (T 0n) are
two sequences of Riemann sums of the kind considered above. Then by the argument
given above, there exist operators T and T 0 in A, such that Tn ! T and T 0n ! T 0 in
probability. Furthermore, if we consider the \mixed sequence" T1; T

0
2; T3; T

0
4; : : : , then the

corresponding sequence of subdivisions also satis�es (6.2), and hence this mixed sequence
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also converges in probability to an operator T 00 in A. Since the mixed sequence has
subsequences converging, in probability, to T and T 0 respectively, and since the measure
topology is a Hausdor� topology (cf. Proposition 2.15), we may thus conclude that T =
T 00 = T 0, as desired. �

The stochastic integral
R B

A
f(t) dZt, introduced above, extends to continuous functions

f : [A;B] ! C in the usual way (the result being non-selfadjoint in general). From

the construction of
R B

A
f(t) dZt as the limit of approximating Riemann sums, it follows

immediately that whenever 0 � A < B < C, we haveR C

A
f(t) dZt =

R B

A
f(t) dZt +

R C

B
f(t) dZt;

for any continuous function f : [A;C] ! C . Another consequence of the construction,
given in the proof above, is the following correspondence between stochastic integrals
w.r.t. classical and free L�evy processes (in law).

6.2 Corollary. Let (Xt) be a classical L�evy process with marginal distributions (�t), and
let (Zt) be a corresponding free L�evy process (in law) with marginal distributions (�(�t))
(cf. Proposition 5.4). Then for any compact interval [A;B] in [0;1[ and any continuous

function f : [A;B] ! R, the distributions Lf
R B

A
f(t) dXtg and Lf

R B

A
f(t) dZtg are �-

in�nitely divisible respectively �-in�nitely divisible and, moreover

L
�R B

A
f(t) dZt

	
= �

�
L
� R B

A
f(t) dXt

	�
:

Proof. Let (Dn)n2N be a sequence of subdivisions of [A;B] satisfying (6.2), let t#n;j be
a family of intermediate points as in (6.3), and consider, for each n, the corresponding
Riemann sums:

Sn =
nX

j=1

f(t#n;j) � (Xtn;j �Xtn;j�1) and Tn =
nX

j=1

f(t#n;j) � (Ztn;j � Ztn;j�1):

Since convergence in probability implies convergence in distribution (Proposition 2.19), it

follows from [Lu, Theorem 6.2.3] and Theorem 6.1 above, that LfSng
w
! Lf

R B

A
f(t) dXtg

and LfTng
w
! Lf

R B

A
f(t) dZtg. Since ID(�) and ID(�) are closed w.r.t. weak conver-

gence (as noted in Subsection 2.4), it follows thus that Lf
R B

A
f(t) dXtg 2 ID(�) and

Lf
R B

A
f(t) dZtg 2 ID(�). Moreover, by Theorem 3.5, LfTng = �(LfSng), for each n in

N , and hence the last assertion follows by continuity of �. �

We determine next under which conditions the stochastic integral
R1
0
e�t dZt makes sense

as the limit of
R R

0
e�t dZt, for R!1. Again, the result we obtain is derived by virtue of

the mapping � and the following corresponding classical result:

6.3 Proposition. ([JV]) Let (Xt) be a classical L�evy process de�ned on some proba-
bility space (
;F; P ), and let (
; �) be the generating pair for the �-in�nitely divisible
probability measure LfX1g. Then the following conditions are equivalent:

(i)
R
Rn]�1;1[

log(1 + jtj) �(dt) <1.
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(ii)
R R

0
e�t dXt converges almost surely, as R!1.

(iii)
R R

0
e�t dXt converges in distribution, as R!1.

(iv) E [log(1 + jX1j)] <1.

Proof. This was proved in [JV, Theorem 3.6.6]. We note, though, that in [JV], the measure
� in condition (i) is replaced by the L�evy measure � appearing in the alternative L�evy-
Khintchine representation (2.5) for LfX1g. However, since �(dt) =

1+t2

t2
� 1Rnf0g(t) �(dt),

it is clear that the integrals
R
Rn]�1;1[

log(1 + jtj) �(dt) and
R
Rn]�1;1[

log(1 + jtj) �(dt) are

�nite simultaneously. �

6.4 Proposition. Let (Zt) be a free L�evy process (in law) a�liated with aW �-probability
space (A; �), and let (
; �) be the free generating pair for the �-in�nitely divisible prob-
ability measure LfZ1g. Then the following statements are equivalent:

(i)
R
Rn]�1;1[

log(1 + jtj) �(dt) <1.

(ii)
R R

0
e�t dZt converges in probability, as R!1.

(iii)
R R

0
e�t dZt converges in distribution, as R!1.

Proof. Let (�t) be the family of marginal distributions of (Zt) and consider then a classical
L�evy process (Xt) with marginal distributions (��1(�t)) (cf. Proposition 5.4). By the
de�nition of �, it follows then that (
; �) is the generating pair for the �-in�nitely divisible
probability measure LfX1g.

(i) ) (ii): Assume that (i) holds. Then condition (i) in Proposition 6.3 is satis�ed for

the classical L�evy process (Xt). Hence by (ii) of that proposition,
R R

0
e�t dXt converges

almost surely, and hence in probability, as R!1. Consider now any increasing sequence
(Rn) of positive numbers, such that Rn % 1, as n ! 1. Then for any m;n in N such
that m > n, we have by Corollary 6.2

L
� R Rm

0
e�t dZt �

R Rn

0
e�t dZt

	
= L

� R Rm

Rn
e�t dZt

	
= �

�
L
� R Rm

Rn
e�t dXt

	�
= �

�
L
� R Rm

0
e�t dXt �

R Rn

0
e�t dXt

	�
:

(6.4)

Since the sequence (
R Rn

0
e�t dXt)n2N is a Cauchy sequence with respect to convergence in

probability, it follows thus, by continuity of �, that so is the sequence (
R Rn

0
e�t dZt)n2N.

Hence, by Proposition 2.15, there exists a selfadjoint operator W a�liated with (A; �),

such that
R Rn

0
e�t dZt ! W in probability. It remains to argue that W does not depend

on the sequence (Rn). This follows, for example, as in the proof of Theorem 6.1, by
considering, for two given sequences (Rn) and (R0

n), a third increasing sequence (R00
n),

containing in�nitely many elements from both of the original sequences.

(ii) ) (i): Assume that (ii) holds. It follows then by (6.4) and continuity of ��1 that

for any increasing sequence (Rn), as above, (
R Rn

0
e�t dXt) is a Cauchy sequence w.r.t.
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convergence in probability. We deduce that (iii) of Proposition 6.3 is satis�ed for (Xt),
and hence so is (i) of that proposition. By de�nition of (Xt), this means exactly that (i)
of Proposition 6.4 is satis�ed for (Zt).

(ii) ) (iii): This follows from Proposition 2.19.

(iii))(i): Suppose (iii) holds, and note that the limit distribution is necessarily �-
in�nitely divisible. Now by Corollary 6.2 and continuity of ��1, condition (iii) of Propo-
sition 6.3 is satis�ed for (Xt), and hence so is (i) of that proposition. This means, again,
that (i) in Proposition 6.4 is satis�ed for (Zt). �

If (Zt) is a free L�evy process (in law) a�liated with (A; �), such that (i) of Proposition 6.4
is satis�ed, then we denote by

R1
0
e�t dZt the selfadjoint operator a�liated with (A; �),

to which
R R

0
e�t dZt converges, in probability, as R ! 1. We note that Lf

R1
0
e�t dZtg

is �-in�nitely divisible, and that Corollary 6.2 and Proposition 2.19 yield the following
relation:

L
� R1

0
e�t dZt

	
= �

�
L
� R1

0
e�t dXt

	�
; (6.5)

where (Xt) is a classical L�evy process corresponding to (Zt) as in Proposition 5.4.

6.5 Theorem. Let y be a selfadjoint operator a�liated with a W �-probability space
(A; �). Then the distribution of y is �-selfdecomposable if and only if y has a represen-
tation in law in the form:

y
d
=

Z 1

0

e�t dZt; (6.6)

for some free L�evy process (in law) (Zt) a�liated with some W �-probability space (B;  ),
and satisfying condition (i) of Proposition 6.4.

Proof. Put � = Lfyg. Suppose �rst that � is �-selfdecomposable and put �0 = ��1(�).
Then, by Theorem 4.8, �0 is �-selfdecomposable, and hence by the classical version of
this theorem (cf. [JV, Theorem 3.2]), there exists a classical L�evy process (Xt) de�ned on
some probability space (
;F; P ), such that condition (i) in Proposition 6.3 is satis�ed,
and such that ��1(�) = Lf

R1
0
e�t dXtg. Let (Zt) be a free L�evy process (in law) a�liated

with some W �-probability space (B;  ), and corresponding to (Xt) as in Proposition 5.4.
Then, by de�nition of �, condition (i) in Proposition 6.4 is satis�ed for (Zt) and, by
formula (6.5), Lf

R1
0
e�t dZtg = �.

Assume, conversely, that there exists a free L�evy process (in law) (Zt) a�liated with some
W �-probability space (B;  ), such that condition (i) of Proposition 6.4 is satis�ed, and
such that � = Lf

R1
0
e�t dZtg. Then consider a classical L�evy process (Xt) de�ned on some

probability space (
;F; P ), and corresponding to (Zt) as in Proposition 5.4. Condition
(i) in Proposition 6.3 is then satis�ed for (Xt) and, by (6.5), ��1(�) = Lf

R1
0
e�t dXtg.

Thus, by the classical version of this theorem, ��1(�) is �-selfdecomposable, and hence �
is �-selfdecomposable. �

6.6 Remark. (Free OU processes.) Let y be a selfadjoint operator a�liated with
some W �-probability space (A; �), and assume that there exists a free L�evy process (in
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law) (Zt) a�liated with some W �-probability space (B;  ), such that condition (i) of

Proposition 6.4 is satis�ed, and such that y
d
=

R1
0
e�t dZt. Note then, that for any

positive numbers s; �, we haveZ 1

0

e�t dZt =

Z 1

0

e��t dZ�t =

Z 1

s

e��t dZ�t +

Z s

0

e��t dZ�t

= e��s
Z 1

0

e��t dZ�(s+t) +

Z �s

0

e�t dZt;

(6.7)

where we have introduced integration w.r.t. the processes Vt = Z�t and Wt = Z�(s+t),
t � 0. The rules of transformation for stochastic integrals, used above, are easily veri�ed
by considering the integrals as limits of Riemann sums. That same point of view, together
with the fact that (Zt) has freely independent stationary increments (conditions (i) and

(iii) in De�nition 5.2), implies, furthermore, that
R1
0
e��t dZ�(s+t)

d
=
R1
0
e��t dZ�t

d
= y.

Note also that the two terms in the last expression of (6.7) are freely independent. Thus,
(6.7) shows, that for any positive numbers s; �, we have a decomposition in the form:

y
d
= e��sy(�; s) + u(�; s), where y(�; s) and u(�; s) are freely independent, and where

y(�; s)
d
= y. In particular, we have veri�ed, directly, that Lfyg is �-selfdecomposable.

Moreover, if we choose a selfadjoint operator Y0 a�liated with (B;  ), which is freely
independent of (Zt), and such that LfY0g = Lfyg (extend (B;  ) if necessary), then the
expression:

Ys = e��sY0 +

Z �s

0

e�t dZt; (s � 0);

de�nes an operator valued stochastic process (Ys) a�liated with (B;  ), satisfying that

Ys
d
= y for all s. If we replace (Zt) above by a classical L�evy process (Xt), satisfying

condition (i) in Proposition 6.3, and let Y0 be a (classical) random variable, which is
independent of (Xt), then the corresponding process (Ys) is a solution to the stochastic
di�erential equation:

dYs = ��Ys ds+ dX�s;

and (Ys) is said to be a process of Ornstein-Uhlenbeck type or an OU process, for short
(cf. [BS1],[BS2] and references given there).
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