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Abstract

Results are obtained on perturbation of eigenvalues and half-bound
states (zero-resonances) embedded at a threshold. The results are
obtained in a two-channel framework for small off-diagonal perturba-
tions. The results are based on given asymptotic expansions of the
component Hamiltonians.

1 Introduction

We consider Hamiltonians which can be represented in a two channel frame-
work. Assume that the diagonal part has an eigenvalue embedded at a
threshold. Then it is shown that under small off-diagonal perturbations this
eigenvalue never moves into the continuous spectrum. The results require a
kind of effective interaction assumption on the off-diagonal part.

We first give the results in an abstract form, and then we show how to
apply them to Schrodinger operators.

Let us now describe some of the results in detail. We consider Hamilto-
nians which are decomposed as

o = (7 )0 (o0, ) (1)
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on a Hilbert space H = H, & H,. Here H, and H, are self-adjoint operators
on H, and H,, respectively. For the sake of simplicity we assume V,, €
B(Hy, M), the bounded operators, and require Vj, = V.

Due to the diagonal structure of H(0) its spectral nature can be an arbi-
trary combination of those of H, and H. There are many possible cases, and
we have only treated some of them in detail. A particular case of interest is
the following. We assume o(H,) = 0ac(H,) = [A, 00) and 0,.(Hp) = [A1, 00)
for some A\; > A. Furthermore, we assume that A\ is an isolated eigenvalue
of H, with eigenprojection P,. Thus H(0) has an eigenvalue embedded at
the threshold A. We would like to know what happens when the interaction
is turned on. To obtain results we require some information on the thresh-
old of H,. We assume some type of asymptotic expansion of the resolvent
R,(¢) near X\. More precisely, let IC, be a Hilbert (or Banach) space, which
is densely and continuously embedded in H,. We assume the existence of an
expansion, valid in the norm topology of B(K,, K7),

Ro(C) = Gy + (¢ — N)'?G1 — (¢ — N G2+ o([¢ — A|) (1.2)

as ( = A\, ( € C\[A, 00). Thus in particular the resolvent has a well-defined
limit G at the threshold point in the norm topology of B(K,, K?). This
type of asymptotic expansion is know to hold generically for a Schrodinger
operator —A + V(z) on L%(R?) for d odd, provided V() decays sufficiently
rapidly.

Some assumptions on the interaction are needed. Assume that V,, €
B(Hs, K,) and that the operator PyVy,GoVap P is strictly positive and invert-
ible in B(Pbe)

Under these assumptions the following result holds, see Theorem 3.9.
There exist 19 > 0, do > 0, and a function §;(g), which satisfies cg? < §;(g) <
Cg?, such that

(A=01(g), A+ o) Nopp(H(g)) = 0 (1.3)

for all g with 0 < |g| < np.

Thus this result shows that the eigenvalues at A may move left and be-
come isolated eigenvalues of H(g). But the eigenvalues cannot move into the
continuous spectrum. If one assumes that the limiting absorption principle
holds for H, on (A, \;), and that this interval is in the resolvent set of H,,
then the result (1.3) holds for any §; < A; — A, see Remark 3.3. In this
case we may need to have a smaller 79. See Section 5.2 for the case of a
Schrodinger operator with confined channels, where all the above conditions
are verified explicitly. The power g behavior of §;(g) is optimal as a general



result, as shown by an example in Section 5.1. This particular behavior is a
consequence of the form of the asymptotic expansion in (1.2).

In some cases one would expect that embedded eigenvalues become res-
onances under perturbation. In this paper we are not imposing assumptions
on the Hamiltonians, which make is possible to give a reasonable definition
of a resonance, hence we have no results in this direction here.

The result (1.3) is obtained by using the asymptotic expansion (1.2) in
combination with the Feshbach formula and a technique based on factoring
out the identity plus a finite rank operator.

We give a number of other results of the same type in Section 3, and
in Section 5 we give a few applications. Further applications will be given
elsewhere.

Concerning the literature, then there seems to be few results on this
problem. A general result on absorption of eigenvalues in the continuum is
given in [17]. In the paper [2] a result is obtained, concerning the survival of
the ground state of a Pauli-Fierz Hamiltonian. In the paper [3] the possibility
of having a modified Fermi Golden Rule at a threshold is considered. In
a time-dependent framework the perturbation of threshold eigenvalues has
been discussed in the paper [18].

The paper [6] contains a number of related results, obtained using the
Feshbach formula, for eigenvalues embedded in the continuum.

Our results rely on having asymptotic expansions of resolvents around
thresholds. Such results have been obtained for Schrodinger type operators
by a number of authors. We mention the papers [10, 8, 14, 19, 9, 13], the
survey paper [4], and the references therein.

2 Preliminaries

Let T be a self-adjoint operator on a Hilbert space H with domain D(T).
The spectrum and resolvent set are denoted by o(7) and p(T'), respectively.
We use standard terminology for the various parts of the spectrum, see for
example [16]. The resolvent is R(¢) = (T'—¢) .

If X\ is an isolated eigenvalue of 1" with associated eigenprojection P, then
the reduced resolvent is given as

C = lim(I - P)R(C), (2.1)

and we have the norm convergent expansion

P

RO = 7=

LS c-are 22



The expansion is valid for 0 < |[( — A| < ¢ for some small § > 0. See for
example [12, 15].

The Feshbach formula gives a convenient explicit representation of the
resolvent R(g; () of H(g). There are two variants. We give only one of them.
The other version is just an interchange of indices. Define

R,(¢) = (Ha— Q)7 (2.3)
Ty(¢) = Ho — ¢ = 9°Vsa Ra(C) Vas. (2.4)
Then for Im ¢ # 0 we have
R(gx¢)
_ (Ra(C) + 9 Ra(OVarTo(O) ™ Ve Ra(C) —gRa(C)Vab_Tb(C)‘1> (2.5)
—9T5(¢) ™ VoLt (¢) Ty(¢)™"

To state the abstract results we will need an abstract formulation of the
limiting absorption principle. We have settled on the following simplified
version.

Definition 2.1. Let T be a self-adjoint operator on ‘H and I C o(T) an
open interval. The limiting absorption principle is said to hold on I, if there
exists a Hilbert (or Banach) space K, densely and continuously embedded in
‘H, such that ¢ — R({) has a norm-continuous extension from the upper half
plane C, to I U C,, with values in B(K, K£*).

Thus our definition introduces the triple of spaces K — H — K*, as is
common in abstract formulations of the limiting absorption principle. The
boundary values are denoted by R(\ + i0) € B(IC, K*) for A € 1.

The notation J € I means that the open interval J is relatively compact
in the open interval .

We sometimes use the following remark to avoid repetition of proofs.

Remark 2.2. Note that the extension property in Definition 2.1 holds trivially
in the case I C p(T), with K = H.

Let §(g) and f(g) be two positive functions, defined for g € F, a param-
eter set. We write 6(g) < f(g), if there exist constants ¢ > 0, C' > 0, such
that cf(g) <d(g) < Cf(g) forallg e F.

For a complex number z € C\ [0,00) we denote by z'/2 the branch of the
square root with positive imaginary part.

Finally we recall some elementary results from operator theory. Let
X,Y € B(H), and assume that X is invertible. If ||Y]| < || X !||7!, then
X +Y is invertible, and we have the estimate

X1
L=y - [[X=H]

(X +Y)7H <
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Let P be a projection in B(H) and let X € B(H). Assume that the
operator P + PX P is invertible in B(P#). Then the operators I + X P and
I + PX are invertible, and we have, with an obvious notation,

(I+XP)'=I-XP(P+PXP)'P, (2.6)
and
(I+PX)'=I1-P(P+PXP)'PX. (2.7)

These results are verified by straightforward computations. We also note
that (2.6) implies

P(I+XP)'=P(P+PXP)'P. (2.8)

3 Absence of embedded eigenvalues

In several different settings it is shown that embedded eigenvalues for H(0)
leave the continuous spectrum of H(g) for 0 < |g| < 1o for some positive 7.
These eigenvalues may show up as resonances or discrete eigenvalues. We do
not discuss resonances in this paper, since we are not making assumptions
that enable us to give a meaningful definition of a resonance.

We start with an easy auxiliary result. It will be combined with other
results later.

Assumption 3.1. Let I C 0,.(H,) N0oa.(Hp). Assume that the limiting ab-
sorption principle holds on [ for H, and H, in spaces K, and K, respectively.
Assume that Vg, extends to i, such that Vi, € B(K;, KC,).

Proposition 3.2. Let Assumption 3.1 hold on I. Let J € I. Then there
ezists anng > 0 such that for |g| < ny we have J C 0ac(H(g)) and opp,(H(g))N
J=0.

Proof. We use (2.5). Write
Ty(C) = (Hy = ¢) (I = ¢°Ro(¢) Vsaa(C) V) -

Let
m= iule ||Rb(/\ + iO)%aRa()\ + 'I:O)Vab”B(ICZ)-
€

Then the claims in the proposition are true for 7y < 1/,/pz. We omit the
details. ]



Remark 3.3. Using Remark 2.2 we get that this result also holds in the two
cases I C 0u(H,) N p(Hy) and I C p(Hy) N 0ac(Hp). In the case I C
p(Ha) N p(Hy) we get J C p(H(g)) and opy(H(g)) N J = 0.

Assumption 3.4. Let A\ € o(H,).
(i) Assume that there exists a Hilbert space K,, densely and continuously

embedded in H,, such that for some 6 > 0 we have an asymptotic expansion
in the norm of B(IC,, K}), viz.

Ro(C) = Gy + (¢ — NY?G1 = (¢ = N)Ga +o([¢ = A|) (3.1)

for [( — Al < §, Im( > 0. Assume furthermore that G; = G7, j = 0,1,2, as
operators in B(KC,, KC¥).

(ii) Assume that V,, € B(Hs, Ko).

(iii) Assume that A is a simple isolated eigenvalue of Hp, with normalized
eigenfunction 1. Its reduced resolvent is denoted by C;.

We use the notation P, = (-, 1)1 for the eigenprojection. The following
real numbers are needed to state the results.

Gy = <%aGOVab¢7 1/))7 (32)
ﬂO = <V;)aG1Vabwa 7/))’ .
Yo = <V;JaGOVabeV;)aGO‘/abwa 1/’)- (3-4)

Before treating the case where ) is an eigenvalue of Hy, we briefly consider
two other cases. We collect the results in the following proposition.

Proposition 3.5. Let Assumption 3.4(i) hold for H, at A\ € R.

(i) Assume that \ € o(Hy) and that the limiting absorption principle holds
for Hy on I > X in K. Assume that Vo, € B(K;,K,). Then there exist
an n9 > 0 and an interval J € I, N € J, such that for |g| < no we have
J C 0ac(H(9)) and J Noyp(H(g)) = 0.

(ii) Assume that A € p(Hp) and that Vy, € B(Hp, Ko). Then there erist
no > 0 and 6y > 0 such that for |g| < ny we have (A, A+ dg) C 0ac(H(g)) and
(A = 0o, A+ do) N opp(H(g)) = 0.

The proof is similar to the proof of Proposition 3.2 and is omitted.
We now consider the case where ) is an eigenvalue of H,. Let us first
consider the case ag # 0.

Theorem 3.6. Let Assumption 3.4 hold at A € R.
(i) Assume that oy > 0. Then there exist ny > 0, dy > 0 and §,(g) < g* such
that for all g with 0 < |g| < ny we have (A — 6;(g), A + &) Nopp(H(g)) =
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(ii) Assume that ay < 0 and By # 0. Then there exist ng > 0 and 6y > 0 such
that for all g with 0 < |g| < ny we have (A — do, A + o) Nopp(H(g)) = 0.

(iii) Assume that ay < 0 and By = 0. Then there exist ng > 0, o > 0, and
6:(g) < g? such that for all g with 0 < |g| < ny we have (A — 8, A + 6,(g9)) N

opp(H(9)) = 0.

Proof. The strategy of the proof is to factor the operator 7,(¢) in order to
show that the resolvent of H(g) remains bounded in the norm topology of
B(K, @ Hs, K @ Hp) near a certain interval around A. In some cases this
interval depends on g.

In the sequel we always assume at least [( — A] < ¢ (with the ¢ from
Assumption 3.4) and Im ¢ > 0. We use the factorization

Ty(¢) = (I — ¢*VaaRa(C)Var Ro(Q)) (Hy — ). (3.5)

The assumption gives the following asymptotic expansion in B(H,).

Iy=9"VeaRa(Q)Vas B ()
1 1
=1+ C_—)\QQW;aGoVabe + WQQ‘/BaG1%be (3.6)
— 9> (VbaGoVasCh + VoaG2Vap Py + 0(1)) .

We first consider the identity plus the terms containing singularities. Let

1
S©) = I+ —9VsaGoVar Py + 9*V4aG1Vay P, (3.7)

7
C= (SPYRE
and define

2
GPap +i(C— N)V2g2B+ ¢ — N

For all ¢, g such that x(g;() # 0 the operator S(() is invertible in B(Hy).
The inverse is given by (see (2.6))

S(C)il = Ib - K:(g; g)(: ¢> (V;)aGOV;zbw + Z(C - /\)1/2%(1G1Vabw) . (39)

k(g;¢) = (3-8)

-1

Since we are assuming ag # 0, the inverse S({)~" is regular at ( = A. We

factor as follows

Iy — gzvbaRa(C)VabRb(C) =

3.10
[Ib — ¢ (VoaGoVasCo + VoaG2Vas Py + 0(1)) S(C)_l] S(¢)- (3.10)



The terms in [- - -] are denoted by U({). We compute the leading terms
U(C) =1, — 92VbaG2Vabe - g2%aG0‘/;1be
+ a5, V)9 (VeaG2Vas PoVoaGoVarh + VeaGoVar PoVea GoVast))
+g%0(1).
From the definition of g follows
(- V) VsaG2Var PsVsaGoVarth = VsaG2Var Py,
Thus we get
UC) =1y — 9*VeaGoVarCo
+ CMO_1<-, w)gzv;)aGOVabe‘/baGOVabw + 920(1)-

We see that for small |g| and small | — A| this operator is invertible. Putting
the terms together we have

Ty(¢) * = Re(¢)S(C) "U(C)

Since Ry(¢) has a pole at A, we need to compute the products to check
whether the singular terms cancel. We have
P
: +c,,+0(\C—A|)> :

e

Iy = #(9;:0) (VeuGoVas Py + (¢ = N)V*VouG1 Vis 1) )
P .
- _ b + K:(gu C)
C—A  (C—A
+ Cp — £(g; () Ch (VbaGOVabe +i(¢ - /\)1/2%41(;1‘/@1;131))
+9°0(/¢ = A|)
= —k(9; )P+ Cp
— £(95C) (CoVaaGoVar Py + i(¢ — A)/2CyVuG1 Vi )
+9°0(/¢ = A)).
Here we have used aoPy, = PyViaGoViar Py, BoPy = PyVeaG1Vap Py, and the
definition of k(g;() to simplify the expressions. Thus under the condition
o # 0 there is no singularity in the above expression at ( = \.
The singularities in x(g; ¢) occur at the zeroes of the polynomial g=22% +
139z + ap. Thus they occur at

(= A=2"=—ang’ — 3659 £ 3609%\/ BRg* + dang?®.

The results in cases (i), (ii), and (iii) follow from a straightforward analysis
of this expression. O

(3.11)

(PoVsuGoVap Py + (¢ — N2 PV G1 Vi By)




We now consider the case og = 0.

Theorem 3.7. Let Assumption 3.4 hold at A € R. Assume ag = 0 and
Y # 0.

(i) Assume By # 0. Then there exist ng > 0, §g > 0 and §;(g) < g* such that
for all g with 0 < |g| < no we have (A — 6;(g), A + do) Nopp(H(g)) = 0.

(ii) Assume By = 0 and vy > 0. Then there existny > 0, & > 0 and §(g) < ¢*
such that for all g with 0 < |g| < ny we have (A—=08,(g), A+60)Nopp(H(g)) = 0.
(iii) Assume By = 0 and o < 0. Then there exist ny > 0, do > 0 and

6:(g) < g* such that for all g with 0 < |g| < ny we have (A — 8, A + 6,(g9)) N
opp(H(g)) = 0.

Proof. The proof is similar to the proof of Theorem 3.6. We use x(g;()
defined in (3.8). Under the assumption that cp = 0 this expression has a
singularity at ¢ = A. Thus this time S({) ! given in (3.9) has a singularity
here. This means that we have to look carefully at the term U((). The
computation in (3.11) is not valid in the present case.

We introduce the shorthand notation

¢ = ‘/EHLGO V;zbcb V;JaGO Vabw-

Then a computation shows that the singularities in U(() are contained in
the term

S1(Q) = I + £(g; Q)g*(:, ¥)o. (3.12)

We then introduce

(g5 ¢)

g4

T +ilC— NP2+ N

For all g, such that u(g,() # 0 we have that S;({) is invertible, and the
inverse is given by

(3.13)

S1(Q)7" =1y — plg; O, ¥) 0. (3.14)

Since we are assuming that vy # 0, we find that this inverse has no singularity
at ¢ = A\. We then compute as follows.

UQ) = (I + 9° (K +0(1)) S1(¢) ') S1(¢)
= W()S:(<)-

We have collected the constant terms in the term K in W (). It follows that
W () is invertible for g and |( — A| sufficiently small. This means that we
have a factorization

Tp(¢) = W()S5:1(Q)S(Q)(Hy =€),
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and therefore
T(O) " = Ry(Q)S(QO)'S1(Q) W ()
The first two terms contain singularities. We therefore have to multiply out

to check for cancellations. The computation of Ry(¢)S(¢)~! from the proof
of Theorem 3.6 is valid under the current assumptions. Thus we have

Ry(0)S(¢)™" = —k(g; Q) Py + C,
— 1(9;C) (CoVsaGoVas Py + i(C — N)2CyViaG1 Vi By)
+ g20(|¢ = A)).

However, under the current assumptions this expression is not regular at
¢ = A. We continue the computation, using Py(-, ¥)¢ = v P,.

Ry(O)S(C) 1S1(Q) = Cy — pu(g; Q) (- ¥)Coop
+ (705(9; O el(g; ¢) — k(g5 Q) Po
+ (v0r(g; Q) peg; €) — K(g;¢)) -
(CoVsaGoVasPs + (¢ — M) CyVia GV Py)
+g°0(|¢ = AIY?).

Now we use that

Y0r(g; Q)ulg; €) — K(g; ¢) = —g (g, €)

to conclude that the singularities have cancelled out. It remains to analyze
the zeroes of the polynomial 22 + ig?8yz + g*v,. This analysis is similar to
the one given in the proof of Theorem 3.6, and leads to the three cases stated
in the theorem. O

We now consider the case when ) is an isolated eigenvalue of H, of arbi-
trary multiplicity. We limit ourselves to discussing the simplest case.

Assumption 3.8. Let parts (i) and (ii) of Assumption 3.4 hold at A € R.
Assume that A is an isolated eigenvalue of H, with eigenprojection P, such
that the operator PyV,,GoVap Py is strictly positive and invertible in B(P,H,).

Theorem 3.9. Let Assumption 3.8 hold at A\ € R. Then there exist g > 0,
8o > 0, and 6;(g) < g* such that for g with 0 < |g| < no we have (A—¥8,(g), \+
do) Nopp(H(g)) = 0.

Proof. We follow the strategy of the proof of Theorem 3.6. To facilitate
comparison with this proof we use analogous notation for various operators.
The expansion in (3.6) is still valid. We define

Y (9;€) = 6°V5aGoVap + (¢ — N2 9%V3a Gy V. (3.15)

10



Then we consider

S(O) =1, + C_%Y(g; P, (3.16)

Suppose that for some g, ( the operator
Z(9:¢) = (= NP+ BY(g: ()P (3.17)
is invertible in B(PyHp). Then S(() is invertible, and the inverse is given by

S(Q) =15 -Y(g:¢)PZ(g;¢) "' By, (3.18)

see (2.6). It is clear from (3.10) that if we can control singularities in this
inverse, then we can obtain invertibility of U(() for suitably restricted values
of g and (.

Let us analyze in detail the restrictions on ¢ and the dependence on g in
order for Z(g; () to be invertible. Let

co = [|(PoVeaGoVarPs) " B(Pys)-
Due to the positivity assumption the operator
9°PViuGoVap Py + Re(¢ — V) B,

is invertible for ¢ satisfying Re({ —\) > —g?/2cy, and the norm of the inverse
is bounded by 2¢q/g%. Let

c1 = [|[PyVeaG1Vao By || B(P,3)

and let § = (4dcger) 2. Then for [( — A| < § and Re(¢ — A) > —g¢*/2¢y we
have existence of the inverse and the estimate

1(9*PyVsaGoVas Py 4 i(C — )2 6* PVia G1 Vs Py

4c
+Re(C — NP) s < —-

S
Now finally we assume 0 < Im(¢ — )\) < ¢2/8¢y. Then Z(g;() is invertible,
and we have

_ 8co
1Z(g; ¢) 1||B(Pb7'lb) < ?

for all ¢ satisfying the three conditions. For these values of  we then have

1S(C) M lss) < 1+ 8eo([IVaaGoVanll + VI VaG1Val)-

11



We note that this estimate is independent of g. It follows that we can de-
termine an 79 > 0 such that for 0 < |g| < 7y and ( satisfying the above
restrictions the operator U(() is invertible with a uniformly bounded inverse.

An important point in the proof of Theorem 3.6 is the cancellation of
singularities in Ry(¢)S(¢)~". We now verify that also in the present case the
singularities cancel (see also (2.8)).

3
(L, —=Y(g; Q)P Z(9;:¢) 7' Py)
= _C—% (P, — PY (9; )P Z(9:¢) ' By)
+Cy — CyY (g;Q)PoZ(g;¢) 'Py + O(I¢ — Al)
=—-P,Z(g;¢)"'P,+ Cy

—CY (3:Q)PoZ(g;¢) "By 4+ O(|¢ = Al).

Let us now put all the estimates together. Fix g, 0 < |g| < 79. Then for a
suitable §y < ¢ (determined above) we have for all ¢ satisfying |¢ — A| < o,
Re(C—X) < —¢?/2¢p, and 0 < Im(C—)) < ¢*/8co that [|T;(¢) | is uniformly
bounded. This estimate proves the theorem. O

Rb<c>s<<>1=( B +cb+0(\<—xw))-

We now turn to the case where A € p(H,) and ) is a threshold eigenvalue
of H,. We assume that the asymptotic expansion of R,({) around A has a
particular structure which we know occurs for Schrodinger-type operators,
see [10, 8, 14].

Assumption 3.10. Let A be an eigenvalue of H, with associated eigenpro-
jection P,.

(i) Assume that there exists a Hilbert space K,, densely and continuously
embedded in H,, such that for some 6 > 0 we have an asymptotic expansion

1 ?
_ P, —

C—=A (€= A2
for | — Al <4, Im¢ > 0, in norm in B(K,, K;). Assume that G; = G for
j=-=1,0,in B(K,, ;). Assume P, € B(K,) and furthermore G_1P, = G_;.
(i1) Assume that V,, € B(Hs, Ky)-

(iii) Assume that A € p(Hy).

We recall that for A\ € p(H,) we have

Ra(C) = G71 + Go + 0(1) (319)

o0

Ry(Q) =) (C—A)"Cy (3.20)

n=0

12



for |¢ — A| sufficiently small. The series converges in B(#H,), and we have
Cn = Ry(N)"T.

Assumption 3.11. Let Assumption 3.10 hold. Assume that the operator
P,V CoVipo P, is strictly positive and invertible in B(IC,).

Theorem 3.12. Let Assumption 3.11 hold at A € R. Then there exist ny >
0, &g > 0, and §(g9) < g* such that for all g with 0 < |g| < ny we have
(A =6(9), A+ do) Nopp(H(g)) = 0.

Proof. We proceed as in the proofs of the other results. However, this time
we interchange the roles of @ and b in the Feshbach formula, since now R,(()
is regular at ( = \.

The first step is again to factor T,(().

Ta(C) = (Ia - g2VabRb(C)%aRa(C)) (Ha - C)

Inserting the two expansions we find the following asymptotic expansion in
B(KC,).
Ia_QQVabRb(C)V;)aRa(C)
1 ?
= Ia Y 2‘/a C VaPa T \\1/9
+<._)\g b0 Vb +(C_)\)1/2g
- 92 (VabCOVEJaGO + V;szIVE)aPa + 0(]‘))

2‘/21b00%aG—1 (321)

We see that the singular part is contained in

SO =Tt 5V (GO

where we have introduced
Y(9;¢) = g*VarCoVha +i(C = 1) /29" Vi CoV3uG 1.
The operator S(¢) is invertible, if
Z(g;¢) = (( = NPu+i(C = N)*g* PuVarCoVaaG -1 Pa + g PaVarCo Vo P
is invertible in the space B(KC,), and we have again
SO =1~ Y(g: Q) PuZ(9; )" P,

see (2.6). Thus the remainder of the proof is analogous to the proof of
Theorem 3.9, and is omitted. O
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The case where ) is an eigenvalue of H, and \ € 0,.(Hp) can be treated
with essentially the same arguments. We state the result and outline the
proof.

Assumption 3.13. Let A be an eigenvalue of H, of finite multiplicity.

(i) Let Assumption 3.10(i) hold.

(ii) Assume that A € 0,.(H,) and that there exist an open interval J 5 A and
a Hilbert space Ky, densely and continuously embedded in H,, such that we
have

Ry(¢) = Co+ (¢ = N)C1 +o(|¢ = A|) (3.22)

for ¢ — 0 with Re¢ € J, Im¢ > 0, in the norm topology of B(K,, ;).
In particular, the limiting absorption principle holds on J. Here Cy, C; €
B(Ky, K;), and furthermore Cy = Ry(A + 40).

(iii) Assume Vg, € B(K;, ICy).-

(iv) Assume that Im P,V,,CyV}, P, is a strictly positive operator in B(P,K,).

Remark 3.14. Let us note that a result of the type (3.22) can be obtained
from the extended Mourre theory, see [11], and for more recent results [1].

Theorem 3.15. Let Assumption 3.13 hold at A € R. Then there exist ng > 0
and dg > 0 such that for all g with 0 < |g| < ny we have (A — &y, A+ Jp) N
opp(H(9)) =0, and (A — dp, A + 0) C 0ac(H(g))-

Proof. The computations in the proof of Theorem 3.12 hold with minor mod-
ifications under the present assumptions. The problem is to show that the
operator

Z(g;¢) = (C = NPy +i(¢ = N)Y2¢* PaViapCo VoG 1 Po + 92 PV CoVia P

is invertible in the space B(K,). Since rank P, is finite and Im P,V,,CyV}, P,
is assumed strictly positive in B(P,/,), it follows that there exists ¢ < 0 such
that the numerical range of (¢ — \) P, + ¢?P,VCoVie P, is contained in the
set {z € C|Imz < g?c}. Hence we have invertibility of this operator and a
norm estimate for the inverse of the form cg~2, such that the middle term in
Z(g;¢) can be treated as a perturbation (see also [6] for related arguments).
It now follows from the Feshbach formula and the assumptions that the
limiting absorption principle holds on a small g-independent neighborhood
of A. This proves the result. O

Finally we consider the case when H, has a so-called half-bound state
(or zero-resonance) at A. Motivated by the known results for Schrédinger
operators in dimensions one and three, see e. g. [4, 10, 13|, we assume a
particular form of the singularity of the resolvent.
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Assumption 3.16. Let A\ be a resonance of H,.
(i) Assume that there exists a Hilbert space K,, densely and continuously
embedded in H,, such that for some § > 0 we have an asymptotic expansion

?
(I
for [( — Al <6, Im( > 0, in norm in B(/C,, IC}). Assume that Gy = G} for in
B(K,, ). Assume Q, = (-, ¢)p for some ¢ € ;.

(ii) Assume that Vg, € B(H,, Ky).
(iii) Assume that A € p(Hy).

Ro(C) = Qa + Go +o(1) (3.23)

Under this assumption (3.20) holds. We introduce the real constant

00 = <V;1b00%a£0a @)

Theorem 3.17. Let Assumption 3.16 hold at A € R. Assume that 6y # 0.
Then there exist my > 0, 8y > 0, and &§(g) < g* such that for all g with
0 < |g| < mo we have (A —6;(g), A+ do) Nopp(H(g)) = 0.

Proof. Under the present assumptions the expansion in (3.21) becomes

02

Ta = PVaFo(OViaFta(Q) = To = =337 9)VasColia?
- 92 (VabCOVEJaGO + O(‘C - A|)) .

(3.24)

Thus this time the singular part is

- 9
S(C) = Ia - (C_ZQW<, @)V;zbco‘/;)a@-

We introduce )

N g
k(g;C) = i(C= N2+ g20y°

Then the inverse of S(({) is given by

S(C) =1, — K:(g; C)(: (p>‘/:1b00%a()07

provided { — \ # —g*6?2.
The remainder of the proof is similar to the proof of Theorem 3.12 and
is omitted. O
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4 Further results

There are several other cases which could be considered. It is possible to have
both an eigenvalue and a resonance at a threshold for H,, and furthermore,
an eigenvalue of Hy could also occur at A. It seems that the present technique
is difficult to adapt to these problems. One will have to go through several
stages of decomposition.

We should also mention that the results obtained here, except Theo-
rem 3.15, depend crucially on the self-adjointness of the coefficients (as
we have defined them, see for example (3.1)) in the asymptotic expansions
around a threshold, which means that the threshold is at the bottom of the
essential spectrum. Theorem 3.15 is an example showing how to adapt the
arguments to a case where the threshold is not at the bottom of the essential
spectrum of H(0).

We have modelled our assumptions concerning asymptotic expansion on
a Schrodinger operator —A + V() on L?(R?) for d odd. It is easy to extend
the results cover to the even-dimensional case. One has for such Schrodinger
operators in dimensions d > 6 an expansion of the form

R(() = —%Po — (B2, + BY + ((InC)*BY + CIn B} + CBY +0(C)

as ( — 0. We always have B® P, = B, and generically P, = 0, i. e. zero
is not an eigenvalue, see [8]. In dimension d > 5 there is no zero resonance
(half-bound state). Similar expansions hold in dimensions d = 2,4, but here
additionally the zero resonance may occur. The above abstract arguments
can clearly be adapted to cover this type of expansion.

We note that the method of proof used above can be extended to give
asymptotic expansions of the resolvent of a two-channel Hamiltonian around
a threshold. Some results in this direction have been obtained in [13] in the
case when both H, and H, are one-dimensional Schrédinger operators.

5 Applications

We now give some applications of the results in Section 3.

5.1 The Friedrichs model

We start by an application to the Friedrichs model [7]. Let H, = L*([0, 1])
and H, multiplication by x, which is self-adjoint on its maximal domain. Fix
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s> 1/2 and let
Ko ={f€C([0,1]) [ f(0) = f'(0) =0,
and f' is Holder continuous of order s}
with the norm
£(2) - Fw)
[z —yl°

£l = sup(lf ()] +[f'(z)]) + sup
T TAY

We have in B(/C,, K) the expansion
Rq(¢) = Go — (G2 + 0(C),

where G denotes multiplication by 7!, and G5 multiplication by z72. Let

Hy, = C and H, = 0. Then 0 is a simple eigenvalue of Hy. Furthermore,
let v € Ky, v # 0, be a real-valued function. We define V 5z = v(z)z for
z € Hp and Vi f = fol v(x)f(z)dz for f € H,. Then it is easy to verify that
all conditions in Assumption 3.4 are satisfied. Since

1
1

Qg :/ —|v(x)|*dz > 0,
0z

and since the limiting absorption principle holds for H, in IC,, we can combine
Theorem 3.6 with Remark 3.3 and a covering argument to conclude that for
a given ¢ > 0 there exist an 7y > 0 and a function &(g) < ¢ such that
(—61(9),1 —¢e)Nopp(H(g)) =0 for all g, 0 < |g| < 7.

In this model we can show directly that there is a simple negative eigen-
value for small g. Thus the embedded eigenvalue becomes a discrete eigen-
value in this case. We are looking for solutions to

o () -»(f)

Analyzing the conditions we get

flz)=9—— .
and
1 2
pw=—g° Mdaﬁ. (5.1)
o T—H

A contraction argument shows that (5.1) has a unique solution p(g) < 0 for
g sufficiently small. Furthermore, this solution satisfies

p(g) = —92/0 7|v(j)|2dx +0(g").

Thus this example also shows that the result in Theorem 3.6(i) is optimal.
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5.2 Schrodinger operators

As an example we take the problem of confined channels discussed in [5].
The model considered in that paper is of the form (1.1). We introduce the
following set-up, which agrees with the one considered in [5], up to minor
changes in constants and notation.

Ho =My = L*(R?),
Ha:—A, Hb:—A-i-U(x),
Var(x) = Via(z) = V(z) € L®(R?), real-valued.

We further assume that V(z) = O(|z|®) as |x|] — oo for some 8 > 0.
Here U(z) is a confining potential, meaning that H, has a purely discrete
spectrum, bounded below. As an example one can take U(z) = 2% + wy. By
a suitable choice of wy one of the eigenvalues of H, coincides with zero.

The resolvent R,(¢) has the integral kernel

61'41/2‘3‘_:'!'

dr|z — y|’

Let L**(R®) = L*(R?; (1 + |z|)**dz) denote the weighted space. We assume
that the decay rate satisfies § > 5/2 and fix 5/2 < s < . Then we choose
K. = L**(R?) and use the identification K} = L*» *(R?).

It follows from Taylor’s formula (see [10]) that we have the asymptotic
expansion

Ru(¢) = Go + i¢*Gy — (G2 + o([¢])

as ( = 0, Im¢ > 0, in the norm topology of B(K,, K}). The operators G;
are given by their integral kernels as follows.

1 1 —
Gll -, GQZ |$ y|

Gy: —
O dnm|z —y|’ 47 8

We have now verified the conditions in parts (i) and (ii) of Assumption 3.4.
In order to verify the last part of this assumption, or Assumption 3.8, let P,
denote the projection onto the eigenspace of eigenvalue zero for H,. We are
assuming 0 < rank P, < co. Given our decay assumption on the potential,
the operator V,,GyVy is bounded and strictly positive on H,, as can be
seen using the explicit integral representation and the Fourier transform. It
follows that the operator P,V GV, Py is strictly positive and invertible in
B(P,Hy).
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In the case of a simple eigenvalue we have ap > 0 (see (3.2)), and in the
general case all conditions in Assumption 3.8 are satisfied. Thus the results
in Theorem 3.6(i) or Theorem 3.9 hold for the example under consideration.
Combining these results with the assumed discreteness of the spectrum of
H, and Remark 3.3, we find that if A\; denotes the smallest eigenvalue of
Hy larger than zero, then given ¢ > 0 we can find 7y > 0 such that for
0 < |g| < mo we have (—&(g), \1 — &) Nopp(H(g)) = 0. As above §,(g) =< g°.

The above results can be extended to cover the case H, = —A + W(x),
using the results on asymptotic expansions in [10], provided W has sufficient
decay, and we are in the generic case. Since the results are fairly obvious, we
omit further details.

5.3 Magnetic Schrodinger operators

The results obtained in Section 3 can be applied to a Schrodinger opera-
tor in L?(R3?) with a constant magnetic field and an axisymmetrical electric
potential. Under these assumptions the operator can be represented in a
multi-channel framework. For the lowest Landau level we can fit the prob-
lem into the two-channel framework considered here. It requires considerable
preparation to apply our results. Preliminary results on this case are con-
tained in [13]. Complete results will be published elsewhere.
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