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Normal Inverse Gaussian Processes (NIG), Hyperbolic Processes (HP) and Truncated
L�evy Processes (TLP), and any �nite mixture of independent BM, NIG, HP and TLP. In
contrast to the Gaussian case, for a barrier option, a rebate must be speci�ed not only at
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the �rst barrier has been crossed but the second one has not. We obtain pricing formulas
by solving corresponding boundary problems for the generalized Black-Scholes equation.
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and the theory of pseudo-di�erential operators.
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1. Introduction

Various aspects of pricing of barrier options have been considered in a number of papers and
books, see e.g. Rubinstein and Reiner (1991), Wilmott et al (1995), Musiela and Rutkowski
(1997) and the bibliography there, but to the best of our knowledge only Gaussian processes
have been allowed.
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In the paper, we consider the case when the returns Xt = lnSt on the stock St follow
a L�evy process from a wide class of processes, which we introduced in Boyarchenko and
Levendorski�i (1999, 2000a) under the name Generalized Truncated L�evy Processes. In
a recent paper Barndor�-Nielsen and Levendorski�i (2000), where a generalization of the
class for Feller processes is developed, a new name: "Regular L�evy processes of exponential
type" (RLPE) is suggested, and so we will use the new name.1.
If the L�evy process is neither the Brownian Motion nor the Poisson process, the market

is incomplete. According to the modern martingale approach to option pricing (Delbaen
and Schachermayer (1994)), arbitrage-free prices can be obtained as expectations under
any equivalent martingale measure (EMM), which is absolutely continuous w.r.t. to the
historic measure. We assume that the riskless rate r > 0 is �xed, and EMM Q is chosen
so that under Q, X is a RLPE, and we derive explicit formulas for the prices of barrier
options on the stock with one �xed barrier and touch-and-out options. In forthcoming
papers, we will consider cases of time-dependent barriers and double barrier options (the
latter are considered in e.g. Geman and Yor (1996)).
Notice that in contrast to the Gaussian case, the rebate (if any) must be speci�ed not

only at the barrier but for all values of the stock the other side of the barrier, the reason
being that trajectories of a non-Gaussian L�evy process are discontinuous. In particular,
we calculate the value of an option with the constant or exponentially decaying rebate; our
general formulas give also explicit formulas for options which pay a �xed rebate when the
�rst barrier has been crossed but the second barrier (situated farther than the �rst one)
has not. We also consider touch-and-out options; they can be considered as barrier options
with the constant rebate and 0 terminal payo�, so the treatment is essentially the same
(and even simpler).

The class of regular L�evy processes of exponential type contains, in particular, Brownian
Motions (BM), Normal Inverse Gaussian Processes (NIG), Hyperbolic Processes (HP),
Truncated L�evy Processes (TLP) and any �nite mixture of independent BM, NIG, HP and
TLP. Not only BM, but the other mentioned processes as well have been widely used to
describe the behavior of stock prices in real �nancial markets:
HP were constructed and used by Eberlein and co-authors (Eberlein and Keller (1995),

Eberlein et al (1998), Eberlein and Prause (1999)) hyperbolic distributions were con-
structed by Barndor�-Nielsen (1977));
NIG were introduced by Barndor�-Nielsen (1998) and used to model German stocks by

Barndor�-Nielsen and Jiang (1998); in Eberlein and Prause (1998) and Eberlein (1999),
Generalized Hyperbolic Processes were constructed, which contained NIG and HP as sub-
classes;
TLP constructed by Koponen (1995) were used for modeling in real �nancial markets

by Bouchaud and Potter (1997), Cont et al (1997) and Matacz (1997); a simple general-
ization of this family was constructed in Boyarchenko and Levendorski�i (1999, 2000a) (the
generalization was needed since probability distribution of Koponen's family have tails of

1The second author thanks A.N.Shiryaev for pointing out that the old name was non-informative
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the same rate of exponential decay whereas in real �nancial markets, the left tail is usually
much fatter). Earlier, non-in�nitely divisible truncations of stable L�evy distributions had
been constructed and used to model the behavior of the Standard & Poor 500 Index by
Mantegna and Stanley (1994, 1997).

In the name of the class under consideration, "Of exponential type" means that tails of PDF
are exponentially decaying, and "regular" indicates that generators of these processes enjoy
very favorable features from the point of view of the theory of pseudo-di�erential operators
(PDO); roughly speaking, regular L�evy processes are the best class one can �nd if the
Brownian Motion is not available. (We recall the de�nition of PDO in Section 2; for basic
facts of the theory of PDO, see Eskin (1973) and Taylor (1981).) This is important since
PDO-technique is very powerful. We applied it in Boyarchenko and Levendorski�i (2000a,
2000b), where we obtained explicit analytical formulas for perpetual American options,
showed that the smooth �t principle failed in some cases, and suggested a substitute for
it. Later, Mordecki (2000) has obtained pricing formulas for perpetual American puts
and calls by using the probabilistic technique, but without explicit analytic formulas for
processes observed in Financial Markets; his method allows one neither to notice the failure
of the smooth �t principle nor suggest a substitute for it.
By using the Dynkin formula, we reduced the optimal stopping problem to a free bound-

ary problem, and to solve the latter, we used the Wiener-Hopf factorization technique in
the form of Eskin (1973). In this paper, we use the relation between the resolvent of a
strongly measurable strong Markov process and its in�nitesimal generator to reduce the
pricing problem to the corresponding boundary problem for the generalized Black-Scholes
equation; the latter is solved by means of the Wiener-Hopf factorization technique, the
representation theorem for analytical semigroups Yosida (1964) and the theory of PDO,
and in the end we obtain explicit pricing formulas for barrier options and touch-and-out
options.
Our technique cannot be directly applied to Variance Gamma Processes used by Madan

and co-authors in a series of papers during 90th (see Madan (1999), Madan et al (1998)
and the bibliography there).

Notice that if X is a process of any of classes listed above, it belongs to the same class
under the Esscher transform of the historic measure, which was used e.g. by Madan and
co-authors and Eberlein and co-authors. In Boyarchenko and Levendorski�i (1999a) we have
shown that if X is a RLPE, then it remains a regular L�evy process of exponential type
under EMM from a wide class. It justi�es our standing assumption below that X is a
RLPE under a chosen EMM.

The plan of the paper is as follows. In Section 2, we reduce the pricing problem of a
contingent claim to the corresponding boundary problem for the Generalized Black-Scholes
equation, and give the schemes of the solution of these problems for some barrier options
and touch-and-out options. Notice that this part is valid for any strongly measurable strong
Markov process, and constructions in the rest of the paper can be modi�ed and used in the
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case of L�evy-like Feller processes introduced in Barndor�-Nielsen and Levendorski�i (2000),
the di�erence being that here the in�nitesimal generator of the (L�evy) process is a PDO
with the constant symbol (i.e. the symbol depends only on the dual variable), and the
symbol of a L�evy-like Feller process is a PDO with the non-constant symbol (i.e. with a
non-trivial dependence on the state variable).
In Section 3, we give the de�nition of regular L�evy processes of exponential type and

examples, and consider the action of the "generalized Black-Scholes operator" in Sobolev
spaces. In Section 4, we prove the Wiener-Hopf factorization formula with the parameter
and give formulas (in terms of PDO) for the solutions of the boundary problems which
are needed in Sections 5{7, where we explicitly calculate prices of down-and-out barrier
options without the rebate (Section 5), down-and-out barrier options with the rebate and
the touch-and-out put (Section 6), and up-and-out options and the touch-and-out call
(Section 7). Section 8 concludes, and in Section 9, we prove some auxiliary technical
estimates.

2. Pricing of Contingent Claims and Boundary Problems for Generalized

Black-Scholes Equation

2.1. Reduction to boundary problems for the Generalized Black-Scholes equa-
tion. Consider a model market of a bond yielding the riskless rate of return r > 0, and a
stock, which price at time t is denoted by St = expXt. We assume that X = fXtg is a

L�evy process under a chosen equivalent martingale measure Q. Let LQX be the in�nitesimal
generator of the transition semigroup of fXtg under Q. Consider a contingent claim; its
price at time t we denote by f(t; Xt). Denote by C the continuing observation region for the
claim; e.g. for a down-and-out call option with the expiry date T and the barrier H = eh,
C = [0; T )� (h;+1). By the analogy with the initial Merton-Black-Scholes approach, we
are going to derive an equation (generalized Black-Scholes equation), which the function f
obeys on C, and by adding appropriate boundary conditions, which specify a given claim,
we obtain a well-posed problem. By solving the problem, we �nd f(t; Xt), the price of
the contingent claim. Though the set-up is similar to the initial one, the technique di�ers
signi�cantly at some steps since we no longer live in the Gaussian world; in particular, it
is simpler to use not the It�-Meyer formula but the relation between the generator of the
process and the resolvent, and it is necessary to use the Wiener-Hopf factorization method
and the representation theorem for analytical semigroups. At the same time, the technique
we use here produces answers in the Gaussian case as well.
Introduce a two-dimensional process ~Xt = (t; Xt) on the state space ~E = [0; T ]�R; its

generator is ~L = @t + LQX . Set
~E0 := ~E n C, and notice that for ~Xt 2 ~E0, the value f( ~Xt)

of the contingent claim is speci�ed by the contract; denote it ~g( ~Xt), and for ~Xt 2 C, set
~g( ~Xt) = 0. Let �0 be the hitting time of ~E0. If the contingent claim is a local martingale
under Q, we must have

f = ~Rr(r~g);
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where

( ~Rr~g)(~x) = EQ
�Z 1

0

e�rt~g( ~Xt^�0)dt j ~X0 = ~x

�
is the resolvent of the process ~X stopped at �0. We will see that for touch-and-out op-
tions and barrier options with the suÆciently regular rebate, e.g. the constant rebate or
exponentially decaying one, the following conditions hold
(i) ~g is non-negative;
(ii) there exists a pointwise non-decreasing sequence f~gng of suÆciently regular functions

converging pointwise to ~g;
(iii) "suÆciently regular" means that fn = ~Rr(r~gn) belongs to C0( ~E) and satis�es

(2.1) (r � ~L)fn = ~gn:

Eq. (2.1) means that fn is a solution to the "generalized Black-Scholes equation"

(2.2) (@t + LQX � r)f(t; x) = 0; 8 (t; x) 2 C;

of the class C0([0; T ]�R), satisfying the boundary condition

(2.3) f(t; x) = ~gn(t; x); 8 (t; x) 2 ~E0:

We will �nd the explicit form of the solution fn of the problem (2.2){(2.3) for each type
of the touch-and-out options and some types of barrier options (provided ~gn is suÆciently
regular){other types can be considered similarly{and after that �nd

(2.4) f(0; x) = lim
n!1

fn(0; x):

Equality (2.4) follows from (i){(iii) and the Lebesgue theorem.
To explain the logic of the auxiliary constructions in Sections 3 and 4, here we consider

informally: �rst, the down-and-out call option with the constant rebate, the case without
the rebate being a special case, and then the touch-and-out put option; other types of
barrier options and the touch-and-out call option can be considered similarly.
Consider a down-and-out call option with the time-independent barrier H, the strike

price K and the terminal date T . The payo� at expiry equals maxfST �K; 0g, provided
that St = expXt never falls below H = eh during the life of the option. If St ever reaches
H or falls below it, then either the option becomes worthless: f(t; Xt) = 0 if t � T and
Xt � h, or an option owner is entitled to some rebate gr(t; Xt). Notice that unlike in the
Gaussian case, we must specify f not only at the barrier but everywhere below the barrier
as well, the reason being that the trajectories of the process are no longer continuous.
Without loss of generality, we may assume that H = 1 and hence, h = lnH = 0.
Thus, ~g(t; x) is given by

(2.5) ~g(T; x) = gT (x) := maxfex �K; 0g; x > 0;

(2.6) ~g(t; x) = gr(t; x); x � 0; t 2 [0; T ]:
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For simplicity, we assume that gr(t; x) = gr0e
�x, where � � 0 (more general rebates can

also be considered). Construct a pointwise increasing sequence f�ng � C1
0 ((0;+1)),

converging pointwise to 1(0;+1), set q = maxflnK; 0g, gTn (x) = gT (x)�n(q + x), grn(x) =
gr(t; x)�n(�x), and de�ne the approximating sequence f~gng by (2.5) and (2.6) with g

T
n and

grn in the RHS, respectively. Clearly, gTn 2 C1
0 ((0;+1)) and grn 2 C1

0 ([0; T ] � (�1; 0)),
therefore ~gn is as regular as one may only wish. In particular, fn := ~Rr~gn is continuous
and bounded, and hence, it is the unique continuous bounded solution of the problem
(2.2){(2.3) (see e.g. Breiman (1968), p.342). It remains to �nd any fn 2 C0(R) (in the
sense: �nd an analytic expression), which solves the problem (2.2){(2.3), for all n, and
compute the limit (2.4).
Write the boundary condition (2.3) as the pair of conditions

(2.7) f(T; x) = gTn (x); x > 0;

(2.8) f(t; x) = grn(x); t 2 [0; T ]; x � 0;

and look for the solution to the problem (2.2), (2.7){(2.8) in the form

(2.9) fn(t; x) = grn(x) + un(x) + vn(T � t; x);

where un 2 C0(R) solves the problem

(2.10) �(r � LQX)u(x) = (r � LQX)g
r
n(x); x > 0;

(2.11) u(x) = 0; x � 0;

and v 2 C0([0; T ]�R) solves the problem

(2.12) (@� + r � LQX)v(�; x) = 0; � > 0; x > 0;

(2.13) v(0; x) = gTn (x)� un(x); x > 0;

(2.14) v(�; x) = 0; � � 0; x � 0:

Remark 2.1. Notice that the constructions above are valid for any strongly measurable
strong Markov process.

The problem (2.10){(2.11) is an analog of the Dirichlet problem for an elliptic di�erential
operator (in the Gaussian set-up, this is the Laplacian perturbed by an operator of the �rst
order) on a half-axis, and the problem (2.12){(2.14) is an analog of the Cauchy problem
for a parabolic operator, with the Dirichlet boundary condition. In the case of a non-
gaussian L�evy process, the elliptic part, A := r � LQX , is not a di�erential operator but
an integro-di�erential operator (another name: pseudo-di�erential operator { PDO). The
standard technique of the theory of di�erential operators is no longer applicable, and the
adequate technique is the Wiener-Hopf factorization; to study the problem for the parabolic
equation, one needs the representation theorem for analytic semigroups Yosida (1964), and
the Wiener-Hopf factorization with the parameter. All these auxiliary constructions and
results are collected in Sections 3 and 4.
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The touch-and-out put option is essentially the barrier down-and-out call but with the
zero terminal payo� and the constant rebate gr(t; x) = 1. To be more speci�c, the problems
for the touch-and-out put option with the strike price K = 1 can be obtained by letting in
the constructions above gT (x) = 0; gr(t; x) = 1.
Before proceeding further, we make an important remark on the last step, namely,

the calculation of the limit. un and vn, hence, fn will be found with the help of the
theory of PDO and the Wiener-Hopf factorization, hence, by using the Fourier transform;
the resulting formula involves oscillating integrals (which do not converge absolutely),
and so the passage to the limit is non-trivial. To simplify this problem, we construct
the approximating sequences so that they converge in appropriate Sobolev spaces (the
de�nitions and basic properties are listed in Section 3), and general boundedness theorems
on the action of PDO in the scale of Sobolev spaces can be applied to show that the limit
of the sequence fn, call it temporarily F , exists in the sense of the theory of generalized
functions, and can be de�ned by exactly the same expression as fn, with ~g substituted
for ~gn. Moreover, by using the Sobolev embedding theorem, we will be able to prove that
F is continuous on C. Since we know that fn is non-decreasing sequence of continuous
functions, converging pointwise to f , f is its limit in the sense of generalized functions.
Hence, f = F , and to �nish the calculation of the price of the down-and-out call option,
it remains to calculate oscillating integrals in formulas involving PDO. We write them
down and simplify to certain extent in Sections 5{7; further simpli�cations leading to more
e�ective computational procedures are possible but they are very lengthy.
The same procedure applies to options of other types.

2.2. The Generalized Black-Scholes equation as a pseudo-di�erential equation.
Recall that the characteristic exponent of a L�evy process under a measure Q is de�ned
by EQ[ei�Xt] = e�t 

Q(�) (for basic de�nitions and results of the theory of L�evy processes,
see e.g. Bertoin (1996) and Sato (1999)). In our previous papers, we used the de�nition

EQ[e�i�Xt] = e�t 
Q(�), since in the theory of PDO, the standard de�nition of the Fourier

transform û of a function u is

(2.15) û(�) =

Z +1

�1

e�ix�u(x)dx;

this lead to the uncomfortable appearance of the minus sign in many places, and so we
decided to switch to the de�nition of the characteristic exponent common in Probability
Theory; but we use (2.15) as the de�nition of the Fourier transform.

By using the integro-di�erential representation of LQX :

LQXf(x) =
�2

2
f 00(x) + bf 0(x) +

Z +1

�1

(f(x + y)� f(x)� f 0(x)y1[�1;1](y))F (dy);

where (�2; b; F (dy)) is the characteristic triplet of Xt, and the L�evy-Khintchine formula

 Q(�) =
�2

2
�2 � ib� +

Z +1

�1

(1� ei�y + i�y1jyj�1(y))F (dy);



BARRIER OPTIONS AND TOUCH-AND-OUT OPTIONS 9

we obtain that LQX acts on oscillating exponents as follows:

(�LQX)e
ix� =  Q(�)eix�:

By using the Fourier inversion formula and this equality, we conclude that for a suÆciently
regular u,

(�LQX)u(x) = (2�)�1

Z +1

�1

eix� Q(�)û(�)d�:

This means that �LQX is a pseudo-di�erential operator with the symbol  Q(�):

�LQX =  Q(D):

Recall that a pseudo-di�erential operator with the symbol a = a(x; �) is de�ned by

(2.16) a(x;D)u(x) = (2�)�1

Z +1

�1

eix�a(x; �)û(�)d�:

When the symbol is independent of the state variable, x, one writes a(D) and calls a a
PDO with the constant symbol.
Now we can rewrite the generalized Black-Scholes equation in variables � = T � t; x as

follows

(2.17) @�f + (r +  Q(Dx))f = 0:

Remark 2.2. If X belongs to the class of L�evy-like Feller processes introduced in Barndor�-
Nielsen and Levendorski�i (2000), we obtain �LQX =  Q(x;Dx); it is a PDO with the
non-constant symbol  Q(x; �).

Properties of a pseudo-di�erential equation (2.17) strongly depending on the properties
of the symbol r+ Q(�), we can proceed further only after a class of characteristic exponents
(equivalently, a class of L�evy processes) is speci�ed.

3. Regular L�evy Processes of Exponential Type and main properties of

the Generalized Black-Scholes equation

3.1. De�nition of regular L�evy processes of exponential type. In Boyarchenko and
Levendorski�i (1999), we have shown that for wide classes of L�evy processes X used in em-
pirical studies of �nancial markets, characteristic exponents (both under a historic measure
and under EMM from wide classes) satisfy the conditions of the following de�nition.

De�nition 3.1. Let there exist constants c > 0, � 2 (0; 2], � 0 < �, � 2 R, �� < 0 � �+,
and C such that

(3.1)  (�) = �i�� + �(�);

where � admits the analytic continuation from R into a strip =� 2 (��; �+), and the con-
tinuous extension up to the boundary of the strip, and satis�es the following two estimates:
for all � in a strip =� 2 [��; �+]

(3.2) j�(�)� cj�j�j � Ch�i�
0

;
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where h�i = (1+ j�j2)1=2, and for any [�0�; �
0
+] � (��; �+) and all � in a strip =k 2 [�0�; �

0
+]

(3.3) j�0(�)j � Ch�i��1;

where C depends on [�0�; �
0
+] but not on �.

We say that X is a regular L�evy process of order � and exponential type [��; �+].

Remark 3.2. a) We have modi�ed the de�nition from Boyarchenko and Levendorski�i (1999,
2000a) in order to allow for a di�usion component, simplify a bound (3.2), and allow for
the left tail to decay slower than exponentially. A bound (3.3) is introduced in order to
obtain uniform estimates for the resolvent in Section 3.
b) In order that the stock itself can be priced under EMM Q,  Q(�i) must be well-

de�ned, and hence, we must have �� � �1.
c) If necessary for applications, one can generalize (3.2):

�(�) � c�j�j
� +O(j�j�

0

);

as <� ! �1 in the strip, where <c� � 0. This generalization allows for a signi�cant
asymmetry in the central part of PDF. If <c� > 0, all the results below holds, only formulas
for exponents �� and the factor d in the construction of the factors in the Wiener-Hopf
factorization formula in Section 4 change (see the proof of Theorem 6.1 in Eskin (1973)).

Example 3.1. A model class of NIG can be described by characteristic exponents of the
form

 (�) = �i�� + c[(�2 � (� + i�)2)1=2 � (�2 � �2)1=2];

where � > j�j > 0. Clearly, (3.1){(3.3) hold with � = 1, � 0 = 0, and �� = �� + �; �+ =
� + �. Thus, NIG are processes of order 1.

Example 3.2. Hyperbolic Processes are also processes of order 1. In the symmetric case, a
hyperbolic process can be de�ned by

EQ[ei�X1 ] =
�

K1(�Æ)

K1(Æ
p
�2 + �2)p

�2 + �2
;

where K1 is the modi�ed Bessel function of third kind and order 1, and �; Æ > 0.
NIG and HP can be obtained from pure di�usions by subordination Barndor�-Nielsen

(1998) and Eberlein (1999), which has a natural economic interpretation: the Brownian
Motion in the random "business time" { see e.g. general discussion in Geman et al. (1998)
(for di�erent processes).

Example 3.3. Truncated L�evy processes of Koponen's (1995) family provide examples of
processes of order � 2 (0; 2); � 6= 1 with ��� = �+; a generalization of this family con-
structed in Boyarchenko and Levendorski�i (1999, 2000a) provides examples of processes of
order � 2 [0; 2) with arbitrary ��; �+. This is important since for processes in real �nancial
markets, the left tails are fatter than the right ones, and Koponen's family can contain
processes with asymmetric PDF only when PDF are asymmetric in the central part as
well, whereas PDF observed in real �nancial markets are approximately symmetric in the
central part.
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If � 2 (0; 2); � 6= 1, c > 0, then for a TLP X of order �,  is of the form

 (�) = �i�� + c�(��)[��+ � (�+ + i�)� + (���)
� � (��� � i�)�]:

Clearly, (3.1){(3.3) holds; an example satisfying not (3.2) but its modi�cation in Remark
3.1 c) is

 (�) = �i�� + d+�(��)[�
�
+ � (�+ + i�)�] + d�[(���)

� � (��� � i�)�];

where d+ 6= d� are positive.

Example 3.4. If in Examples 3.1{3.3, we add a di�usion component or consider a pure
di�usion, we obtain a process of order 2.

Clearly, any �nite mixture of independent RLPE is a RLPE.

Remark 3.3. a) In Boyarchenko and Levendorski�i (1999), we used a de�nition, which re-
garded Variance Gamma Processes (VGP) as RLPE of order 0. Notice that our construc-
tions below do not apply to VGP, and this is the reason why we exclude VGP here.
b) A convenient feature of a class of HP is its closedness under the Esscher transform,

and the same holds for NIG, VGP and TLP.

In the next lemma, an important property of the characteristic exponent of a RLPE is
derived.

Lemma 3.4. Let (3.1) and (3.2) hold. Then there exist !� < 0 � !+ and Æ > 0 such that

(3.4) < Q(� + i�) + r � Æ; 8 � 2 R; � 2 [!�; !+]:

Proof. Set MQ
1 (�) =

R +1

�1
e��xpQ1 (x)dx. By di�erentiating twice, we conclude that MQ

1 is

convex, and clearly, MQ
1 (0) = 1 < er. Hence, there exist !� < 0 � !+ and Æ > 0 such that

for all � 2 [!�; !+], M
Q
1 (�) � er�Æ.

Now, for any � 2 R, and these �,

exp(�< Q(� + i�)) = j exp(� Q(� + i�))j =

=

����Z +1

�1

ei�x��xpQ1 (x)dx

���� � Z +1

�1

e��xpQ1 (x)dx;

therefore (3.4) holds. Notice that if �+ > 0, we can choose !+ > 0. �

Main properties (3.1){(3.4) of the symbol a(�) = r +  Q(�) of the stationary part of
the generalized Black-Scholes operator in the LHS of (2.17) having been stated, we can
study its action in appropriate scales of normed spaces; this is a necessary component of
the theory of boundary problems for PDO.
In the following three subsections, we list main standard results of the theory of PDO

(see e.g. Eskin (1973), Ch.3{4). The reader should be aware of the following systematic
di�erences: the monograph Eskin (1973) is chosen as a reference book on PDO since in
many respects its exposition is simpler than in later monographs on the subject but it uses
the di�erent de�nition of the Fourier transform, which has become obsolete in the theory
of PDO. In the result, to establish the correspondence between the results in Eskin (1973)
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and their counterparts here, the lower half-plane of the complex plane must be replaced
with the upper one and visa versa, etc.

3.2. Action of PDO in the Sobolev spaces on R. We use the following standard
notation: S(R) denotes the space of C1-functions decaying at the in�nity faster any
power of jxj, together with all their derivatives. The topology in S(R) is de�ned by a
system of seminorms

jjujjS;s;N = sup
k�s

sup
x2R

ju(s)(x)hxiN j;

where N; s � 0 are integers. By Lemma 2.1 in Eskin (1973), the Fourier transform de�ned
by (2.15) is an isomorphism of S(R).
A functional � over S(R) is called linear if for any �1; �2 2 C and f1; f2 2 S(R),

(�; �1f1 + �2f2) = �1(�; f1) + �2(�; f2):

The space of continuous linear functionals in S(R) is denoted by S 0(R). Its elements are
called distributions or generalized functions. A � 2 S 0(R) is called regular, if it can be
identi�ed with a locally integrable function F , growing not faster than a polynomial at the
in�nity:

(�; f) =

Z +1

�1

F (x) �f(x)dx:

The action of the Fourier transform F in S 0(R) is de�ned by duality

(F�;Ff) = 2�(�; f); 8 f 2 S(R):

It is a continuous operator in S 0(R).

De�nition 3.5. Let s be real. A generalized function u belongs to the Sobolev space Hs(R)
if and only if the norm

(3.5) jjujjs =

�Z +1

�1

h�i2sjû(�)j2dk

�1=2

is �nite.

>From (3.5), one easily deduces several simple but important properties of the Sobolev
spaces.

Lemma 3.6. a) H0(R) = L2(R);
b) for s > s0, Hs(R) is continuously embedded in Hs0(R);
c) if s � 0 is an integer, an equivalent norm in Hs(R) can be de�ned by

jjujj0s =

 X
m�s

jjDmujj2L2

!1=2

:

If f is a regular functional de�ned by a locally integrable function f(x), suppf is the
complement to the maximal open set on which f(x) = 0 a.e. Let J � R be an open set.
C1

0 (J) denotes the space of C1-functions with the support in J , and S(J) denotes the
closure of C1

0 (J) in S(R).
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Lemma 3.7. (Eskin (1973), Theorem 4.1.) For any s, C1
0 (R) is a dense subset of Hs(R).

De�nition 3.8. Let m 2 R. We write a 2 Sm(R) if there exists C such that for all � 2 R,

(3.6) ja(�)j � Ch�im:

For a 2 Sm(R), one de�nes the action of a PDO A = a(D) by (2.16).

Theorem 3.9. Let m; s 2 R, and let a 2 Sm(R). Then a(D) : Hs(R) ! Hs�m(R) is
bounded, with the norm bounded by a constant C in (3.6).

Proof. Under the Fourier transform, the action of PDO a(D) becomes the multiplication
by a(�), hence (3.5) and (3.6) gives the necessary estimate. �

The next de�nition and theorem (the Sobolev embedding theorem { see e.g. Eskin
(1973), Theorem 4.3) show that C0{ estimates can be derived from the ones in the scale
of Sobolev spaces. This observation allows us to work in a simpler scale of spaces though
it is possible to develop a similar theory for action of PDO in H�older spaces; this requires
additional restrictions on a class of symbols (see e.g. Taylor (1981)).

De�nition 3.10. Let s � 0 be an integer. Cs(R) denotes the space of functions continuous
together with all the derivatives up to order s, and Cs

0(R) denotes its subspace consisting
of functions vanishing at the in�nity together with all the derivatives up to order s.

Theorem 3.11. Let s > 1=2, and 0 � s0 < s� 1=2. Then the embedding Hs(R) � Cs0

0 (R)
is continuous.

De�nition 3.12. We say that a is elliptic, if and only if a 2 Sm(R) and there exists c > 0
such that for all �,

(3.7) ja(�)j � ch�im:

Remark 3.13. Usually one says that a is elliptic if (3.7) is satis�ed outside some compact.

Theorem 3.14. Let m; s 2 R, and let a 2 Sm(R) be elliptic. Then a(D) : Hs(R) !
Hs�m(R) is invertible, with the (bounded) inverse a(D)�1.

Proof. It follows from (3.7), that a�1 2 S�m(R), hence by Theorem 3.9, a(D)�1 : Hs�m(R)!
Hs(R) is bounded. Under the Fourier transform, the action of PDO a(D) becomes the
multiplication by a(�), hence a(D) and a(D)�1 are mutual inverses. �

3.3. Properties of the elliptic part of the Generalized Black-Scholes equation as
an operator on R. If � � 1 or � = 0, then from (3.1), (3.2) and (3.4), we conclude that
there exist C1; c1 > 0 such that a(�) := r +  Q(�) satis�es, for all � 2 R,

(3.8) <a(�) � c1h�i
�;

and

(3.9) j=a(�)=<a(�)j � C1:
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Consider A = r +  Q(D) as an unbounded operator in H0(R) = L2(R) with the domain
H�(R). >From (3.8), it follows that <A is positive de�nite: for any u 2 Hs(R),

(<Au; u)0 � c1jjujj
2
0; 8 u 2 L2(R);

and from (3.9), (<A)�1=A is bounded. This means that A is a strongly elliptic PDO, and
therefore (2.17) is an analogue of the parabolic equation. If � 2 (0; 1) and � 6= 0, then one
can reduce (2.17) to a parabolic equation by changing coordinates x0 = x + �� but this
spoils the time-independent boundary for barrier options and touch-and-out options. This
observation means, in particular, that in cases of time-dependent barriers, processes of the
order � 2 [1; 2] are more tractable than the ones of the order � 2 (0; 1).

3.4. Action of PDO in weighted Sobolev spaces on a half-line. Let J � R be
an open set. We say that f is a distribution on J , if f is a continuous linear functional
in S(J). The space of continuous linear functionals in S(J) is denoted by S 0(J). Let
f 2 S 0(R). The functional fJ 2 S

0(J) is called the restriction of f on J if (f; u) = (fJ ; u)
for all u 2 S(J). The restriction operator will be denoted pJ , hence, fJ = pJf . Since S(J)
is a closed subspace of S(R), any f 2 S 0(J) admits an extension lf 2 S 0(R) (clearly, an
extension is non-unique).
We say that f equals zero on J , if fJ = 0. Since C1

0 (J) is dense in S(J), fJ = 0 i�
(f; u) = 0 for all u 2 C1

0 (J). Let J be the maximal open set on which f = 0. Then
the complement to J is denoted by suppf and called the support of f . If f is a regular

functional, this de�nition coincide with the one given earlier.
o

H
s

(R�) denotes a subspace
of Hs;
(R) consisting of distributions f with suppf � R�.

Lemma 3.15. (Eskin (1973), Lemmas 4.2 and 4.3).
o

H
s

(R�) is equal to the closure of
C1

0 (R�) in H
s(R).

Theorem 3.16. (Eskin (1973), Theorem 4.4). a) If a 2 Sm(R) admits the analytic
continuation into the lower half-plane =� < 0 and satis�es an estimate (3.6) in the closed

half-plane =� � 0, then a(D) :
o

H
s

(R+)!
o

H
s�m

(R+) is bounded.
b) If a 2 Sm(R) admits the analytic continuation into the upper half-plane =� > 0 and

satis�es an estimate (3.6) in the closed half-plane =� � 0, then a(D) :
o

H
s

(R�)!
o

H
s�m

(R�)
is bounded.

Denote by �+ (resp., ��) the-multiplication-by-1[0;+1)(x) (resp., 1(�1;0](x)) operator.
Clearly, they are well-de�ned on S(R).

Theorem 3.17. (Eskin (1973), Theorem 5.1) For jsj < 1=2, �� admits a unique continu-

ous extension �� : Hs(R)!
o

H
s

(R�).

Lemma 3.18. (Eskin (1973), Lemma 5.4) For jsj < 1=2, any function f 2 Hs(R) admits

a unique representation f = f+ + f�, where f� 2
o

H
s

(R�), and f� = ��f .
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De�nition 3.19. Let J � R be an open set. One writes f 2 Hs(J) if f is a distribution on
J , which admits an extension lf 2 Hs(R). The norm in Hs(J) is de�ned by

jjf jjJ ;s = inf jjlf jjs;

where in�mum is taken over all extensions lf 2 Hs(R).

Set p� = pR�. It maps Hs(R) onto Hs(R�).

Theorem 3.20. (Eskin (1973), Lemma 4.6) a) If a 2 Sm(R) admits the analytic contin-
uation into the lower half-plane =� < 0 and satis�es (3.6) in the closed half-plane, then
the operator

Hs(R�) 3 u 7! p�a(D)lu 2 Hs�m(R�)

is well-de�ned and bounded.
b) If a 2 Sm admits the analytic continuation into the upper half-plane =� > 0 and satis�es
(3.6) in the closed half-plane, then the operator

Hs(R+) 3 u 7! p+a(D)lu 2 Hs�m(R+)

is well-de�ned and bounded.

Lemma 3.21. (Eskin (1973), Lemma 4.5.) If s � 0 is an integer, an equivalent norm in
Hs(R�) can be de�ned by

(3.10) jjujj0R�;s =

 X
j�s

jjDjujj2L2(R�)

!1=2

:

The following theorem is a special case of general interpolation theorems (see e.g. Triebel
(1978), Section 2.10.1); it is valid for other scales, Hs(R) in particular, but here we need
only this special case.

Theorem 3.22. For any m > 0, L2(R�) = H0(R�) and Hm(R�) form an interpo-
lation pair, and for any s 2 (0; 1), Hsm(R�) is the interpolation space: Hsm(R�) =
[H0(R�); H

m(R�)]s. This means, in particular, that

jjujjHsm(R�) � Cs
�
jjujjL2(R�)

�1�s �
jjujjHm(R�)

�s
;

where Cs is independent of u 2 Hm(R�).

e�u denotes the-extension-by-zero operator of regular functionals from R�: e�u(x) = 0
for all �x < 0. >From Theorem 3.17 and Lemma 3.18, the following lemma is immediate.

Lemma 3.23. Let jsj < 1=2. Then
e� extends from p�S(R) to a bounded operator e� : Hs(R�)! Hs(R);

e�(H
s(R�)) can be identi�ed with

o

H
s

(R�), and

p�

� o

H
s

(R�)
�
can be identi�ed with Hs(R�).
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If the Fourier transform û of a regular functional u 2 Hs(R+) is given, one can try to
�nd u by using formally the integration by part: for x > 0Z +1

�1

eix�û(�)d� = �x�1

Z +1

�1

eix�D�û(�)d�:

If one ends with the absolutely converging integral, one gets a formula for u. This procedure
is called a regularization of oscillatory integrals; we will use it on the �nal stage of the
calculation of the prices of options in Sections 5{7.

4. Generalized Black-Scholes equation on a half-axis

In this Section, we solve problems (2.10){(2.11) and (2.12){(2.14) when X is a regular
L�evy process of order � 2 (0; 2] and the exponential type [��; �+], where �� � �1 < 0 �
�+. We modify some constructions and results of Ch. 6, 7 in Eskin (1973).

4.1. The Wiener-Hopf factorization. Factorization of a(�) = r +  Q(�) can be done
for any L�evy process (see e.g. Theorem 45.1 in Sato (1999)) though without the explicit
formulas for the factors; in Boyarchenko and Levendorski�i (2000a, 2000b), explicit formulas
are derived for any RLPE, and by using them, one can explicitly solve the problem (2.10){
(2.11). To be able to apply the representation theorem for analytical semigroups and
solve the problem (2.12){(2.14), one needs certain estimate for the resolvent, which can be
obtained only under the following additional condition on � in (3.1):

(4.1) if � 2 (0; 1); then � = 0:

>From now on, we add (4.1) to the list of standing assumptions (3.1){(3.3) on the process
X. For � 2 (0; �), set �� = f� 2 C j arg � 2 [��; �]g, and let !� < 0 � !+ be the same
as in Lemma 3.1.

Lemma 4.1. There exists c1 > 0 and � 2 (�=2; �) such that if =� 2 [!�; !+], and � 2 ��,

(4.2) j�+ a(�)j � c1(1 + j�j+ j�j�):

Proof. Fix C1 > 0 and � > 0, and consider domains

U�(C1; �) = f(�; �) j j�j � C1(1 + j�j�); arg� 2 (��=2� �; �=2 + �); =� 2 [!�; !+]g;

U+(C1) = f(�; �) j j�j � C1(1 + j�j�); � 2 C; =� 2 [!�; !+]g:

On U+(C1), it suÆces to prove (4.2) without j�j in the RHS. From (3.1), (3.2), (3.4) and
(4.1) it follows that there exists C0 such that

ja(�)j � C0(1 + j�j)�;

and hence if C1 is suÆciently large, we obtain j� + a(�)j � j�j=2; thus, any � �ts. On
U�(C1; �), it suÆces to prove (4.2) without j�j in the RHS. >From (3.1), (3.2), (3.4) and
(4.1) it follows that for any C1 we can �nd suÆciently small � and c1 = c1(C1; �) such that
for indicated (�; �),

<(�+ a(�)) � c1(1 + j�j�):

Hence, (4.2) holds with � = �=2 + �. �
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Fix a branch of ln by a requirement: ln y is real for y > 0, set �0 = 1 � !� + !+ and
��(�; �)

s = (�0+ j�j
1=�� i�)s = exp[s ln(�0+ j�j

1=�� i�)], and choose d > 0 and ��; �+ 2 R
so that

(4.3) B(�; �) := d�1�+(�; �)
��+��(�; �)

���(�+ a(�))

satis�es for all � 2 ��, � 2 R and � 2 [!�; !+]

(4.4) lim
�!�1

B(�; � + i�) = 1;

and b(�; � + i�) = lnB(�; � + i�) is well-de�ned for these �; �; �.
Choices of d; �+ and �� depending on properties of B, hence on �; � and c in (3.1){(3.2),

we have to consider two cases:
1) If � 2 (0; 2]; � 6= 1, we set d = c; �� = �+ = �=2;
2) If � = 1, we set d = (c2 + �2)1=2; �� = 1=2� ��1 arctan(�=c).
In the �rst case, (4.4) immediately follows from (3.1){(3.2), and if � = 1, then the

simplest way to prove (4.4) is to check that lnB(�; � + i�)! 0 as � ! �1:

lim
�!�1

lnB(�; � + i�) = �
�i

2
�+ �

�i

2
�� + ln

c� i�

(c2 + �2)1=2
=

= �(�+ � ��)
�i

2
� i arctan

�

c
= 0:

Lemma 4.2. For any � 2 �� and � 2 (!�; !+), the winding number around the origin of
the curve fB(�; � + i�) j �1 < � < +1g is zero:

(4.5) (2�)�1

Z �=+1

�=�1

d argB(�; � + i�) = 0:

Proof. Due to (4.4) and (4.3), the LHS in (4.5) is an integer. From (4.2), B(�; �) 6=
0 8 � 2 �� and � in a strip =� 2 [!�; !+], hence this integer is independent of � 2 ��
and � 2 [!�; !+]. With � = 0 and =� = �, the last factor in (4.3) assumes values in a
half-plane <z > 0 by (3.4), and the same is true of the product of the �rst three factors,
since the �rst one is positive, ��(�; �) and �+(�; �) assume values in the same half-plane
but in di�erent quadrants, and 0 < �� � 1. Hence, for all � in a strip =� 2 [!�; !+],
�� < argB(0; �) < �, and therefore, (4.5) holds. �

Under condition (4.5), b(�; �) := lnB(�; �) is well-de�ned on �� � f� j =� 2 [!�; !+]g.
Next, for real �, � > !� and �1 2 (!�; �), we set

(4.6) b+(�; � + i�) = �(2�i)�1

Z +1+i�1

�1+i�1

b(�; �)

� + i� � �
d�;

and for real �, � < !+ and �2 2 (�; !+), we set

(4.7) b�(�; � + i�) = (2�i)�1

Z +1+i�2

�1+i�2

b(�; �)

� + i� � �
d�:

By the Cauchy theorem, b�(�; � + i�) are independent of choices of �1 and �2.
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It follows from (3.1), (3.2), (4.4) and (4.5), that there exist C; � > 0 such that for all �
in a strip =� 2 [!�; !+],

jb(�; �)j � C(1 + j�j)��;

where C depends on � but not on � (and � > 0 is independent of � and �). Hence, the
integrals in (4.6) and (4.7) converge, and b�(�; �) is well-de�ned and holomorphic in a
half-plane �=� > �!�: In Section 8, we will prove the following lemma.

Lemma 4.3. For any [!0�; !
0
+] � (!�; !+), there exists C > 0 such that

(4.8) jb+(�; �)j � C; 8 � 2 ��;=� � !0�;

and

(4.9) jb�(�; �)j � C; 8 � 2 ��;=� � !0+:

By the residue theorem, for !� < �1 < � < �2 < !+,

b+(�; � + i�) + b�(�; � + i�) = �(2�i)�1

�Z +1+i�1

�1+i�1

�

Z +1+i�2

�1+i�2

�
b(�; �)

� + i� � �
d� =

= b(�; � + i�):

Hence, B� = exp b� satisfy B = B+B� on �� � f� j =� 2 (!�; !+)g, and if we set

A�(�; �) = ��(�; �)
��B�(�; �); A+(�; �) = d�+(�; �)

�+B+(�; �);

then for � 2 ��; =� 2 (!�; !+),

(4.10) �+ a(�) = A+(�; �)A�(�; �):

Lemma 4.4. a) For any � 2 ��, A+(�; �) is holomorphic in the half-plane =� > !�,
admits the continuous extension up to the boundary of the half-plane, and satis�es an
estimate

(4.11) c(1 + j�j1=� + j�j)�+ � jA+(�; �)j � C(1 + j�j1=� + j�j)�+;

where C; c > 0 are independent of � 2 �� and � in the half-plane =� � !�;
b) For any � 2 ��, A�(�; �) is holomorphic in the half-plane =� < !+, admits the contin-
uous extension up to the boundary of the half-plane, and satis�es an estimate

(4.12) c(1 + j�j1=� + j�j)�� � jA�(�; �)j � C(1 + j�j1=� + j�j)��;

where C; c > 0 are independent of � 2 �� and � in the half-plane =� � !+;
c) for all � 2 �� and � in a strip !� � =� � !+, (4.10) holds;
d) factors in (4.10) are uniquely de�ned by properties a) and b), up to scalar multiples,
depending on �.

Proof. Fix [!0�; !
0
+] � (!�; !+), and prove a){c) for � 2 �� and � with =� 2 [!0�; !

0
+].

Clearly, ��(�; �)
�� satisfy a) and b), and since b� are holomorphic and bounded on the

same set due to (4.8){(4.9), a) and b) are proven; (4.10) has already been proven.
To prove a){c) in the full generality, we notice that a(�) is continuous on the strip

=� 2 [!�; !+], and hence A+(�; �) admits the continuous extension on �� � f� j =� �
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!�g by A+(�; �) = (� + a(�))=A�(�; �), and A�(�; �) admits the continuous extension on
�� �f� j =� � !+g by A�(�; �) = (�+ a(�))=A+(�; �); then (4.10) holds for � 2 ��; =� 2
[!�; !+] by construction. (4.11) and (4.12) for these � and � follows from (3.1){(3.2) and
(3.4) and from the already proven (4.11) and (4.12) for � 2 ��; =� 2 [!0�; !

0
+].

To prove d), �x �, and suppose, �+a(�) = A0+(�; �)A
0
�(�; �) is another factorization with

the same properties. Then A0+(�; �)=A+(�; �) (resp., A
0
�(�; �)=A�(�; �)) is holomorphic in

the upper half-plane =� > 0 (resp., the lower half-plane =� < 0), and continuous up to
the boundary. Both functions are bounded and non-zero, and coincide on R. Hence, the
analytic continuation of any of them is a bounded holomorphic function on C. By the
Liouville theorem, it must be constant. �

4.2. Solution of the problem (2.10){(2.11). Choose s so that

(4.13) �1=2 < s� �� < 1=2;

write (2.10) as

(4.14) p+a(D)u = �p+a(D)grn;

and look for a solution to (4.14) in
o

H
s

(R+), by considering grn 2 C1
0 (R�) as an element

of Hs(R). Then by Theorem 3.9, a(D)grn 2 Hs��(R), and we can represent (4.14) in the
form

a(D)u = �a(D)grn + f�;

where f� 2
o

H
s��

(R�). By applying A+(0; D)�1 and using (4.10), we obtain

(4.15) A�(0; D)un = �A�(0; D)grn + A+(0; D)�1f�:

Since A+ satis�es (4.11) and f� 2
o

H
s��

(R�), we can apply Theorem 3.16 and obtain

A+(0; D)�1f� 2
o

H
s���

(R�); and since u 2
o

H
s

(R+) and A� satis�es (4.12), Theorem 3.16

gives that the LHS in (4.15) belongs to
o

H
s���

(R+). Due to (4.13), Lemma 3.18 is applicable.
By multiplying (4.15) �rst by �+, and then by A�(0; D)�1, we �nd

�A�(0; D)un = �+A�(0; D)grn;

and

un = �A�(0; D)�1�+A�(0; D)grn:

>From (4.12) and Theorem 3.16, it follows that un 2
o

H
s

(R+). Notice that we may choose

s > 1=2; then from Theorem 3.11, un 2 C0(R), and by the de�nition of the space
o

H
s

(R+), suppun � [0;+1), hence (2.11) is satis�ed. Further, by using Lemma 3.18 and the
identi�cation of Lemma 3.23,

un = p+un = �p+A�(0; D)�1�+A�(0; D)grn =

= �p+g
r + p+A�(0; D)�1��A�(0; D)grn;
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and since p+g
r = 0, we obtain

(4.16) un = p+A�(0; D)�1��A�(0; D)grn:

Thus, (4.16) gives the solution to the problem (2.10){(2.11), and the argument above shows
that the map

o

H
s

(R�) 3 g
r
n 7! un 2

o

H
s

(R+)

is bounded. To proceed further, we need to construct a sequence grn 2 C1
0 (R�), which

converges to gr in the topology of
o

H
s

(R�), not only pointwise: grn(x) " g
r(x); 8 x < 0.

This can be done i� the rebate gr is exponentially decaying, i.e. � > 0. We �x non-
decreasing � 2 C1(R) with the properties �(x) = 0; x � 1, �(x) = 1; x � 2, and set
�n(x) = �(nx)(1 � �(x=n)), grn(x) = �n(�x)g

r(x). Clearly, grn(x) " g
r(x); 8 x < 0. Since

gr exponentially decays at the in�nity, straightforward calculations with the help of (3.10)
show that

njjgrn � grjj2L2(R+) � C;

and
n�1jjD(grn � gr)jj2L2(R+) � C1;

where C;C1 > 0 are independent of n. By using the interpolation theorem (Theorem 3.22),
we �nd that grn ! gr in the topology of Hs(R�), provided s 2 [0; 1=2). On the strength

of Lemma 3.23, gr can be identi�ed with e�g
r 2

o

H
s

(R�) and g
r
n ! gr in the topology of

o

H
s

(R�), hence we can pass to the limit in (4.16) and obtain

(4.17) u = p+A�(0; D)�1��A�(0; D)gr:

There is a small technical problem: gr 2
o

H
s

(R�) only if s < 1=2, and the approximating
sequence can be constructed to converge in the topology of this space, hence the general
argument does not give u 2 C0(R). Still, this can be veri�ed easily when an analytic
formula for u is derived in Section 6.
If the rebate is constant, i.e. � = 0, we replace gr with gr;�(x) = gr0e

�x, where � >
0, denote u calculated from (4.17) with gr;� instead of gr by u�, notice that gr;�(x) "
gr(x); 8 x < 0, as � # 0, and hence, u(x) = lim�#0 u

�(x), and calculate the limit. Finally,
if �+ > 0 and hence !+ > 0 (and in many studies of �nancial markets �+ is shown to be
not only positive but large { see e.g. Barndor�-Nielsen and Jiang (1998)), we can calculate
u for any bounded rebate without resorting to the last limiting procedure. Namely, take
any � 2 (0; !+), and notice that:

(i) gr;� decays exponentially at �1, and hence gr;�n ! gr;� in
o

H
s

(R�), for any s < 1=2;
(ii) e�xA�(�;D)e��x = A�(�;D + i�), and e�x Q(D)e��x =  Q(D + i�);
(iii) symbols  Q;�(�) :=  Q(� + i�) and A��(0; �) := A�(0; � + i�) satisfy the same

conditions as in the case � = 0, with the strips [��+�; �++�] and [!�+�; !++�] instead
of [��; �+] and [!�; !+].
Hence,

un = e��xp+A�(0; D + i�)�1��A�(0; D + i�)gr;�n ;
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and we can pass to the limit and obtain

u = e��xp+A�(0; D + i�)�1��A�(0; D + i�)e�xgr:

Notice that we can write the last formula as (4.17), with the usual understanding that in
the formula for the Fourier transform implicit in the notation A�(�;D)gr, the integration
w.r.t. the dual variable � is not over the real line but over the line =� = �.

4.3. Solution of the problem (2.12){(2.14). Choose s satisfying (4.13) and the fol-
lowing condition

(4.18) s > 1=2 > s� �� > s� � > �1=2;

if � < 2, then �+ = � � �� 2 (0; 1), and this choice is possible. The case � = 2 will
be considered in Remark 4.6 below. Consider p+a(D) as an unbounded operator As in

Hs��(R+) =
o

H
s��

(R+) with the domain
o

H
s

(R+), and the problem (2.12){(2.14) as the
Cauchy problem for an ordinary di�erential equation with the operator coeÆcient:

(4.19) w0(�) + Asw(�) = 0; � > 0;

(4.20) w(0) = Gn:

Here the initial data Gn := gTn � un 2
o

H
s0

(R+), for any s
0 > 1=2, and the unknown w is a

continuous (vector)-function on [0;+1), assuming values in
o

H
s��

(R+), w(�) 2 D(A
s) and

w0(�) 2
o

H
s��

(R+), for any � > 0. Notice that due to the choice s > 1=2 and on the strength
of Theorem 3.11, D(As) � C0(R).
We are going to construct the resolvent (�+ As)�1 and show that

(4.21) jj(1 + j�j)(�+ As)�1jj � C;

where C is independent of � 2 ��. (4.21) means that a condition (III) in Section 10,
Chapter IX of Yosida (1964) is satis�ed, and therefore, all the results of this Section 10 hold.
In particular, As is the in�nitesimal generator of the strongly continuous semigroup T s,
the representation theorem for the analytic semigroups is applicable, and for the solution
of the problem (4.19){(4.20), an explicit formula obtains:

(4.22) w(�) = (2�i)�1

Z
L�

e��(�+ As)�1Gnd�:

Here L� is the contour � = �(�);�1 < � < +1, where arg �(�) = �� for � < 0, and
arg�(�) = � for � > 0. The formula (4.22) will be used to solve the pricing problems for
barrier options and touch-and-out options.

Theorem 4.5. Let (4.18) hold. Then
a) �+ As is invertible, with the inverse given by

(4.23) (�+ As)�1 = A�(�;D)�1�+A+(�;D)�1;

b) (�+ As)�1 :
o

H
s��

(R+)!
o

H
s

(R+) is bounded uniformly in � 2 ��;
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c) for the norm of (�+ As)�1, as an operator in
o

H
s��

(R+), the estimate (4.21) holds.

Proof. First, we show that for � �xed, R�, de�ned by the RHS in (4.23), is a bounded

operator from
o

H
s��

(R+) into
o

H
s

(R+), uniformly in � 2 ��, and as an operator in
o

H
s��

(R+),
it satis�es

(4.24) jj(1 + j�j)R�jj � C; 8 � 2 ��:

Since �� + �+ = �, we have

(1 + j�j)R� = (1 + j�j)��=�A�(�;D)�1�+(1 + j�j)�+=�A+(�;D)�1:

Since (4.11){(4.12) hold, Theorems 3.16 and 3.17 give that operators

�+A+(�;D)�1 :
o

H
s��

(R+)!
o

H
s���

(R+); A�(�;D)�1 :
o

H
s���

(R+)!
o

H
s

(R+)

are bounded, with the norms admitting estimates uniform in � 2 ��; and as operators

in
o

H
s��

(R+), both (1 + j�j)�+=��+A+(�;D)�1 and (1 + j�j)��=�A�(�;D)�1 are bounded
uniformly in � 2 ��.
This proves (4.24) { and b){c) as well, provided a) is proved.
Now we check that R� is the right inverse to �+ As. By using (4.10), we obtain

(�+ As)R� = p+A+(�;D)�+A+(�;D)�1:

By Theorem 3.9, for any f 2
o

H
s��

(R+), A+(�;D)�1f 2 Hs���(R), and

(4.25) �+A+(�;D)�1f = A+(�;D)�1f � ��A+(�;D)�1f;

where ��A+(�;D)�1f 2
o

H
s���

(R�) due to the choice (4.13), Lemma 3.18 and Theorem
3.17. >From Theorem 3.16,

A+(�;D)��A+(�;D)�1f 2
o

H
s��

(R�);

and therefore by applying �+, we obtain 0. It follows that if we apply �+A+(�;D) to (4.25),
we obtain f . This proves that R� de�nes the right inverse.
Similarly, we show that R� is the left inverse:

A�(�;D)�1�+A+(�;D)�1(�+ As) =

= A�(�;D)�1�+A+(�;D)�1�+(�+ a(D)) =

(here we identify p+(�+ a(D)) = �+(�+ a(D)), which is admissible since js� �j < 1=2)

= A�(�;D)�1�+A�(�;D)� A�(�;D)�1�+A+(�;D)�1��(�+ a(D)):

For f 2 Hs(R), by Theorems 3.9 and 3.17 (and due to the choice js��j < 1=2), we obtain

��(�+ a(D))f 2
o

H
s��

(R�); by Theorem 3.16, A+(�;D)�1��(�+ a(D))f 2
o

H
s���

(R�), and
since s� �� > �1=2, Lemma 3.18 is applicable. It gives �+A+(�;D)�1��(�+ a(D))f = 0.
By applying Theorems 3.16 and 3.17, we obtain

A�(�;D)�1�+A�(�;D) = A�(�;D)�1A�(�;D) = I;
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which �nishes the proof that R� is the left inverse. �

Remark 4.6. If a process X contains a di�usion component, then � = 2; �� = 1, and
therefore (4.18) cannot be satis�ed. Notice however, that we can manage without (4.18) if

we choose s so that js � �j < 1=2, and de�ne As as an unbounded operator in
o

H
s��

(R+)
with the domain

D(As) = fA�(0; D)�1�+A+(0; D)�1u j u 2
o

H
s��

(R+)g:

If we choose s�� > 1=2��+ = �1=2, an analysis of the �rst part of the proof of Theorem

4.5 gives D(As) �
o

H
��+1=2��

(R+) for any � > 0. Since �� > 0, we can choose � > 0 so that
�� + 1=2� � > 1=2.
Thus, in the statement of Theorem 4.5, only b) needs a slight change: for any � > 0,

there exists C > 0 such that for any � 2 ��,

jj(�+ As)�1 :
o

H
s��

(R+)!
o

H
��+1=2��

(R+)jj � C;

and the proof changes in the evident manner.
As in the case � < 2, D(As) � C0(R), by Theorem 3.11.

By substituting (4.23) into (4.22), we obtain the solution of the problem (2.12){(2.14),
and it remains to compute the limits

(4.26) v1(�; x) := lim
n!+1

(2�i)�1

Z
L�

e��(�+ As)�1un(x)d�;

and

(4.27) v2(�; x) := lim
n!+1

(2�i)�1

Z
L�

e��(�+ As)�1gTn (x)d�:

As we have shown in the previous subsection, in the case of the exponentially rebate,

un ! u in
o

H
s��

(R+), for any s < 1=2 + �, and hence by Theorem 4.5 and Remark 4.6,
there exist s < 1=2 + �; � > 0 and C such that

(4.28) jj(�+ As)�1(un � u)jj1=2+� � Cjjun � ujjs��; 8 � 2 ��:

For any � > 0, there exists C� > 0 such that for all � � �,

(4.29)

Z
L�

je��d�j � C1;

and we derive from (4.28) and (4.29), that for any 0 < � < �, the limit (4.26) exists in the

sense of C([�; �];
o

H
1=2+�

(R+)), hence in the sense of C0([�; �]�R), and the limit is given
by

(4.30) v1(�; x) = (2�i)�1

Z
L�

e��(�+ As)�1u(x)d�:
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If the rebate does not decay at the in�nity, but is bounded, e.g. constant, we choose � > 0,
replace gr with gr;�, �nd u�, calculate v�1 from (4.30) with u� in the RHS, and pass to the
limit as � # 0. If �+ > 0, we choose any � 2 (0; !+), and use (4.30) with the understanding
that when we insert (4.23) into (4.30) and apply the formula (2.16) to A+(�;D)�1u, we
calculate û(�) on the line =� = �, and integrate over this line in the equation (2.16), which
de�nes the action of a PDO (cf. the argument in the end of the previous subsection).
If the terminal payo� gT is bounded, we can calculate v2 by using similar trick: we

choose any 
 2 (!�; 0), de�ne

(�+ As;
)�1 := A�(�;D + i
)�1�+A+(�;D + i
)�1;

and notice that gT;
(x) = gT (x)e
x exponentially decays as x ! +1, and hence exactly
the same argument as with the derivation of (4.30) shows that

e
x(�+ As)�1gTn (x) = (�+ As;
)�1gT;
n (x)

converges to

e
x(�+ As)�1gT (x) = (�+ As;
)�1gT;
(x);

and therefore v2 can be calculated as follows

v2(�; x) = (2�i)�1

Z
L�

e��(�+ As)�1gT (x)d�;

with the understanding that A+(�;D)�1gT in the de�nition of (�+As)�1 is calculated by
using (2.16) with the integration over the line =� = 
.
If the terminal payo� grows as e�!�x as x! +1 or faster, we cannot choose 
 with the

desired properties, and the construction above must be modi�ed. First, assume that �� <
�1 (this condition is satis�ed in many empirical studies of �nancial markets; it means that
the rate of the exponential decay of the density of positive jumps is larger than 1), choose
any 
 2 (��;�1), and for C > 0 and � 2 (�=2; �), set �C;� = f� jj�j � C; arg� 2 [��; �]g.

Lemma 4.7. There exist C; c > 0 and � 2 (�=2; �) such that if =� 2 [��; �+], and
� 2 �C;�, then (4.2) holds.

Proof. Use (3.2) and modify the proof of Lemma 4.1 in an evident fashion. �

After that, for � 2 �C;�, we can repeat word by word all the constructions and proofs
above, with LC;�, the boundary of �C;�, instead of L�, the boundary of ��; the represen-
tation theorem for analytic semigroups applies for the modi�ed contour. In the result, we
obtain

(4.31) v2(�; x) = (2�i)�1

Z
LC;�

e��(�+ As)�1gT (x)d�;

with the understanding that A+(�;D)�1gT is calculated by using (2.16) with the integration
over the line =� = 
.



BARRIER OPTIONS AND TOUCH-AND-OUT OPTIONS 25

When u, v1 and v2 are found from (4.17), (4.30) and (4.31), we calculate v = v2 � v1,
pass to the limit in (2.9), and �nd for t < T and x > 0:

(4.32) f(t; x) = u(x) + v2(T � t; x)� v1(T � t; x):

By using (4.32), we will calculate prices of barrier options with the lower barrier and the
touch-and-out put option; prices of barrier options with the upper barrier and the touch-
and-out call option are calculated by using an analog of (4.32), which can be obtained by
making the change of variables x 7! �x and replacing in all the constructions the signs
"+" and "-" with "-" and "+", respectively.

5. Pricing of down-and-out options without the rebate

5.1. The down-and-out call option without the rebate: the case of the strike
less than or equal to the barrier. Consider the down-and-out call with the barrier H
and the strike price K � H; we normalize H to 1. If during the life of the option the price
of the stock reaches H or falls below it, the option expires worthless, but if the price stays
above the barrier until the expiry date, T , an option owner obtains gT (XT ) = eXT � K.
Assuming that �� < �1 (the case �� = �1 will be considered in the end of the subsection),
we choose 
 2 (��;�1), C > 0 and � 2 (�=2; �) such that (4.2) holds on �C;�, de�ned
before Lemma 4.7, and apply (4.31). Since for =� = 
,

cgT (�) = Z +1

0

e�iz�(ez �K)dz =
1

i� � 1
�
K

i�
=

1

i(� + i)
�
K

i�
;

we obtain, for y > 0:

A+(�;D)�1gT (y) = (2�)�1

Z +1+i


�1+i


eiy�A+(�; �)
�1

�
1

i(� + i)
�
K

i�

�
d� =

the integral converges absolutely due to (4.11), and the integrand is holomorphic and has
two poles in the half-plane =� > ��, therefore, by choosing any 
1 > 0 and applying the
residue theorem, we continue

= eyA+(�;�i)
�1 �KA+(�; 0)

�1+

+(2�)�1

Z +1+i
1

�1+i
1

eiy�A+(�; �)
�1

�
1

i(� + i)
�
K

i�

�
d�:

In the last term, the integrand admits the bound via

Ce�
1yj�j�1��+;

where �+ > 0 (see (4.11)), hence in the limit 
1 ! +1 the integral vanishes. Thus, for
y > 0

A+(�;D)�1gT (y) = eyA+(�;�i)
�1 �KA+(�; 0)

�1:
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Apply the de�nition of PDO to A�(�;D)�1�+A+(�;D)�1gT , substitute into (4.31) and
then in (4.32), and take into account that the contributions u and v1 coming from gr = 0
are zero as well; the result is

f(t; x) = (2�i)�1

Z
LC;�

e�� (2�i)�1�

�

Z +1+i


�1+i


exp[ix�]

A�(�; �)

�
1

A+(�;�i)(� + i)
�

K

A+(�; 0)�

�
d�d�:

By simplifying, we obtain the pricing formula

(5.1) f(t; x) = F1(t; x)�KF0(t; x);

where

(5.2) F�(t; x) := �(2�)�2

Z
LC;�

e��
Z +1+i


�1+i


exp[ix�]d�d�

A�(�; �)A+(�;�i�)(� + i�)
;

for any 
 2 (��;��).
In the case of �� = �1, consider a portfolio of one down-and-out call option long

and one share of the stock short; if f0(t; Xt) is the price of the portfolio at time t, then
f(t; Xt) = f0(t; Xt)+expXt. Since f and ex satisfy the generalized Black-Scholes equation,
f0 also does. The terminal condition for f0 is �K, and its contribution to the price f0 is
�KF0(t; x). (This time the payo� is bounded, and hence any �� < 0 causes no problem,
�� = �1 in particular). In addition, there appears non-zero "rebate": gr(x) = �gr;1(x),
where gr;�(x) := e�x. The contribution coming from the rebate gr;� is calculated in Section

6; it equals u�(x)� v�1 (T � �; x), where u� is given by (6.5), and v�1 by (6.8). To sum up,
if �� = �1, we replace (5.1) with

(5.3) f(t; x) = ex � u1(x) + v11(T � t; x)�KF0(t; x):

5.2. The down-and-out call option without the rebate: the case of the strike
greater than the barrier. The set-up is as in Subsection 5.1, but this time K > H(= 1).
We have gT (XT ) = (eXT �K)+, and if �� < �1, we take 
1 2 (��;�1) and calculate for �
on the line =� = 
1: cgT (�) = Z +1

lnK

e�iz�(ez �K)dz =

= K1�i�=(�i�)�K1�i�=(1� i�) = �K1�i�=(�(� + i)):

Now set q = lnK, choose 
 so that

(5.4) �� < 
 < 
1 < �1;

and calculate, for x > 0:

A�(�;D)�1�+A�(�;D)�1gT (x) =

= (2�)�1

Z +1+i


�1+i


eix�A�(�; �)
�1

Z +1

0

e�iy�(2�)�1

Z +1+i
1

�1+i
1

eiy�A+(�; �)
�1cgT (�)d�dyd�:
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(The integral is understood as an iterated one). From (5.4) and (4.11), the inner double
integral converges absolutely. By applying the Fubini theorem and integrating w.r.t. y
�rst: Z +1

0

ei(��+�)ydy = i(� � �)�1;

and then substituting in (4.31){(4.32) and simplifying, we obtain

(5.5) f(t; x) =
K

(2�)3

Z
LC;�

Z +1+i


�1+i


Z +1+i
1

�1+i
1

exp[�� + ix� � i�q]d�d�d�

A�(�; �)(� � �)A+(�; �)�(� + i)
;

where 
; 
1 satisfy (5.4). If �� = �1, we construct the same portfolio as in the end of
Subsection 5.1; it has the same "rebate" gr(x) = �ex, and the terminal payo� �K + gT0,
where gT0(x) = (K � ex)+1(0;+1)(x) is the terminal payo� of the down-and-out put with
the same strike, expiry date and barrier. Hence,

(5.6) fdown, call(t; x) = fdown, put(t; x) + ex � u1(x) + v11(T � t; x)�KF0(t; x);

where F0 is given by (5.2), u
� by (6.5), v�1 by (6.8), and fdown, put by (5.10) below. Notice

that (5.6) is derived for the case of down-and-out options without the rebate; if the rebate
is speci�ed, the evident modi�cation is needed.

5.3. The down-and-out put option without the rebate: the case of the strike
greater than the barrier. Consider the down-and-out put with the barrier H and the
strike price K > H; we normalize H to 1. If during the life of the option the price of the
stock reaches H or falls below it, the option expires worthless, but if the price stays above
the barrier until the expiry date, T , an option owner obtains gT (XT ) = �+(XT )(K�eXT )+.
We have gT = �gT1 +g

T
2 , where g

T
1 (x) = �+(x)(e

x�K) and gT2 (x) = �+(x)(e
x�K)+. Since

gT1 and gT2 are the payo�s in Subsections 5.1 and 5.2, respectively (the condition K � H
in Subsection 5.1 is used only to conclude that the payo� is equal to �+(x)(e

x �K)), we
obtain in the case �� < �1, that the price f(t; x) here is given as the di�erence of the RHS
in (5.5) and (5.1), i.e. if the strike is greater than the barrier,

(5.7) fdown, put(t; x) = fdown, call(t; x)� F1(t; x) +KF0(t; x):

Thus, (5.7) is an analog of the put-call parity for the down-and-out puts and calls, where
ex�K is replaced with F1(t; x)�KF0(t; x), the price of the down-and-out option with the
barrier H = 1, zero rebate and the terminal payo� eXT � K. By substituting (5.1) and
(5.5) in the RHS of (5.7), we obtain the pricing formula for the put.
In the case �� = �1, (5.3) must be used instead of (5.1), but the analog of (5.5) in

the case �� = �1 is (5.6), which uses the price of the put. Hence, we need to derive the
formula for the latter independently.
Set q = lnK. For the put, the Fourier transform

(5.8) cgT (�) = Z lnK

0

e�iz�(K � ez)dz =
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= (K1�i� �K)=(�i�)� (K1�i� � 1)=(1� i�)

is holomorphic on C. Choose 
 and 
1 so that

(5.9) �� < 
 < 
1 < 0;

calculate, for x > 0,

(�+ As)�1gT (x) = A�(�;D)�1�+A+(�;D)�1gT (x);

as in Subsection 5.2, and substitute into (4.30); the result is

(5.10) fdown, put(t; x) = (2�)�3

Z
LC;�

Z +1+i


�1+i


Z +1+i
1

�1+i
1

exp[�� + ix�]cgT (�)d�d�d�
A�(�; �)(� � �)A+(�; �)

;

where cgT is given by (5.8), and 
; 
1 satisfy (5.9).

6. Down-and-out options with the rebate and touch-and-out options

6.1. The down-and-out calls and puts: the case of exponentially decaying or
constant rebate. Now we assume that when the price of the stock reaches the barrier or
falls below it, an option owner is entitled to the rebate gr(XT ) = gr0e

�XT , where gr0 > 0,
� � 0. It follows from (4.32), that in all cases of down-and-out options considered in
Section 5, we need to add the same contribution u(x) � v1(T � t; x) coming from the
rebate. To calculate it, we need the following lemma which will be proved in Appendix.

Lemma 6.1. For any [!0�; !
0
+] � (!�; !+), any s = 0; 1; : : : and any � > 0, there exists

Cs� = Cs�(!
0
�; !

0
+) such that

a) for all � in the half-plane =� � !0�,

(6.1) jA
(s)
+ (0; �)j � Cs�h�i

�+�1+�;

b) for all � in the half-plane =� � !0+,

(6.2) jA
(s)
� (0; �)j � Cs�h�i

���1+�:

Now we calculate, for a model function gr;�(x) := 1(�1;0)(x)e
�x, where � > 0, for y < 0,

A�(0; D)gr;�(y) =

= (2�)�1

Z +1

�1

d�eiy�A�(0; �)

Z 0

�1

e�iz�e�zdz =

= (2�)�1

Z +1

�1

d�eiy�A�(0; �)(� � i�)�1 =

we want to apply (6.2) but if �+ = 0 and !+ = 0, we cannot apply it on the real axis, so
we take � 2 (��; 0), and shift the line of integration

= (2�)�1

Z +1+i�

�1+i�

d�eiy�A�(0; �)(� � i�)�1:
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(This equality can be justi�ed in the sense of generalized functions). Assume that � < 2
and hence, �� 2 (0; 1) (the case � = 2 and �� = 1 will be considered later). Then on the
strength of (6.2), which we apply with � > 0 such that ��� 1+ � < 0, we can integrate by
part by using eiy� = �iy�1@�(e

iy�); show that the integral can be understood as

lim
M;L!+1

Z L+i�

�M+i�

and the residue theorem can be applied to shift the line of integration in order to obtain,
for any �1 < ��,

A�(0; D)gr;�(y) = A�(0;�i�)e
�y + (2�)�1

Z +1+i�1

�1+i�1

d�eiy�A�(0; �)(� � i�)�1:

By integrating by part in the last integral, we obtain the integrand, which admits a bound
via C�e

��1yh�i�2+��+�. Hence, we can pass to the limit �1 ! �1, and show that the last
integral is zero. Thus, the result is

(6.3) A�(0; D)gr;�(y) = A�(0;�i�)g
r;�(y):

If � = 2 and �� = 1, we can use (3.2), analyze the construction of A�(0; �), and show that

(6.4) A�(0; D) = �iD + A0�(0; D);

where A0�(0; �) satis�es the same estimates as A�(0; �) in the case � < 2, with some ��
0 < 1.

Hence, (6.3) holds for A0�. Clearly, �iDe
�y = �i(�i�)e�y, and from (6.4) we conclude that

(6.3) holds for A� as well.
By using (6.3), we obtain for u de�ned from (4.17) with the model rebate, gr;�,

(6.5) u�(y) =
A�(0;�i�)

2�

Z +1

�1

exp[iy�]d�

A�(0; �)(� � i�)
:

To obtain an answer for the case � = 0, we notice that since for any x < 0, e�x " 1 as
� # 0, it is the limit of the RHS in (6.5), as � # 0:

u0(y) = lim
�!+0

A�(0;�i�)

2�

Z +1

�1

exp[iy�]d�

A�(0; �)(� � i�)
:

To calculate the limit, we assume that there exist � > 0 such that as � ! 0 in the lower
half-plane =� � 0,

(6.6)  Q(�) = O(j�j)�:

Certainly, if 0 is inside the strip =� 2 (��; �+), (6.6) is satis�ed for any RLPE; for model
classes of RLPE, we can check it by inspection even when 0 is on the boundary of the
strip. >From (4.11) and (4.10), it follows that A�(0; �) also satis�es (6.6). Since A�(0; �)
is holomorphic in the lower half-plane, continuous up to the boundary of the half-plane,
and satis�es the estimate (4.12), we can use the residue theorem and obtain

u0(y) = A�(0; 0)

�
1

2
(A�(0; 0))

�1 + v.p.
1

2�

Z +1

�1

exp[iy�]d�

A�(0; �)(�i�)

�
:
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By simplifying, we arrive at

(6.7) u0(y) =
1

2
+
A�(0; 0)i

2�

Z +1

0

�
exp[iy�]

A�(0; �)
�

exp[�iy�]

A�(0;��)

�
��1d�:

By multiplying (6.5) or (6.7) (depending on �: is it positive or 0) by gr0, we obtain u. It
remains to substitute u into (4.30). Since u is bounded, we take 
 and 
1 satisfying (5.9),
and then exactly the same calculations as in Subsection 5.2 give

v1(�; x) = (2�)�3

Z
LC;�

Z +1+i


�1+i


Z +1+i
1

�1+i
1

exp[�� + ix�]û(�)d�d�d�

A�(�; �)(� � �)A+(�; �)

(cf. (5.5)). If � > 0, we can take 
1 2 (��; 0), and then from (6.5), for � on the
line =� = 
1, calculate û

�(�) = gr0A�(0;�i�)=[A�(0; �)(� � i�)], and the corresponding

v1 = v�1 :

(6.8) v�1 (�; x) =
1

(2�)3

Z
LC;�

Z +1+i


�1+i


Z +1+i
1

�1+i
1

exp[�� + ix�]A�(0;�i�)d�d�d�

A�(�; �)(� � �)A+(�; �)A�(0; �)(� � i�)
:

Hence, from (6.8) and (6.5), (4.32) we conclude that the price of the option with the rebate
is

(6.9) fr(t; x) = f(t; x) + gr0[u
�(x)� v�1 (T � t; x)];

where f is the price of the corresponding option without the rebate, u� is given by (6.5),

and v�1 by (6.8).
A formula for the case � = 0 can be obtained by passing to the limit � # 0 in (6.8)

similarly to (6.7); if �+ > 0, we can obtain instead of the complicated formula (6.7) and its
analogue for v01, simpler formulas. Namely, if �+ > 0, then !+ > 0 as well, and we choose

; 
1 satisfying

(6.10) �� < 
 < 
1 < !+; 
1 > 0;

instead of (5.9), and obtain (6.9) with

(6.11) u0(y) =
A�(0; 0)

�2�i

Z +1+i
1

�1+i
1

exp[iy�]d�

A�(0; �)�
;

and v01 given by (6.8) with � = 0 and 
; 
1 satisfying (6.10).

6.2. Touch-and-out put option. To make comparison with the results above easier, we
denote the strike price by H, and without loss of generality, we assume that H = 1, so
that h = lnH = 0. If at any moment t up to the expiry date, T , the price of the stock, St,
reaches H or falls below it, an option owner can exercise the option and obtain 1. Clearly,
it is optimal to exercise the option the �rst instant when St � H or equivalently, Xt � 0.
This translates into a boundary condition for f(t; Xt), the price of the touch-and-out put
option:

f(t; x) = 1; t � T; x � 0:
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If at the expiry date the price of the stock satis�es ST > H, the option expires worthless,
and hence the terminal condition is

f(T; x) = 0; x > 0:

In a region t < T; x > 0, f obeys the generalized Black-Scholes equation.
This means that f is exactly the contribution from the rebate gr(x) = 1, x � 0, computed

above, and hence, if �+ > 0, say,

f(t; x) = u0(x)� v01(T � t; x);

where u0 is given by (6.11), v01 is given by (6.8) with � = 0 and 
; 
1 satisfy (6.10).

6.3. Up-and-in options. As in the gaussian case, the standard no-arbitrage considera-
tions show that the price of the up-and-in call (put) equals the price of the European call
(put) minus the price of the down-and-out call (put) with the same expiry date, strike
price and barrier.

7. Up-and-out barrier options and the touch-and-out call option

We start with a general remark, which allows one to obtain the pricing formula for any
up-and-out option from the (already obtained) pricing formula for the corresponding down-
and-out option, under a di�erent process and measure. The correspondence is established
as follows.
Let X be a L�evy process under EMM Q, let  Q be its characteristic exponent, and

consider a contingent claim with the barrier H normalized to 1, the terminal payo� gT ,
and the rebate gr. Notice that now boundary conditions for f(t; Xt), the price of an
up-and-out option or the touch-and-out call option are

f(T; x) = gT (x); x < 0;

f(t; x) = gr(x); x � 0; t � T:

Set C = [0; T )� (�1; 0), ~E = [0; T ]�R, and ~E0 := ~E n C; C and ~E0 here are re
ections
of C and ~E0 in Section 2 w.r.t. the axis x = 0.
Let ~Xt = (t; Xt) be the two-dimensional process on ~E, and ~g be the generalized payo�

constructed from gr and gT by analogy with Section 2. Let �0 be the hitting time of ~E;
then

(7.1) f(0; x) = EQ
�Z +1

0

e�rtr~g( ~Xt^�0)dt j ~X0 = (0; x)

�
:

Introduce the new process X 0 = �X, measure Q0 by

(7.2) EQ
0

x [u(X 0
t)] = EQ�x[e

Xtu(�Xt)];

sets C 0 = [0; T )� (0;+1) and ~E00 = ~E n C 0, and functions

(7.3) Gr(x) = exgr(�x); GT (x) = exgT (�x):
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It is straightforward to check that if Q is an EMM for the market of the riskless bond with
the rate of return r and the stock St = expXt, then Q

0 is an EMM for the market of the
riskless bond with the rate of return r and the stock S 0t = expX 0

t.
Let � 00 be the hitting time of ~E00, and ~G be de�ned by Gr and GT as in Section 2.
By making the change of variables x 7! �x in (7.1), we obtain, for x > 0:

f(0;�x) = EQ
�Z +1

0

e�rtr~g( ~Xt^�0)dt j ~X0 = (0;�x)

�
=

= EQ
�Z +1

0

e�rteXt

�
eX

0
tr~g(� ~X 0

t^� 0
0
)
�
dt j ~X0 = (0;�x)

�
=

= EQ
0

�Z +1

0

e�rtr ~G( ~X 0
t^� 0

0
)dt j ~X 0

0 = (0; x)

�
:

Denote by f(Q; gr; gT ; t; x) the price of the contingent claim with the expiry date T , barrier
H = 1, the rebate gr and the terminal payo� gT , at time t, conditioned on Xt = x; X is a
L�evy process under EMM Q. We have proved that

(7.4) f(Q; gr; gT ; t; x) = f(Q0; Gr; GT ; t;�x)

By using (7.4) and formulas of Sections 5{6, we can obtain pricing formulas for up-and-out
options and the touch-and-out call option.
Formally, we must use formulas in Sections 5{6 with factors A0�(�; �), calculated for

�+r+ Q
0

(�) instead of �+r+ Q(�) but we can use the ready formulas for �+r+ Q(�)
by using the following observations.
>From (7.2),

e�t 
Q0 (�) = EQ

0

[ei�X
0
t] = EQ[eXt�i�Xt] = e�t 

Q(���i);

hence,
 Q

0

(�) =  Q(�� � i):

We see that  Q
0

satis�es the conditions (3.1){(3.3) on the strip [��+� 1;���� 1], where
��+ � 1 � �1 < 0 � ��� � 1, and we may set

(7.5) A0�(�; �) = A�(�;�� � i):

As a simple example, for the up-and-out put option with the strike K > H = 1, without
the rebate, gT (x) = 1(�1;0)(K � ex), gr = 0, and from (7.3), GT (x) = K1(0;+1)(e

x�K�1)
and gr = 0. This is K times the terminal payo� for the down-and-out call option with the
strike K�1 < 1, and from (5.1){(5.2) and (7.4){(7.5), we obtain
(7.6)

f(t; x) = (2�)�2

Z
LC;�

Z +1+i


�1+i


exp[ix�]

A+(�;�� � i)

�
1

A�(�;�i)�
�

K

A�(�; 0)(� + i)

�
d�d�;

for any 
 2 (��+� 1;�1). Clearly, (7.6) is applicable if �+ > 1; in many empirical studies
of real �nancial markets this condition is satis�ed. If one needs the result for the case
�+ = 0, one can either use the limiting procedure described in Sections 4 and 6 or, if the
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parametrized family of processes, for which the given X is a member, is available, one can
simply calculate the limit of the RHS in (7.6), as �+ # 0.

8. Conclusion

We suggested a general procedure of the computation of the price of a contingent claim for
L�evy processes, and applied it to barrier options and touch-and-out options under regular
L�evy processes of exponential type. The procedure is based on the interplay between two
limiting procedures applied to the price f(t; Xt) of the contingent claim. We represent f
as the resolvent ~Rr~g, where the terminal payo� ~g is understood in the generalized sense,
as the terminal value of f( ~Xt), and ~Xt = (t; Xt) is a process on the state space [0; T ]�R.
The �rst limiting procedure is in the stochastic integral f = ~Rr~g: we replace ~g by

smooth functions ~gn with the compact support such that ~gn " ~g pointwise. This allows
one to reduce the problem of the computation of f to the problem of the computation of
fn = ~Rr~gn. ~gn being regular, we can use the connection between the resolvent and the
in�nitesimal generator of the process, and look for fn as the solution of the corresponding
boundary problem for the generalized Black-Scholes equation (Section 2). The latter being
a pseudo-di�erential one, we apply the standard tools in the theory of boundary problems
for pseudo-di�erential equations, namely, theorems on the action of PDO in the scale of
the Sobolev spaces in the whole space (here, line) and in a half-space (here, half-line) { this
is Section 3 { and the Wiener-Hopf factorization method and the representation theorem
for analytical semigroups (Section 4). The formulas for fn being found, we use the second
limiting procedure, in the sense of the topology of appropriate Sobolev spaces, to show
that the limit exists in the sense of the generalized functions, and is given by the same
explicit formulas (Section 4). By inspection, we see that the limit is a continuous function,
hence it coincides with f .
Thus, we have an explicit formula for f but in terms of the action of PDO, which are

de�ned as oscillatory integrals. To simplify the analytical expression for f , in Sections
5{6, we use the integration by part in oscillatory integrals, which de�ne the action of
PDO, and the simplest tools of Complex Analysis: the Residue Formula and the Cauchy
theorem. We �nd explicit formulas for down-and-out barrier options without the rebate,
with exponentially decaying rebate and for the case of the double barrier, and for the
touch-and-out call option. Further simpli�cations (from the point of view of the numerical
calculations, not the length of the resulting formulas) are possible, but they are much more
involved.
In Section 7 we introduce a general procedure of obtaining formulas for contingent claims

with the upper barrier from formulas for options with the lower barrier. As an illustration,
we write down an explicit formula for the up-and-out put option; the formulas for other
types of up-and-out options can be written also quite easily.
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9. Appendix

Proof of Lemma 4.3.We prove (4.6); (4.7) is proven similarly. By making an appropriate
change of variables, we may assume that � > 0 = �1 > !�.
By using (3.2), (3.3) and (4.2), we easily obtain the following estimates

(9.1) jB(�; �)j � C;

(9.2) jB(�; �)� 1j � C1(1 + j�j+ j�j�
0

)=(1 + j�j+ j�j�);

(9.3) j@�B(�; �)=B(�; �)j � C2(1 + j�j1=� + j�j)�1;

where C;C1 and C2 are independent of � 2 �� and � in a strip =� 2 [!�; !+], as well as all
constants below. Set K = (j�j+1)1=�, and for each pair (�; �), introduce intervals Jj � R:

J1 = f� j j� � �j � Kg; J2 = f� j j� � �j > K; j�j � Kg;

J3 = f� j j� � �j � j�j; j�j > Kg; J4 = f� j K < j� � �j < j�j; j�j > Kg:

By using the mean value theorem and (9.3), we obtain

(9.4)
b(�; �)

� + i� � �
=

b(�; �)

� + i� � �
+R(�; �; �; �);

where

(9.5) jR(�; �; �; �)j � C3(1 + j�j)�1=�:

Since ����Z K

�K

d�

i� � �

���� = ����ln �K � i�

K � i�

���� � 2�;

we deduce from (9.4){(9.5) and (9.1)

(9.6)

����Z
J1

b(�; �)d�

� + i� � �

���� � 2� lnC + C3

Z
j���j�K

(1 + j�j)�1=�d� = C4:

To prove the following estimate, only (9.1) is needed:

(9.7)

����Z
J2

b(�; �)d�

� + i� � �

���� � C5

Z
j�j�K

(1 + j�j)�1=�d� = C6:

Further, we infer from (9.2) that b admits an estimate of the same form as B � 1, and
using this estimate on J3, we obtain

(9.8)

����Z
J3

b(�; �)d�

� + i� � �

���� � C7

Z
j�j�K

1 + j�j+ j�j�
0

j�j(1 + j�j+ j�j�)
d�:

By changing variables � = K�0, we see that the RHS in (9.8) is bounded uniformly in
� 2 ��, � 2 R; � > 0.
Since � 0 2 [0; �), a function

f(s) = (1 + j�j+ s�
0

)=(1 + j�j+ s�)
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is decreasing on [0;+1), and therefore, we deduce from (9.2) an estimate, for � 2 J4,

(9.9) jb(�; �)j � C8(1 + j�j+ j� � �j�
0

)=(1 + j�j+ j� � �j�):

>From (9.9),

(9.10)

����Z
J4

b(�; �)d�

� + i� � �

���� � C8

Z
j���j�K

1 + j�j+ j� � �j�
0

j� � �j(1 + j�j+ j� � �j�)
dl;

and the change of variables � = �+K�0 shows that the RHS in (9.10) is bounded uniformly
in � 2 ��.
By gathering bounds (9.6){(9.8) and (9.10), we obtain (4.6).
Lemma 4.3 has been proved.

Proof of Lemma 6.1. We prove (6.1); (6.2) is proved similarly. Since (�0 � i�)�+ satis�es
(6.1), and A+(0; �) = d(�0 � i�)�+ exp b+(0; �), it suÆces to prove that for any s = 1; 2; : : :
and � > 0,

(9.11) jb
(s)
+ (0; �)j � Cs�h�i

�1+�:

It follows from (3.3), (4.2), (4.4) and (4.5), that there exists C such that for all � in a strip
=� 2 [!�; !+],

jb(0; �)j = j@�B(0; �)=B(0; �)j � C(1 + j�j)�1;

and di�erentiating under the integral sign in (4.6), and then integrating by part, we obtain
an estimate

(9.12) jb
(s)
+ (0; �)j � C1s

Z +1

�1

(1 + j�j)�1(1 + j� � �j)�sd�:

Introduce J1 = f� 2 R jj�j � j�j=2g, J2 = f� 2 R jj�j=2 � j�j � 2j�jg, J3 = f� 2 R jj�j �
2j�jg. We have Z

J1

(1 + j�j)�1(1 + j� � �j)�sd� �

� Ch�i�1+�

Z +1

�1

(1 + j�j)�1��d� � C1�h�i
�1+�;Z

J2

(1 + j�j)�1(1 + j� � �j)�sd� �

� Ch�i�1+�

Z +1

�1

(1 + j� � �j)�1��d� � C2�h�i
�1+�;

and Z
J3

(1 + j�j)�1(1 + j� � �j)�sd� �

� Ch�i�1+�

Z +1

�1

(1 + j�j)�1��d� � C3�h�i
�1+�:

By gathering these three estimates, we obtain (9.12) and (9.11).
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Lemma 6.1 has been proved.
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