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Abstract. Classes of in�nitely divisible distributions obtained by iteration of Gauss-
ian randomization of L�evy measures are introduced and studied. Their relation to
Urbanik{Sato nested classes of selfdecomposable distributions is also established.

1. Introduction

In our previous paper [MR00], we studied the class of type G distributions on

Rd de�ned in the following way. A symmetric in�nitely divisible probability distri-

bution � on Rd is of type G if its L�evy measure � is of the form

(1.1) �(A) = E[�0(Z
�1A)]; A 2 B0(Rd);

where �0 is a Borel measure on Rd nf0g, Z is the standard normal random variable,

and B0(Rd) is the class of all Borel sets A in Rd such that A � fjxj > "g for some

" > 0. Such kind of distributions combine Gaussian and Poissonian structures in a

nontrivial way (see Section 5 in [MR00]). Denote by TG(Rd) the class of type G

distributions on Rd.

A typical representative of the class TG(Rd) is a symmetric stable distribution.

In this paper we will use the following convention. Given a class of measures

H on Rd, we will denote by eH the subset of H consisting of symmetric mea-

sures. Denote by S(Rd) and I(Rd) the classes of stable and in�nitely divisible
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distributions on Rd, respectively. Therefore, we have eS(Rd) � TG(Rd) � eI(Rd).
Our goal is to introduce and investigate the nested classes TGm(Rd), m � 1, be-

tween TG0(Rd) := TG(Rd) and eS(Rd), using the procedure somewhat analogous

to Urbanik-Sato construction of subclasses of selfdecomposable distributions.

In Section 2, we de�ne the classes TGm(Rd), m � 1, and show that they form

a strictly descending sequence. In Section 3, we compare our nested subclasses of

TG0(Rd) and those of the class L0(Rd) of selfdecomposable distributions introduced

and studied by Urbanik [U73] and Sato [S80]. A necessary and suÆcient condition

for a type G distribution on R1 to be selfdecomposable was given in [R91]. We

generalize this result to Rd and give an answer to the converse problem: When

is a symmetric selfdecomposable distribution of type G? We also study related

problems.

Every distribution � 2 TGm(Rd) has its predecessor �0 2 TGm�1(Rd), as de-

�ned in Section 2. In Section 4, we study the relationship between � and �0 along

the following lines : If � belongs to a certain class of distributions, then does �0

belong to the same class? The answers are obtained for some important classes

in Theorem 4.1. Section 5 contains some examples and Section 6 discusses open

problems.

We conclude the Introduction by stating a basic characterization theorem for

type G distributions, which has been proved in [MR00], and will also be needed

later in this paper.

Theorem A ([MR00]). A symmetric probability measure � on Rd is of type G

if and only if it is in�nitely divisible and its L�evy measure � is either zero or

represented as

�(EB) =

Z
B

�(dx)

Z
E

gx(r
2)dr for E 2 B(R+); B 2 B(S);

where � is a probability measure on S and gx(r) is a jointly measurable function

which, for any �xed x, is completely monotone on (0;1) and satis�esZ 1
0

(1 ^ r2)gx(r2) dr = c 2 (0;1)

with c independent of x. This representation is unique in the sense that, if � 6= 0

and two pairs (�; gx) and (e�; egx) both satisfy the above conditions, then � = e� and
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gx = egx for �-a.e. x. Moreover, � is a symmetric probability measure and gx = g�x

�-a.e.

2. Subclasses of the class of type G distributions

In the following, if � is in�nitely divisible, we denote its L�evy measure by �(�).

We �rst rewrite the de�nition of type G distribution. In the de�nition (1.1), �0 is

a Borel measure. However, by Proposition 2.2 (i){(ii) in [MR00], �0 in (1.1) is also

a L�evy measure and can always be taken symmetric. For any �0 2 eI(Rd), de�ne
K(�0) as the in�nitely divisible distribution � having the same Gaussian compo-

nent as �0 and L�evy measure � given by (1.1) with �0 = �0(�0). The symmetric

distribution �0 will be called the predecessor of � (relative to the operation K).

The predecessor is uniquely de�ned. Indeed, suppose that � has two predecessors

�1 and �2. Then � satis�es (1.1) with �0 = �1(�1) and �0 = �2(�2). By Proposition

2.2 (iii) in [MR00] �1 = �2, and since �1 and �2 have the same Gaussian part,

�1 = �2. We have just shown that K is one-to-one. If we write

K(H) = fK(�0) : �0 2 Hg; H � eI(Rd);
then

TG(Rd) = K(eI(Rd)):
Put TG�1(Rd) = eI(Rd) and TG0(Rd) = TG(Rd). De�ne for 1 � m <1,

TGm(Rd) = K(TGm�1(Rd));

and

TG1(Rd) =
1\
m=0

TGm(Rd):

Theorem 2.1. eI(Rd) � TG0(Rd) � TG1(Rd) � � � � � TGm(Rd) � TGm+1(Rd)

� � � � � TG1(Rd) � eS(Rd).
Proof. By the de�nition,

TG�1(Rd) � TG0(Rd):

Suppose that TGm�1(Rd) � TGm(Rd) for some 0 � m < 1. If � 2 TGm+1(Rd);

then �(�)(A) = E[�0(Z
�1A)]; where �0 is the L�evy measure of the predecessor
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�0 2 TGm(Rd). By the induction hypothesis, we have that �0 2 TGm�1(Rd).

Hence � 2 TGm(Rd); concluding

TGm+1(Rd) � TGm(Rd):

The assertion TGm(Rd) � TG1(Rd) is trivial from its de�nition.

We next show that TG1(Rd) � eS(Rd). If �0 2 eS(Rd), then �(A) = E[�0(Z
�1A)]

is the L�evy measure of a symmetric stable distribution, where �0 is the L�evy measure

of �0. Thus K(eS(Rd)) � eS(Rd). Conversely, if � 2 eS(Rd), then
�(�)(A) = E[�0(Z

�1A)];

where �0 is also the L�evy measure of a distribution in eS(Rd). For, since the L�evy
measure of � 2 eS(Rd) satis�es the condition a��(�)(A) = �(�)(a�1A), for every

a > 0 and A 2 B0(Rd), where � 2 (0; 2] is the index of stability, (1.1) holds

with �0 = (E[jZj�])�1�. Hence eS(Rd) � K(eS(Rd)) and thus K(eS(Rd)) = eS(Rd),
namely, eS(Rd) is invariant under the operation K. We thus have, for each m � 0,

eS(Rd) = Km(eS(Rd)) � Km(eI(Rd)) = TGm(Rd);

where Km is the mth iteration of K. Thus eS(Rd) � Tm�0 TGm(Rd) = TG1(Rd).

This completes the proof. �

It might be asked whether the inclusions in Theorem 2.1 are strict or not. The

answer is the following.

Theorem 2.2. The inclusions in Theorem 2.1 are all strict, namely

eI(Rd) % TG0(Rd) % TG1(Rd) % � � � % TGm(Rd) % TGm+1(Rd)

% � � � % TG1(Rd) % eS(Rd):
Proof. First note that TG�1(Rd) % TG0(Rd), since the existence of non-type G

in�nitely divisible distribution is assured by Theorem A.

We next show that if for some m � 0,

(2.1) TGm�1(Rd) % TGm(Rd);
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then

TGm(Rd) % TGm+1(Rd):

If (2.1) is true, then there exists a �0 such that �0 2 TGm�1(Rd) but �0 =2
TGm(Rd). Let �(A) = E[�0(Z

�1A)], where �0 = �0(�0). Then the in�nitely

divisible distribution � with the L�evy measure � is in TGm(Rd). However � =2
TGm�1(Rd). Because if � 2 TGm�1(Rd), then the corresponding uniquely deter-

mined �0 must be in TGm(Rd), which is impossible. We thus conclude that

(2.2) TGm�1(Rd) % TGm(Rd); 8m � 0:

We next show that

TGm(Rd) % TG1(Rd); 8m � 0:

If there exists an m0 such that

TGm0
(Rd) = TG1(Rd);

then

TGm0
(Rd) = TGm0+1(R

d) = � � � = TG1(Rd);

which contradicts (2.2).

Finally the fact that TG1(Rd) % eS(Rd) follows from Corollary 3.1 in Section 3,

and so the rest of the proof is postponed to the end of Section 3. �

The class TG1(Rd) has the following special property.

Theorem 2.3. TG1(Rd) is invariant under the operation K and the largest class

among such classes.

Proof. By Theorem 2.1,

TGm(Rd) � TGm+1(Rd) = K(TGm(Rd));

and hence

\
m�0

TGm(Rd) �
\
m�0

K(TGm(Rd)) � K

0
@ \
m�0

TGm(Rd)

1
A :
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Thus

TG1(Rd) � K(TG1(Rd)):

Let us show the converse inclusion. Let � 2 TG1(Rd). Then for any m � 0,

� 2 TGm(Rd). Hence � has the predecessor �0 in every class TGm�1(Rd). Since

the predecessor is uniquely de�ned,

�0 2
\
m�0

TGm(Rd) = TG1(Rd);

and hence

� 2 K(TG1(Rd)):

We thus conclude that

K(TG1(Rd)) = TG1(Rd):

We next show that TG1(Rd) is the largest class among such classes. Suppose

that H(� eI(Rd)) satis�es that K(H) = H. As before, for each m � 0,

H = Km(H) � Km(eI(Rd)) = TGm(Rd);

and thus

H �
\
m�0

TGm(Rd) = TG1(Rd):

This completes the proof. �

In one dimensional case (d = 1), a random variable X with distribution � in

TG0(R1) can be characterized by

X
d
= V 1=2Z;

where V is some nonnegative in�nitely divisible random variable independent of Z

and
d
=means equivalence in law. Then a natural question is how we can characterize

X with � in TGm(R1);m = 1; 2; :::, or what type of restriction on V assures that

� belongs to TGm(R1).

To answer this question, we need an observation found in [MR00]. For any

given nonnegative in�nitely divisible random variable V , there exists a L�evy process

fV0(t)g such that its quadratic variation [V0; V0](t) satis�es [V0; V0](1)
d
= V . Then

the L�evy measure �0 in (1.1) is the L�evy measure of V0(1). We call fV0(t)g the

L�evy process associated with V . We thus have the following equivalence from the

de�nition of TGm(R1).
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Theorem 2.4. Let m = 1; 2; :::. Then the following are equivalent.

(i) � 2 TGm(R1).

(ii) Let X be a random variable with distribution �. Then

X
d
= V 1=2Z;

where Z is the standard normal random variable and V is some nonnegative in�n-

itely divisible random variable independent of Z, and the distribution �0 of V0(1),

fV0(t)g being the L�evy process associated with V , belongs to TGm�1(R1).

3. The Urbanik-Sato nested subclasses of symmetric selfdecomposable

distributions

Urbanik [U73] and Sato [S80] introduced and studied the nested classes Lm(Rd);

m = 0; 1; 2; :::;1, between I(Rd) and S(Rd), which are de�ned in the following

way.

In general, for H � I(Rd), de�ne

Q(H) = f� 2 I(Rd) : for any a 2 (0; 1); there exists �a 2 H

such that b�(�) = b�(a�)b�a(�); 8� 2 Rdg;
where b� is the characteristic function of �.

Then, L0(Rd) is de�ned as

L0(Rd) = Q(I(Rd));

and Lm(Rd);m = 1; 2; :::; are de�ned inductively as

Lm(Rd) = Q(Lm�1(Rd))

and

L1(Rd) =
\
m�0

Lm(Rd):

Then it was shown that

I(Rd) � L0(Rd) � L1(Rd) � � � � � L1(Rd) � S(Rd):
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Distributions in L0(Rd) are called selfdecomposable. Throughout this paper, we

are only concerned with symmetric distributions. Therefore we will consider classeseLm(Rd). Now we have two sequences of nested classes between eI(Rd) and eS(Rd).
(i) eI(Rd) � TG0(Rd) � TG1(Rd) � � � � � TG1(Rd) � eS(Rd)

and

(ii) eI(Rd) � eL0(Rd) � eL1(Rd) � � � � � eL1(Rd) � eS(Rd):
Then a natural question is to compare two sequences. The following is due to Sato

[S80].

Theorem B ([S80]). A probability measure � 2 I(Rd) is selfdecomposable, namely

in L0(Rd) if and only if its L�evy measure � is either zero or represented as

�(EB) =

Z
B

�(dx)

Z
E

kx(r)

r
dr for E 2 B(R+); B 2 B(S)

where � is a probability measure on S and kx(r) is, for any �xed x, a nonnegative

nonincreasing right-continuous function of r satisfying

Z 1
0

(1 ^ r2)kx(r)
r

dr = c 2 (0;1)

with c independent of x, and for any r, kx(r) is a measurable function of x. This

representation is unique in the sense that, if � 6= 0 and two pairs (�; kx) and (e�;ekx)
both satisfy the above conditions, then � = e� and kx = ekx for �-a.e. x.

A question when a given type G distribution on R1 is selfdecomposable was an-

swered in [R91], namely, a type G distribution is selfdecomposable if and only if

x1=2gx(r) is nonincreasing with respect to r on (0;1). The proof in [R91] did not

use Theorem B, but once we have Theorems A and B, we can relate selfdecompos-

able and type G distributions in Rd using spectral forms of their L�evy measures

(which are unique).

Theorem 3.1. (i) Let � 2 TG0(Rd). Then � 2 L0(Rd) if and only if for �-a.e. x

r1=2gx(r) is nonincreasing with respect to r on (0;1).
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(ii) Let � 2 eL0(Rd). Then � 2 TG0(Rd) if and only if for �-a.e. x kx(r
1=2)=r1=2

is complete monotone.

Proof. It follows from Theorems A and B that

(3.1) rgx(r
2) = kx(r)

for �-a.e. x. The theorem follows from (3.1). �

Sato [S80] also gave a necessary and suÆcient condition for � 2 Lm(Rd); m =

1; 2; :::;1. De�ne hx(s) = kx(e
�s), and call it the h-function of � 2 L0(Rd). For

Æ > 0, let �Æ be the di�erence operator, �Æf(s) = f(s+ Æ) � f(s), and �n
Æ be its

nth iteration. We say that a function f(s) is monotone of order n if

(3.2) �j
Æf(s) � 0 for Æ > 0; s 2 R1;

for any j = 0; 1; :::; n. When (3.2) holds for all integers j, f is called absolutely

monotone. Then one of results by Sato [S80] is the following.

Theorem C ([S80]). Let m = 0; 1; 2; :::;1. A probability measure � belongs to

Lm(Rd) if and only if � 2 L0(Rd) and h-function hx(s) of � is monotone of order

m + 1 for �-a.e. x, where � is the spherical component of the L�evy measure of �,

and when m =1, being monotone of order m+1 is understood as being absolutely

monotone.

The next theorem is a direct consequence of Theorem C and the relation (3.1).

Theorem 3.2. Let � 2 TG0(Rd), and m = 0; 1; 2; :::;1. Then � 2 Lm(Rd) if and

only if

hx(s) = e�sgx(e
�2s)

is monotone of order m+ 1 (absolutely monotone when m =1) for �-a.e. x.

In [MR00], we have shown that TG0(Rd) is closed under convolution and weak

convergence. By exactly the same argument, we can show the following.

Theorem 3.3. The classes TGm(Rd);m = 1; 2; :::;1, are closed under convolution

and weak convergence.
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Corollary 3.1. TG1(Rd) � eL1(Rd).
Proof. It is known ([S80]) that L1(Rd) is the smallest class containing the class

S(Rd), closed under convolution and weak convergence, and thus eL1(Rd) is the
smallest class containing the class eS(Rd), closed under convolution and weak con-

vergence. This fact combined with Theorem 3.3 for m = 1 yields the conclu-

sion. �

A consequence of Corollary 3.1 is that convolutions of symmetric stable distri-

butions of di�erent indices are of type G. This fact is pointed out in [R91] for the

case d = 1.

Proof of Theorem 2.2 (continued). As stated above in the proof of Corollary 3.1,

we know that eL1(Rd) % eS(Rd), because, for instance, convolutions of symmetric

stable distributions of di�erent indices are in eL(Rd) but not in eS(Rd). Thus by

Corollary 3.1,

TG1(Rd) � eL1(Rd) % eS(Rd):
This completes the proof of Theorem 2.2. �

4. Some invariant properties of type G distributions

The �rst two statements, (i) and (ii) of Theorem 4.1, give examples of invariant

properties under the operation K. (iii) and (iv) show that selfdecomposability of

K(�0) is inherited from its predecessor �0 but is not a K-invariant property (see

Section 2 for the de�nition of K).

Theorem 4.1. Suppose that � 2 TGm(Rd) and let �0 2 TGm�1(Rd) be its pre-

decessor, m � 0. Then the following holds.

(i) � is operator stable if and only if �0 is operator stable.

(ii) � is Rd-valued semi-stable if and only if �0 is Rd-valued semi-stable.

(iii) If �0 is selfdecomposable, then so is �.

(iv) There is a type G � such that � is selfdecomposable, but �0 is not selfdecom-

posable.
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Proof. (i) The \if" part. If �0 is operator stable with some exponent matrix M ,

then its L�evy measure �0 satis�es that for any a > 0

(4.1) a�0(A) = �0(b
�MA); A 2 B0(Rd);

where tM =
P1

k=0
1
k!
(log t)kMk, for t > 0 and a matrix M . Then we have

�(A) = E[�0(Z
�1A)] = E[a�1�0(Z

�1a�MA)] = a�1�(a�MA);

concluding that � is operator stable.

The \only if" part. If � is operator stable with some exponent M , then its L�evy

measure � satis�es the relation in (4.1) for � instead of �0. Thus we have

E[a�0(Z
�1A)] = E[�0(Z

�1a�MA)];

and by Proposition 2.3 in [MR00], we obtain

a�0(�) = �0(a
�M �);

concluding that �0 is operator stable.

(ii) The \if" part. If �0 is Rd-valued semi-stable, then for some r 2 (0; 1) and

� 2 (0; 2],

(4.2) r�0(A) = �0(r
�1=�A); A 2 B0(Rd):

Then obviously, � satis�es (4.2) for the same r and �, which assures the semi-

stability of �. The \if" part can be shown as in the second half part of the proof

of (i).

(iii) Since �0 is selfdecomposable, we have for each a 2 (0; 1),

�0(A) = �0(aA) + �a0 (A);

where �a0 is a L�evy measure. Thus the L�evy measure � of � satis�es

�(A) = �(aA) + �a(A);

where �a is another L�evy measure. This implies the selfdecomposability of �.
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(iv) We use the same idea for Theorem 4.1 in [MR00]. Let D1 = fx 2 Rd : 1 <
jxj < 2g and D2 = fx 2 Rd : 0 < jxj < 1g. Let

�0(A) = �d(A \D1)� "�d(A \D2); 0 < " < 1;

and

(4.3) �(A) = E[�0(Z
�1A)];

where �d is the Lebesgue measure In Rd. Then we have shown in the proof of

Theorem 4.1 in [MR00] that �0 is not a measure, but � is a measure. Furthermore,

these two �0 and � satisfy conditions in (2.1) in Proposition 2.1 of [S98], and thus

we can de�ne

(4.4) �0(A) =

Z
Rd

�0(dx)

Z 1
0

1A(e
�tx)dt

and

(4.5) �(A) =

Z
Rd

�(dx)

Z 1
0

1A(e
�tx)dt:

By a theorem due to Urbanik [U69], (4.5) is the L�evy measure of some selfdecom-

posable distribution, because � is a measure. On the other hand, Sato [S98] showed

that �0 is a L�evy measure, but the distribution whose L�evy measure is �0 in (4.4)

is not selfdecomposable, (Proposition 2.2 of [S98]). It follows from (4.3) that

�(A) =

Z
Rd

E[�0(Z
�1dx)]

Z 1
0

1A(e
�tx)dt

= E

�Z
Rd

�0(dx)

Z 1
0

1Z�1A(e
�tx)dt

�
= E[�0(Z

�1A)]:

Thus the in�nitely divisible probability measure, whose L�evy measure is � in (4.5),

is of type G and satis�es our requirements in the statement (iv). This completes

the proof of (iv). �

Related to Theorem 4.1 (iv), we want to know under what conditions in addition

to the selfdecomposability of �, �0 is selfdecomposable. To answer this question,

we �rst prove the following.
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Theorem 4.2. For any H � eI(Rd),
K(Q(H)) = Q(K(H)):

Proof. We �rst show that K(Q(H)) � Q(K(H)). Suppose � 2 K(Q(H)). Then its

L�evy measure � is represented as in (1.1), and �0 whose L�evy measure is �0 in (1.1)

satis�es that for each a 2 (0; 1), there exists �a 2 H such that b�0(�) = b�0(a�)c�a0(�).
Thus the respective L�evy measures �0 and �a0 of �0 and �a0 satisfy

�0(A) = �0(aA) + �a0 (A):

Hence we have

�(A) = E[�0(aZ
�1A)] +E[�a0 (Z

�1A)] = �(aA) + �a(A);

implying that

b�(�) = b�(a�)c�a(�);
where �a 2 I(Rd) is the probability distribution with L�evy measure �a and �a 2
K(H). This concludes that � 2 Q(K(H)).

We next show that Q(K(H)) � K(Q(H)). Suppose � 2 Q(K(H)). Then for

any a 2 (0; 1) there exists �a 2 K(H) such that

b�(�) = b�(a�) = b�a(�);
If �a 2 K(H), then its L�evy measure �a is represented as

(4.6) �a(A) = E[�a0 (Z
�1A)]

for some L�evy measure �a0 , depending on a, whose corresponding in�nitely divisible

distribution belongs to the class H. However, (4.6) is equivalent to that

E[�a0 (Z
�1A)] = �(A)� �(aA) = �((1� a)A)

for any a 2 (0; 1) and any A 2 B0(Rd). This means that � has the same property

as in (1.1). By the uniqueness of �0 in (1.1), the in�nitely divisible distribution �0

with L�evy measure �0 belongs to the same class as �a, namely, �0 2 K(H).

We thus conclude that � 2 Q(K(H)), and the proof of Theorem 4.2 is com-

pleted. �
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Theorem 4.3. If � is selfdecomposable, namely if for any a 2 (0; 1), there exists

�a 2 I(Rd) such that b�(�) = b�(a�)b�a(�), and further if �a is of type G, then �0,

the predecessor of �, is selfdecomposable.

Proof. Applying Theorem 4.2 to the case H = I(Rd), we have

K(L0(Rd)) = Q(TG0(Rd)):

Therefore, the following two statements are equivalent:

(i) � is selfdecomposable such that for any a 2 (0; 1), b�(�) = b�(a�)b�a(�), where �a
is of type G.

(ii) � is of type and its predecessor �0 is selfdecomposable.

This equivalence concludes the statement of the theorem. �

5. Some examples

Here we give simple examples of � 2 TGm(R1);m = 0; 1:We start with a lemma.

Lemma 5.1. Let Z be the standard normal random variable and Y be a positive

random variable independent of Z. Then jZjpY is in�nitely divisible for any p � 2.

Proof. Let f be the density of jZjp. Observe that

f(x) =
2

p
p
2�

x�1+1=p expf�x2=p=2g

is a completely monotone function (see, e.g., E 55.1, page 424 in [S99]). By Bern-

stein's theorem

f(x) =

Z
(0;1)

e�xu�(du); x > 0

for some measure �. Denoting by G the distribution of Y , we have for every a > 0,

PfjZjpY � ag =
Z 1
0

Z 1
0

Z 1
0

1(xy � a)e�xu�(du)dxG(dy)

=

Z 1
0

Z 1
0

u�1(1� e�au=y)�(du)G(dy):

Hence jZjpY has completely monotone density and as such is in�nitely divisible by

a theorem of Goldie (see Theorem 51.6 in [S99]). �
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Example 5.1. If Z1; :::; Zn are i.i.d. standard normal random variables, then

Z1 � � �Zn is of type G.

Proof. Z1 � � �Zn d
= Z1jZ2 � � �Znj and jZ2 � � �Znj2 is in�nitely divisible by the above

lemma. �

We are now going to show that the distribution of Z1Z2 belongs to TG1(R1).

Example 5.2. Let Z1 and Z2 be independent standard normal random variables.

Then the distribution of Z1Z2 is in TG1(R1).

Proof. Since

X := Z1Z2
d
= Z1(jZ2j2)1=2;

V in (1.1) is jZ2j2 in this case. By Theorem 2.4, it is enough to show that the

distribution of V0(1) associated with V = jZ2j2 is of type G. Note that jZ1j2 is

�2-distribution with freedom 1, thus is nonnegative in�nitely divisible, and its L�evy

measure is of the form

�([x;1)) =

Z 1
x

e�u=2

u
du:

Then �0 satis�es for x > 0

�0([x;1)) =
1

2
�([x1=2;1)) =

1

2

Z 1
x1=2

e�u=2

u
du

=
1

4

Z 1
x

e�v
1=2=2

v
dv =

Z 1
x

g(v2)dv:

By a characterization for type G distributions (see Theorem 1 of [R91], also see

Theorem 2.5 of [MR00]), it is enough to check that

g(x) = x�1=2e�x
1=4=2

is completely monotone. However, this is true, (see again e.g., E 55.1, page 424 in

[S99]). The proof is completed. �

6. Further problems

We conclude the paper by stating some further problems which naturally arise

form the observations in this paper.
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Problem 1 : In Theorem A, we gave a necessary and suÆcient condition for that

� 2 TG0(Rd). Namely, � 2 TG0(Rd) if and only if the radial component of its

L�evy measure has a density involving a completely monotone function gx(�). What

additional conditions on gx(�) assure that � 2 TGm(Rd)?

Problem 2 : Related to Corollary 3.1, we conjecture that TG1(Rd) = eL1(Rd),
namely TG1(Rd) is also the smallest class containing the class eS(Rd) of all sym-

metric stable distributions, closed under convolution and weak convergence.

Problem 3 : In Examples 5.1 and 5.2, we have shown that the distribution of the

product Z1 � � �Zn is of type G and furthermore the distribution of Z1Z2 belongs to

TG1(Rd). Can one say more about the distribution of Z1 � � �Zn?
Problem 4 : Type G distributions are continuous but are they absolutely contin-

uous? If not, what is the smallestm(� 1) such that any � 2 TGm(Rd) is absolutely

continuous?
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