
SUBORDINATION AND SELFDECOMPOSABILITY

KEN-ITI SATO

Abstract. Two facts are established concerning subordination and selfdecompos-
ability. 1. Any subordinated process arising from a Brownian motion with drift and
a selfdecomposable subordinator is selfdecomposable. 2. Selfdecomposable distri-
butions of type G are not necessarily of type GL. Consequences of the first fact on
smoothness of the distributions are discussed.
Keywords: selfdecomposable distribution, subordination, selfdecomposable subor-
dinator, Brownian motion with drift, distribution of type G

1. Introduction and results

A distribution µ on R is called selfdecomposable if, for every b > 1, there exists

a distribution µb on R such that their characteristic functions µ̂(z), µ̂b(z) satisfy

µ̂(z) = µ̂(b−1z)µ̂b(z), z ∈ R. (1.1)

The class L of selfdecomposable distributions is a subclass of the class of infinitely

divisible distributions. Its importance in the theory of Lévy processes, processes of

Ornstein–Uhlenbeck type, and selfsimilar additive processes and in applications is

now getting greater. See Barndorff-Nielsen and Shephard (2000) and Sato (1999).

For other aspects of selfdecomposability, see Bondesson (1992) and Jurek and Mason

(1993). A Lévy process whose distribution at each t is selfdecomposable is called a

selfdecomposable process. A random variable with a selfdecomposable distribution is

called a selfdecomposable random variable.

It is an interesting problem to see whether selfdecomposability is preserved under

various transformations. In the case of a transformation which preserves selfdecom-

posability, it is also interesting how big the image of the class L is. Similar problems

are considered on subclasses of the class L such as the classes Lm. See, for example,

Hachiman-yama 1101-5-103, Tenpaku-ku, Nagoya, 468-0074, Japan
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Sato and Yamazato (1983) for the transformation from background driving Lévy pro-

cesses to processes of Ornstein–Uhlenbeck type. In this paper we study two problems

of this sort.

A relation of subordination and selfdecomposability was found by Halgreen (1979)

and Ismail and Kelker (1979). They noticed essentially the following fact. Let

{Xt : t ≥ 0} and {Zt : t ≥ 0} be the Brownian motion on R and a selfdecompos-

able subordinator, respectively. Let {Yt : t ≥ 0} be the subordinated process arising

from them. By this we mean that

{Xt} and {Zt} are independent (1.2)

and that

Yt = XZt , t ≥ 0. (1.3)

Then {Yt} is selfdecomposable. The process {Yt} is a Lévy process and the procedure

above to get {Yt} is Bochner’s subordination. This fact gives the selfdecomposability

of normal inverse Gaussian distributions. Halgreen (1979) asked a question whether

the same conclusion remains true if the Brownian motion is replaced by a Brown-

ian motion with drift. He gave an affirmative answer under the restriction that the

distribution of Z1 is of Bondesson class, sometimes called GGC (generalized gamma

convolutions) (see Sato (1999) p. 389 for definition). The same result was obtained

also by Shanbhag and Sreehari (1979). In this way the two papers established selfde-

composability of generalized hyperbolic distributions.

One of the results in this paper is the following affirmative answer to Halgreen’s

question.

Theorem 1.1. Let {Xt : t ≥ 0} be a Brownian motion with drift on R and let {Zt : t ≥
0} be a selfdecomposable subordinator. Then the subordinated process {Yt : t ≥ 0}
arising from them is selfdecomposable.

Using the terminology of Barndorff-Nielsen and Shephard (2000), we can express

Theorem 1.1 in this way: normal variance-mean mixtures using selfdecomposable

mixing distributions are selfdecomposable. A related paper is Barndorff-Nielsen and

Halgreen (1977).
2



The Brownian motion is strictly stable with index 2. Brownian motions with

drift are stable with index 2, but not strictly stable. It is known that if the subor-

dinand {Xt} is strictly stable and the subordinator {Zt} is selfdecomposable, then

the subordinated process {Yt} is selfdecomposable. This is another extension of the

result of Halgreen and Ismail and Kelker and a multivariate generalization of this fact

is given in Theorem 6.1 of Barndorff-Nielsen, Pedersen, and Sato (2000). In Section

4 we give a simple proof of this fact. We do not know whether Theorem 1.1 can be

generalized to the case where the subordinand {Xt} is a stable process which is not

strictly stable.

A random variable Y is called of type G if there are a standard Gaussian random

variable X and a nonnegative infinitely divisible random variable Z such that

X and Z are independent (1.4)

and

Y
d
= Z1/2X; (1.5)

see Rosinski (1991) for an account of this class. The distribution of Y is also called

of type G. In other words it is a normal variance mixture using an infinitely divisible

mixing distribution. It is easy to see that a distribution µ on R is of type G if and

only if µ is the distribution at time 1 of the subordinated process {Yt} arising from

the Brownian motion {Xt} and a subordinator {Zt}. Thus the result of Halgreen

and Ismail and Kelker is paraphrased as follows: a random variable Y of type G is

selfdecomposable if the Z in the definition of type G is selfdecomposable, that is, if

Y is of class GL in the terminology of Jian (2000). The second result of this paper is

that the converse assertion is not true.

Theorem 1.2. There is a selfdecomposable random variable Y of type G for which one

cannot find a nonnegative selfdecomposable Z and a standard Gaussian X satisfying

(1.4) and (1.5).

In other words, a selfdecomposable random variable of type G is not necessarily

of type GL. This disproves a conjecture of Jian (2000), p. 40.

Proofs of Theorems 1.1 and 1.2 are given in Sections 2 and 3.
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2. Proof of Theorem 1.1

The generating triplet (A, ν, γ) of an infinitely divisible distribution µ on R is,

by definition, a triplet of a nonnegative number A, a σ-finite measure ν satisfying

ν({0}) = 0 and
∫

(1 ∧ x2)ν(dx) < ∞, and a real number γ such that

µ̂(z) = exp

[
−A

2
z2 +

∫
R

(eizx − 1− izx1[−1,1](x))ν(dx) + iγz

]
. (2.1)

Here A and ν are called the Gaussian variance and the Lévy measure of µ, respectively.

A Lévy process {Xt : t ≥ 0} is said to have the generating triplet (A, ν, γ) if the

distribution of X1 has the generating triplet (A, ν, γ). {Xt} is a subordinator if and

only if A = 0, ν((−∞, 0)) = 0,
∫
(0,1]

xν(dx) < ∞, and γ ≥ ∫
(0,1]

xν(dx), that is,

µ̂(z) = exp

[∫
(0,∞)

(eizx − 1)ν(dx) + iγ0z

]
(2.2)

with γ0 = γ−∫
(0,1]

xν(dx) ≥ 0, which is called the drift of the subordinator. See Sato

(1999) for detailed exposition.

Let {Xt} be a Lévy process on R with generating triplet (A, ν, γ) and {Zt} be a

subordinator with Lévy measure ρ and drift β0. Let {Yt} be the subordinated Lévy

process arising from them. Then the generating triplet (A], ν], γ]) of {Yt} is given as

follows:

A] = β0A, (2.3)

ν](B) = β0ν(B) +

∫
(0,∞)

µs(B)ρ(ds), B ∈ B(R \ {0}), (2.4)

γ] = β0γ +

∫
(0,∞)

ρ(ds)

∫
[−1,1]

xµs(dx), (2.5)

where µs is the distribution of Xs and B(R \ {0}) is the class of Borel subsets of

R \ {0}. See Theorem 30.1 of Sato (1999).

Lemma 2.1. Fix a selfdecomposable process {Xt}. Suppose that, if {Zt} is a self-

decomposable subordinator satisfying β0 = 0 and ρ(ds) = s−11(0,a](s)ds for some

a ∈ (0,∞), then the subordinated process {Yt} is selfdecomposable. Then, for any

choice of a selfdecomposable subordinator {Zt}, the subordinated process {Yt} is self-

decomposable.
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Proof. An infinitely divisible distribution is selfdecomposable if and only if its

Lévy measure is of the form |x|−1k(x)dx with k(x) increasing on (−∞, 0) and de-

creasing on (0,∞) (we are using the words increase and decrease in the weak sense).

See Corollary 15.11 of Sato (1999). Let {Zt} be a selfdecomposable subordinator with

Lévy measure ρ and drift β0. Then ρ(ds) = s−1k(s)1(0,∞)(s)ds with k(s) decreasing

on (0,∞). The function k(s) is the limit of an increasing sequence of functions kn(s),

n = 1, 2, . . . , of the form

kn(s) =

mn∑
j=1

bn,j1(0,an,j ](s),

where mn is a positive integer, 0 < an,1 < · · · < an,mn , and bn,j > 0 for j = 1, . . . , mn.

Let {Z(n)
t } be the subordinator with Lévy measure s−1kn(s)1(0,∞)(s)ds and drift β0.

Recall that convolutions of selfdecomposable distributions are selfdecomposable. By

virtue of (2.4), the assumption implies that the subordinated process {Y (n)
t } arising

from {Xt} and {Z(n)
t } is selfdecomposable. Since the limit of a sequence of selfdecom-

posable distributions is selfdecomposable, it follows that {Yt} is selfdecomposable. �

Proof of Theorem 1.1. Let {Xt}, {Zt}, and {Yt} be the processes in the theorem.

Let (A, ν, γ), ρ, β0, and (A], ν], γ]) be as above. Then A = 1
2
, ν = 0, and γ 6=

0. By Lemma 2.1 it is enough to prove the theorem under the assumption that

ρ(ds) = s−11(0,a](s)ds for some a ∈ (0,∞) and β0 = 0. Thus, by (2.4), we have

ν](dx) = |x|−1k](x)dx with

k](x) = |x|
∫ a

0

1√
2πs

e−(x−γs)2/(2s) ds

s
. (2.6)

All we have to show is that k](x) is increasing on (−∞, 0) and decreasing on (0,∞).

The discussion for x < 0 is reduced to that for x > 0 by changing γ to −γ. So we

only consider x > 0. By change of variables x2/s = u we get

√
2πk](x) = x

∫ ∞

x2/a

e−(u1/2−γxu−1/2)2/2(x2/u)−3/2(x2/u2)du

=

∫ ∞

x2/a

e−(u1/2−γxu−1/2)2/2u−1/2du. (2.7)

Hence, if γ < 0, then k](x) is decreasing in x on (0,∞).
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Henceforth we assume that γ > 0. Write b = a−1/2. We have, from (2.7),

√
2π

dk](x)

dx
= −e−(bx−γ/b)2/2(bx)−12b2x

+

∫ ∞

b2x2

e−(u1/2−γxu−1/2)2/2(u1/2 − γxu−1/2)(γu−1/2)u−1/2du

=

∫ ∞

b2x2

e−(u1/2−γxu−1/2)2/2f(u)du, (2.8)

where

f(u) = −b(1− γ2x2u−2) + γ(1− γxu−1)u−1/2.

If x ≥ γb−2, then, rewriting f(u) as

f(u) = −b + γ2bx2u−2 + γu−1/2 − γ2xu−3/2

= −b(1− γb−1u−1/2)− γ2xu−3/2(1− bxu−1/2)

and noticing that 1− γb−1u−1/2 > 1− γb−2x−1 ≥ 0 and 1− bxu−1/2 > 0 for u > b2x2,

we get dk](x)/dx < 0 from (2.8). If 0 < x < γb−2, then b2x2 < γx and we get

√
2π

dk](x)

dx
= I1 + I2,

where

I1 =

∫ γx

b2x2

e−(u1/2−γxu−1/2)2/2f(u)du, I2 =

∫ ∞

γx

e−(u1/2−γxu−1/2)2/2f(u)du.

The integral I2 is, by change of variables γ2x2u−1 = v, written as

I2 =

∫ γx

0

e−(γxv−1/2−v1/2)2/2[−b(1− γ−2x−2v2) + γ(1− γ−1x−1v)γ−1x−1v1/2]γ2x2v−2dv

= −
∫ γx

0

e−(v1/2−γxv−1/2)2/2f(v)dv.

Thus we get

I1 + I2 = −
∫ b2x2

0

e−(u1/2−γxu−1/2)2/2f(u)du

= −
∫ b2x2

0

e−(u1/2−γxu−1/2)2/2(γxu−1 − 1)(b(γxu−1 + 1)− γu−1/2)du.

The function γxu−1/2 + u1/2 is strictly decreasing for 0 < u < γx. Since b2x2 < γx,

we have, for 0 < u < b2x2,

γxu−1/2 + u1/2 > γb−1 + bx ≥ γb−1.
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Hence I1 + I2 < 0 for 0 < x < γb−2, which finishes the proof that dk](x)/dx < 0 for

x > 0. �

3. Proof of Theorem 1.2

We prepare two simple lemmas.

Lemma 3.1. Suppose that Y satisfies (1.4) and (1.5) with a standard Gaussian

random variable X and a nonnegative random variable Z. Then the distribution of

Z is determined by the distribution of Y .

Proof. For any real u we have

E[eiuY ] = E[eiuZ1/2X ] = E[e−u2Z/2] =

∫
[0,∞)

e−u2s/2PZ(ds),

where PZ is the distribution of Z. Thus the characteristic function of the distribution

PY of Y determines the Laplace transform of PZ . Hence PZ is determined by PY . �

Lemma 3.2. Let a > b > 0 and let

f(s) =


1, 0 < s < a,

−1, a ≤ s < a + b,

1, a + b ≤ s.

Then ∫ ∞

0

e−xsf(s)ds > 0 for all x > 0.

Proof. We have∫ ∞

0

e−xsf(s)ds =

∫ a

0

e−xsds−
∫ a+b

a

e−xsds +

∫ ∞

a+b

e−xsds =
1

x
g(x)

for x > 0, where

g(x) = 1− 2e−ax + 2e−(a+b)x.

We have g(0+) = 1, g(∞) = 1, and g′(x) = 2e−ax(a− (a + b)e−bx). Hence g(x) takes

its minimum at x = x0 = 1
b
log a+b

a
. The minimum value is expressed as

g(x0) = 1− 2b

a + b

(
1 +

b

a

)−a/b

> 0,

since a > b > 0. This proves the assertion. �

Proof of Theorem 1.2. By Lemma 3.1 it is enough to construct a selfdecom-

posable subordinated process {Yt} arising from the Brownian motion {Xt} and a

non-selfdecomposable subordinator {Zt}. Assume, for a moment, that such {Yt},
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{Xt}, and {Zt} are found. Then, as in Section 2, the generating triplet (A], ν], γ]) of

{Yt} is expressed by the Lévy measure ρ and the drift β0 of {Zt} as

A] = β0, (3.1)

ν](B) =

∫
(0,∞)

ρ(ds)

∫
B

1√
2πs

e−x2/(2s)dx. (3.2)

By the selfdecomposability the Lévy measure ν] is of the form ν](dx) = |x|−1k](x)dx

with k](x) being decreasing on (0,∞). We have k](−x) = k](x). Assume further that

ρ(ds) = s−1k(s)ds on (0,∞) with a nonnegative measurable function k(s). Then

k](x) = x

∫ ∞

0

1√
2πs

e−x2/(2s) k(s)

s
ds

=

∫ ∞

0

1√
2πr

e−1/(2r) k(x2r)

r
dr (3.3)

for x > 0. We have

dk](x)

dx
= 2x

∫ ∞

0

1√
2πr

e−1/(2r)k′(x2r)dr (3.4)

for x > 0, supposing that k is differentiable except at a finite number of points and

the order of integration in r and differentiation in x is interchangeable. By change of

variables x2r = 1/u we get

dk](x)

dx
=

2√
2π

∫ ∞

0

e−x2u/2u−3/2k′(u−1)du. (3.5)

Now we fix a > b > 0 and want to choose a function k(s) such that

u−3/2k′(u−1) = −f(u),

where f is the function in Lemma 3.2. That is,

k′(u−1) =

{
−u3/2, u ∈ (0, a) ∪ (a + b,∞),

u3/2, u ∈ (a, a + b).

This is equivalent to

k′(s) =

{
−s−3/2, s ∈ (0, 1

a+b
) ∪ ( 1

a
,∞),

s−3/2, s ∈ ( 1
a+b

, 1
a
).

(3.6)

Take k(s) such that

k(s) =

{
2s−1/2, s ∈ (0, 1

a+b
) ∪ [ 1

a
,∞),

−2s−1/2 + c, s ∈ [ 1
a+b

, 1
a
),

(3.7)
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where c is chosen to be −2(a+b)1/2 +c ≥ 0. Then k(s) ≥ 0 on (0,∞),
∫ 1

0
k(s)ds < ∞,∫∞

1
s−1k(s)ds < ∞, and (3.6) is satisfied. Define k](x) for x > 0 by (3.3) and

define k](−x) = k](x). Then the condition on the interchangeability of the order of

integration and differentiation is satisfied. By Lemma 3.2 and by (3.5), dk](x)/dx is

negative for x > 0. Hence ν](dx) = |x|−1k](x)dx and ρ(ds) = s−1k(s)ds are the Lévy

measures that we wanted to construct. Indeed, the Lévy process with Lévy measure

ν] is selfdecomposable since k](x) is decreasing on (0,∞) and increasing on (−∞, 0);

the subordinator with Lévy measure ρ is not selfdecomposable since k(s) is strictly

increasing on [ 1
a+b

, 1
a
). �

4. Remarks

Let {Xt}, {Zt}, and {Yt} be the processes in Theorem 1.1. Let γ, ρ, β0, and

(A], ν], γ]) be as in the proof of the theorem. Let PZt and PYt be the distributions

of Zt and Yt, respectively. Then, the two functions k(s) and k](x) which express

ρ(ds) = s−1k(s)ds and ν](dx) = |x|−1k](x)dx are connected as follows:

k](x) = |x|
∫ ∞

0

1√
2πs

e−(x−γs)2/(2s) k(s)

s
ds

=
1√
2π

∫ ∞

0

e−(u1/2−γxu−1/2)2/2k(x2u−1)u−1/2du

=
eγx

√
2π

∫ ∞

0

e−(u/2)−γ2x2/(2u)k(x2u−1)u−1/2du (4.1)

for x ∈ R \ {0}. It follows that

k](0+) = k](0−) =
k(0+)√

2π

∫ ∞

0

e−u/2u−1/2du = k(0+), (4.2)

since
∫∞
0

e−u/2u−1/2du =
√

2Γ(1/2) =
√

2π. Notice that the result (4.2) does not

depend on γ. The same result holds also when {Xt} is the Brownian motion (γ = 0).

¿From the selfdecomposability proved in Theorem 1.1 and from (4.2) follow many

properties of PYt . First, PYt is unimodal by Yamazato’s theorem (1978). Second, the

smoothness of PYt is expressed by k](0+) + k](0−) as in Sato and Yamazato (1978).

Some of the results are given below; see also Sections 28 and 53 of Sato (1999). Let

cZ = k(0+) and cY = k](0+) + k](0−). Then

cY = 2cZ (4.3)
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by (4.2). If cZ and cY are infinite or if β0 > 0, then PZt and PYt have C∞ densities

on R for every t > 0. Assume that k(0+) < ∞ and β0 = 0. Thus, by (2.5), {Yt} has

drift 0. Define NZ(t) and NY (t) as the integers satisfying NZ(t) < tcZ ≤ NZ(t) + 1

and NY (t) < tcY ≤ NY (t) + 1. Then, for t > 0, PYt (resp. PZt) has CNY (t) (resp.

CNZ (t)) density on R but does not have CNY (t)+1 (resp. CNZ(t)+1) density on R. In

this sense, the distribution of {Yt} is twice as smooth as the distribution of {Zt}. For

t ≤ 1/cY , PYt has mode 0 and the density fY (t, x) of PYt satisfies fY (t, 0+) = ∞ and

fY (t, 0−) = ∞. On the other hand, for t < 1/cZ , PZt has mode 0 and fZ(t, 0+) = ∞;

for t = 1/cZ , PZt has mode 0 and, in order that fZ(1/cZ , 0+) = ∞, it is necessary

and sufficient that
∫ 1

0
(cZ − k(s))s−1ds = ∞.

In Theorem 1.1 we have treated a Bownian motion with drift, which is not strictly

stable. In the case of strictly stable subordinands, more results are known. The

following fact is a special case of Theorem 6.1 of Barndorff-Nielsen, Pedersen, and

Sato (2000). Its simple proof is presented here, as the proof of the general theorem

is complicated. It suggests the nature of the first problem treated in this paper.

Proposition 4.1. A subordinated process on R arising from a strictly stable subor-

dinand and a selfdecomposable subordinator is selfdecomposable.

Proof. As before denote by {Xt}, {Zt}, and {Yt} the subordinand, the subordi-

nator, and the subordinated. If {Xt} is a linear deterministic motion, the assertion

is trivial. So we assume that {Xt} is strictly stable with index α ∈ (0, 2] and not a

linear deterministic motion. We have

{Xat : t ≥ 0} d
= {a1/αXt : t ≥ 0}

for all a > 0. The distribution of Xt for all t > 0 has a density pt(x) satisfying

pt(x) = t−1/αp1(t
−1/αx). (4.4)

Using the same notation for the generating triplets as in Section 2, we have

ν](B) = β0ν(B) +

∫
B

dx

∫ ∞

0

ps(x)s−1kZ(s)ds, B ∈ B(R \ {0}),

where ρ(ds) = s−1kZ(s)ds with kZ(s) being decreasing on (0,∞). Since stable pro-

cesses are selfdecomposable, we have ν(dx) = |x|−1kX(x)dx with kX(x) being increas-

ing on (−∞, 0) and decreasing on (0,∞). Thus ν] is written as ν](dx) = |x|−1k](x)dx
10



with

k](x) = β0kX(x) + |x|
∫ ∞

0

ps(x)s−1kZ(s)ds. (4.5)

Combining (4.4) and (4.5) and using a variable r = s−1/α|x|, we obtain

k](x) = β0kX(x) + |x|
∫ ∞

0

p1(s
−1/αx)s−1−1/αkZ(s)ds

= β0kX(x) + |x|
∫ ∞

0

p1(r sgn x)(|x|αr−α)−(α+1)/αkZ(|x|αr−α)α|x|αr−α−1dr

= β0kX(x) + α

∫ ∞

0

p1(r sgn x)kZ(|x|αr−α)dr

for x 6= 0. Therefore the monotonicity of kX(x) and kZ(s) leads to the monotonicity

of k](x); k](x) is increasing on (−∞, 0) and decreasing on (0,∞). This shows that

{Yt} is selfdecomposable. �

11



References

Barndorff-Nielsen, O., Halgreen, C., 1977. Infinite divisibility of the hyperbolic and
generalized inverse Gaussian distributions. Zeit. Wahrsch. Verw. Gebiete 38, 309–311.

Barndorff-Nielsen, O.E., Pedersen, J., Sato, K., 2000. Multivariate subordination,
selfdecomposability and stability. Research Report, MaPhySto, University of Aarhus.

Barndorff-Nielsen, O.E., Shephard, N., 2000. Modelling by Lévy processes for financial
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