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In the present paper we consider the problem of description of a generalized quantum measurement

with outcomes in a measurable space. Analyzing the  concepts of operational approach in quantum

measurement theory, we introduce the notion of a quantum stochastic representation of an instrument.

We show that the description of a generalized quantum measurement can be considered in the frame

of  a new general approach based on the notion of a family of quantum stochastic evolution operators.

Such approach gives not only the complete statistical  description of any quantum  measurement

but  the complete description in a Hilbert space of the stochastic behaviour of a quantum  system

under a measurement.

In the frame of the proposed  approach, which  we call quantum stochastic, all possible schemes of

measurements upon a quantum system  can be considered.

In the case of repeated or continuous in time measurements the quantum  stochastic approach

allows to define in the most general case the notion of a family of  posterior pure state trajectories

(quantum trajectories in discrete or continuous time) in a Hilbert space of a quantum system and

to give their probabilistic treatment.

Keywords: quantum measurement theory, quantum stochastic representations of an instrument,

quantum stochastic evolution operators.

1.Introduction

The behaviour of an isolated quantum system, which is not observed, is quantum deterministic

since it is described by the Schrödinger equation, whose solutions are reversible in time.

Under a measurement the behaviour of a quantum system becomes irreversible in time and

stochastic. Not only is the outcome of a measured quantum quantity random, being defined with

some probability distribution, but the state of  the quantum system under  measurement becomes

random as well.

In this paper we present the general approach to the desciption of quantum measurements based

on the introduction of the physically important mathematical  notion of  a family of  quantum
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stochastic evolution operators.  Every  operator of this family defines, under a generalized

measurement,  a  posterior pure state outcome of a quantum system in a Hilbert space.

The quantum stochastic approach  (QSA) gives not  only the  complete  statistical description

of any quantum  measurement, which implies both the knowledge of the probability distribution

of different outcomes of the measurement and a statistical description of the state change of

the quantum system under the measurement, but the QSA  gives also the complete stochastic

description of the random behaviour of a quantum system under the measurement, in the sense

of specifying the probabilistic transition law governing the change from the initail state to a

final one.

We generalize as far as possible our results presented in [16-18],  where the notion of a quantum

stochastic operator was first defined for the description of conditional evolution of continuously

observed quantum systems in the general case of non-demolition measurements.

In section 2  we review the main concepts of quantum measurement theory.

In section 3  we present the main ideas of the quantum stochastic approach to the description of

quantum measurements.

In section 4  we give the semiclassical interpretation of our results.

2. The main approaches  to  the description of quantum measurements

Let us first review  the main approaches to the description of  quantum measurements available up

to the moment. Under a quantum measurement we mean such  physical experiment upon a system,

which, resulting in the observation  of a value of a quantum system variable, may cause only a

change in a quantum system state, but not the quantum system's destruction.

2.1 Von Neumann approach
Let SH  be a complex separable Hilbert space of a quantum system. According to the von Neumann

approach [1] only self-adjoint  operators on SH  are allowed to represent real-valued  variables of

a quantum system, which can be measured. The probability distribution of  different  outcomes of a

measurement  on a  quantum observable is described by the spectral projection-valued  measure

)(ˆ ⋅P on ))R(B,R( corresponding, due to the spectral theorem, to the self-adjoint operator representing

this observable.

In the case of discrete spectrum of a measured quantum observable the famous von Neumann

reduction postulate [1] prescribes the well-known "jump" of a state of a quantum system under a

measurement. In the case of continuous spectrum the description of a state change of a quantum

system under a measurement is not formalized.

The simultaneous measurement of  n quantum observables is allowed if and only if the corresponding

self-adjoint operators and, consequently, spectral  projection-valued measures,  commute. Such

measurement is described by the  spectral projection-valued measure

(1)                                     )(ˆ.....)(ˆ)(ˆ)...(ˆ
2121 nn EPEPEPEEEP ⋅⋅=×××

on ))R(B,R( nn  common for all n commuting self-adjoint operators.
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The generalizations of von Neumann's approach, to be discussed in the sequel, are caused by the
fact  that  the approach does not describe all measurements possible upon a quantum system, and it
does not describe a state reduction of a quantum system in the general case where the spectrum of
a measured quantum observable may be continuous or complicated.

2.2 The description of a generalized quantum measurement
In the further developments of quantum measurement theory  [2-7] the mathematical notion of a
probability operator-valued (POV) measure is used for the description of a probability distribution
on a space of outcomes in the case of any measurement possible upon a quantum system.
Let Ω  be a set of outcomes of the most general nature possible under a quantum measurement and
F  be a −σ algebra of subsets of Ω . Let )( sHL be the space of all bounded linear operators on SH .

A  POV measure )(:)(ˆ
SHLFM →⋅  of a quantum measurement with outcomes in the measurable

space )F,( Ω is a positive  operator-valued measure on )F,( Ω , satisfying the condition .ˆ)(ˆ IM =Ω
Given a POV measure, a scalar probability measure )(⋅ρµ  on ),( FΩ ,  describing the probability

distribution of possible outcomes of a measurement upon the quantum system, being at the instant
before the measurement in the state Sρ̂ , is given by

(2)                                                    .],)(ˆˆtr[)( FEEME S ∈∀= ρµ ρ

In contrast to a spectral projection-valued measure, which is one-to-one defined by a self-adjoint
operator, different possible measurements on even the same quantum  observable  represented by a

self-adjoint operator B̂  are described by different POV measures )(ˆ ⋅BM  on ))(,( RBR  and induce
different integral representations for

(3)                                                         ∫
∞

∞−

= ).d(M̂B̂
B̂

λλ

A POV measure is sometimes called a generalized observable [3] or semiobservable [6] of a quantum

system. A spectral projection-valued measure )(ˆ ⋅P  on ))(,( RBR  (and the corresponding self-adjoint
operator, for short ) is called a von Neumann observable.

2.3  Operational approach
The notion of a POV measure does not, however,  describe in any way  a state change of a quantum
system under a measurement.   Thus, with respect to a quantum system it does not give  the complete
statistical description of a measurement.
We recall that in the case of discrete spectrum of a measured quantum quantity the von Neumann
approach gives the complete statistical description of a measurement describing both  a probability
distribution of different outcomes of  a measurement and a state change of a quantum system under
 a measurement.
The complete statistical description of any quantum measurement is given by the mathematical

notion of an instrument  [2-6] or an operation-valued measure  )(ˆ ⋅T  on ),,( FΩ  satisfying the condition

IIT ˆ]ˆ[)(ˆ =Ω .
Given the instrument of a measurement, the POV measure of  that measurement. is defined as

(4a)                                                      .],ˆ)[(ˆ)(ˆ FEIETEM ∈∀=
The scalar probability measure on )F,( Ω  defining a probability distribution of possible outcomes

under a measurement upon a quantum system being before the  measurement in the state Sρ̂   is

(4b)                                                      ]]ˆ[)(ˆˆtr[)( IETE Sρµ ρ = .

The conditional expectation of any von Neumann observable Ẑ  at the instant immediately after the
measurement, under the condition that the observed outcome belongs to the subsetE , is given by



4

(5a)                                                    ,
)E(

ẐET̂ˆ
E|Ẑ S

ρµ
ρ ]])[(tr[

}Ex{ =

and the quantum mean value is

(5b)                                                ]]ˆ[)(ˆˆtr[}|ˆEx{ˆ ZTZZ S Ω=Ω>≡< ρ .

The knowledge of an instrument gives the statistical description of any state change of a quantum
system caused by a measurement. The posterior (conditional) statistical operator of a quantum system

),(ˆ Eρ  conditioned by the outcome being in,E  is defined by the relation

(6a)                                              ]ˆ)(ˆtr[
)(

]]ˆ)[(ˆˆtr[
}|ˆEx{ ZE

E

ZET
EZ S ρ

µ
ρ

ρ

== .

The unconditional (a priori ) state )(ˆ Ωρ  of a quantum system  defines the quantum mean value

(6b)                                                        ]ˆ)(ˆtr[ˆ ZZ Ω>=< ρ
of a von Neumann observable Ẑ  at the instant after a measurement if the results of a measurement are
ignored.
Any conditional state change of a quantum system can be completely  described  in a Hilbert space

SH  by a family of normalized statistical operators }),(ˆ{ Ω∈ωωρ N  called usually a family of posterior

states [7-9].  For any instrument and a premeasurement state Sρ̂  of a quantum system  the family

}),(ˆ{ Ω∈ωωρN  always exists and  is defined uniquely  )(⋅ρµ - almost surely by

(7a)                                             ),(]ˆ)(ˆtr[]]ˆ)[(ˆˆtr[ ωµωρρ ρ
ω

dAAET
E

NS ∫
∈

=

                                                   )(ˆ
SHLA∈∀ , FE ∈∀ .

From (5) and (7a) it follows that the family }),(ˆ{ Ω∈ωωρ N  determines the conditional expectation

(7b)                                            
)(

)(]ˆ)(ˆtr[

}|ˆEx{ E

E

dZ

EZ
N

ρ

ρ
ω

µ

ωµωρ∫
∈= ,

as well as the quantum mean value

(7c)                                                   )(]ˆ)(ˆtr[ˆ ωµωρ ρ dZZ N∫
Ω

>=<

of any von Neumann observable Ẑ  at the instant immediately after a measurement.
The normalized posterior state )E(ρ̂  of a quantum system, conditioned by the outcome ,E∈ω  is

presented  through the family of normalized posterior statistical operators }{ Ω∈ωωρ ),(ˆ
N  as

(8)                                                       .
)(

)()(ˆ

)(ˆ
E

d

E E

N

ρ

ω
ρ

µ

ωµωρ
ρ

∫
∈=

There is a one- to-one correspondence between a POV measure and a family of posterior statistical
operators on the one side and an instrument on the other side [7-9].  Knowing a POV measure and
a family of posterior statistical operators one can reconstruct  the instrument.

2.4  Von Neumann measurement
We would like to reformulate now what we mean by a von Neumann measurement.

Definition.
A von Neumann measurement  is a  measurement upon a von Neumann observable with discrete
spectrum, which is described :
a) by the spectral projection-valued measure corresponding to this observable;
b) by the state reduction, defined  by  von Neumann reduction postulate.
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Thus, by definition, a  POV measure and a family of posterior statistical operators of  a von Neumann
measurement are given on ))(,( RBR  by

(9a)                                                        ,ˆ)(ˆ)(ˆ ∑
∈

=≡
E

j

j

PEPEM
λ

(9b)                                                        
]ˆˆtr[

ˆˆˆ
})({ˆ

jS

jSj
jN

P

PP

ρ
ρ

λρ = .

From (9) it follows that the unique instrument corresponding to a von Neumann measurement has the
form

(10)                                      .)(ˆ),(,ˆˆˆ]ˆ)[(ˆ ∑
∈

∈∀∈∀=
E

Sjj

j

HLARBEPAPAET
λ

In [1, p.442] von Neumann showed that the state reduction (9b), first postulated  by him in his
projection postulate, can be derived in the scheme of an indirect measurement.
Consider a possible indirect quantum measurement of a von Neumann observable

(11)         j
j

j P̂B̂ ∑= λ

presented in [6]. Let }{ jkψ  be the complete orthonormal set of eigenvectors of the observable (11)

(12)                                         ∑ ><==
k

jkjkjjkjjk PB ||ˆ,ˆ ψψψλψ .

Let K  be another separable Hilbert space,  }{ iη and η  be, respectively, a set of complete orthonormal

vectors and an unit vector in K . Let Û  be a unitary operator on KH S ⊗  satisfying the relation

(13)     jjkjk )(Û ηψηψ ⊗=⊗  .

The measurement upon the observable ∑ ><
i

iii || ηηλ  on the Hilbert space ,K  described on the

Hilbert space KH S ⊗  of the extended system  by a projection-valued measure

(14)                                                   UIU
E

ii

i

ˆ)||ˆ(ˆ ∑
∈

+ ><⊗
λ

ηη

gives the indirect measurement of the observable (11) with the instrument

(15a)                             

),(ˆ),(

,ˆˆˆˆ))||(ˆ(ˆ,]ˆ)[(ˆ

S

E
jjK

E
ii

HLARBE

PAPUAUAET
ji

∈∀∈∀

=>><⊗=< ∑∑
∈∈

+

λλ

ηηηη

on ))(,( RBR . In (15a) for any operator )(ˆ KHLQ S ⊗∈  we have used the notation

(15b)                                                KQ K ∈∀>< ηηη ,ˆ,
in the sense of the extension by linearity of  the relation

(15c)                                        
).(ˆ),(ˆ,

,ˆ)ˆ,(:)ˆˆ(,

KLYHLXK

XYYX

S

KK

∈∀∈∀∈∀

><=>⊗<

η

ηηηη

Thus, the considered measurement, described by the instrument (15a), is von Neumann. The state
reduction under this indirect measurement is given by (9b).
We would like to emphasize that this statement is valid for any pair - a set }{ iη of orthonormal vectors

and an unit vector η  in K . Thus,  the concept of a  von Neumann measurement described by the
special  kind of an instrument  (10), corresponds to different indirect measurements described by (13).

Let us construct now one more example of an indirect measurement upon the observable (11) of a
quantum system, where the POV measure will be again the spectral projection-valued measure (9a),
corresponding to the observable (11),  but the state reduction will be quite different from (9b).
Suppose, for simplicity, that every  eigenvalue jλ  of the observable (11) has multiplicity 1k =
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and  jψ  is a corresponding eigenvector.  Let }{ mφ  be another complete set of orthonormal vectors

in SH . Let again K  be some separable Hilbert space,  }{ iη and η  be, respectively, a complete set

of orthonormal vectors and an unit vector in K . Let 1Û  be a unitary operator on ,KH S ⊗  satisfying

the relation

(16)                                         jjjU ηφηψ ⊗=⊗ )(ˆ
1  .

The measurement upon the observable ∑ ><
i

iii || ηηλ  on the Hilbert space K , described in the

Hilbert space KH S ⊗ of the extended system  by  a projection-valued measure

(17)                                       11
ˆ)||ˆ(ˆ UIU

E
ii

i

∑
∈

+ ><⊗
λ

ηη ,

gives  the indirect measurement of the observable (11) of the quantum system with the instrument

(18)                              ∑∑
∈

+

∈

+ =>><⊗=<
E

jjK
E

ii

ji

VAVUAUAET
λλ

ηηηη ,ˆˆˆ)ˆ)||ˆ(ˆ(,]ˆ)[(ˆ

where

(18)                                             ||V̂ jjj ψφ ><=  .

For such indirect measurement the POV measure

(20)                                                       ∑
∈

=≡
E

j

j

PEPEM
λ

ˆ)(ˆ)(ˆ

is the spectral projection-valued measure of the observable (11),  but the family of posterior statistical
operators consists of

(21)                                             ||
V̂V̂ˆ

V̂ˆV̂
ˆ

jj

jjS

jSj
jN φφ

ρ
ρ

λρ ><==
+

+

]tr[
})({ .

We see that although the considered indirect measurement is described by the spectral projection-
valued measure corresponding to the observable (11),  the state reduction given by (21) is  quite
different to the von Neumann one (9b).
Since the type of the state reduction (9b) in a von Neumann measurement just corresponds to the von
Neumann  repeatability hypothesis, we can conclude from the above example that even in the case of
discrete character of a measured quantum quantity the repeatability  hypothesis is valid only for  a
special kind of quantum measurements described by (9) and called von Neumann.

Thus, even in  the case of discrete outcomes a measurement upon a quantum system described by a
projection-valued measure is not necessarily von Neumann.

2.5  Statistical realizations of an instrument
As well as in the von Neumann approach as in the operational approach the notion of a projection-
valued measure on ),( FΩ plays a fundamental role.

Introduce the following notation. Let σ̂  be a statistical operator on a separable Hilbert space K  and

Q̂   be an operator belonging  to )( KHL S ⊗ . There exists  [6] a uniquely determined completely

positive linear map )ˆ()( : SS HLKHLE →⊗σ  such that the relation

(22a)                                                   ]ˆ)ˆˆ[(]]ˆ[ˆ[ QtrQEtr σρρ σ ⊗=
is valid  for any statistical operator ρ̂  on SH .

In [6] it was shown that for any instrument on a Borel space ),( FΩ there exist a Hilbert space ,K

a statistical operator σ̂  on ,K  an unitary operator Û  and a projection-valued measure )(ˆˆ ⋅⊗ PI on

KH S ⊗ ,  such that an instrument can be presented in the form:
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(22b)                                               
),(ˆ,

,]ˆ))(ˆˆ(ˆ[]ˆ)[(ˆ

SHLAFE

UEPAUEAET

∈∀∈∀

⊗= +
σ

A 4-tuple

(22c)                                                              )ˆ),(ˆ,ˆ,( UPK ⋅σ
is called a measuring process of the corresponding generalized observable  (a POV measure) or a
statistical realization of an instrument. For a given instrument a statistical realization always exists
but may not be unique.
If in (22c) a Hilbert space K  is separable then the corresponding statistical realization is called
separable.
In quantum theory a Hilbert space SH  of a system is always separable, while the value space is mostly

a standard Borel space (that is a Borel space which is Borel isomorphic to a complete separable
metric space).
If  ),( BFΩ is a standard Borel space and a Hilbert space SH  of a quantum system is separable, then

there exists a separable statistical realization of an instrument )F,( BΩ [6].

In any real physical situation the measurement is always performed by the measurement of some
observable of a quantum apparatus (often called a reservoir).  The dynamical measurement model and
the scheme of a measurement are given in the frame of the Hamiltonian formalism, that is in terms of
interaction between a quantum system and a reservoir. That is why the notion of a statistical realization
corresponds to a clear physical interpretation. However, for measurements with outcomes in a
complicated value space (as, for example, in the case of  repeated measurements) there may not be
identity between the dynamical measurement model plus the scheme of measurement on the one side
and the statistical realization of the corresponding instrument on the other side.

 3. Quantum stochastic approach

From the above review of the main general approaches to the description of quantum measurements
we see that the mathematical notion of an instrument while being very important for the formalization
of the complete statistical description of any quantum measurement does not give the description in a
Hilbert space SH  of  the stochastic behaviour of a quantum system under a measurement.
However, the description of stochastic, irreversible in time behaviour of a quantum system under
consecutive measurements is very  important, in particular, in the case of continuous in time
measurement of an open system, where the evolution of the continuously observed open system differs
from that described by reversible in time solutions of the Schrödinger equation.

We would like now to introduce  the more  detailed  general approach to the description of  quantum
measurements based on introduction of a family of operator -valued  functions on Ω (quantum
stochastic evolution operators) and  giving not only the complete statistical description of a
measurement but the complete description of the stochastic behaviour of an observed  quantum system
in a Hilbert space SH  as well.

3.1 Quantum stochastic representations of an instrument
Let

(23)                                              )(ˆ,,]ˆ[)(ˆ SB HLAFEAET ∈∀∈∀ .

be an instrument on a standard Borel space ),( BFΩ with  values in ),( SHL  where the Hilbert space

SH  of the quantum system is separable and infinite–dimensional.

Let  }{ Û),(P̂,ˆ,K ⋅= σγ   be a  separable statistical realization  of the instrument (23).
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Definition.

We shall say that a separable statistical realization }{ Û),(P̂,ˆ,K ′⋅′′′=′ σγ of an instrument (23)  is

unitarily equivalent to γ  if there exists an  isometry KK:Ŵ ′→  under which

(24a)                            )ˆˆ(ˆ)ˆˆ(ˆ,ˆ)(ˆˆ)(ˆ,ˆˆˆˆ 111 WIUWIUWPWPWW ⊗⊗=′⋅=⋅′=′ −−− σσ .

From (22b) it follows that  }{ Ûe),(P̂,ˆ,K iξ
ξ σγ ⋅=  with  R∈∀ξ  is also a separable statistical

realization of the instrument (23). We shall say that a statistical realization ξγ  is phase-equivalent

to the statistical realization γ . Let )( ξγG  be the set of all separable statistical realizations of an

instrument (23) unitarily equivalent to a statistical realization ξγ .

Introduce }),({ RGG ∈= ξγ ξγ  - the class of all separable statistical realizations of the instrument (23)

unitarily and  phase equivalent to the statistical realization γ . The class γG  includes, in particular, all

unitarily and phase equivalent separable statistical realizations on one and the same Hilbert space.K ′
All separable Hilbert spaces K ′  inside a class γG  are isomorphic to each other and have the same

dimension γD .

Let RH  denote some separable Hilbert space  corresponding to a class γG  and  let

(24b)                                                          }{ RRRR Û),(P̂,ˆ,H ⋅ρ
be any separable statistical realization on the Hilbert space RH  from the class γG  .

Consider on ),( BFΩ the family of positive scalar Borel measures },,)(ˆ,)({ RR HP ∈∀>⋅=<⋅ ϕϕϕµϕ

induced by a projection-valued measure ).(ˆ ⋅RP  For any projection-valued measure in a separable

Hilbert space RH  there exists [10] RH∈ϕ~   such  that  with respect to a subset BFE ∈  the equations

0)(~ =Eϕµ and 0̂)(ˆ =EPR  are equivalent. The element RH∈ϕ~  is said to be an element of maximum

type [10] for a projection-valued measure ).(ˆ ⋅RP  Denote by ][ ~ϕµ  the type of  the scalar  measure )(~ ⋅ϕµ
( i.e. ][ ~ϕµ  is the class of positive scalar measures equivalent to )(~ ⋅ϕµ ).

Definition

The  spectral type ](ˆ[ )PR ⋅  of a projection-valued  measure )(ˆ ⋅RP  on ),( BFΩ  is defined to be equal to

the type ][ ~ϕµ  of the positive scalar Borel measure ,)(ˆ,)(~ >⋅=<⋅ ϕϕµϕ
��

RP   induced by an element of the

maximum type [10].

Let  )(⋅ν be a positive scalar Borel measure on ),( BFΩ of the type )](ˆ[)]([ ⋅=⋅ RPν . For any RH∈φ
introduce the subset

(25a)                                                 }0)(,|{)( >Ω∈=Ω ω
ν
µ

ωωφ φ

d

d
,

which is defined ν - almost surely and does not depend  on the choice of the scalar  measure )(⋅ν  on

),( BFΩ out of the class of equivalent scalar measures of the type )](ˆ[ ⋅RP .
The following  statements  are valid [10]:
(25b)                                                 )()( ϕφ Ω⊂Ω  ⇔ ][][ ϕφ µµ � ;

(25c)                                                 )()( ϕφ Ω=Ω  ⇔ ][][ ϕφ µµ = ;

(25d)                                                   φφφ =Ω ))((ˆ
RP ,    RH∈∀φ ;

(25e)                                         ∅=Ω∩Ω )()( 21 ηη  ⇒   0)(ˆ, 21 >=⋅< ηη P ;

(25f)                                   0)(ˆ, 21 >=⋅< ηη P   ⇒   )()()( 2121 ηηηη Ω∪Ω=+Ω ;
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If

(25g)                                             ,,)(ˆ)],(ˆ[][ BRR FEEPP ∈=⋅= φηµφ

then
(25h)                                                                 E=Ω )(η .

For any projection-valued measure )(ˆ ⋅RP on ),( BFΩ there exists [10] a family of elements

},1;,...,1,,{ ∞≤≤=∈ mmjH Rjj ηη  satisfying klP kl ,,0)(ˆ, ∀>=⋅< ηη ,  such that

(26a)                                                             ,∑⊕=
j

R j
HH η

                                                   }),ˆ,(|ˆ{ ψψη ηψη DPSZH jRjj
∈Ω∈=

and

(26b)                                                       ....][][]ˆ[
21
�� ηη µµ=RP

In (26a) )ˆ,( RPS Ω  is a class of  RP̂ - measurable,  RP̂ - almost surely finite functions:  C→Ω ;

ψẐ is the operator defined by the relation

(26c)                                                        ∫
Ω

= )(ˆ)(ˆ ωωψψ dPZ R

with the domain }.)(|)(||{ 2 ∞<∈= ∫
Ω

ωµωψψ dHfD fR

If 1>m , then the decomposition (26a) of a Hilberts space RH  is not unique.
From (25) and (26b) it follows that
(27a)                                                        ....)()( 21 ⊃Ω⊃Ω=Ω ηη
Introduce  the sets mkk ,...,1, =Ω  by the relations

(27b)                                                       ,),(\)( 1 mkkkk <ΩΩ=Ω +ηη
                                                                )(,....,1 kmkm ηΩ=Ω =� .

Definition

The RP̂ - measurable  function NN
RP →Ω:  defined by the relation

(28a)                                             mkforkN kPR
,...,1,,)( =Ω∈= ωω

RP̂ - almost surely is called a multiplicity  function of a projection- valued measure )(ˆ ⋅RP  on

),( BFΩ [10].

Since the type )](ˆ[ ⋅RP  and the multiplicity function )(ω
RPN  of a projection-valued measure )(ˆ ⋅RP are

unitary  invariants  [10],  they are invariants of the class γG ,  that is the same for all projection-valued

measures from the class γG .

Let )N,(H ν  be a direct integral [10-12] of  separable Hilbert spaces )(ωH  on ,),( BFΩ  induced by a

positive scalar Borel measure )(⋅ν  of the type )](ˆ[)]([ ⋅=⋅ RPν ) and by the dimension function

),(dim)( ωω HN =  being equal to the multiplicity function )(ω
RPN  of the projection-valued measure

)(ˆ ⋅RP on :),( BFΩ
(28b)                                                   )()(),( ωνων ∫

Ω

⊕= dHNH .

Then there exists [10-12]  an isometry )N,(HH:R̂ R ν→  such that
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(28c)                                              ∫ ∑
∈ =

−=
E

N

n
nR dRpREP

ω

ω

ωνω
)(

1

1 )(ˆ))(ˆ(ˆ)(ˆ ,

where  ),(,...,1),(ˆ ωω Nnpn =  are one-dimensional mutually ortogonal projection-valued densities on

)N,(H ν
(28d)                                              )(ˆ)()(ˆ)(ˆ 12121 ωδωωδωω nnmmn ppp −=
In (28d) the delta function is with respect to the measure ).(⋅ν

Due to the definition of a statistical realization (22),  the instrument (23) is given through the
functional elements of  the considered statistical realisation  (24b) as

(29)                                                 
).(ˆ,

,]ˆ))(ˆˆ(ˆ[]ˆ[)(ˆ

S

RRR

HLAFE

UEPAUEAET
R

∈∀∈∀

⊗= +
ρ

The statistical operator Rρ̂  is uniquely represented in the form

(30)                                        
.1,0

,|  ,||ˆ
1

=≥

=><><=

∑
∑

=

i
ii

jiHii

N

i
iiiR R

αα

δϕϕϕϕαρ
γ

The positive integer γN  (it may be infinite) and  the sequence of non negative numbers

,...),( 21 αααγ =  are  invariants  of the class γG .

Thus, γγγ α,,],ˆ[, NNPD
RPR   present  invariants of the class γG .

Introduce also a family γG
~

 of  all separable statistical realizations of an  instrument from classes γG

different only by an invariant  .γα

Denote by RpRq nn
ˆ)(ˆˆ)(ˆ 1 ωω −=  one-dimensional mutually ortogonal projection-valued densities on

RH :

(31)                                                  )(ˆ)()(ˆ)(ˆ 12121 ωδωωδωω nnmmn qqq −=
and introduce the following notation for scalar products
(32a)                                                 >=< inj

)n(
ji )(q̂,)(q ϕωϕω

and  scalar measures on )F,( BΩ

(32b)                                                 
.,0)()(

),()()(
)( Ω∈∀≥≡

=

ωωω
ωνωων

n
iiin

inin

qq

dqd

The following  relation is valid for the scalar products  introduced in (32a)

(32c)                                                  ji

N

n

n
ji dq δωνω

ω

=∫ ∑
Ω =

)())((
)(

1

)( ,

Consequently,

(32d)                                                     ∑
=

=
)(

1

)()(
ω

ωναων
N

n
inii dd

is a probability measure on ),( BFΩ

Definition

For any ni,  define the operator-valued inν - measurable function )(ˆ ωinV : )( SHL→Ω  by the relation

(33)                                       
,

),(ˆ))(ˆˆ()))((ˆ)(ˆ(

S

iRninin

H

UqIqV

∈∀
⊗⊗=⊗⊗

ψ
ϕψωϕψωω

inν - almost surely.
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It is easy to show that for different separable statistical realizations of an instrument  from the class γG
~

the operator-valued functions, defined by (33), with the definite indexes  n,i  may differ from each

other inν - almost surely only as )(V̂e)(V̂ in
i'

in ωω ξ= , that is they are identical up to the phase-

equivalence. If this relation is valid between  all the operator-valid functions  from  families

)}(ˆ{ ωinV ′ and )},(ˆ{ ωinV  then we shall say that the corresponding families are identical inν - almost
surely  up to the phase-equivalence.
From the definition (33)  the following resolutions follow

(34a)                                     

,

),)(())(ˆ)(ˆ()(ˆ
)(

1

S

in

N

n
iniR

H

dqVU

∈∀

⊗⊗=⊗ ∫ ∑
Ω =

ψ

ϕψωνωωϕψ
ω

(34b)                                    ),())()(ˆ(ˆ, )(
)(

1

ωνωωϕϕ
ω

dqVU n
ji

N

n
inHiRj R ∫ ∑

Ω =

=><

(34c)                                     ),())(ˆ)((]ˆ[
,

ωνωωαρ dVqUE
ni

ininiRR ∫ ∑
Ω

=

(34d)                                     ijIdqVV ji
n

jiinjn

N

n

,,ˆ)())()(ˆ)(ˆ( )(
)(

1

∀=+

Ω =
∫ ∑ δωνωωω

ω

.

It is easy to show that  the scalar measures  ),(⋅inν  as well as  the scalar probability measures  )(⋅iν  are

invariants of the family γG
~

. Due to (30), (32) and (34)

(35)                                    
B

E ni
ini

RR

FEEd

EPtr

∈∀==

=

∫ ∑
∈

),()(                

])(ˆˆ[

0
,

νωνα

ρ

ω

and defines a scalar probability measure )(0 ⋅ν  on ,),( BFΩ  which is an invariant of the class γG .

Considering all mentioned above the following statement is valid.

Proposition 1
Let ),( BFΩ be a standard Borel space, SH - a complex separable Hilbert space of a quantum system.

The family of complex measures

(36)  },)())(();(,...,2,1;,..,2,1,,|)()({
)(

1

)()(
ji

N

n

n
ji

n
ji dqNnNjidq δωνωωωωνω

ω

γ ===Ω∈=Λ ∑∫
=Ω

defined by (32) and corresponding to a separable statistical realization of a class γG
~

 does not depend

on the chosen statistical realization.
The  family of operator-valued inν - measurable functions: )H(L S→Ω

(37)   },ˆ)())()(ˆ)(ˆ();(,...2,1;,..,2,1,),(ˆ{ )(
)(

1

IdqVVNnNiVV ji
n

jiinjn

N

n
in δωνωωωωωω

ω

γ ===Ω∈= +

Ω =
∫ ∑

defined by  (33) inν - almost surely and corresponding to a separable statistical realization of a class

γG
~

 is independent of the chosen statistical realization up to the phase-equivalence.

The families  (36), (37) are  functional  invariants of a class γG
~

, and  they do not depend on the choice

of the scalar  measure )(⋅ν  on ),( BFΩ out of the class of equivalent  scalar measures of the type

)](ˆ[ ⋅RP , which is  an  invariant of the class γG
~

.

We recall that { γγ NNPD
RPR ,],[, } are  invariants of γG

~
.
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Using  (29), (32),(33), (34), we get the following  representation of an instrument (23) valid for
all separable  statistical realizations from  a class γG

(38)                     

).(ˆ,

),())(ˆˆ)(ˆ)((]ˆ)[(ˆ
,

SB

in

E

in
ni

ini

HLAFE

dVAVqAET

∈∀∈∀

= ∫ ∑
∈

+ ωνωωωα
ω

The corresponding  representation of the POV measure is

(39)                Bin

E

in
ni

ini FEdVVqEM ∈∀= ∫ ∑
∈

+ ),())(ˆ)(ˆ)(()(ˆ
,

ωνωωωα
ω

.

We shall call a representation (38) of  an instrument  quantum stochastic.
The following theorem is valid.

Theorem 1
Let ),( BFΩ be a standard Borel space andSH  -  a complex separable Hilbert space of a quantum

system. For any instrument  )(ˆ,,]ˆ[)(ˆ SB HLAFEAET ∈∀∈∀  on ),( BFΩ with  values in )( SHL

there exists  a quantum stochastic representation .

The form  (38) of a quantum stochastic representation of an instrument is in perfect agreement with
the general Stinespring theorem [13] on completely positive maps.
In the general case the problem of  existence of a representation of an instrument similar to (38) was
considered in [14].  The form of the representation obtained in [14] can be derived from (38) and
corresponds to a special case.
In the special case of description of continuous in time nondemolition observation upon an open
system the representation of an instrument in a form (38) was considered in [15-18].

Definition
We shall say that we have different quantum stochastic representations  of  the same instrument if
in (38)  the pairs ),( ΛV  are different.
It is easy to show that for every quantum stochastic representation of a given instrument  the sequence

γα  is unique, and consequently,  for the given instrument, we have γγ GG
~ = .

Proposition 2
There is a one-to-one correspondence between  the set }{ γG  of different classes γG  of  separable

statistical realizations of an instrument and the set )},{( ΛV  of  different pairs ),( ΛV , corresponding
to different quantum stochastic representations  of this instrument.

From (35) and (39) it follows that for the definite  quantum stochastic representation the scalar
probability measure (4b) defining a probability distribution of outcomes under a measurement, is
given by

(40a)                                                  ,)(])(ˆtr[)( 0∫
∈

=
E

dE
ω

ρ ωνωρµ

where the scalar probability measure )(0 ⋅ν  is given by (35) and

(40b)                                              ,)(ˆˆ)(ˆ)()(ˆ
,

∑ +=
ni

inSinini VV ωρωωθαωρ

(40c)                                                         
∑

=

ni
ini

in
in q

q

,

)(

)(
)(

ωα
ωωθ .
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Introduce the notation

(41a)                                                      )(ˆˆ)(ˆ)(ˆ ωρωωρ += inSinin VV .

Then  from  (6), (38) and (40) we have that the family of normalized posterior statistical operators
}),(ˆ{ Ω∈ωωρ N , defined by (7a), is given by

(41b)                                                          ,
)](ˆtr[

)(ˆ
)(ˆ

ωρ
ωρωρ =N

(41c)                                                      .)(ˆ)()(ˆ
,

∑=
ni

inini ωρωθαωρ

Thus, )(ˆ ωρN  is a  sum of normalized statistical operators

(41d)                                                         
])(ˆ[

)(ˆ
)(ˆ )(

ωρ
ωρωρ

in

inN
in tr

=

with statistical weights

(42)                                                     
∑

=

lj
jljlj

inini
in q

q

,

])(ˆtr[)(

])(ˆtr[)(
)(

ωρωα
ωρωαωβ .

The a priori (unconditional) statistical operator of a quantum system at the instant after a measurement
can be represented as

(43a)                                                  
)()(ˆ

)()(ˆ)(ˆ

)(

,

,

ωµωρα

ωνωραρ

d

d

in
N

in
ni

i

inin
ni

i

∫∑

∫∑

Ω

Ω

=

==Ω

with  a scalar measure
(43b)                                                     ))](ˆtr[)( ωνωρωµ (dd ininin = .

We can rewrite (40a) in the form

(43c)                                                        )()(
,

ωµαωµρ dd in
ni

i∑= .

In the physical literature on quantum measurements , in the special case when R=Ω  and the
spectrum of a measured quantum quantity is discrete,  the formulae for a posterior statistical operator
and a POV measure, similar in some sense to (39) and (40b),  were considered in [19, 20].

3.2 Quantum stochastic measurement model
In section 2.3  it was pointed out that  an instrument gives the complete statistical description of a
quantum measurement.  Consider the definite quantum stochastic representation (38) of an instrument
and try to  understand  what is different under different quantum stochastic representations of the same
instrument.
Suppose for simplicity that  the state of a quantum system  at the instant before a measurement is pure
that is  ||ˆ 00 ψψρ ><=S .  In this case

(44a)                                               )(||)(ˆ)(ˆ 00 ωψψωωρ +><= ininin VV

of  (41a) represent pure states and the normalized posterior statistical operator (41b) can be presented
in the form
(44b)                                           ,|)()(|)()(ˆ

,

ωωωβωρ inin
ni

inN Ψ><Ψ= ∑

(44c)                                              
∑

=

kj
jkjkj

inini
in

Vq

Vq

,

2
0

2
0

||)(ˆ||)(

||)(ˆ||)(
)(

ψωωα
ψωωαωβ
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with the notation

(45a)                                                     
SH0in

0in
in

||)(V̂||

)(V̂
)(

ψω
ψωω =Ψ

for a posterior pure state defined by the operator )(V̂in ω .

The following  orthonormalization relation is valid for the set of posterior pure states:

(45b)                              ijdqVV
SS Hji

N

n

n
jiHinjn ,,)()()(ˆ,)(ˆ 2

0

)(

1

)(
00 ∀=><∫ ∑

Ω =

ψδωνωψωψω
ω

.

From  (44), (45) it follows that for different quantum stochastic representations of the same instrument
the corresponding families of posterior pure states
(45c)                                        )}(,...,1;,...,1,),({ ωωω γ NnNiin ==Ω∈Ψ

and their statistical weights )(ωβ in  in the normalized posterior statistical operator )(ˆ ωρN  (which is

the same under different quantum stochastic representations of the same instrument) are different.
For all quantum stochastic representations of the instrument with 1n,1i == ,  for Ω∈∀ω , )(ˆ ωρN  is

a pure state.
The normalized posterior statistical operator ),(ˆ Eρ  conditioned by the outcome ,E∈ω   is defined by

the set })({ ωinΨ of posterior pure states as

(46a)                                       
∫ ∑

∫ ∑

∈

∈

Ψ><Ψ
=

E ni
ini

ininin

E ni
i

d

d

E

ω

ω

ωµα

ωµωωα
ρ

,

,

)(

)(|)()(|

)(ˆ

with  a scalar measure

(46b)                                                ),(||)(ˆ||)( 2
0 ωνψωωµ dVd ininin =

defining a probability distribution in the "ni, ” transition channel of a quantum stochastic
representation. The scalar probability measure (43) of the whole measurement is given by

(46c)                                                      ∑=
ni

ini dd
,

)()( ωµαωµρ

We can interpret then the scalar measure )( ων din  in (46b) as one describing the input probability

distribution of different outcomes  in the "ni, " transition channel of a given quantum stochastic

representation  and  the scalar  measure )( ωµ din  as one describing  an output  probability distribution

of different outcomes on )F,( BΩ  in every " ni, " transition  channel.
The scalar probability measures

(47a)                                       ∫ ∑∑∫
∈ ==∈

==
E

N

n
in

N

n
in

E

i dqdE
ω

ωω

ω

ωνωωνν )())(()()(
)(

1

)(

1

,

(47b)                                                     ∫ ∑
∈ =

=
E

N

n
ini dE

ω

ω

ωµµ
)(

1

)()(

describe, respectively, input and output probability distributions in  the "i"   channel of a quantum
stochastic representation. The numbers }{ ∑ =≥

i
iii 1,0, ααα  describe  weights of different  "i"

channels.
From (46a) it follows that )(ωinΨ  can be interpreted as a random posterior pure state outcome in a

Hilbert space SH  of a quantum system, conditioned by the observed value ωω d∈  and  the " ni, "
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random transition channel. For the definite ω  the statistical weights of different  posterior pure state
outcomes are defined  by )(ωβ in .

Thus, the random operators )(ˆ ωinV  describe in a Hilbert space SH  the  posterior  behaviour of a

quantum system conditioned by the observed outcome  ωω d∈   in  the "n,i"  random transition
channel.

Analysing the definition of a class γG  of unitarily equivalent separable statistical realizations of an

instrument given in the previous section, we conclude that different quantum stochastic
representations of the same instrument  can be identified with different quantum  measurements.
Although the statistical description of these quantum measurements ( the POV measure and the family
of normalized posterior statistical  operators)  is the same,  the stochastic behaviour of a quantum
system in a Hilbert space under these measurements  may be different.
Physically the notion of  different  transition channels under a measurement ( a quantum stochastic
representation)  corresponds under the same observed  outcome of a measured quantum variable  to
different random  quantum transitions  of a quantum system (reservoir) modelling the measuring
device under a measurement.

The following statements follow from our identification of a quantum stochastic representation with a
concrete quantum measurement.

Proposition 3
For any  quantum measurement with outcomes in a standard Borel space )F,( BΩ  of  a quantum

system  being  at the instant before the measurement in a state Sρ̂ , there exist:

the unique family of complex measures

(48)  };)())(();(,...,2,1;,..,2,1,;|)()({
)(

1

)()(
ji

N

n

n
ji

n
ji dqNnNjidq δωνωωωωνω

ω

γ ===Ω∈=Λ ∫ ∑
Ω =

 the unique (up to the phase- equivalence) family of operator-valued inν - measurable functions:

)( SHL→Ω

(49) }̂)())()(ˆ)(ˆ();(,...2,1;,..,2,1,),(ˆ{ )(
)(

1

IdqVVNnNiVV ji
n

jiinjn

N

n
in δωνωωωωωω

ω

γ ===Ω∈= +

Ω =
∫ ∑

defined inν - almost surely, where )()()( )( ωνωων dqd n
iiin = ;

the unique sequence of numbers  
(50)                                             ,....),( 21 ααα =  with ∑ =≥

i
ii 1,0 αα ,

such that  the complete statistical  description (a POV measure and a family of normalized posterior
statistical operators) of a measurement and the complete stochastic  description of the behaviour of a
quantum system under a measurement (a family of posterior pure states and their probability
distribution) are given by:
1)The POV measure

(51a)                                  Binin

E

in
ni

i FEdVVEM ∈∀= ∫ ∑
∈

+ ),()(ˆ)(ˆ)(ˆ
,

ωνωωα
ω

,

(51b)                                                      )()()( ωνωων dqd inin = ,

                                                                     )()( )( ωω n
iiin qq = ;

with  operator-valued  density

(51c)                              
∑∑ == +

ni
ini

in
ininin

ni
ini q

q
VVm

,
, )(

)(
)(),(ˆ)(ˆ)()(ˆ

ωα
ω

ωθωωωθαω

 with respect to the  scalar  probability  measure
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(51d)                                                     .)()(
,

0 ∑=
ni

ini dd ωναων

2) The family  { }Ω∈ωωρ ),(ˆ  of unnormalized  posterior statistical  operators

(52a)                                                   ∑=
ni

inini
,

),(ˆ)()(ˆ ωρωθαωρ

(52b)                                                    )(ˆˆ)(ˆ)(ˆ ωρωωρ += inSinin VV .

3) The family of random operators  (49) describing  the stochastic  behaviour of the quantum system

under a measurement. Every operator  )(ˆ ωinV  defines  in the Hilbert space SH  a posterior  pure state

outcome of the observed  quantum system  conditioned by the observed result ωω d∈  and the " ni, "

random transition channel.  For any S0 H∈ψ   the following orthonormalization relation for a family

of posterior pure states is valid:

(53a)                              ijdqVV
SS Hji

N

n

n
jiHinjn ,,)()()(ˆ,)(ˆ 2

0

)(

1

)(
00 ∀=><∫ ∑

Ω =

ψδωνωψωψω
ω

.

The probability distribution of different outcomes in  a random "," ni  transition channel is given by

(53b)                                                  )()](tr[)( ωνωρωµ dd ininin =⋅ .

For the definite observed value ω  the statistical weights of different random transition channels  are

(53c)                                                
∑

=

kj
jkjkj

inini
in q

q

,

)](ˆtr[)(

)](ˆtr[)(
)(

ωρωα
ωρωα

ωβ  .

4) The scalar probability measure of the whole measurement is given by the expression

(54)                                         ∫ ∫ ∑
∈ ∈

==
E E ni

ini ddE
ω ω

ρ ωµαωνωρµ
,

0 )()(])(ˆtr[)( .

through the scalar probability measure (51d) and  the scalar measures (53b) in different random "," ni
transition channels.

We shall call  )(ˆ ωinV  a  quantum stochastic evolution operator and ),(0 ⋅ν )(⋅ρµ  input and output

scalar probability measures, respectively.
The derivation of the families (48) and (49) in any concrete  quantum measurement is based on their
definitions (32), (33) .

Proposition 4

For any triple },,,{ γαΛV  defined in (48) - (50), and a projection-valued measure )(ˆ ⋅P  on ),,( BFΩ
consistent with this triple, there exists  a  measurement upon a quantum system,  described by formulae
(51) - (54).

In the proposition  4 a projection-valued measure )(ˆ ⋅P  is said  to be consistent with  the families (48),

(49)  if a type )](ˆ[ ⋅P  and a multiplicity function PN  of  )(ˆ ⋅P  are the same as the  similar invariants  in

(48), (49).

4. Semiclassical stochastic model of a quantum measurement

In quantum theory there was always a wish to combine the classical description of a measuring
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apparatus for an observer with the quantum description of an observed system.
The results we derived in the previous sections allow us to introduce  such kind of interpretation of the
description of a quantum measurement.

Definition
We shall say  that a family of scalar measures

(55a)              }1)())(();(,...,2,1;,...,2,1|)()({
)(

1

====Λ ∑∫
=Ω

ω

γ ωνωωωνω
N

n
inin dqNnNidq

on a measurable space ),( FΩ describes  a  classical premeasurement state Λ  of  a quantum
apparatus,  if  for any measurement  ""α :
(55b)                                           ,....),( 21 ααα =  with ∑ =≥

i
ii 1,0 αα ,

performed by a "free" apparatus  in a state Λ , an  input  scalar probability measure  of  ""α
measurement is given by
(55c)                                                 ∑=

ni
ini dqd

,

)(
0 )()()( ωνωαων α .

Different  ""α  correspond  to different preparations of the quantum state of a measuring apparatus.

From this definition  it follows that :
For all  measurements  ""α   performed by a measuring device being in a classical premeasurement
state  Λ  there exists the unique family of quantum stochastic operators (49)  such  that for  any
premeasurement quantum state Sρ̂  of a quantum system the POV measure and the family of posterior

statistical  operators are defined by formulae (51), (52).

 5. Concluding remarks

In the present paper we review the main approaches to the description of  quantum measurements.
For a generalized quantum measurement we introduce the notion of a quantum stochastic
representation of an instrument and prove that every quantum stochastic representation is induced
uniquely by the definite class of unitarily and phase equivalent statistical realizations of this
instrument.
We define the notion of a family of quantum stochastic operators, describing under a measurement
the conditional evolution of a quantum system in a Hilbert space. In the general  case of continuous in
time nondemolition measurement of an open system, where a space of outcomes is a space of
trajectories, our general definition (33)  of a quantum stochastic evolution operator coincides with the
definition of a quantum stochastic evolution operator introduced in [16-18] (formulae (61), (22) and
(11), respectively).
We show that a quantum measurement can be wholly described in the frame of a new  general
approach based on the  introduced notion of a family of quantum stochastic evolution operators.
The proposed approach allows to give:
1) the complete statistical description of any quantum measurement;
2) the complete description in a Hilbert space of the stochastic behaviour of a quantum system under

a measurement;
3) to give the semiclassical interpretation of the description of a quantum measurement;
4) to formalize the consideration of  all possible cases of quantum measurements including
      measurements continuous in time.

In a sequel to this paper we will consider in detail the further application of the proposed  general
approach to the description of  different concrete types of measurements.
We shall, in particular, present the further development of our results given in [16-18] on the
description (without assuming any Markov property ) of measurements continuous in time. For this
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particular case the quantum stochastic approach allows  to define in the most general case the notion
of  posterior pure state trajectories (quantum trajectories) in a Hilbert space of a quantum system, to
give their probabilistic treatment and in the frame of Hamiltonian formalism to derive the general
integral equation for a posterior pure state trajectory.
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