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In the present paper we consider the problem of description of a generalized quantum measurement
with outcomes in a measurable space. Analyzing the concepts of operational approach in quantum
measurement theory, we introduce the notionguiantum stochastic representation of an instrument
We show that the description of a generalized quantum measurement can be considered in the frame
of a new general approach based on the notion of a fanglyasftum stochastic evolution operators.
Such approach gives not only the compgtaistical description of any quantum measurement

but the complete description in a Hilbert space ofkthehastidehaviour of a quantum system

under a measurement.

In the frame of the proposed approach, which wegcalhtum stochasti@ll possible schemes of
measurements upon a quantum system can be considered.

In the case of repeated or continuous in time measurements the quantum stochastic approach
allows to define in the most general case the notion of a family of posterior pure state trajectories
(quantum trajectories in discrete or continuous time) in a Hilbert space of a quantum system and

to give their probabilistic treatment.

Keywords quantum measurement theory, quantum stochastic representations of an instrument,
guantum stochastic evolution operators.

1.Introduction

The behaviour of an isolated quantum system, which is not observed, is quantum deterministic
since it is described by the Schroédinger equation, whose solutions are reversible in time.

Under a measurement the behaviour of a quantum system becomes irreversible in time and
stochastic. Not only is the outcome of a measured quantum quantity random, being defined with
some probability distribution, but the state of the quantum system under measurement becomes
random as well.

In this paper we present thergeral approacho the desciption of quantum measurements based

on the introduction of the physically important mathematical notion of a famijyuahtum

“The work was done during the stay at the Centre of Mathematical Physics and Stochastics,
Universty of Aarhus.
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stochastic evolution operator&very operator of this family defines, under a generalized
measurementa posterior pure state outcoméa quantum systeim a Hilbert space.

The quantum stochastic approach (QSA) gives not onlgtimeplete statistical description

of any quantum measurement, which implies both the knowledge of the probability distribution
of different outcomes of the measurement asthfisticaldescription of the state change of

the quantum system under the measurement, but the QSA gives asmfilete stochastic
descriptionof the random behaviour of a quantum system utidemeasurement, in the sense

of specifying therobabilistic transition law governinthe change from the initail state to a

final one

We generalize as far as possible our results presented in [16-18], where the notion of a quantum
stochastic operator was first defined for the description of conditional evolution of continuously
observed quantum systems in the general case of non-demolition measurements.

In section 2 we review the main concepts of quantum measurement theory.

In section 3 we present the main ideas of the quantum stochastic approach to the description of
guantum measurements.

In section 4 we give the semiclassical interpretation of our results.

2. The main approaches to the description of quantum measurements

Let us first review the main approaches to the description of quantum measurements available up
to the moment. Under a quantum measurement we mean such physical experiment upon a system,
which, resulting in the observation of a value of a quantum system variable, may cause only a
change in a quantum system state, but not the quantum system's destruction.

2.1 Von Neumann approach
Let Hg be a complex separable Hilbert space of a quantum system. According to the von Neumann

approach [1] only self-adjoint operators bl are allowed to represergal-valued variablesf

a quantum system, which can be measured. The probability distribution of different outcomes of a
measurement on a quantum observable is described by the spectral projection-valued measure
ﬁ(mon (R,B(R))corresponding, due to the spectral theorem, to the self-adjoint operator representing
this observable.

In the case of discrete spectrum of a measured quantum observable the famous von Neumann
reduction postulate [1] prescribes the well-known "jump” of a state of a quantum system under a
measurement. In the case of continuous spectrum the description of a state change of a quantum
system under a measurement is not formalized.

The simultaneous measurementrofjluantum observables is allowed if and only if the corresponding
self-adjoint operators and, consequently, spectral projection-valued measures, commute. Such
measurement is described by the spectral projection-valued measure

(1) P(E, xE, x...xE,) = P(E,)P(E,) [I....P(E, )

on (R",B(R")) common for alh commuting self-adjoint operators.
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The generalizationsf von Neumann's approach, to be discussed in the sequel, are caused by the
fact that the approach does not describe all measurements possible upon a quantum system, and it
does not describe a state reduction of a quantum system in the general case where the spectrum of
a measured quantum observable may be continuous or complicated.

2.2 The description of a generalized quantum measurement

In the further developments of qguantum measurement theory [2-7] the mathematical notion of a
probability operator-valued (POV) measure is used for the description of a probability distribution

on a space of outcomes in the case of any measurement possible upon a quantum system.

Let Q be a set of outcomes of the most general nature possible under a quantum measurement and

F be ao -algebra of subsets @ . Let L(H )be the space of all bounded linear operatorsign

A POV measurd/ () F - L(Hg »faquantum measurement with outcomes in the measurable
space(Q,F) is a positive operator-valued measure(@nF ) , satisfying the conditioM (Q) = )
Given a POV measure, a scalar probability meagyi@] on (K2, F), describing the probability

distribution of possible outcomes of a measurement upon the quantum system, being at the instant
before the measurement in the statg is given by

") H,(E) =t psM(E)], DEOCF

In contrast to a spectral projection-valued measure, which is one-to-one defined by a self-adjoint
operator, different possible measurements on even the same quantum observable represented by a
self-adjoint operatoé are described by different POV measul@a§(D on)R,B(R)) and induce

different integral representations for

) E‘s:})\ M (dA).

A POV measure is sometimes called a generalized observable [3] or semiobservable [6] of a quantun

system. A spectral projection-valued measé(@ on (R,B(R)) (and the corresponding self-adjoint
operator, for short) is called a von Neumann observable.

2.3 Operational approach

The notion of a POV measure does not, however, describe in any way a state change of a quantum
system under a measurementhus, with respect to a quantum system it does not giveothplete
statistical description of a measurement

We recall that in the case of discrete spectrum of a measured quantum quantity the von Neumann
approach gives the complete statistical description of a measurement describiagopottability
distribution of different outcomes of a measurement and a state change of a quantum system under
a measurement

The completestatisticaldescription of any quantum measurement is given by the mathematical

notion of an instrument [2-6] or an operation-valued meaé:L(@ on (2, F), satisfying the condition

TQ)I]=1.
Given the instrument of a measurement, the POV measure of that measurement. is defined as
(4a) M (E) =T(E)[I], DEOF.

The scalar probability measure 0Q,F ) defining a probability distribution of possible outcomes
under a measurement upon a quantum system being before the measurement ingheistate

(4b) u,(E) = tr[pT(E)I . 1]

The conditional expectation of any von Neumann observabé the instant immediately after the
measurement, under the condition that the observed outcome belongs to thE sisbgieen by
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tr[ psT(E)[Z]]

5 Ex{Z|E} =
(5a) x{Z| E} 1 (E)

and the quantum mean value is

(5b) <Z>=EX{Z|Q} =t[pT(Q)[Z . 1]

The knowledge of an instrument gives the statistical description of any state change of a quantum

system caused by a measurement. The posterior (conditional) statistical operator of a quantum syster

P(E), conditioned by the outcome beinginis defined by the relation

tr[AsT (E)[Z]]
U, (E)

The unconditional (@riori) state p(Q) of a quantum system defines the quantum mean value

(6b) <Z >=tr[p(Q)Z]

of a von Neumann observable at the instant after a measurement if the results of a measurement are

ignored.

Agny conditional state change of a quantum system can be completely described in a Hilbert space

H. by a family of normalized statistical operat§s, (w),wQ cdlled usually a family of posterior

states [7-9]. For any instrument and a premeasurementgstaita quantum system the family

{\ (w),wDQ} always exists and is defined uniquely, (O- a)most surely by

(7a) s TE) ANl = [trlpy (@) A, (dw ),

wUE

(6a) Ex{Z |E} = =tr[p(E)Z].

DAOL(H, , DEOF.
From (5) and (7a) it follows that the famify), (w), w0 Q determines the conditional expectation

L (@)Z]H, (dw)
7b EX{Z|E} = ,
(7b) x{Z | E} 1 (E)
as well as the quantum mean value
(7c) <Z>= [tpy (@Z]H,(dow )

of any von Neumann observahile at the instant immediately after a measurement.
The normalized posterior stafif E) of a quantum system, conditioned by the outcemeE is ,

presented through the family of normalized posterior statistical opefg@tgfsv),w1Q as }

h}! Py (@)1, (dw)
(8) P(E) ===
M, (E)
There is a one- to-one correspondence between a POV measure and a family of posterior statistical
operators on the one side and an instrument on the other side [7-9]. Knowing a POV measure and
a family of posterior statistical operators one can reconstruct the instrument.

2.4 Von Neumann measurement
We would like to reformulate now what we mean byoa Neumann measurement.

Definition.

A von Neumann measurement is a measurement upon a von Neumann observable with discrete
spectrum, which is described :

a) by the spectral projection-valued measure corresponding to this observable;

b) by the state reduction, defined by von Neumann reduction postulate.
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Thus, by definition, a POV measure and a family of posterior statistical operators of a von Neumann
measurement are given ¢R, B(R)) by

(9a) M (E) = P(E) = Z P,
(9b) oy {A D) = ﬁjﬁsﬁj
ST

From (9) it follows that the@niqueinstrument corresponding to a von Neumann measurement has the
form
(10) T(E)[A] = zﬁjAﬁj, DEOB(R), DAOL(H,).
/\J-DE
In [1, p.442] von Neumann showed that the state reduction (9bjdsailated by him in his
projection postulate, can be derived in the scheme of an indirect measurement.
Consider a possible indirect quantum measurement of a von Neumann observable

(11) B=S AP

Z 1]
presented in [6]. Lefy, pe the complete orthonormal set of eigenvectors of the observable (11)
(12) élpjk:Ajl/jjk) FA),-:ZWij ><l/jjk|'

Let K be another separable Hilbert spagg, andn be, respectively, a set of complete orthonormal
vectors and an unit vector iK. Let U be a unitary operator oH ; [1 K satisfying the relation

(13) Uy, On)=y, 0n, .
The measurement upon the observaEe\i |n. ><n, | on the Hilbert spac&, described on the

Hilbert spaceH ; U K of the extended system by a projection-valued measure
(14) Ur(ro > I ><n, DU
ATIE

gives the indirect measurement of the observable (11) with the instrument
TENAI=<nU*(AO(Y In, ><n, DWUn>= 5 BAP,
(15a) ADE XOE
DEOB(R), DADL(H,),
on (R,B(R)). In (15a) for any operatc(@ OL(Hs O K We have used the notation
(15b) <n,Qn>,,0n0K
in the sense of the extension by linearity of the relation
<n,(XOY)N >:=(<n,¥n > )X,
OnOK, OX OL(Hg), OY OL(K).
Thus, the considered measurement, described by the instrument (15a), is von Neumann. The state

reduction under this indirect measurement is given by (9b).
We would like to emphasize that this statement is valid for any pair {g,seff orthonormal vectors

and an unit vecton in K. Thus, the concept of @n Neumann measuremelatscribed by the
special kind of an instrument (10), correspondslifferent indirect measuremerdsscribed by (13).

(15¢)

Let us construct now one more example of an indirect measurement upon the observable (11) of a
guantum system, where the POV measure will be again the spectral projection-valued measure (9a),
corresponding to the observable (11), but the state reduction will be quite different from (9b).
Suppose, for simplicity, that every eigenvallieof the observable (11) has multipliciky= 1
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and ¢, is a corresponding eigenvector. Kef bé another complete set of orthonormal vectors
in Hy. Let againK be some separable Hilbert spa¢g, andln be, respectively, a complete set

of orthonormal vectors and an unit vectordn Let Ul be a unitary operator oH ¢ [ K satisfying
the relation

(16) U@, 0n)=¢ 0n, .

The measurement upon the observaEe\i |n, ><n, | on the Hilbert spac& , described in the

Hilbert spaceH ¢ U K of the extended system by a projection-valued measure
(17) U7 (10 |n, ><n, DU,
AOE
gives the indirect measurement of the observable (11) of the quantum system with the instrument

(18) T(E)A] =<n,(J*(AD > 1n><n DO >, = ZWA\&,
AOE ATE

where

(18) Vi qo ><y, | .

For such indirect measurement the POV measure

(20) M(E) =P(E) = Z P,

AJ-I]E
is the spectral projection-valued measure of the observable (11), but the family of posterior statistical
operators consists of
ViPsVY

(21) Pn{AD) :m

We see that although the considered indirect measurement is describedmcthed projection-

valued measureorresponding to the observable (11), dtse reductiorgiven by (21) isquite
differentto thevon Neumann on@b).

Since the type of the state reduction (9b) in a von Neumann measurement just correspowads to the
Neumann repeatability hypothesige can conclude from the above example that even in the case of
discrete character of a measured quantum qudhgtyepeatability hypothesis is valid only for a
special kind of quantum measurements described by (9) and called von Neumann.

o ><9 |

Thus,even in the case of discrete outcomes a measurepenta quantum systedescribed by a
projection-valued measure is not necessarily von Neumann.

2.5 Statistical realizations of an instrument
As well as in the von Neumann approach as in the operational approach the notion of a projection-

valued measure o2, F) plays a fundamental role.
Introduce the following notation. Lef be a statistical operator on a separable Hilbert sgaead

N

Q Dbe an operator belonging tdH O K . There exists [6] a uniquely determined completely
positive linear mayE, : L(Hg O K) - L(I—AIS Buch that the relation

(22a) t[PE,[Q =tr[(p0SQ ]

is valid for any statistical operat@ on H.

In [6] it was shown that foany instrumenbn a Borel spac€Q, F) there exist a Hilbert spade,

a statistical operator on K, an unitary operatdfl and a projection-valued measurél I5([ﬂ on
H, 0K, such that an instrument can be presented in the form:
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T(E)[A]l = E,[U"(AD P(E)U],

(22b) ’

DECF, OAOL(H),
A 4-tuple
(22c) (K,&,PIU)

is called ameasuring processf the corresponding generalized observable (a POV measure) or a
statistical realizatiorof an instrument. For a given instrument a statistical realization always exists
but may not be unique.

If in (22c) a Hilbert spac& is separable then the corresponding statistical realization is called
separable.

In quantum theory a Hilbert spa¢eg of a system is always separable, while the value space is mostly

astandardBorel space (that is a Borel space which is Borel isomorphic to a complete separable
metric space).
If (Q,Fg) is a standard Borel space and a Hilbert spad¢e of a quantum system is separable, then

there exists a separable statistical realization of an instrurG@nE, [6]. )

In any real physical situation the measurement is always performed by the measurement of some
observable of a quantum apparatus (often called a reservoir). The dynamical measurement model an
the scheme of a measurement are given in the frame of the Hamiltonian formalism, that is in terms of
interaction between a quantum system and a reservoir. That is why the notion of a statistical realizatic
corresponds to a clear physical interpretation. However, for measurements with outcomes in a
complicated value space (as, for example, in the case of repeated measurements) there may not be
identity between the dynamical measurement model plus the scheme of measurement on the one sid
and the statistical realization of the corresponding instrument on the other side.

3. Quantum stochastic approach

From the above review of the main general approaches to the description of guantum measurements
we see that the mathematical notion of an instrument while being very important for the formalization
of the complete statistical description of any quantum measurement does not give the description in a

Hilbert spaceH ¢ of the stochastic behaviour of a quantum system under a measurement

However, the description of stochastic, irreversible in time behaviour of a quantum system under
consecutive measurements is very important, in particular, in the case of continuous in time
measurement of an open system, where the evolution of the continuously observed open system diffe
from that described by reversible in time solutions of the Schrodinger equation.

We would like now to introduce the more detailed general approach to the description of quantum
measurements based on introduction of a family of operator -valued functiddgeqrantum

stochastic evolution operators) and giving not only the complete statistical description of a
measurement but the complete description of the stochastic behaviour of an observed quantum syste
in a Hilbert spaceH ; as well.

3.1 Quantum stochastic representations of an instrument
Let

(23) T(E)A], DEOF,, DAOL(H,).
be an instrument on a standard Borel sp@d-; with) values inL(H¢ ),where the Hilbert space
H of the quantum system is separable and infinite—dimensional.

Let y={K G,P (D,O} be a separable statistical realization of the instrument (23).



Definition.
We shall say that a separable statistical realizatjor={K',6",P'(D,J"} of an instrument (23) is
unitarily equivalent toy if there exists an isometW: K - "Kinder which

(24a) &' =W W, P(=W*POW, U'=( OW™HU (I OW).

From (22b) it follows thaty, ={K o,P ([j,eiflj with 0O OR is also a separable statistical
realization of the instrument (23). We shall say that a statistical realizgti@phase-equivalent

to the statistical realizatiop. Let G(y, ) be the set of all separable statistical realizations of an
instrument (23) unitarily equivalent to a statistical realizagipn

IntroduceG, ={G(y;),§ OR }- the class of all separable statistical realizations of the instrument (23)
unitarily and phase equivalent to the statistical realizgtiomhe classG, includes, in particular, all

unitarily and phase equivalent separable statistical realizations on one and the same Hilb¢ft space
All separable Hilbert spacds’ inside a clas$s, are isomorphic to each other and have the same

dimensionD, .

Let H, denote somseparable Hilbert spaceorresponding to a clas3, and let

(24b) {Hg.Pr.Pr(DU:  }

be any separable statistical realization on the Hilbert spacéom the classs, .

Consider on(Q,F; }he family of positive scalar Borel measufes, (=< ¢, |3R Oy >0p0H, 1
induced by a projection-valued measuf?;g([ﬂ For any projection-valued measure in a separable
Hilbert spaceH  there exists [10p OH, such that with respect to a subEetl F; the equations
Mz (E) =0and ﬁR(E) =0 are equivalent. The eleme@t] H . is said to be an element of maximum

type [10] for a projection-valued measu?Q(D Denote by 15 ]the type of the scalar measpgl] )
(i.e.[us ] is the class of positive scalar measures equivalegy (@l). )

Definition

The spectral typ{alf’R(D] of a projection-valued measul%{(m on (Q,F;) is defined to be equal to
the type[ ;] of the positive scalar Borel measugg ()1=< @, |5R([Itﬁ >, induced by an element of the
maximum typ¢glL0].

Let v(Q/be a positive scalar Borel measure(©@hF; of )he type[v (D] = [ISR(D)] For anyplH,
introduce the subset

d
(25a) Qo) ={w|wDQ,%(w) >0},

which is definedv - almost surely and does not depend on the choice of the scalar mg@sore

(Q,F;) out of the class of equivalent scalar measures of the[tfygﬁlj.
The following statements are valiD]:

(25b) Q@) OQM 9 [, <11
(25¢) Qe)=Q@ <) K] =K1
(25d) PQ@)p=0p. DpOH,;
(25€) Q1) n Qn,) =0 O <n,, PO, >=0;

(25f) <n, PO, >=0 O Q@,+n,)=Q,)0QM,);



If

(250) (4,1 =[P(0], n=P(E)p, EOF,
then
(25h) Q) =E.

For any projection-valued measu'?’g([ﬂon (Q,Fg) there exists [10] a family of elements
{n,,n, OHg, ] =1...,m 1< m< oo}, satisfying<n|,l5([jnk >=0, Ol,k, such that

(26a) He ZDH,“ ,
H, ={Z,n; [ 0S(Q,P,),n; 0D,}

and

(26b) [P.]=[u, 1~ 1,1~

In (26a) S(Q,P,) is a class of P,- measurable,P, - almost surely finite functionsQ - C;
Zw is the operator defined by the relation

(26c) Z, = [((@)Py (dw)
with the domainD,, ={f OH, |I|L/J(w) > u, (dw) <o }.

If m>1, then the decomposition (26a) of a Hilberts spgeis not unique.
From (25) and (26Db) it follows that

(27a) Q=Q(n,) 0QMn,) O
Introduce the setQ,, k =1...,m by the relations
(27b) Q, =QMN)\ QM) k<m

Q. =M QO - )

Definition
The ﬁR- measurable functiolN, : Q -  Nlefined by the relation
(28a) N (w) =k, for wOQ,, k=1.., m

I5R- almost surely is called a multiplicity function of a projection- valued meaé:\,(rtﬁ on
(Q,F;) [10].

Since the typ¢I5R([I_l| and the multiplicity functionN, (w )of a projection-valued measulfg([ﬂare
unitary invariants[10], they arenvariants of the clas§,, that is the same for all projection-valued
measures from the class, .

Let H(v,N) be a direct integral [10-12] of separable Hilbert spaté® on (Q,F;) ,induced by a
positive scalar Borel measuvél) of the type[v (D] = [|5R([I]) and by the dimension function
N(w) =dimH (w), being equal to the multiplicity functioN, (w 9f the projection-valued measure
P.(ljon (Q,F) :
(28b) H(v,N) :J'D H(w)v(dw . )

Q

Then there exists [10-12] an isomeﬁ?y H, - H(v,N) such that
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N(w)

(28c) P.(E) = d! R™( Z P, (@))Rv (dw) ,

where p, (w), n=1,...,N(w ),are one-dimensional mutually ortogonal projection-valued densities on
H(v,N)

(28d) ﬁn (w,) bm (w,) =0(w, ~ w,)d,, f)n (w )

In (28d) the delta function is with respect to the measyije

Due to the definition of a statistical realization (22), the instrument (23) is given through the
functional elements of the considered statistical realisation (24b) as

T (BN A =E, [UZ(AD P (E)U,],
DEOF, OAOL(H).

The statistical operatop, is uniquely represented in the form
N

Pr=>) 0|9 ><¢; | <¢ |9 >HR:6ii’
1=1

a, 20,_ ZGi =1.

(29)

(30)

The positive integeN,, (it may be infinite) and the sequence of non negative numbers
a, =(a,,0a,,...) are invariants of the classG, .

Thus,Dy,[IsR], Ng,N,,a, present invariants of the cla&, .

Introduce also a familysy of all separable statistical realizations of an instrument from cl&ses
different only by an invariantr, .

Denoteby §.(w) = R™p, (w)R one-dimensional mutually ortogonal projection-valued densities on

Hg:

(31) Qn (wl) qm (0)2) = 6((‘)1 - W, )anmdn (wl )
and introduce the following notation for scalar products

(32a) qgin)(w):<¢j 0, (w)p, >

and scalar measures 09,F; )
Vi, (dw) =g, (w) v(dw),
O (@) =q”(w) 20, DwlQ.

The following relation is valid for the scalar products introduced in (32a)
N (w)

(32b)

(32¢) _l ( Zl qi (W)v(dw) =4,

Consequently,

(32d) vV, (dw) = Nf)aivin (dw)

is a probability measure of©2,F, ) -

Definition X

For anyi, n define the operator-valued, - measurable functioW, (w): Q - L(Hg) by the relation
(33) (Vi (@) O G, (@)@ 0 @,) = (7 0§, (@)@ D)),

Uy UHg,
v, - almost surely.
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It is easy to show that for different separable statistical realizations of an instrument from tIGE; class
the operator-valued functions, defined by (33), with the definite indéxesnay differ from each
otherv,, - almost surelynly as\A/i;](a)) = ei5\7in(w), that is they are identical up to the phase-
equivalence. If this relation is valid between all the operator-valid functions from families

{V! (w)} and{V, (@)}, then we shall say that the corresponding families are idemtjcahimost

surely up to the phase-equivalence.
From the definition (33) the following resolutions follow

N N(w) ~
342 Un@ 08 = (3 V@) D& @V ()W D),
Uy UHg,
“ N(w)
(34b) <08, >, = [ (3 Vo (@) @) (dw ),
(34¢) Ep [UR] = [ (3 @0, @V, @) (dw ),
(34d) j(Nf) Vi (@V, (@)a” @)V (dw) =8, 1, Dj,i.

It is easy to show that the scalar measwrg$] as)wvell as the scalar probability measuvef] are)
invariantsof the family G, . Due to (30), (32) and (34)

tr[ P Pr(E)] =
= J’ Zaivm(da)):vo(E), OEOR,

wUE 1N
and defines a scalar probability measuy€] on)(Q, Fy) , which is aninvariant of the classG, .

Considering all mentioned above the following statement is valid.

(35)

Proposition 1
Let (Q,F;) be a standard Borel spacéi ;- a complex separable Hilbert space of a quantum system.

The family of complex measures
N (w)
(36) A ={q{" (wV(dw) |wOQ,i,j=12.,N,;n 212,...,N(a));f( z qi” (W) (dw) =4},
Q n=l
defined by (32) and corresponding to a separable statistical realization of a@a:tees not depend

on the chosentatistical realization.
The family of operator-valued, - measurable function®) - L(Hg )
N (w)

(37) V ={V, (@),w0Q,i=12,.,N,;n=12..N(w); [ Vi (@)V, (@)aP (w)v(dw) = 5,1},

defined by (33y,,- almost surely and correspondir?g to a separable statistical realization of a class
C~5y Is independent of the chosen statistical realization up to the phase-equivalence

The families (36), (37) are functional invariants of a clé§$and they do not depend on the choice
of the scalar measure(l)) on (Q, F;) out of the class of equivalent scalar measures of the type
[ISR([I_I|,Which is an invariant of the claﬁ?}v.

We recall that O, ,[R;], N, ,N, } are invariants oféy.
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Using (29), (32),(33), (34), we get the followingpresentatiorof an instrument (23)alid for
all separable statistical realizations from a claSg
T(E)A = J Qe Vi (@)AV, (@) v(dw),
(38) E N
DEOF,, OAOL(H,).

The corresponding representation of the POV measure is

(39) M (E) = I (5 a0, (@)Vy (@) Vi, (@) v(dw), DEOF,.

Ln

We shall call a representation (38) of an instruneprintum stochastic.
The following theorem is valid.

Theorem 1
Let (Q,F;) be a standard Borel space aHd - a complex separable Hilbert space of a quantum

system. For any instrumeﬁlf(E)[A], UEOF;, DAO L(Hg) on (Q,F;) with values inL(Hy)
there exists a quantum stochastic representation .

The form (38) of a quantum stochastic representation of an instrument is in perfect agreement with
the general Stinespring theorem [13] on completely positive maps.

In the general case the problem of existence of a representation of an instrument similar to (38) was
considered in [14]. The form of the representation obtained in [14] can be derived from (38) and
corresponds to a special case.

In the special case of description of continuous in time nondemolition observation upon an open
system the representation of an instrument in a form (38) was considered in [15-18].

Definition

We shall say that we have different quantum stochastic representations of the same instrument if
in (38) the pairs(V,A\) are different.

It is easy to show that for every quantum stochastic representatigiveianstrument thesequence

a, isunique and consequently, for the given instrument, we laye G, .

Proposition 2
There is a one-to-one correspondence between tH&ggtof different classe, of separable

statistical realizations of an instrument and the{g®t,A\)} of different pairs(V,/\), corresponding
to different quantum stochastic representations of this instrument.

From (35) and (39) it follows th&br the definite quantum stochastic representatienscalar
probability measure (4b) defining a probability distribution of outcomes under a measurement, is
given by

(40a) Ho(B) = [UIp(@)]Vo(dw)

where the scalar probability measwg[ is given by (35) and

(40b) p@) =y a6, (N, (@)PV, (@)

G (@)
Z ai qin ((L))

nLn

(40c¢) 0, (w) =
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Introduce the notation
(41a) P (@) =V, (W) PV, (0 . )

Then from (6), (38) and (40) we have that the family of normalized posterior statistical operators
{py (w),wQ}, defined by (7a), is given by

- p(w)
41b =
(41b) Py (@) [ p()]
(41c) p(w) = Z a,6,, (w) p;, (W)
Thus, p, (w)is a sum of normalized statistic;al operators
41d AN) — ﬁin (w)
@ SN

with statistical weights
a,q,, (w)tr[ p,, (w
42) B () = S @1, @]
Za {9 ()t (w)]
I
The a priori (unconditional) statistical operator of a quantum system at the instant after a measuremer
can be represented as

ﬁ(Q) = I Z ai ﬁin (w)vin (d(t)) =
(43a) o X
= [¥ aiby” (@), (dw)
with a scalar measure |

(43b) Hy, (dw) = tr] By, (@), (d . )
We can rewrite (40a) in the form

(43c) M, (dw) = aip, (do . )

In the physical literature on quantum measurements , in the special cas@wlerand the
spectrum of a measured quantum quantity is discrete, the formulae for a posterior statistical operator
and a POV measure, similar in some sense to (39) and (40b), were considered in [19, 20].

3.2 Quantum stochastic measurement model

In section 2.3 it was pointed out that an instrument gives the complete statistical description of a
guantum measurement. Consider the definite quantum stochastic representation (38) of an instrumer
and try to understand what is different under different quantum stochastic representations of the sarr
instrument.

Suppose for simplicity that the state of a quantum system at the instant before a measurement is pur
thatis pg =|, ><¢, } Inthis case

(44a) D (@) =V, (@) [, ><, [V (@ )

of (41a) represemture statesand the normalized posterior statistical operator (41b) can be presented
in the form

(44b) Pu(@) =3 B (@) | W, (@) >< ¥, (@)

0G4 (0) [1Vin ()0 I
> 0,5 (@) IV @Wo I

(44c) Bin(w) =
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with the notation
(452) ¥, (w)= ol OWo_
IV (W05 1,

for a posterior pure state defined by the oper\ipc(rw) :
The following orthonormalization relation is valid for the set of posterior pure states:

N(w) | ~
(450) [Y <V @0V @Wo >, 6 @V ([d0) =6, |l . D

Qn

From (44), (45) it follows that for different quantum stochastic representations of the same instrument
the corresponding families of posterior pure states

(45c) {¥,(w),wdQ,i=1..,N,;n=1.,Nw )}

and their statistical weightg, (w i the normalized posterior statistical operagiqi(co (which is

the same under different quantum stochastic representations of the same instrument) are different.
For all quantum stochastic representations of the instrumeni withn =1, for DwQ, p, (w) is

a pure state.
The normalized posterior statistical operaffE  cnditioned by the outcomw 0 E is defined by

the sef{ W, (w) Jof posterior pure states as
! zai | W, (@) >< W, (w) | 1y, (dw)

(462) p(E) = LET
! zaiuin (dw)
with a scalar measure j) |
(46Db) py, (do) =V, (@), | v,y (de ),

defining a probability distribution in tha,'h” transition channel of a quantum stochastic
representation. The scalar probability measure (43) of the whole measurement is given by

(46c¢) H, (dw) = Z a; 4, (dw)

We can interpret then the scalar measyjéw in (36b) as one describing the input probability
distribution of different outcomes in the # " transition channel of a given quantum stochastic
representation and the scalar meagyrédw as 9ne describing an output probability distribution

of different outcomes 00Q,F; ) in every 'f,n" transition channel.
The scalar probability measures

N(w) N (w)
(472) V(E)= [ S va(d)= [ (3 dn(@)(de),
N(w)
(47b) i (E) = A’ > My, (dw)

describe, respectively, input and output probability distributions ini'thelannel of a quantum
stochastic representation. The numiders a, =0, Zai =1 de¥cribe weights of different""

channels.
From (46a) it follows that’, (w Yxan be interpreted as a random posterior pureaiatemen a

Hilbert spaceH ¢ of a quantum system, conditioned by the observed valuelw and the f,n"
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random transition channel. For the definibethe statistical weights of different posterior pure state
outcomes are defined By (w . )

Thus, the random operatdﬁ (w describe in a Hilbert spadd ; the posterior behaviour of a

guantum system conditioned by the observed outcomieédw in the"i,n" random transition
channel.

Analysing the definition of a class, of unitarily equivalent separable statistical realizations of an

instrument given in the previous section, we concludediffarent quantum stochastic

representationsf the same instrument can identifiedwith different quantum measurements.

Although the statistical description of these quantum measurements ( the POV measure and the famil
of normalized posterior statistical operators) is the same, the stochastic behaviour of a quantum
system in a Hilbert space under these measurements may be different.

Physically the notion of different transition channels under a measurement ( a quantum stochastic
representation) corresponds under the same observed outcome of a measured quantum variable to
different random quantum transitions of a quantum system (reservoir) modelling the measuring
device under a measurement.

The following statements follow from oidentification of a quantum stochastic representation with a
concrete quantum measurement.

Proposition 3
For any quantum measurement with outcomes in a standard Borel GRa€g of a guantum

system being at the instant before the measurement in agstatieere exist:

the unique family of complex measures
N (@)

(48) A ={q{" (wVv(dw) |wOQ;i,j=12..,N,; n:lz,...,N(w);I( qiP (w)v(dw) =4, };

n J

the unique (up to the phase- equivalence) family of operator-vaiyiedneasurable functions:
Q - L(H)

R N@) R -

(49) V ={V, (@), w0Q,i =12,..,N,;n =12, N(@); [( Vi (@)V,, (@)q (@) (dw) =51}
Q n=

definedv, - almost surely, where, (dw) = g (w)v (dw) ;

the unigue sequence of numbers

(50) a=(a,,a, ,wiha, =0, ZGi =1,

such that the complete statistical description (a POV measure and a family of normalized posterior
statistical operators) of a measurement and the complete stochastic description of the behaviour of &
guantum system under a measurement (a family of posterior pure states and their probability
distribution) are given by:

1)The POV measure

(51a) M (E) = J S @ Vi (@) Vy, @)V, (dw), DEOF,,
(51b) vy () =g, (@ (de | )

O (@) = ;" () ;
with operator-valued density
(51C) m(w) = z aiein (o‘))\Zr;L (w)\Zn (Ol)), ein (Ol)) = qm—((Jl))

Z aiqin (O))

,n

with respect to the scalar probability measure
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(51d) Vo(dw) = 5 a,v,, (dw)

2) The family {f)(w),a)DQ} of unnormalized posterior statistical operators
(52a) [3((}.)) = z aiein (w)ﬁin ((A)),

(52b) P (@) =V, (@) AV, (@) .

3) The family of random operators (49) describing the stochastic behaviour of the quantum system
under a measurement. Every operat&g(w) defines in the Hilbert spadd ; a posterior pure state
outcome of the observed quantum system conditioned by the observea réduitand the'i,n "

random transition channel. For any, [1H¢ the following orthonormalization relation for a family

of posterior pure states is valid:

N(w)

(53a) [ 2 <V @WoN @Wo >, 0 @V (d0) =8, [, . D

The probability distribution of different outcomes in a randopn’ transition channel is given by

(53b) Hy, (deol= tr[ p,, (@)]v,, (dw)
For the definite observed value the statistical weights of different random transition channels are

a,q;, (W)tr[ p,, ()] _
Z a9 ([P (w)]

B
4) The scalar probability measure of the whole measurement is given by the expression

(53c) Bin (@) =

(54) Ho(B)= [ UIA@]ve(da)= [ Y @, (dw).

wlE wE 1N
through the scalar probability measure (51d) and the scalar measures (53b) in different random
transition channels.

We shall call\7in (w )a quantum stochastic evolution operatordv, (D), i, () input and output

scalar probability measures, respectively.
The derivation of the families (48) and (49) in any concrete quantum measurement is based on their
definitions (32), (33) .

Proposition 4
For any triplg{V,A,a,}, defined in (48) - (50), and a projection-valued measé(@ on (Q,Fg),

consistent with this triple, there exists a measurement upon a quantum system, described by formul
(51) - (54).

In the proposition 4 a projection-valued measé(@ is said to beonsistentvith the familieg48),
(49) ifatype[ls(w and a multiplicity functiorN, of ﬁ([)] are the same as the similar invariants in
(48), (49).

4. Semiclassical stochastic model of a quantum measurement

In quantum theory there was always a wish to combine the classical description of a measuring
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apparatus for an observer with the quantum description of an observed system.
The results we derived in the previous sections allow us to introduce such kind of interpretation of the
description of a quantum measurement.

Definition
We shall say that a family of scalar measures
N (w)
(55a) N ={q, (v (dw)|i=12,..,N ; n :LZ,...,N(w);I( g, () (dw)=1
Q n=

on a measurable spad€, F) describes a classical premeasurement statef a quantum
apparatus, if for any measuremeta" :
(55b) a=(a,a,,..)with a, 20, Zai =1,

performed by a "free" apparatus in a state an input scalar probability measure 6&"
measurement is given by

(55¢) v§ (dw) = ¥ a, g, (@V(dw).

Different "a" correspondto different preparations of the quantum state of a measuring apparatus.

From this definition it follows that :

For all measurementsa” performed by a measuring device being in a classical premeasurement
state A there exists the unique family of quantum stochastic operators (49) such that for any
premeasurement quantum stgig of a quantum system the POV measure and the family of posterior

statistical operators are defined by formulae (51), (52).

5. Concluding remarks

In the present paper we review the main approaches to the description of quantum measurements.

For a generalized quantum measurement we introduce the noiaquahtum stochastic

representation of an instrumeand prove that every quantum stochastic representation is induced

uniquely by the definite class of unitarily and phase equivalent statistical realizations of this

instrument.

We define the notion of a family gluantum stochastic operatoescribing under a measurement

the conditional evolution of a quantum system in a Hilbert sdadbde general case of continuous in

time nondemolition measurement of an open system, where a space of outcomes is a space of

trajectories, our general definition (33) of a quantum stochastic evolution operator coincides with the

definition of a quantum stochastic evolution operator introduced in [16-18] (formulae (61), (22) and

(11), respectively).

We show that a quantum measurement can be wholly described in the frame ofjanezal

approach based on the introduced notion of a family of quantum stochastic evolution operators.

The proposed approach allows to give:

1) the complete statistical description of any quantum measurement;

2) the complete description in a Hilbert space of the stochastic behaviour of a quantum system under
a measurement;

3) to give the semiclassical interpretation of the description of a quantum measurement;

4) to formalize the consideration of all possible cases of quantum measurements including
measurements continuous in time.

In a sequel to this paper we will consider in detail the further application of the proposed general
approach to the description of different concrete types of measurements.

We shall, in particular, present the further development of our results given in [16-18] on the
description (ithout assuming any Markov propeijtpf measurements continuous in time. For this
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particular case thguantum stochastic approaetiows todefinein the most general casee notion

of posterior pure state trajectories (quantum trajectories) in a Hilbert space of a quantum system, to
give their probabilistic treatment and in the frame of Hamiltonian formalcsderivethegeneral

integral equation for a posterior pure state trajectory.
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