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Abstract

Recent models for inhomogeneous spatial point processes with interac-

tion are reviewed. The focus is on models derived from homogeneous

Markov point processes. For some of the models, the interaction is

location dependent. A new type of transformation related model with

this property is also suggested. The statistical inference based on like-

lihood and pseudolikelihood is discussed for the di�erent models. In

particular, it is shown that for transformation models, the pseudolikeli-

hood function can be decomposed in a similar fashion as the likelihood

function.
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1. Introduction

In recent years, models for inhomogeneous point processes with interaction
have been suggested by several authors. We will in the present paper con-
centrate on three ways of introducing inhomogeneity into a Markov model,
i.e. inhomogeneity induced by a non-constant �rst-order interaction (Stoyan
and Stoyan (1998); see also Ogata and Tanemura (1986)), by thinning of a
homogeneous Markov point process (Baddeley et al. (2000)) and by transfor-
mation of a homogeneous Markov point process (Jensen and Nielsen (2000)).
The aim is to give a uni�ed exposition of these models in order to be able
to assess their relative merits and point to research problems that remain
to be solved in this area.
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addresses: eva@imf.au.dk and lins@imf.au.dk.
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For any of the three models, the inhomogeneity may be described by
a function � de�ned on the same set as the points. In the case where the
inhomogeneous point process is Poisson, � is the ordinary intensity function.
In addition to the point pattern, explanatory variables may be observed at
each point, for the purpose of explaining the inhomogeneity. Such informa-
tion may be included in any of the models. The interaction speci�ed in the
models may or may not be location dependent.

In Section 2, inhomogeneous Poisson and Cox point processes are con-
sidered. In Section 3.1, a short summary of homogeneous Markov point
processes is given, followed in Section 3.2 by a formal description of the
three types of inhomogeneous point processes derived from homogeneous
Markov point processes. In Section 3.3, parametric speci�cation of the inho-
mogeneity is discussed, while in Section 3.4 parametric statistical inference
is outlined for each of the three model types. Section 4 contains a discussion
and some considerations concerning future research.

2. Poisson and related point processes

We will throughout the paper consider point processes on a k�dimensional
manifold X in Rm. Often, X will be full-dimensional such that k = m.
(Formally, we will call X full-dimensional if X is a regular compact, that is
a non-empty compact subset of Rm which is the closure of its interior.) But
X may for instance also be a planar curve or a spatial surface, cf. Figure 1.
We will assume that 0 < �km(X ) < 1 where �km is the k�dimensional
volume measure in Rm (Hausdor� measure). We let B0 be the bounded
Borel subsets of X .

It is easy to introduce inhomogeneity within the class of Poisson point
processes. Let � be a locally �nite, non-atomic measure on X with density
� with respect to �km and let n(�) be the number of elements in �. A point
process X on X is then said to be a Poisson point process with intensity

X

Figure 1: Illustration of point process on a 2-dimensional manifold X in R3.
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function � if

� 8A 2 B0 : n(X \A) � Po(
R
A �(u)du

k)

� 8A1; � � � ; As 2 B0 disjoint : n(X\A1); � � � ; n(X\As) independent

We have here used the short notation duk for �km(du). It can be shown that
the �rst requirement is enough, cf. e.g. Stoyan et al. (1995).

If � is constant the Poisson point process is said to be homogeneous, oth-
erwise the process is inhomogeneous. A homogeneous Poisson point process
is often used as a reference (null) model. The reason is the following result

� Let X be a homogeneous Poisson point process on X and let
A 2 B0. Then, given n(X \ A) = n;X \ A is a binomial pro-
cess with n points, i.e. X \ A is distributed as fX1; : : : ;Xng
whereX1; : : : ;Xn are independent and identically uniformly dis-
tributed on A.

The independence property of the homogeneous Poisson point process en-
sures that there is no interaction in the process, the uniformity means that
the process is homogeneous.

The inhomogeneity of a point process may depend on explanatory vari-
ables. One simple geometric example is an intensity function of the form

�(�) = g(dC(�)); � 2 X ;

where dC(�) is the distance from � to a reference structure C: For a point
process in the Euclidean plane, the reference structure may be a point or
a planar curve. In Figure 2, C is a point (centre of a circle) while, in
Figure 3, C is a straight line (centre of a linear band). For a point pattern
in Euclidean space, the reference structure may be a point, a spatial curve
or a spatial surface. See also Berman (1986) and references therein. Points
lying on curves in two or three dimensions or points lying on spatial surfaces
may also show inhomogeneity. In Figure 4 and 5, point processes on the unit
circle S1 and unit sphere S2 are shown. (Points are represented as directions
in Figure 4.) In any of the Figures 2 to 5, Poisson point processes are shown
to the left while corresponding processes with inhibition between points are
shown to the right (for details, see Section 3.3 below).

Statistical inference for inhomogeneous Poisson processes with a para-
metrically speci�ed intensity function can be performed as follows. Let X
be an inhomogeneous Poisson point process with intensity function ��; � 2
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(a) Poisson
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(b) Strauss

T

Figure 2: Realizations of inhomogeneous point processes in the unit circular disc with
inhomogeneity function �(�) _ e�dC(�), where dC(�) is the distance from � to C, the centre
of the disc. The point pattern to the left is inhomogeneous Poisson, i.e. no interaction
between points, whereas the point pattern to the right is inhomogeneous Strauss with

 = 0:01 and therefore shows inhibition between points. For details, see Section 3.3 and
Appendix III. The number of points in the Poisson process have been chosen to equal the
number of points in the Strauss process. For both processes, the distribution of the points
in the shaded sampling window T remains the same if T is rotated around C.

� � Rl. Then, the likelihood function of � with respect to the homogeneous
Poisson point process with intensity 1 takes the form

L0(�;x) = exp(�

Z
X
[��(u)� 1]duk)

Y
�2x

��(�): (1)

We use index 0 in this likelihood because later it enters into more compli-
cated likelihoods. In Berman and Turner (1992), log-linear models for ��
are discussed,

��(�) / e���(�); � 2 X ;

where �(�) = (�1(�); : : : ; �l(�)) is a list of explanatory variables evaluated
at � and � indicates Euclidean inner product. After approximation of the
integral by a �nite sum, the likelihood takes the same analytical form as the
likelihood of a generalized linear model with Poisson responses and standard
software can be used to analyze the model. See also Rathbun (1996).

Alternatively, the intensity function can be estimated non-parametrically,
using kernel estimation (Silverman (1986)) or a Bayesian method (Heikkinen
and Arjas (1998)).
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(a) Poisson
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(b) Strauss

Figure 3: Realizations of inhomogeneous point processes in the unit band f� 2 R
2 :

dC(�) < 1g, where dC(�) is the distance from � to C, the full-drawn horizontal line. The
inhomogeneity function is as in Figure 2 and likewise the right hand-side point pattern
is inhomogeneous Strauss and the left is inhomogeneous Poisson with the same number
of points. The distribution of points in the shaded sampling window T remains the same
under horizontal translations of T .
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(b) Strauss

Figure 4: Realizations of inhomogeneous point processes on the unit circle S1. The
situation is the same as in Figure 2 except that dC(�) is the distance along the circle from
� to the point C = (cos(4�=3); sin(4�=3)) marked with an arrow. The points are shown
as directions.
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(a) Poisson (b) Strauss

Figure 5: Realizations of inhomogeneous point processes on the unit sphere S2. The
situation is the same as in Figure 2 except that dC(�) is the geodesic distance from � to
C which is the north pole.

As a generalization one may consider inhomogeneous Cox processes, i.e.
inhomogeneous doubly stochastic Poisson point processes. The de�nition of
a Cox process is as follows. Let � be a random intensity function on X .
Then, X is a Cox process if, given � = �, X is a Poisson point process with
intensity function �, cf. Stoyan et al. (1995, p. 154).

In M�ller et al. (1998) and Brix and M�ller (1998), log Gaussian Cox pro-
cesses are discussed, i.e. Cox processes for which � = eY and Y = fYsgs2X is
a Gaussian �eld. Inhomogeneity is introduced by letting the mean-value of
Ys depend on s. Clustered inhomogeneous point patterns may be modelled
by this process and this appears to be a natural model if the aggregation
is due to stochastic environmental heterogeneity. This type of model has in
Brix and M�ller (1998) been used to describe the development of two types
of weeds in an organic barley �eld.

3. Markov point processes

If one wants to describe inhibition in addition to clustering then the class
of Markov point processes is useful, cf. Ripley and Kelly (1977), Baddeley
and M�ller (1989), the recent monograph van Lieshout (2000) and refer-
ences therein. Let us start by recalling a few preliminaries for Markov point
processes.
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3.1. Homogeneous Markov point processes

Let � be a re
exive and symmetric relation on X . Two points �; � 2 X are
called neighbours if � � �. A �nite subset x of X is called a clique if all
points of x are neighbours. By convention, sets of 0 and 1 points are cliques.
The set of cliques is denoted C.

If X � Rm is full-dimensional then the relation induced by Euclidean
distance is often used. If X is a planar curve, distances along the curve
may be more natural. If X is the unit sphere Sm�1, such that the observed
points in fact are directions, then geodesic distance is natural.

Let X be a point process with density f with respect to the homogeneous
Poisson point process with intensity 1. If X is a Markov point process, its
Papangelou conditional intensity

�(�;x) =
f(x [ �)

f(x)
; � =2 x;

depends only on those points in x which are neighbours of �.
Markov point processes are characterized by the Hammersley-Cli�ord

theorem, cf. Ripley and Kelly (1977). This theorem states that a point
process X on X is a Markov point process if and only if

f(x) =
Y
y�x

'(y); (2)

where ' is an interaction function with respect to �, i.e. '(x) = 1 unless
x 2 C:

Let 'k be the restriction of ' to subsets consisting of k points. A pairwise
interaction process is then a process for which 'k � 1 for k > 2. The
famous Strauss process, cf. Strauss (1975) and Kelly and Ripley (1976), is
the pairwise interaction process with

'k(x) =

8<
:

� k = 0
� k = 1

 k = 2; x 2 C:

The density of the Strauss process becomes, cf. (2),

f(x) = ��n(x)
s(x);

where s(x) is the number of neighbour pairs in x. If the neighbourhood
relation is given by

� � � () jj� � �jj < R;

7



then the process is called a Strauss process with interaction radius R.
If the containing manifold X � Rm is full-dimensional, a Markov point

process X on X is said to be homogeneous if ' is translation invariant, cf.
e.g. Stoyan and Stoyan (1998) and Baddeley et al. (2000). (We assume that
' is de�ned on all �nite subsets of Rm.) Other de�nitions of homogeneity
are of course possible, cf. Jensen and Nielsen (2000). Note that translation
invariance implies that '1 is constant and for k > 1 'k(y) only depends
on the relative positions of the k points in y. A homogeneous pairwise
interaction process has a density of the form

f(x) = ��n(x)
6=Y

f�;�g�x

u(� � �); (3)

where 6= indicates that � and � are di�erent. For lower dimensional man-
ifolds X , homogeneity may be de�ned in terms of invariance under other
types of transformations. For instance, for X = Sm�1 a natural set of
transformations are the rotations. Recall that the group O(m) of rotations
consists of m�m real matrices

O(m) = fAjAAT = ATA = Img:

A homogeneous, with respect to this choice, pairwise interaction process on
Sm�1 has a density of the form

f(x) = ��n(x)
6=Y

f�;�g�x

u(� � �):

Recall that � � � = cos �, where � is the angle between � and �.

3.2. Introducing inhomogeneity

Throughout this section, X is a homogeneous Markov point process with
respect to � on X and density

fX(x) =
Y
y�x

'(y): (4)

Note that '1 is then constant. Below, we describe three ways of introducing
inhomogeneity into the model. The resulting inhomogeneous point process
is denoted by Y and is a point process on a k�dimensional manifold Y in Rd,
say. For the �rst two ways of constructing inhomogeneity, Y = X , i.e. the

8



homogeneous process and the associated inhomogeneous process are de�ned
on the same space.

The inhomogeneity is described by a function �(�), � 2 Y, which we will
call the inhomogeneity function. Common to each of the three constructions
is the feature that if X is a homogeneous Poisson point process, then the
associated inhomogeneous point process Y is Poisson with intensity function
proportional to �. The three inhomogeneous models are therefore extensions
of the inhomogeneous Poisson model.

An obvious way of introducing inhomogeneity is by making the �rst-
order interaction non-constant. We will call this type I inhomogeneity. The
associated inhomogeneous Markov point process has then a density of the
form

fY (y) /
Y
�2y

�(�)
Y
z�y

'(z): (5)

This type of model is natural if the points are centres of non-overlapping
particles of constant size. This set-up has been studied in Ogata and Tane-
mura (1986), Stoyan and Stoyan (1998) and Baddeley and Turner (2000),
among others. In Ogata and Tanemura (1986), log �(�) is a polynomium
in Cartesian coordinates, while in Stoyan and Stoyan (1998), a piecewise
(region-wise) constant function is studied. It is also interesting to note that
in the hierarchical point process models described in H�ogmander and S�arkk�a
(1999), densities of the form (5) appear.

Type II inhomogeneity is obtained by using an independent inhomoge-
neous thinning of the homogeneous Markov point process. Let us suppose
that the inhomogeneity function �(�), � 2 Y, is bounded by �max, and let
p(�) = �(�)=�max, � 2 Y. The inhomogeneous process is then obtained by
thinning with p,

Y = fxi 2 X : Ui � p(xi)g;

where fUig is a sequence of independent and identically uniformly dis-
tributed random variables in [0; 1]. In Baddeley et al. (2000), this approach
is suggested and studied in detail. According to them this model is natural if
p can be interpreted as the probability of survival of a plant or the probabili-
ty of observing an animal in a wildlife population. A possibly less appealing
property of the thinned Markov process is that it is non-Markovian except
if X is Poisson. However, this does not complicate the likelihood inference,
cf. Baddeley et al. (2000).

A third way of introducing inhomogeneity is by applying a 1-1 trans-
formation on a homogeneous Markov point process, cf. Jensen and Nielsen
(2000). This is type III inhomogeneity. The idea of using transformations
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to introduce inhomogeneity has also been used for the modelling of the co-
variance structure of a non-stationary spatial process, cf. Perrin (1997) and
references therein.

Let h be a 1-1 di�erentiable mapping of the k�dimensional di�erentiable
manifold X in Rm onto a k�dimensional manifold Y in Rd. We consider on
Y the induced relation

�1 � �2 () h�1(�1) � h�1(�2); �1; �2 2 Y:

The induced relation has the property that interactions are weaker in regions
where the transformation makes the intensity of points high. This will be
appealing in some applications, for instance in ecology. Note that we in
this case have inhomogeneity both in the intensity and the strength of the
interaction. The transformation approach may be extended by using a series
of transformations.

It can be shown, cf. Jensen and Nielsen (2000, Corollary 3.3), that

h(X) = fh(�) : � 2 Xg

is Markov with respect to � on Y and has the density

fY (y) = exp(�

Z
Y
[�(�) � 1]d�k)

Y
�2y

�(�)
Y
z�y

'(h�1(z)); (6)

where �(�) = Jh�1(�), the Jacobian of the inverse transformation h�1.
This transformation result can be proved by the coarea formula in geometric
measure theory, cf. Jensen (1998).

Note that if the homogeneous process is Poisson, then the last product
in (6) becomes of the form

exp(�(� � 1)�km(X ))�
n(y);

and therefore Y is an inhomogeneous Poisson point process with intensity
function � � �(�).

It is not always easy to �nd an appropriate transformation which intro-
duces an inhomogeneity of a given form. (The problem to be solved is to
�nd h such that Jh�1 = � where � is a given inhomogeneity function.) It is
therefore useful to construct approximate transformation models with the
same qualitative properties as the original transformation models. Let us
suppose that d = m = k and the manifolds X and Y are full-dimensional.
Furthermore, suppose that the original process is a homogeneous pairwise

10



interaction process, cf. (3). Then, the density of the transformed point pro-
cess is, cf. (6),

fY (y) / �n(y)
Y
�2y

�(�)

6=Y
f�;�g�y

u(h�1(�)� h�1(�)):

Recalling that for a transformation model Jh�1 = �, an obvious way of
avoiding to construct the transformation is to replace

h�1(�) � h�1(�) (7)

by an expression of the form

�(�)� � �(�)�(� � �); (8)

where � � 0 is some suitably chosen power. The density of the transforma-
tion related model becomes

fY (y) / �n(y)
Y
�2y

�(�)

6=Y
f�;�g�y

u(�(�)��(�)�(� � �)): (9)

This type of model has also been considered in Baddeley and Turner
(2000). Note that for point processes on the real line (k = 1), (8) can for
� and � close be regarded as an approximation to (7), if � = 1=2: This will
generally not be the case for k > 1.

3.3. Exponential inhomogeneity

The inhomogeneity function may be modelled parametrically or non-parame-

trically or both. If no prior knowledge is available about the inhomogeneity,
non-parametric modelling may be useful, at least initially. With knowledge
of the inhomogeneity (e.g. monotone decreasing in a known direction) then it
can be worthwhile to consider parametrically modelled inhomogeneity such
as that of exponential form

��(�) = �(�)e���(�); � 2 Y;

where � 2 � � Rl and �(�) 2 Rl.
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Let us concentrate on a comparison between type I and type III expo-
nential inhomogeneity. If the inhomogeneity is of type I, then the density of
the inhomogeneous point process takes the form, cf. (5),

fY (y; �) / �(�)n(y)e��t(y)
Y
z�y

'(z); (10)

where t(y) =
P

�2y �(�). Note that if the homogeneous Markov point
process is an exponential family model then the associated inhomogeneous
model is too. In particular, if the homogeneous model is a Strauss model
then

fY (y; �; �; 
) / e��t(y)(�(�)�)n(y)
s(y): (11)

This is a nice three parameter exponential family model.
If instead the transformation approach is used, we need to �nd a parame-

trized class of transformations h�; � 2 � such that

Jh�1� (�) = �(�)e���(�); � 2 Y: (12)

Let us give a fairly general geometric example where this problem has a
simple solution.

Example 3.1 The example concerns inhomogeneity for point patterns in
Rd which depends on the distance dC to a p�dimensional linear subspace
C in Rd, p = 0; 1; : : : ; d � 1. We will de�ne the transformation h� on the
whole set f� 2 Rd : dC(�) � 1g and let �(�) only depend on the distance of
� to C, i.e. �(�) = ~�(dC(�)), say. The cases (d; p) = (2; 0) and (2; 1) with ~�
the identity are illustrated in Figure 2 and 3, respectively.

Then, (12) has a unique solution among transformations of the form

h�(�) = pC(�) + g�(dC(�))
� � pC(�)

dC(�)
; (13)

where pC(�) is the orthogonal projection onto C and g� is an increasing
function of [0; 1] onto itself. The solution is given by, cf. Appendix I,

g�1� (r) =

"R r
0 u

d�p�1e��~�(u)duR 1
0 u

d�p�1e��~�(u)du

#1=(d�p)
: (14)

It follows also from Appendix I that for h� de�ned by (13) and (14),

Jh�1� (�) = �(�)e��~�(dC (�));

12



where

�(�) =

�
(d� p)

Z 1

0
ud�p�1e��~�(u)du

��1
:

For p > 0, this model may be used locally also in the case where C is
curved. �

Likewise, it is possible to construct transformations on S1 or S2 for the
case of exponential inhomogeneity with �(�) = dC(�), where C is a point
on S1 or S2 and dC is the geodesic distance to C, cf. Jensen and Nielsen
(2000). Illustrations are given in Figure 4 and 5. For general functions � ,
the construction of an appropriate set of transformations may be diÆcult.
An example is the inhomogeneity of the hickory tree data from Stoyan and
Stoyan (1998, Figure 1).

The density of a type III exponential inhomogeneous point process be-
comes

fY (y; �) / �(�)n(y)e��t(y)
Y
z�y

'(h�1� (z));

compare with (10). In particular, if the homogeneous model is a Strauss
model then

fY (y; �; �; 
) / e��t(y)(�(�)�)n(y)
s(h
�1
�

(y)): (15)

Note that in contrast to type I inhomogeneity, � is a nuisance parameter, cf.
(11).

The simulations in Figure 2 to 5, right-hand sides, are from (15). Pa-
rameter values and other details of the simulations are given in Appendix
III.

The transformation related approach yields densities of the form

fY (y; �) / e��t(y)(�(�)�)n(y)
6=Y

f�;�g�y

u(�(�)2�e�(�(�)+�(�))�� [� � �]):

In particular, in the Strauss case we get

fY (y; �; �; 
) / e��t(y)(�(�)�)n(y)
s�(y); (16)

where s�(y) is the number of �� �neighbours of y. If two points �; � are
related in the homogeneous Strauss process when jj� � �jj < R, then the
relation �� is de�ned by

� �� � , �(�)2�e�(�(�)+�(�))��k� � �k < R:

13



(a) Type I (b) Type III (c) Type III related

Figure 6: Realizations of inhomogeneous point processes on the unit square. The densities
used are, from left to right, (11), (15) and (16), respectively, all with � (�1; �2) = �1. The
parameter values used are � = 200, 
 = 0:01, R(interaction radius)= 0:05 and � = �3.
In (16), the exponent is � = 1=4. The number of observed points are, from left to right,
n(y) = 87; 95 and 93, respectively.

The three models (11), (15) and (16) are compared by simulation in Figure 6.
Note that the type I process appears somewhat more homogeneous than
the other processes, because the relation is for this process not location
dependent. This feature becomes more pronounced if more points are forced
into the point patterns by increasing �.

Furthermore, the intensity in the type I point process appears to be lower
than the intensity in the other two point processes. These two are, however,
similar both regarding the relation and the point intensity. Thus, the in-
homogeneity function and the parameters from the associated homogeneous
process play a quite di�erent role in the actual point intensity and point
interaction in the di�erent types of inhomogeneous models. These issues
have of course to be examined in more detail.

3.4. Statistical inference

3.4.1. Likelihood inference

If a Markov point process is observed in a sampling window T , cf. Figure 2
and 3, the conditional density of the point pattern observed in T , given the
remaining points, may be used for inference. As in Baddeley et al. (2000),
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let for disjoint point patterns y and x

�(y j x) =
Y

z�y[x:z\y 6=;

'(z): (17)

For a homogeneous Markov point process with density (4), the conditional
density is then of the form

f(xT j xT c) / �(xT j x@T ):

where xT = x\T and @T = f� 2 T cj9� 2 T : � � �g. Note that this density
depends on xT c only via x@T .

Let us suppose that the interaction function ' can be parametrized by
 2 	. Then, the likelihood function based on observation of the homoge-
neous process in T becomes

LT ( ;x) = cT ( ;x@T )�(xT ; j x@T ); (18)

where cT ( ;x@T ) is a normalizing constant and �(�; j�) is de�ned as in (17)
with ' parametrized by  .

In the Strauss case, we get

LT (�; 
;x) = cT (�; 
;x@T )�
n(xT )
s(xT )+s(xT ;x@T ); (19)

where for disjoint point patterns x and y

s(x; y) =
X
�2x

X
�2y

1[� � �]:

Likelihood inference based on these likelihood functions requires Markov
chain Monte Carlo, since the normalizing constant is not known explicitly,
cf. Geyer (1999) and M�ller (1999).

For type I inhomogeneity, the conditional density is given by

fY (yT j yT c) /
Y
�2yT

�(�) � �(yT j y@T );

where � refers to the homogeneous process. If ��(�) = �(�)e���(�), and ' is
parametrized by  , we get

LT (�;  ; y) = cT (�;  ; y@T )e
��t(yT )�(yT ; j y@T ):

In particular, if the homogeneous process is a Strauss process we have

LT (�; �; 
; y) = cT (�; �; 
; y@T )e
��t(yT )�n(yT )
s(yT )+s(yT ;y@T ):
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Again, MCMC is required for the analysis.
For type II inhomogeneity, it has been suggested to use a missing data

likelihood, cf. Baddeley et al. (2000, Proposition 1). If ��(�) = �(�)e���(�),
p�(�) = e���(�)=max�2Y e

���(�) and ' is parametrized by  , then this likeli-
hood takes the form

LT (�;  ; y) =
Y
�2yT

p�(�)E [
Y
�2XT

(1� p�(�))�(yT ; jX)]; (20)

where the mean value is with respect to the homogeneous point process X
with distribution parametrized by  . In the Strauss case,  = (�; 
) and

�(yT ; (�; 
)jX) = �n(yT )
s(yT )+s(yT ;X):

Statistical inference in the case of type III inhomogeneity is based on the
following conditional density, derived from (6),

fY (yT j yT c) /
Y
�2yT

�(�) � �(h�1(yT ) j h
�1(y@T )):

If h� is chosen such that Jh�1� = �� and ' is parametrized by  , we get, cf.
Appendix II,

LT (�;  ; y) = L0(�; yT )Lh�1
�

(T )( ;h
�1
� (y)); (21)

where L0(�; yT ) is the likelihood (1) of an inhomogeneous Poisson point
process with intensity function �� and Lh�1

�
(T )(�;h

�1
� (y)) is the likelihood

function (18) for the homogeneous Markov point process with observation
h�1� (y), observed in h�1� (T ). Recall that (18) reduces to (19) in the Strauss
case. Note that for the transformations derived in Example 3.1 and win-
dows T as shown in Figure 2 and 3, h�1� (T ) does not depend on �. In fact,
h�(T ) = T .

Likelihood inference is simpler for type I than for type III models since
the inhomogeneity parameter is a nuisance parameter in the latter case.
However, simulation studies indicate that the estimate �̂0 of � based on
L0(�; yT ), cf. (21), is close to �̂, cf. Nielsen et al. (2000). In that case, the
interaction parameter  can be estimated on the basis of

Lh�1

�̂0
(T )(�;h

�1

�̂0
(y))

and the analysis will be no more complicated than the analysis of a homo-
geneous Markov point process. It still remains to study in detail likelihood
inference for a type II process based on (20).
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3.4.2. Pseudolikelihood inference

A less demanding inference procedure is based on the pseudolikelihood func-
tion which is the likelihood function for a Poisson point process with inten-
sity function equal to the Papangelou conditional intensity of the process.
Recently, pseudolikelihood inference has been discussed by Baddeley and
Turner (2000).

If the homogeneous process is parametrized by  the pseudolikelihood
function based on observation in T becomes

PLT ( ;x) = exp(�

Z
T
[� (u;x) � 1]duk)[

Y
�2xT

� (�;xn�)]

where

� (�;x) =
fX(x [ �; )

fX(x; )
; � =2 x:

If the homogeneous process is a Strauss process, then

��;
(�;x) = �
s(�;x); � =2 x;

and

PLT (�; 
;x) = exp(�

Z
T
[�
s(u;x) � 1]duk)�n(xT )
2s(xT )+s(xT ;xTc):

Compared to likelihood inference the normalizing constant is much simpler.
Let us now look at pseudolikelihood inference for the two Markovian

inhomogeneous processes, viz. type I and III. For type I inhomogeneity of
exponential form, the pseudolikelihood function takes the form

PLT (�;  ; y) = exp(�

Z
T
[e���(u)� (u; y) � 1]duk)e��t(yT )[

Y
�2yT

� (�; yn�)]:

In the Strauss case, we get

PLT (�; �; 
; y) = exp(�

Z
T
[�e���(u)
s(u;y) � 1]duk)

�e��t(yT )�n(yT )
2s(yT )+s(yT ;yTc):

Note that for �xed � and 
 the maximum pseudolikehood estimate of �
is known explicitly. This is an example where the Papangelou conditional
intensity is of log-linear form and the analysis suggested by Baddeley and
Turner (2000) can therefore be used. Using the approximations described
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in Berman and Turner (1992) and Baddeley and Turner (2000) one should,
however, be careful when choosing the dummy points involved in the ap-
proximation.

In the case of type III inhomogeneity, it can be shown, cf. the Appendix
II,

PLT (�;  ; y) = L0(�; yT )PLh�1
�

(T )( ;h
�1
� (y)): (22)

The pseudolikelihood function thus decomposes as the likelihood function,
cf. (21). Pseudolikelihood inference for type III processes appears to be more
complicated but again it is expected that the inference can be split into two
parts.

4. Discussion

In the present paper, we have discussed three types of inhomogeneous
point processes, derived from homogeneous Markov point processes. It is
of course also of interest to study how inhomogeneity can be introduced
into other of the classical classes of point processes. For instance, one may
consider inhomogeneous Neyman-Scott point processes (the Poisson point
process of the mothers is inhomogeneous), inhomogeneous Mat�ern hard-
core processes (the un-thinned Poisson point process is inhomogeneous),
inhomogeneous simple sequential inhibition point processes (the size of the
circular region around each point depends on the position of the point)
and inhomogeneous Gibbs processes (e.g. transformations of homogeneous
Gibbs processes). See Clausen et al. (2000).

The emphasis has in the present paper been on parametrically modelled
inhomogeneity. This is a new approach for type II processes. Dually, it will
also be of interest to study non-parametric estimation of the transformation
involved in type III models. This is the subject of Iovle� et al. (2000).

Summary statistics like the K�, F� and G�functions have been devel-
oped for the initial study of the interaction in homogeneous point processes
and for checking of models for homogeneous point processes, cf. Stoyan
et al. (1995). In Baddeley et al. (2000), an analogue of the K�function
is suggested for the inhomogeneous case. For a type II process, this ana-
logue has the nice property of being identical to the K�function of the
un-thinned process. It still remains, however, to �nd versions of the F�
and G�functions that can be used in the inhomogeneous case. For type III
processes, an alternative is to estimate the transformation, either parametri-
cally or non-parametrically, and then use the traditional summary statistics
for the homogeneous case on the inversely transformed point pattern.
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Type III processes have the special feature that the neighbourhood re-
lation induced by the transformation is location dependent. The relation is
generally not isotropic in the sense that relationship only depends on the
distance between the points. The same is true for the transformation re-
lated processes de�ned by densities of the form (9). Another quite promising
idea is to introduce inhomogeneity in Markov point processes by location
dependent scaling, cf. Hahn et al. (2000).
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Appendix I

Let us start by �nding Jh�1� in the case p = 0 where (13) reduces to

h�(�) = g�(k�k)
�

k�k
:

Let Bd(O; 1) be the unit ball in R
d. Using polar decomposition twice we get

for an arbitrary function f on Bd(O; 1)Z
Bd(O;1)

f(h�(�))d�
d

=

Z
Sd�1

Z 1

0
f(g�(t)!)t

d�1dtd!d�1
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=

Z
Sd�1

Z 1

0
f(u!)(g�1� (u))d�1(g�1� )0(u)dud!d�1

=

Z
Bd(O;1)

f(�)(g�1� (k�k))d�1(g�1� )0(k�k)k�k�(d�1)d�d:

Therefore,

Jh�1� (�) = (g�1� (k�k))d�1(g�1� )0(k�k)k�k�(d�1) for p = 0: (23)

This result can now be used to �nd Jh�1� for general p. Let

Td(O; 1) = f� 2 Rd : dC(�) � 1g:

For an arbitrary function f on Td(O; 1) we then getZ
Td(O;1)

f(h�(�))d�
d

=

Z
C?

Z
C
f(x+ g�(kyk)

y

kyk
)1fkyk � 1gdxpdyd�p

=

Z
C?

Z
C
f(x+ y)1fkyk � 1g(g�1� (kyk))d�p�1(g�1� )0(kyk)kyk�(d�p�1)dxpdyd�p

=

Z
Td(O;1)

f(�)(g�1� (dC(�)))
d�p�1(g�1� )0(dC(�))dC (�)

�(d�p�1)d�d;

where we at the second equality sign have used (23). It follows that

Jh�1� (�) = (g�1� (dC(�)))
d�p�1(g�1� )0(dC(�))dC (�)

�(d�p�1):

Since we also have
Jh�1� (�) = �(�)e��~�(dC (�));

g� must satisfy

1

d� p
[(g�1� (u))d�p]0 = �(�)ud�p�1e��~�(u); u 2 [0; 1]: (24)

Since g� is increasing 1-1 of [0,1] onto itself, the unique solution of (24) is
(14).
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Appendix II

In order to derive (21), we need to �nd the constant cT (�;  ; y@T ) in the
expression for the conditional density

fY (yT ; �;  jyT c) = cT (�;  ; y@T )[
Y
�2yT

��(�)]�(h
�1
� (yT ); jh

�1
� (y@T )):

Since this is a density with respect to the Poisson point process on T with
intensity measure �kd we get, using that ��(�) = Jh�1� (�) and the well-known
expansion of the distribution of the Poisson point process, cf. M�ller (1999,
Section 2),

cT (�;  ; y@T )
�1

= e��
k
d(T )

1X
n=0

1

n!

Z
T
: : :

Z
T

nY
i=1

Jh�1� (yi)

��(fh�1� (y1); : : : ; h
�1
� (yn)g; jh

�1
� (y@T ))dy

k
1 � � � dy

k
n

= e��
k
d(T )

1X
n=0

1

n!

Z
h�1
�

(T )
: : :

Z
h�1
�

(T )
�(fx1; : : : ; xng; jh

�1
� (y@T ))dx

k
1 � � � dx

k
n

= e��
k
d(T )e�

k
m(h�1

�
(T ))ch�1

�
(T )( ;h

�1
� (y@T ))

�1:

The result now follows by noting that

�km(h
�1
� (T )) =

Z
h�1
� (T )

d�k =

Z
T
Jh�1� (�)d�k =

Z
T
��(�)d�

k:

The proof of (22) is obtained as follows. The Papangelou conditional
intensity of the transformed process becomes, cf. (6),

fY (y [ �; �;  )

fY (y; �;  )
= ��(�)� (h

�1
� (�);h�1� (y)); � 62 y;

where � is the Papangelou conditional intensity of the un-transformed pro-
cess. The pseudolikelihood function of the transformed process therefore
becomes

PLT (�;  ; y)

= exp(�

Z
T
[��(u)� (h

�1
� (u);h�1� (y))� 1]duk)

�
Y
�2yT

[��(�)� (h
�1
� (�);h�1� (y n �))]
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= [
Y
�2yT

��(�)] exp(�

Z
T
[��(u)� 1]duk)

� exp(�

Z
T
��(u)[� (h

�1
� (u);h�1� (y))� 1]duk)

�
Y
�2yT

� (h
�1
� (�);h�1� (y n �)):

The result is now obtained by noting thatZ
T
��(u)[� (h

�1
� (u);h�1� (y))� 1]duk =

Z
h�1
� (T )

[� (v;h
�1
� (y)) � 1]dvk:

Appendix III

Simulations from the inhomogeneous Strauss point process (15) are shown
in the right hand-sides of Figure 2 to 5. In Table 1 the model parameters
and the resulting number of points in the simulated point patterns are given.
Note, however, that the number of points in Figure 3, n(x) = 355, is for a
33% wider rectangle. A larger area was used to avoid edge problems.

The point patterns shown in Figure 2 to 5, right, and the three point
patterns in Figure 6 have been simulated using Metropolis-Hastings birth-
death algorithm with 500000 iterations, cf. e.g. M�ller (1999).

Figure � 
 R n(y) �

2 1000 0.01 0.1 163 -3
3 400 0.01 0.1 355 -3
4 70 0.01 0.1 40 -1
5 100 0.01 0.2 143 -2

Table 1: Parameters used for simulation and the resulting number of points for the point
patterns in the right-hand sides of Figure 2 to 5.
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