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ABSTRACT
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and various other algorithms for making perfect simulations with a view to
applications in stochastic geometry. Most examples of applications are for
spatial point processes.
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1 Introduction

One of the most important and exciting recent developments in stochastic
simulation is perfect simulation. Following the seminal work by Propp and
Wilson (1996), many papers have proven that perfect simulation algorithms
are particular useful in stochastic geometry, spatial statistics and statistical
physics. It seems timely to review this development with a view to applica-
tions in stochastic geometry.

The aims of this paper are to provide such a review for readers with
limited knowledge on perfect simulation, showing the mathematical details,
and also to put things into a uni�ed framework. From a mathematical view,
the paper is self-contained, but in order to keep the paper within the limit
of about 20 pages, no illustrative �gures and empirical results are included
(but the relevant references are provided). For the same reason I have chosen
to focus on the Propp-Wilson algorithm, also called vertical coupling from
the past (CFTP) in Section 3, and so-called horizontal CFTP in Section 4,
also called dominated CFTP (Kendall and M�ller, 2000) and coupling into
and from the past (Wilson, 2000a). Section 2 provides some background
material related to CFTP. Most examples of applications in Sections 2{4 are
for �nite spatial point processes. Other topics such as Fill's algorithm and
extensions to in�nite point processes are brie
y discussed in Section 5.
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2 CFTP and two examples

Proposition 1 below has some similarities with Theorem 3 in Propp and
Wilson (1996) and Theorem 2.1 in Kendall and M�ller (2000), but it is
stated so that it applies for both the vertical and horizontal CFTP algorithms
presented in Sections 3 and 4.

We consider a general setting with a given target distribution � de�ned
on a state space E, and a discrete time process fXtg

1
t=0 on E, which is

de�ned by a so-called stochastic recursive sequence (SRS),

Xt = ' (Xt�1; Rt) ; t = 1; 2; : : : : (1)

Here the Rt are random variables and ' is a deterministic function, called
the updating function. Under mild conditions, any discrete time homoge-
neous Markov chain can be represented as a SRS, where the Rt are IID
(independent and identically distributed random variables); see Foss and
Tweedie (1998) and the references therein. When making simulations, Rt is
generated by a vector of pseudo-random numbers Vt = (Vt1; : : : ; VtNt), where
Nt 2 N is either a constant or yet another pseudo-random number; see e.g.
Example 2 below.

Moreover, we include negative times and let for any state x 2 E and
times s; t 2 Z with s < t,

Xt
s(x) = '

�
� � �'

�
'(x;Rs+1); Rs+2

�
� � � ; Rt

�

denote the state of a process at time t when it is started in x at time s.
In Section 4 we consider continuous-time jump processes ~Xs(x) = f ~Xt

s(x) :

t � sg with ~Xs
s (x) = x, and set Xt

s(x) = ~X
Jt(s;x)
s for integers s < t, where

s � J1(s; x) < J2(s; x) < : : : is a random sequence containing the jump times
of ~Xs(x) (this sequence will only be needed for theoretical considerations |
it is not used in the implementations of our perfect simulation algorithms).
In order to unify the notation, for the discrete time setting used in Examples
1 and 2 and Section 3, we simply set ~Xt

s(x) = Xt
s(x) for integers s < t. We

require that � is the limiting distribution of ~Xt
0(x̂), where in Section 4 we

select a particular state x̂, while in Examples 1 and 2 and in Section 3 an
arbitrary state x̂ can be chosen. Finally, we say that a random variable
T 2 N0 [ f1g is a stopping time with respect to R� � fR�tg

1
t=0, if for any

t 2 N0, the event fT � tg is determined by R0; R�1; : : : ; R�t.

Proposition 1 Assume that (i) the distribution of fRtgt2Z is stationary in

time, (ii) there exists a state x̂ 2 E so that ~Xt
0(x̂) converges in distribution

towards � as t ! 1, and (iii) T � 0 is an almost surely �nite stopping
time with respect to R� such that X0

�t(x̂) = X0
�T (x̂) whenever t � T . Then

X0
�T (x̂) � �.
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Proof.

P

�
X0
�T (x̂) 2 F

�
= P

�
lim
t!1

~X0
�t(x̂) 2 F

�
= lim

t!1
P

�
~X0
�t(x̂) 2 F

�

= lim
t!1

P

�
~Xt
0(x̂) 2 F

�
= �(F )

where the monotone convergence theorem is used for obtaining the second
equality and (i) is used for obtaining the third equality.

Generally speaking, by a CFTP algorithm we understand a way of de-
termining a time �t � �T and returning X0

�t(x̂) � �. Occasionally, T is
referred to as the running time of the algorithm, though we should keep
in mind that a more precise de�nition of \running time" may be appropri-
ate in each speci�c algorithm. A CFTP algorithm is only perfect/exact in
principle, as pseudo-random numbers are used in practice, and X0

�T and T
may be dependent, so long running times may cause a bias in the simula-
tions, which are actually used. Still, for short, we call this perfect simulation.

Example 1: Falling leaves model Consider a closed set S � Rd and
IID random closed sets Rt � Rd, t 2 Z so that with probability one, S will
be covered by a �nite number of the Rt's:

P

�
9t > 0 : S � R1 [ : : : [Rt

�
= 1:

Let E be the set of all closed subsets of S. De�ning for x 2 E and closed
subsets R � Rd,

'(x;R) = [(x n R) [ @R] \ S;

where @R denotes the topological boundary of the set R, we obtain by
(1) a Markov chain de�ned on E. If we think of the Rt as falling leaves
on the ground (so d = 2) and there are no leaves at time t = 0, then
Xt
0(;) shows the boundaries of falling leaves when looking down at the re-

gion S at time t > 0. This model for falling leaves has been introduced
by Matheron (1968,1975); see also Serra (1982), Jeulin (1997), Kendall and
Th�onnes (1999), and the illuminating applets at Wilfrid Kendall's homepage
(http://www.warwick.ac.uk/statsdept/Sta�/WSK/dead.html).

Since Xt
0(x) does not depend on x 2 E whenever t � inffn > 0 : S �

R1[ : : :[Rng, the chain is easily seen to be uniformly ergodic (this is in fact
veri�ed in Section 3.1). In particular Xt

0(x) has some limiting distribution
� as t ! 1, where � does not depend on the choice of x 2 E. Though
this may be a very complicated distribution, we can at least make perfect
simulations from �: by Proposition 1, for any x̂ 2 E, X0

�Tfl
(x̂) � � if we

de�ne
Tfl = inf ft 2 N0 : S � R0 [R�1 [ : : : [R�tg ; (2)
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and X0
�Tfl

(x̂) does not depend on x̂.

Example 2: Widom-Rowlinson model Let A � Rd be a Borel set with
positive and �nite Lebesgue measure jAj. Denote the homogeneous Poisson
point process de�ned on A and of rate � > 0 by Poisson(A; �). This means
the following if R � Poisson(A; �) is represented as a �nite subset of A: the
number n(R) of points in R follows a Poisson distribution with mean �jAj;
and conditionally on n(R), the points in R are IID and each point follows a
uniform distribution on A.

Now suppose that X(i) � Poisson(S; �i); i = 1; 2, are independent, S �
Rd is closed with 0 < jSj <1, and

� = D
�
X(1); X(2)jdist(X(1);X(2)) > Æ

�
(3)

where dist(X(1);X(2)) denotes the shortest distance between a point from
X(1) and a point from X(2), and �1; �2; Æ are positive parameters. This is
the Widom and Rowlinson (1970) model, which possesses many interesting
properties as discussed in H�aggstr�om, van Lieshout and M�ller (1999) and
the references therein. The support of � is the set of all (x(1); x(2)) where
x(1) and x(2) are �nite subsets of S with dist(x(1); x(2)) > Æ. However, it
becomes convenient in Section 3.2, if we de�ne the state space E as the set
of all (x(1); x(2)) where x(1) and x(2) are closed subsets of S.

For the purpose of making simulations from �, it seems natural to use a
two-component Gibbs sampler, since

D
�
X(1)jX(2);dist(X(1); X(2)) > Æ

�
= Poisson

�
S n UX(2) ; �1

�
;

D
�
X(2)jX(1);dist(X(1); X(2)) > Æ

�
= Poisson

�
S n UX(1) ; �2

�
;

where for x � S, Ux denotes the union of balls of radius Æ and centers � 2 x.
Using a systematic updating scheme, the two-component Gibbs sampler

amounts to use a SRS withRt = (R
(1)
t ; R

(2)
t ), whereR

(i)
t � Poisson(S; �i); i =

1; 2; t 2 Z, are independent and the updating function ' is de�ned as follows:
for x(1); x(2); r(1); r(2) � S and�

y(1); y(2)
�
= '

�
(x(1); x(2)); (r(1); r(2))

�
; (4)

we have that
y(1) = r(1) n Ux(2) ; y(2) = r(2) n Uy(1) :

Clearly this sampler preserves � and it is easily shown to be uniformly ergodic
due to the following simple facts: if r(1) = ; then y(1) = ; does not depend
on x(2); similarly, if r(2) = ; then y(2) = ; does not depend on y(1); and both

cases can happen in each update of the Gibbs sampler, since P(R
(i)
t = ;) =

4



exp(��ijSj) > 0. Moreover, after updating the �rst component, the sampler
stays within the support of �, no matter the choice of the initial state in E.

Due to these properties, an obvious choice for the stopping time used in
Proposition 1 would be

TWR = inf
n
t 2 N0 : [R

(1)
�t = ;] or [R

(2)
�t = ; and t < 0]

o
: (5)

Indeed, for any x̂ 2 E, X0
�TWR

(x̂) � � and X0
�TWR

(x̂) does not depend on
x̂. However, except for possibly rather uninteresting cases with a very small
value of �1 or �2, TWR is expected to be extremely large. A much more
eÆcient coupling time is speci�ed in Section 3.2.

3 Vertical CFTP

In Examples 1 and 2 we noticed that the chain was uniformly ergodic. As
discussed in Section 3.1, this property is in a sense a suÆcient and necessary
property for applying the Propp-Wilson algorithm which, for reasons which
soon will become clear, henceforth is called vertical CFTP. Furthermore,
Section 3.2 shows how monotonicity properties of the SRS make vertical
CFTP feasible in practice. Finally, Wilson's read-once algorithm is discussed
in Section 3.3.

Throughout Sections 3.1{3.3 the Rt's are assumed to be IID.

3.1 Vertical CFTP and uniform ergodicity

Propp and Wilson (1996) consider what Foss and Tweedie (1998) call the
smallest "vertical backward coupling time", that is the �rst time before 0
for coalesence of all possible chains; denoting this by �TPW we have

TPW = inf
n
t 2N0 : X

0
�t(x) = X0

�t(y) for all x; y 2 E
o
: (6)

For example, for the falling leaves model, TPW = Tfl in (2), while for the
Widom-Rowlinson model, TPW � TWR in (5). In fact, typically TPW �
TWR unless the rates �i are very small (see Figure 3 in H�aggstr�om, van
Lieshout and M�ller, 1999).

When does Proposition 1 apply if T = TPW ? Condition (i) in Proposition
1 is clearly satis�ed. By the de�nition (6), TPW is a stopping time with
respect to R�, and X0

�t(x) does not depend on (x; t) 2 E �N0 when �t �
TPW . Moreover, as shown below, if TPW < 1 almost surely, the chain
becomes uniformly ergodic, and so condition (ii) in Proposition 1 is satis�ed.
Hence, in order to verify the conditions of Proposition 1, we need only to
verify that P(TPW <1) = 1:
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Proposition 2 If P(TPW < 1) = 1, then X0
�t(x̂) � � for any x̂ 2 E and

t � TPW .

Indeed, as noticed in Propp and Wilson (1996), if the support of � is
�nite, then irreducibility implies that P(TPW <1) = 1. But in applications
of stochastic geometry, the support of � is rarely �nite as illustrated in
Examples 1 and 2. However, we can often �nd another backwards stopping
time T so that TPW � T , where T is easily shown to be almost surely �nite.
One such example is T = TWR given by (5). Then by Proposition 2, we
can make a perfect simulation from �, provided there is a feasible way for
determining TPW when an algorithm for vertical CFTP is implemented |
see Section 3.2.

Now, how does the condition in Proposition 2 relate to uniform ergodic-
ity? Recall that uniform ergodicity of a discrete time homogeneous Markov
chain is equivalent to the existence of a time n > 0, a number � > 0, and a
probability measure Q such that

P

�
Xn
0 (x) 2 �

�
� �Q(�) (7)

(Meyn and Tweedie, 1993, Theorem 16.0.2). Note that we in (7) do not
require that the chain is de�ned in terms of a SRS, though we are still using
the notation Xn

0 (x) for the state at time n when starting in x at time 0.
Observe also that by time homogeneity,

Tfor � inf
n
t 2 N0 : X

t
0(x) = Xt

0(y) for all x; y 2 E
o
� TPW : (8)

Hence TPW < 1 almost surely if and only if there is a time t 2 N so that
P(Ct) > 0 where Ct = fXt

0(x) = Xt
0(y) for all x; y 2 Eg (the \only if part"

follows immediately from (8), while the \if part" follows by considering the
independent and equiprobable events Cit = fXit

(i�1)t(x) = Xit
(i�1)t(y) for all

x; y 2 Eg; i = 1; 2; : : :; in this section we use only the \if part", while the
equivalence is used in Section 3.3).

Consequently, on one hand, if TPW <1 almost surely, the chain is uni-
formly ergodic: set n = t+1, � = P(Ct), and Q(F ) = P ('(Z;Rt+1) 2 F jCt)
where Z denotes the common value of Xt

0(x); x 2 E; when the event Ct

happens to occur. This shows the limitations of the applicability of vertical
CFTP: it never works if we don't have uniform ergodicity. On the other
hand, it can be shown that uniform ergodicity implies the existence of a
SRS construction so that TPW <1 almost surely (one such construction is
provided by Nummelin's splitting technique if n = 1 in (7)); we refer to Foss
and Tweedie (1998) for further details. Of course this result is purely theo-
retical as there exist in�nitely many possible SRS's, and the art in practice
is to pick one so that the chains coalesce quickly.
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3.2 Monotonicity and anti-monotonicity

One concern with for example the case of the SRS construction used in
Example 2 is that apparently there are uncountably many paths to take
care of if we wish to determine TPW . In contrast only one path is needed in
Example 1!

However, as observed in Propp and Wilson (1996), this problem may
be overcome if there is a partial ordering � on E such that the updating
function is monotone in its �rst argument,

'(x; �) � '(y; �) whenever x � y; (9)

and if there exist a unique minimum 0̂ 2 E and a unique maximum 1̂ 2 E,

8x 2 E : 0̂ � x � 1̂:

Thereby TPW is determined by only two paths \started in the in�nite past".
More precisely,

TPW = inf
n
n 2 N0 : L

0
�n = U0

�n

o
; (10)

where L�n = fX�t
�n(0̂) : t = n; n � 1; : : :g and U�n = fX�t

�n(1̂) : t = n; n �
1; : : :g are the lower and upper chains started at the minimal respective
maximal state at time �n: set L�n�n = 0̂; U�n

�n = 1̂, and

L�t�n = '
�
L�t�1�n ; R�t

�
; U�t

�n = '
�
U�t�1
�n ; R�t

�
; t = n� 1; n� 2; : : : : (11)

If the monotonicity property (9) is replaced by the anti-monotonicity prop-
erty,

'(y; �) � '(x; �) whenever x � y;

then using the cross-over trick introduced in Kendall (1998) we rede�ne

L�t�n = '
�
U�t�1
�n ; R�t

�
; U�t

�n = '
�
L�t�1�n ; R�t

�
; t = n� 1; n� 2; : : : ; (12)

whereby (10) remains to be true. Notice that in both the monotone and the
anti-monotone case we have the following sandwiching property,

L�t�n � X�t
�n(x) � U�t

�n for t = n; n� 1; : : : and n = 0; 1; : : :; (13)

and the funnelling property,

L�t�n � L�t�m � U�t
�m � U�t

�n for integers m � n � t with n � 0: (14)

So putting things together with Proposition 2, we obtain the following propo-
sition.
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Proposition 3 Assume that P(TPW <1) = 1 and there is a partial order-

ing with unique minimal and maximal states. Then in both the monotone
and anti-monotone case, L0

�n = X0
�TPW

� � whenever L0
�n = U0

�n.

Thus, when the conditions of Proposition 3 hold, it becomes much simpler
to determine TPW and to implement a vertical CFTP algorithm: generate
(L�n; U�n) further and further back in time for any strictly increasing se-
quence of n's, and then return L0

�n � � as soon as L0
�n = U0

�n. As argued
in Propp and Wilson (1996), instead of using the sequence n = 1; 2; 3; 4; : : :,
it may be more eÆcient to use a doubling scheme n = 1; 2; 4; 8; : : :; see also
the discussion in Wilson (2000b). Notice that by (11) and (12), in the ver-
tical CFTP algorithm we need to store each R�t which has been used for
determining a pair of lower and upper processes.

Example 2 (continued) A natural partial ordering is given by set-inclusion
with respect to the two types of points: for closed subsets x(i); y(i) � S, de-
�ne �

x(1); x(2)
�
�
�
y(1); y(2)

�
if x(i) � y(i); i = 1; 2: (15)

Then
0̂ = (;; ;); 1̂ = (S; S);

are unique minima and maxima, and the SRS construction for the two-
component Gibbs sampler is seen to be anti-monotone, so vertical CFTP
easily applies. Note that 0̂ belongs to the support of � (it is even an atom),
while 1̂ does not (it is at this point the de�nition of E becomes convenient).
Moreover we can in an obvious way extend the de�nition (3) to a Widom-
Rowlinson model of k � 2 components, and the updating function (4) to
an anti-monotone k-component Gibbs sampler with respect to an obvious
extension of (15), so vertical CFTP applies for this case also.

There is another partial ordering which makes the two-component Gibbs
sampler monotone: suppose now that�

x(1); x(2)
�
�
�
y(1); y(2)

�
if x(1) � y(1); y(2) � x(2); (16)

in which case
0̂ = (;; S); 1̂ = (S; ;); (17)

are unique minima and maxima. Note that now neither 0̂ nor 1̂ is in the
support of �, and (16) does not extend to the case of k > 2 components.

For a further discussion of perfect simulation using the monotone ver-
sion above (but with (17) replaced by \quasi-minimal and quasi-maximal"
states), including empirical results for the Widom-Rowlinson model, see
H�aggstr�om, van Lieshout and M�ller (1999).
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3.3 Read-once algorithm

A natural question is if we instead of going backwards in time could gen-
erate perfect simulations by running forwards in time. For example, by
(8), the "vertical forwards coupling time" Tfor is distributed as the vertical

backwards coupling time TPW . However, in general X
Tfor
0 6� �; a coun-

terexample is provided by a random walk on f1; 2; 3g de�ned by the SRS
'(x;Rt) = x+Rt, where the Rt are IID and uniformly distributed on f�1g,
and where we truncate x + Rt at 1 and 3. Moreover, we have noticed in
Section 3.2 the need of storing the R�t which are reused in the lower and
upper processes. Below we describe Wilson's (2000a) read-once algorithm,
which runs forward in time, starting at time 0, and reading the Rt only once.
As we shall see, it works whenever vertical CFTP does, and it can then be
naturally used for producing IID samples from �.

For m 2 N and i 2 Z, set Fi(x) = Xim
(i�1)m(x). Then the \random maps"

Fi; i 2 Z, are IID. As veri�ed in Section 3.1, TPW <1 almost surely if and
only if p � P(F0 is a singleton) is strictly positive for m suÆciently large.
Set K0 = 0 and de�ne recursively,

Ki = inf fk > Ki�1 : Fk is a singletong ; i = 1; 2 : : :

Ki = sup fk < Ki+1 : Fk is a singletong ; i = �1;�2 : : :

Finally, set G1 = FK1 , Gi = FKi�1 Æ : : : Æ FKi�1 for i 2 Z n f1g, and �i =
Ki � 1�Ki�1 for i 2 Z, where Æ denotes composition of mappings.

Proposition 4 If P(TPW < 1) = 1, then the (Gi; �i) with i 2 Z n f1g
are IID, where Gi � � and �i follows a geometric distribution with mean

(1� p)=p.

Proof. By Proposition 2, G0 � �. Using that the random maps are IID,
we obtain easily the following properties. The �i; i 2 Z, are IID, and
each follows a geometric distribution with mean (1 � p)=p. Furthermore,
conditionally on the �i, the random maps are mutually independent, where
the conditional distribution of FKi

is the same as the distribution of G1 for
i 6= 0, while for j 62 fKi : i 6= 0g, the conditional distribution of Fj is the
same as the conditional distribution of F0 given that F0 is not a singleton.
Thus (FKi�1; : : : ; FKi�1 ; �i), i 2 Z n f1g, are IID, and so the (Gi; �i) with
i 2 Z n f1g are IID.

As noticed in the proof, the �i (including �1) are IID. However, in general,
G1 6� �. A counterexample is provided by the SRS (4) for the Widom-
Rowlinson model: letting m = 1, we obtain that the �rst component of G1

equals ;, contradicting the fact that �(f;; �g) < 1.
The read-once algorithm consists in generating G2; : : : ; Gj for a given

integer j � 2. Notice that we can successively determine G2; : : : ; Gj from
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one path starting at G1 = FK1 , since G2 = FK2�1 Æ : : : Æ FK1 , while for
i = 3; 4; : : :, we have successively that Gi = FKi�1 Æ : : : Æ FKi�1 ÆGi�1. Here
G1 and K1;K2; : : : may be easily determined if we can bound the random
maps by lower and upper processes like in the monotone and anti-monotone
cases considered in Section 3.2. Wilson (2000a) recommends to choose m
so that p > 0:5 or equivalently E(�i) < 1. Finally, we notice that Wilson
(2000a) discusses a coupling method so that the read-once algorithm applies
on locally stable point processes, as de�ned in Section 4.1.

4 Horizontal CFTP

As mentioned in Section 1, horizontal CFTP has other names in other pa-
pers; it is called so here in order to clarify the di�erence from vertical CFTP
(we comment on this at the end of Section 4.1). The ideas behind horizontal
CFTP are due to Kendall(1998); a general setting can be found in Kendall
and M�ller (2000). Section 4.1 shows the details in the case of using spatial
birth and death processes with a locally stable equilibrium distribution. Sec-
tion 4.2 concerns the case of a noisy point process model. Further examples
are brie
y discussed in Section 5.

4.1 Perfect simulation for locally stable point processes using

spatial birth and death processes

This section is based on Kendall and M�ller (2000). As the results will be
used in Section 4.2, we give a detailed exposition.

We consider a general setting for �nite point processes, where � =
Poisson(S; �) is a Poisson point process de�ned on a space S and with in-
tensity measure � so that 0 < �(S) < 1. For convenience we assume � to
be di�use (i.e. non-atomic), whereby � is concentrated on the state space
E = fx � S : n(x) < 1g of �nite point con�gurations (but everything in
the following easily extends to the case where � is not di�use); here n(x) de-
notes the number of elements in the set x. So if X � �, then n(X) follows a
Poisson distribution with mean �(S), and conditionally on n(X), the points
in X are IID with distribution ��(�) = �(�)=�(S).

We restrict attention to point processes X with a target distribution �
which is absolutely continuous with respect to �, and assume the following
local stability condition: if f = d�=d� denotes the density, there is a number
K > 0 such that

f(x [ f�g) � Kf(x) for x 2 E; � 2 S n x: (18)
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In other words, de�ning the Papangelou conditional intensity,

�(x; �) =

(
f(x [ f�g)=f(x) if f(x) > 0; � 2 S n x
0 otherwise

we have assumed � � K and f to be hereditary, i.e. for any x 2 E and
� 2 S n x, f(x) > 0 if f(x [ f�g) > 0. Since everything in the sequel only
depends on f through �, we need only to know an explicit expression of f
up to proportionality.

Consider �rst a spatial birth and death process ~X = f ~Xt : t 2 Rg with
birth and death rates b and d. These are non-negative measurable functions
de�ned on E � S such that, in any small time-interval [t; t+dt] and for any
B 2 B, if we condition on ~Xt = x and the process before time t, we have the
following: (i) the probability for a birth ~Xt+dt = x [ f�g, with the newborn
point � 2 B, is

R
B b(x; �)�(d�) � dt + O(dt); (ii) for any point � 2 x, the

probability for a death ~Xt+dt = x n f�g is d(x n f�g; �)dt + O(dt); (iii) the
probability for more than one transition is O(dt). The target density f and
the spatial birth and death process ~X are in detailed balance if

f(x)b(x; �) = f(x [ f�g)d(x; �) > 0 whenever f(x [ f�g) > 0; (19)

in which case (18) ensures both the unique existence of ~X and that ~Xt con-
verges in distribution towards � as t!1, cf. Preston (1977) (alternatively,
one can verify these properties directly using the coupling construction de-
scribed below). In particular, (19) implies that the empty point con�guration
; is an ergodic atom for ~X . In the sequel we set

b(x; �) = �(x; �); d � 1;

whereby (19) holds. This is seemingly the simplest choice, but everything in
the following can be extended to the general case of (19).

Consider next another spatial birth and death process ~D = f ~Dt : t 2 Rg
with birth rateK and death rate 1. Then ~D satis�es (19) when f(x) / Kn(x),
i.e. it has equilibrium distribution Poisson(S;K�), and ; is an ergodic atom.
Let J1 < J2 < : : : denote the jump times of f ~Dt : t > 0g and de�ne the
jump chain fDtg

1
t=1 = f ~DJtg

1
t=1; for convenience, set D0 = ~D0 and J0 = 0.

The key point is now that there is an explicit coupling of f ~Xt : t � 0g and
f ~Dt : t � 0g so that the jump times of ~X are included in fJtg, and letting
fXtg

1
1 = f ~XJtg

1
1 and X0 = ~X0, we have that ~D dominates ~X as

~Xt � ~Dt; t � 0: (20)

Hence a natural partial ordering on E is � (set inclusion). Notice that 0̂ = ;
is a unique minimum, but there exists no maximum.
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Speci�cally, let �t1; : : : ; �t4; t 2 Z be mutually independent, where each
of �t1; �t3; �t4 is uniformly distributed on [0; 1], while �t2 � ��. Then a SRS
construction for D is given by

Dt = Dt�1 [ f�tg n f�tg ; t = 1; 2; : : : (21)

where �t and �t are de�ned as follows. A birth happens if

�t1 < K�(S)=[K�(S) + n(Dt�1)];

in which case �t = �t2 and f�tg = ;; otherwise a death happens, in which
case f�tg = ; and �t = � (Dt�1; �t3) is a uniformly selected point from Dt�1.
Suppose X0 = ; and de�ne recursively for t = 1; 2; : : :,

Xt =

8><
>:

Xt�1 [ f�tg if f�tg 6= ; and �t4 < � (Xt�1; �t) =K
Xt�1 n f�tg if f�tg = ;
Xt�1 otherwise.

(22)

Finally, consider the exponentially distributed waiting times Jt � Jt�1 �
Exp(K�(S) + n(Dt�1)); t = 1; 2; : : :, whereby f ~Dt : t � 0g and f ~Xt : t � 0g
are obtained. Then clearly (20) is satis�ed, and it can be straightforwardly
veri�ed that f ~Xt : t � 0g and fDt : t � 0g de�ne two spatial birth and death
processes with death rate 1 and birth rates � and K, respectively. So setting
x̂ = ;, condition (ii) in Proposition 1 is satis�ed.

In order to see that the other conditions of Proposition 1 are satis�ed,
imagine we �rst draw �04 and D0 � Poisson(S;K�) so that the dominating
process is in equilibrium. Next, imagine we simulate (Dt; �t4) forwards in
time t = 1; 2; : : : and (D�t; ��t4) backwards in time �t = �1;�2; : : : (by
reversibility, this is an easy task). Finally, imagine we start "target chains"
in x̂ = ;: for n = 0; 1; : : :, use (22) to obtain X�n(;) = fX�t

�n(;) : t =
n; n� 1 : : :g. By Proposition 1, if T � 0 is an almost surely �nite stopping
time with respect to R� such that X0

�n(;) = X0
�T (;) whenever n � T , then

X0
�T (;) � �. One such stopping time is

T; = inf ft 2 N0 : D�t = ;g ;

where T; <1 almost surely, since ; is an ergodic atom. But like the stopping
time (5) for the Widom-Rowlinson model, T; can be extremely large.

However, we can bound X�n(;) by the following lower and upper pro-
cesses: set L�n�n = ;, U�n

�n = D�n, and for t = n� 1; n� 2; : : :,

L�t�n =

8><
>:

L�t�1�n [ f��tg if f��tg 6= ; and ��t4 < �L
�
L�t�1�n ; U�t�1

�n ; ��t
�

L�t�1�n n f��tg if f��tg = ;
L�t�1�n otherwise

12



U�t
�n =

8><
>:

U�t�1
�n [ f��tg if f��tg 6= ; and ��t4 < �U

�
L�t�1�n ; U�t�1

�n ; ��t
�

U�t�1
�n n f��tg if f��tg = ;

U�t�1
�n otherwise

where

�L
�
L�t�1�n ; U�t�1

�n ; ��t
�
= min

n
�(x; ��t)=K : L�t�1�n � x � U�t�1

�n

o
; (23)

�U
�
L�t�1�n ; U�t�1

�n ; ��t
�
= max

n
�(x; ��t)=K : L�t�1�n � x � U�t�1

�n

o
: (24)

Notice that the same ��t; ��t; ��t4 are used for generating all (L�t�n; U
�t
�n)

with �n � �t. Thereby we obtain the following sandwiching property

L�t�n � X�t
�n(;) � U�t

�n � D�t; for t = n; n� 1; : : : and n = 0; 1; : : : : (25)

Observe also that the funnelling property (14) is satis�ed. Finally,

Thor = inf
n
n 2 N0 : L

0
�n = U0

�n

o

provides a stopping time which is often applicable (see below). Indeed Thor �
T; and typically Thor � T;.

Proposition 5 For a locally stable point process with distribution � and

lower and upper processes as de�ned above, Thor < 1 almost surely, and if

D0 � Poisson(S;K�) then L0
�n = X0

�Thor
(;) � � whenever L0

�n = U0
�n.

Proof. This follows immediately from Proposition 1 with x̂ = ;, using the
above-mentioned sandwiching and funnelling properties.

A CFTP algorithm based on generating lower and upper processes may
now be implemented in the same way as the vertical CFTP algorithm in
Section 3.2, except that we start by drawing �04 and D0 � Poisson(S;K�)
and generate, as long as needed, (D�t; R�t4) further and further back in
time, i.e. until L0

�n = U0
�n. We call this for horizontal CFTP, since we have

a horizontal coupling between the paths in (25), and in contrast to vertical
CFTP, we cannot use an arbitrary initial state x̂ for the target chains; in
fact we can only use x̂ = ;.

In practice, it may only be feasible to determine (23) and (24) if �(x; �)
considered as a function of x is either increasing (the so-called attractive
case) or decreasing (the so-called repulsive case) with respect to the partial
ordering �| or, at least, if �(x; �) factorizes into terms which are increasing
or decreasing in x, we may modify (23) and (24) in an obvious way so that
the compuations become feasible. Fortunately, in most applications, the
model is either attractive or repulsive.
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4.2 Perfect simulation for a noisy point process

So far we have mainly for illustrative purposes considered rather simple ex-
amples of perfect simulation algorithms. More complicated algorithms are
usually needed in \real applications" as exempli�ed in this section, where
we consider an interesting noisy point process model studied in Lund and
Rudemo (2000) and Lund et al. (1999), and give an alternative and shorter
description of a slightly improved version of a CFTP algorithm introduced
in Lund and Th�onnes (2000) (the di�erence is explained at the end). Par-
ticularly, we demonstrate how the results in Section 4.1 can be applied.

The noisy point process model can brie
y be described as follows. Let
A � Rd be a Borel set with 0 < jAj <1 and let � = Poisson(A; 1). Suppose
X is a point process with density f with respect to �, which is subject to
the following four operations.

(I) Independent thinning, where each point � 2 X is retained with prob-
ability p; here 0 < p < 1 is a given parameter.

(II) If � 2 X is retained, then it is translated by a vector R(�) with density
� with respect to Lebesgue measure on Rd; here the vectors R(�); � 2 Rd

are IID and independent of the retained points in X.
(III) The retained displaced points Z(�) = � + R(�), which are outside

A, are censored.
(IV) Let U � X denote the points which are either thinned in (I) or

censored in (III) after the displacement in (II). Set V = X n U , Z = fZ(�) :
� 2 V g, and Q = f(Z(�); R(�)) : � 2 V g. Assume that W � Poisson(A;�)
is independent of (U;Q), where � > 0 is a parameter, and that only a
realization of Y = Z [W is observed.

Our target distribution � is the conditional distribution of (U;Q) given
Y = y. From this we can obtain the conditional distribution of X given
Y = y, which in the above-mentioned papers is considered as the posterior
distribution of primarily interest. In order to apply the results in Section 4.1,
we let � be de�ned on an augmented state space

E = f(u; q) : u � (A n y); n(u) <1; q � y �Rd; n(q) <1g;

i.e. we include marked point con�gurations q = f(z1; r1); : : : ; (zn; rn)g �
y � Rd where some of the points z1; : : : ; zn 2 y can be equal, though Q
under � is concentrated on the set M consisting of those q where z1; : : : ; zn
are pairwise distinct and zi � ri 2 A; i = 1; : : : ; n. Finally, for a given point
� 2 X,

h(�) � P(� 2 U j� 2 X) = p

Z
r 62A

�(r � �)dr + 1� p

is the probability that the point is either thinned in (I) or censored in (III)
after the displacement in (II), and we de�ne for �nite point con�gurations
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u � A,
H(;) = 1; H(u) =

Y
�2u

h(u) for u 6= ;:

Proposition 6 Let

�0 = Poisson(A n y; �1)� Poisson(y �Rd; �2) (26)

where �1 denotes Lebesgue measure restricted to A n y and �2 is de�ned by

�2(B � C) =
X
�2y

1[� 2 B]�
Z
C
p�(r)=�dr

for B � y and Borel sets C � Rd. Assume that g(y) > 0, where g is the

density of Y with respect to �, see (30) in Appendix A. Then � has a density

with respect to �0,

(d�=d�0)(u; q) = c(y)H(u)f(u [ v)1[q 2M ]; (u; q) 2 E (27)

where we let v = fv1; : : : ; vng be speci�ed by q = f(v1 + r1; r1); : : : ; (vn +
rn; rn)g, and where c(y) depends on y only.

Proof. See Appendix A.

In the sequel we assume that f is locally stable, and let its Papangelou
conditional intensity �f , say, be bounded by the constant K, cf. Section 4.1.
Then f(;) > 0, and so by (31) in Appendix A, the condition g(y) > 0 is
satis�ed. Owing to the factorization in (26) and the fact that (U;Q) is in one-
to-one correspondence with U[Q, we can then put things into the framework
of Section 4.1: the density of U [QjY = y with respect to � = Poisson(S; �),
where S = (Any)[(y�Rd) and �(B) = �1(B\A)+�2(B\(y�R

d)), is given
by (27). This density is clearly hereditary and its Papangelou conditional
density � is given by

�(u [ q; �) = h(�)�f (u [ v; �)1[q 2M ] if � 2 (A n y) n u;

�(u [ q; (�; r)) = �f (u [ v; �)1[q [ f(�; r)g 2M ] if (�; r) 2 (y �Rd) n q;

so � � K as �f � K and h � 1, i.e. local stability is satis�ed.
Therefore we can make perfect simulations from U[QjY = y as described

in Section 4.1. In order to avoid any confusion with the notation used in
Section 4.1, let us rename �t and �t from (21) by �t and �t, respectively.
Note that conditionally on a birth f�tg 6= ;, we have that �t 2 A n y
with probability �1(A n y)=�(S) = jAj=(jAj + n(y)p=�), in which case �t
follows a uniform distribution on A n y; otherwise �t = (�t; rt), where �t is
uniformly selected from y, independently of rt � �. Moreover, conditionally
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on Dt�1 and a death f�tg 6= ;, we have that �t is uniformly selected from
Dt�1. Finally, � considered as a function of its �rst argument splits into
a product of an indicator function, which is decreasing, and �f , which is
typically decreasing or increasing, in which case the computations become
feasible, cf. the last paragraph of Section 4.1. But as the state space for ~Dt

is much larger than that for ~Xt, this perfect simulation procedure can be
rather ineÆcient as demonstrated in Lund and Th�onnes (2000).

However, a better dominating jump process ~D�
t , say, can be constructed

so that
~Xt � ~D�

t � ~Dt; t � 0: (28)

Assuming ~X0 = ; and ~D�
0 � ~D0, then the jump times of ~D� and ~D are the

same. Furthermore, in the corresponding two jump chains D� and D, we
are using the same births �t, and the same deaths �t whenever �t 2 (A n y).
However, if a death �t = (�t; rt) 2 y � Rd happens, then as Xt does not
contain �t, we set

D�
t = D�

t�1 n f(�; r) 2 D�
t�1 : � = �tg;

whereby (28) is seen to hold.
Note that we can write ~D�

t = ~Ut [ f(�; ~St(�)) : � 2 y; ~St(�) 6= ;g, where
f ~Ut : t � 0g; f ~St(�) : t � 0g; � 2 y are mutually independent jump pro-
cesses. Here f ~Ut : t � 0g is a spatial birth and death process on A n y
with birth rate K and death rate 1, so this is reversible with invariant dis-
tribution equal to Poisson(A n y;K). Further, ~Nt(�) � n( ~St(�)) has gen-
erator G = (gm;n) given by gm;m+1 = Kp=� for m = 0; 1; : : :, gm;0 = 1
for m = 1; 2; : : :, and gm;n = 0 otherwise for o�-diagonal elements; recall
that the generator for a jump process with discrete state space has all row
sums equal to 0 (see e.g. Norris, 1997). As its invariant density pn satis�esP
pmgm;n = 0; n = 0; 1; : : :, we �nd that pn / (�=(� + Kp))n speci�es

a geometric equilibrium distribution. Furthermore, conditionally on that
a birth happens in ~S(�) at time t, the newborn point rt � �, and it is
independent of the other points in ~St(�) and the previous history of the
process. So the equilibrium distribution of ~St(�)j ~Nt(�) is simply a binomial
process of IID points, each following the density �. Therefore D�

0 =
~D�
0 can

easily be started in equilibrium. Moreover, though f ~St(�) : t � 0g is not
reversible, it can be easily simulated backwards in time: if G0 = (g0m;n) is

the generator of the reversed process of ~Nt(�), then g0m+1;m = 1 + Kp=�
for m = 0; 1; : : :, g00;m = (�=(� + Kp))m for m = 1; 2; : : :, and g0m;n = 0
otherwise for o�-diagonal elements. This follows by solving the equations
pmgm;m+1 = pm+1g

0
m+1;m and pm+1gm+1;0 = p0g

0
0;m+1 for m = 0; 1; : : :.

Now, the point is that we can obtain a horizontal CFTP algorithm along
the same lines as in Section 4.1, but replacing D with D�: as described in
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detail above, D� can easily be started in equilibrium at time 0 and simulated
backwards in time | without simulating D | and we set U�n

�n = D�
�n, and

let the points which are going to be added or deleted at time �t be given
by D�

�t n D
�
�t�1 and D�

�t�1 n D
�
�t, respectively. As suggested in Lund and

Th�onnes (2000), it may be convenient to replace the \acceptance probabili-
ties" for births as given by (23) and (24) by lower respective upper bounds,
which do not depend on evaluating the function h, but depend on the prop-
erties of �f only: as 0 < 1 � p � h � 1 and the function 1[q 2 M ] is
decreasing, we can rede�ne

�L
�
L�t�1�n ; U�t�1

�n ; ��t
�
= 1[U�t�1

�n \ (y �Rd) 2M ](1 � p)=K�

min
n
�f ((u [ v); ��t) : L

�t�1
�n � (u; q) � U�t�1

�n

o
if ��t 2 A n y;

�L
�
L�t�1�n ; U�t�1

�n ; ��t
�
= 1[(U�t�1

�n [ f��tg) \ (y �Rd) 2M ]=K�

min
n
�f ((u [ v); ��t) : L

�t�1
�n � (u; q) � U�t�1

�n

o
if ��t 2 y �Rd;

where we let v be determined by (u; q) 2 E; similarly, rede�ne

�U
�
L�t�1�n ; U�t�1

�n ; ��t
�
= 1[L�t�1�n \ (y �Rd) 2M ](1� p)=K�

max
n
�f ((u [ v); ��t) : L

�t�1
�n � (u; q) � U�t�1

�n

o
if ��t 2 A n y;

�U
�
L�t�1�n ; U�t�1

�n ; ��t
�
= 1[(U�t�1

�n [ f��tg) \ (y �Rd) 2M ]=K�

min
n
�f ((u [ v); ��t) : L

�t�1
�n � (u; q) � U�t�1

�n

o
if ��t 2 y �Rd:

Proposition 7 Let the situation be as described above. Then T �hor = inffn �
0 : L0

�n = U0
�ng is almost surely �nite, and if D�

0 is started in equilibrium

then L0
�n � � whenever L0

�n = U0
�n.

Proof. This follows in a similar way as the proof of Proposition 5, recalling
the possibility of coupling D� with D so that T �hor � Thor.

As promised we now compare this with the perfect simulation algorithm
in Lund and Th�onnes (2000, Section 6.3); apparently, they include the jump
times, but since this is not needed, let us just consider the jump chains
and use our notation. Lund and Th�onnes do not start by simulating D�

0 in
equilibrium, but for each time �n, before simulating (L�n; U�n) started at
time �n, they start D� further back at time minf�Tn(�) : � 2 yg, where
�Tn(�) = supf�t � �n : N�t(�) = 0g; here N(�) is the jump process of
~N(�). So the running time TLT of their algorithm is related to ours by that
TLT � T �hor + �, where � is distributed as the maximum of n(y) IID random
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variables, each following the geometric distribution with density pn. For the
particular application considered in Lund and Th�onnes (2000), possibly �
is rather small. They report that typically TLT � Thor, where Thor is the
running time for horizontal CFTP based on Section 4.1, i.e. before the better
dominating jump process ~D� is introduced.

5 Concluding remarks and further reading

Remark 1 (Fill's algorithm) Fill (1998) introduces a clever form of re-
jection sampling, assuming a �nite state space and a monotone setting with
unique minimal and maximal states. Applications and extensions of Fill's
algorithm can be found in Fill et al. (2000) and the references therein. The
advantage of Fill's algorithm compared to CFTP is that it is interruptible
in the sense that the output is independent on the running time (like in any
rejection sampler). The disadvantages may be problems with storage and
that it seems more limited for applications than CFTP. As regards appli-
cations of Fill's algorithm in stochastic geometry, Th�onnes (1999) considers
the special case of the Widom-Rowlinson model (using the anti-monotone
setting, this can be extended to the case of k-components, see Example 2,
Section 3.2), while M�ller and Schladitz (1999) consider more general spatial
point processes approximated by lattice processes.

Remark 2 (other horizontal CFTP algorithms) As noticed, the algo-
rithm in Section 4.1 is only practical if the Papangelou conditional intensity
�(x; �) is increasing or decreasing in its �rst argument; and this is often
the case in applications of stochastic geometry. In contrast the horizon-
tal CFTP algorithm in Fern�andes et al. (1999) depends only on � through
its \interaction radius"; for example, if S � Rd, then inffr > 0 : �(x; �) =
1;dist(x; �) = rg is the interaction radius at the point � 2 S). The algorithm
consists in �nding \clans of ancestors" in the dominating spatial birth and
death process, when this is simulated backwards in time from time 0 until
there are no more ancestors, and then obtain a target process by thinning as
in (22); so no lower and upper processes are needed. For the running time
TF of the algorithm (when jump times are ignored), we have that TF � Thor.
This may not be a fair comparison if we are using a doubling scheme for the
algorithm in Section 4.1, and the eÆciency of the algorithms depend much
on how close � is to its upper bound K used in the dominating process, and
also on the range of the interaction radius.

There are other horizontal CFTP algorithms: Metropolis-Hastings algo-
rithms for locally stable point processes are studied in Kendall and M�ller
(2000), and the use of spatial jump processes for more general classes of
spatial point processes is studied in Berthelsen and M�ller (2000). It is no-
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ticed in Kendall and M�ller (2000) that the considered Metropolis-Hastings
algorithm is geometrically ergodic, but in general it is not uniformly ergodic
| recall that uniform ergodicity is a necessary condition for vertical CFTP
to work.

Remark 3 (in�nitely many points) Often one considers point processes
with in�nitely many points contained in an \in�nite volume" such as Rd. In
order to avoid edge-e�ects, a perfect sample within a bounded region may
be achieved by extending simulations both backwards in time and in space
(Kendall 1997; Fern�andes et al. 1999). This is sometimes possible, for ex-
ample if � is suÆciently close to K and the interaction radius is suÆciently
small. Such coupling constructions may be of great theoretical interest, but
in my opinion they remain so far unpractical for applications of real interest.

Remark 4 (statistical applications) Section 4.2 provides one example of
a Bayesian application of horizontal CFTP using the results in Section 4.1;
another is given in Loizeaux and McKeague (2000).

Van Zwet (1999) relates horizontal CFTP to likelihood based inference
for a conditional Boolean model. Here a lower dominating process is used,
while the upper dominating process is the same for all times; see also Kendall
and Th�onnes (1999). It would be interesting to study more complicated
parametric models like germ grain models of interacting geometrical objects,
where possibly perfect simulated tempering (M�ller and Nicholls, 1999) could
be applied for �nding the maximum likelihood estimate.
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Appendix A

We start by verifying Proposition 6. By (I)-(III) in Section 4.2, for �nite
point con�gurations u � x � A and v = x n u = fv1; : : : ; vng,

P(U = u;Q 2 GjX = x) = H(u)

Z
� � �
Z
1[q 2 G; z � A]

nY
1

(p�(ri)) dr1 � � � drn

where q = fq1; : : : ; qng and z = fz1; : : : ; zng are given by zi = vi + ri and
qi = (zi; ri), and where the n-fold integral is read as 1[; 2 G] if n = 0. Using
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the de�nition of � and Fubini's theorem, it is easily seen that

Z 1X
n=0

Z
� � �
Z X

fv1;:::; vng�x

k(u; q) dr1 � � � drn �(dx)

=

Z 1X
n=0

1

n!

Z
� � �
Z
k(u; q) dq1 � � � dqn �(du) (29)

for integrable functions k. Hence

P(U 2 F;Q 2 G) =Z
F
H(u)

1X
n=0

pn

n!

Z
� � �
Z
1[q 2 G; v � A]f(u [ v)�(r1)dq1 � � ��(rn)dqn �(du):

Combining this with (IV) in Section 4.2, we obtain that

P(U 2 F;Q 2 G;Y 2 N) =

exp(jAj � �jAj)
Z
F
H(u)

Z
�n(w)

1X
n=0

pn

n!

Z
� � �
Z
1[q 2 G; v � A; z [ w 2 N ]

f(u [ v)�(r1)dq1 � � ��(rn)dqn �(dw)�(du) =

exp(jAj � �jAj)
Z
F
H(u)

Z
N
�n(y)

1X
n=0

(p=�)n
Z
� � �
Z X

fz1;:::; zng� y

1[q 2 G; v � A]f(u [ v)�(r1)dr1 � � ��(rn)drn �(dy)�(du)

where the second identify is obtained from (29), replacing u; x; v with w; y; z,
respectively. Thereby Proposition 6 follows with

g(y) = exp(jAj � �jAj)�n(y)
Z
H(u)

1X
n=0

(p=�)n �

Z
� � �
Z X

fz1;:::; zng� y

f(u [ v)�(r1)dr1 � � ��(rn)drn �(dy)�(du) (30)

and c(y) / g(y).
We conclude with various comments.
The condition g(y) > 0 is satis�ed if f(;) > 0: considering the case

where u = v = ; and n = 0 in (30), we obtain that

g(y) � exp(jAj � �jAj)�n(y)f(;): (31)

Proposition 6 can easily be extended to cases where the parameter p in (I)
is allowed to depend on the location of a point inX (so-called inhomogeneous
thinning), � in (II) is allowed to depend on the location of a retained point,
W has a density with respect to �, and we put a prior distribution on
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(p; �; �). However, as an explicit expression for the normalizing constant
of f is usually not known in applications, it will usually not be feasible to
introduce a prior on f .

Incidentally, a simpli�ed proof of Theorem 1 in Lund and Rudemo (2000),
which concerns the expression for the conditional density of Y given X = x,
can easily be obtained along similar lines as in the proof above.
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