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Suppose a d—dimensional, ergodic, timehomogeneous diffusion X is observed
at finitely many points ¢A in time, ¢ = 0,...,n. In order to estimate the un-
known parameter # that determines the distribution of X, rather than doing
maximum-likelihood, which may well prove unfeasible, one often resorts to
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the use of unbiased estimating functions, some of the most successful of which
are based on conditional expectations, resulting in estimating equations of
the form

D>k (Xa-va) (f7(Xia) = Eo (f (Xia) [X-1a)) =0 (1)

i=1 ¢g=1

where, for the moment, we consider 6 to be one-dimensional (see (6) and
(2) below for the general setup). (1) is the prime example of an estimating
equation obtained from an unbiased martingale estimating function.

The study of estimating equations of the form (1) was initiated by Bibby
and Sgrensen [1] who focused on the case r = 1 and f(z) = z and for
that case also showed that under mild conditions (1) has a consistent and
v/n—asymptotically Gaussian solution in § (as n — oo with A > 0 fixed).
These asymptotic results readily generalize to other types of unbiased esti-
mating equations, see e.g. Sgrensen [6].

In the present paper we consider estimating equations of the form (1) for
d—dimensional diffusions X with a p—dimensional parameter . The main
issue is the discussion of the choice of base (f?),. q<r » 10 particular the choice
of r, and the choice of weights h?. For this we think of A > 0 as arbitrary
and then consider families of estimating equations of the form (1) where h?,
but not f9, is allowed to depend on A, and such that for any A, (1) has a
consistent and asymptoticallyGaussian solution as described above.

Given the base (f9) there is an optimal choice of weights, see Proposition
1 below. The resulting estimator will typically not be efficient, while an
estimator that is small A—optimal will be nearly efficient for small values
of A — and of course still consistent and asymptotically Gaussian for all A,
although not optimal. As we shall see, while it may be difficult to find the
optimal estimator (to obtain and use the weights one needs the explicit form
of the inverse of a r X r—matrix with all elements conditional variances), it
is quite easy to determine weights that lead to small A—optimal estimators.

The concept of small A—optimality was introduced by Jacobsen [2], and
the main purpose of the present paper is to discuss conditions for small
A—optimality for the type of martingale estimating functions underlying
(1).

The first main result, Theorem 2, shows that given the base, provided
only that the dimension r is large enough, there always exist weights such
that small A—optimality is achieved. Furthermore it is easy to find the



weights — it is just a matter of solving at any point z in the range for the
diffusion, a set of linear equations, and in the statement of the theorem, a
concrete solution is exhibited.

The second main result, Theorem 3, shows that for any base, again pro-
vided r is large enough, for the optimal choice of weights small A—optimality
is automatic.

In both theorems the same critical value ry for the dimension of the base
appears: for r > ry small A—optimality can be achieved for any base, while
for r < ry this may only be possible, if at all, for a special choice of base.
(The case r < 7y is only mentioned, but not really explored below). The
value of 1o depends on the structure of the model but not on the dimension
of the parameter with ry = d, the dimension of the diffusion, if the diffusion
coefficient does not depend on the parameter, and o = d(d+ 3)/2 otherwise.
Thus one natural choice of base is f*(z1,...,zq) = x; if 7o = d, and these f*
supplemented by [ (z1,...,24) = ziz; for 1 <i < j <dif ro =d(d+3)/2.

The paper is concluded (Section 3) with two examples, one describing
a generalized Cox-Ingersoll-Ross model, the second the finite-dimensional
Ornstein-Uhlenbeck processes. For the latter it turns out, that using the base
of first and second order moments (f%, f¥), the concrete small A—optimal
estimating function exhibited in Theorem 2 for any A yields the maximum-
likelihood estimator.

Although both here and in Jacobsen [2], small A—optimality is dicussed
exclusively for diffusions, we wish to point out that the concept makes per-
fect sense for any model involving discrete observations from an ergodic,
timehomogeneous Markov process in continuous time.

2 Optimality and small A—optimality

Let X = (X;),5, be a d—dimensional ergodic diffusion, solving the stochastic
differential equation

dXt = bg (Xt) dt + Og (Xt) dBt, X() =U

where bg(z) € R oy(z) € R™*?, B is a standard d—dimensional Brown-
ian motion and U is a d—dimensional random variable, independent of B.
Both the drift by and the diffusion coefficient oy is allowed to depend on
the p—dimensional parameter # € ©. The invariant distribution for X is de-



noted p, i.e. if U has distribution py, then X is a strictly stationary Markov
process.

We shall also assume that X takes its values within some open sub-
set D of RY, of course not allowed to depend on 6. Also we assume that
Cy(z) == 00( Jok(x) = 0 for all # and all z € D, i.e. the symmetric positive
semidefinite matrlx Cy(x) is assumed to be strictly positive definite always.
(" denotes matrix transposition).

We shall write p, also for the density of uy and assume that for all 6,
tg > 0 everywhere on D. The transition density is denoted p;g(z,y),

P9 (Xs—|—t S dy |Xs = .’L‘) =Pt (37, y) dy

The underlying probability P, depends not only on # but also on the distri-
bution of Xj. It is denoted Pé‘ if Xy has distribution p, and Py if X, = z.
The corresponding expectations are written Ej and Ej.

We shall denote by @ the joint distribution of (X, X,1,) under P}’ (for
any s), and by gy the density of @,

Q19 (7,y) = po(x)pro(2,y).

Finally, the transition operators for X are denoted 7y,

mof (x) = Eg f(Xy)

provided the integral makes sense (e.g. for f bounded or f € L' (1)), and
the differential operator determining the infinitesimal generator is denoted
Aﬁa

d
Apfo@) =D bp(2) 0, f (= Z Cy ()85, f (z)
i=1 t,j=1
for sufficiently smooth functions f.

Suppose now that X is observed at finitely many equidistant timepoints,
Xo, XA, ..., Xna.- We shall discuss optimality properties of estimators based
on martingale estimating functions, i.e. the estimator 6, of 0 is found by
solving the estimating equation

ZQAO (1A, Xia) =0 (2)



where (¢,0,2,y) — g1 (x,y) is a p—variate function such that each coordi-
nate gfﬁ satisfies the martingale condition

ng(a:) =0 for all z, gf’,ﬁ(m) = E;”gf,a (Xo, Xt) (3)

ensuring that (Gpn,a (6)),,-, is a p—dimensional Pyj—martingale (whatever the
initial distribution of X).

Following the terminology in Jacobsen [2], we shall refer to G = (g1,0),5¢ sco
as a well behaved flow of martingale estimating functions, G C M (the space
of flows of martingale estimating functions) if each gfﬁ € L (Qrp) with

Efgi ¢ (X0, Xt) = 0 if and only if § = ¢’

(where the equality holds for # = 6 because of (3)) and if furthermore
Ey (gt,ggtT,e) (Xo,Xy) > 0 for all ¢,0, 8915929 € L' (Qyp) for all ¢,6, all in-
dices k, ¢, and finally and most important if for every 6y and every t =
A > 0 there is with Péf) —probability tending to 1 a consistent solution 6,

to (2) such that \/n <9n - 90) converges in distribution for n — oo to the

p—dimensional Gaussian distribution with mean vector 0 and covariance ma-

trix vara g, (g, @) given by

varag, (9:0) = Az, (0)Fh, (98095 00) (X0, Xa) (A3, (9))" - (4)

Here
At,0 = Eggt,a (XOa Xt) ) (5)

the dot " signifying differentiation with respect to 6 so that g, (z,y) € RP*P
is given by
(900 (2,9)) e = 00,989 (@, y) -

The reader is reminded that asymptotic normality of @n, as specified
above, holds under quite weak assumptions (see Sgrensen [6]) and that cer-
tainly (4) is the natural expression for the asymptotic covariance. The most
critical among the assumptions needed is that A, € RP*P must be non-
singular for all ¢, 6.

Notation. Throughout the paper, derivatives are understood as matrices
in analogy with (5): if ¢ is a p—variate function of a v—dimensional variable
z = (21,-.-,2,) € RY, 0,0 denotes the p x v—matrix of partial derivatives



with k’th row (0,,¢",...,0,,¢"). The dot notation is used exclusively for
differentiation with respect to 0, ¢ = Oy¢.

In the remainder of the paper we shall focus on martingale estimating
functions derived from conditional expectations of given functionals, i.e. we
assume that

9to (2, 9) Zh — (me0fg) (2)) , (6)

or, in matrix notation,

9e6(2,y) = hiy(2) (fo(y) — (Teafo) ()

with hg(z) € R™*P| fo(x) € R™*!. (The integrability assumptions imposed on
general g above, makes it natural to assume here that f§ and hgf; € L* (i),

while §—derivatives of f] and hi’; must belong to L? (1) . We shall not be
too concerned about these conditions in the sequel — it is tacitly assumed
everywhere that the flow G given by (6) is well behaved).

Estimating functions of the form (6) were first used by Bibby and Sgrensen
[1], see also Jacobsen [2], Section 3 for an overview.

We shall refer to the functions fy,..., fi as the base for the flow of es-
timating functions given by (6). The problem to be studied in this paper is
that of finding good choices for the dimension of the base and for the weights
hip given the base.

Assumption A. The functions fg(x) are supposed to be differentiable
in 0 and twice differentiable in x. Also, the base f;,...,[f§ is supposed to
have full affine rank r on the domain D for all 0, i.e. for an arbitrary 0 the
tdentity

Zaefa +a9g=0 (zeD)

for some constants ae, ay tmplies aé = =ap=oay=0.

The functions h 19 are supposed to satzsfy that for any t, 0, the p r—uvariate
functions x — (ht,a( )y .- .,h,t,g( )) forming the columns of h.g are linearly
independent on D. [ |

Note that if f7,..., f§ does not have full affine rank, there is a represen-
tation (6) of the gf, with r replaced by r — 1. The condition that fj,..., f§
has full rank is equivalent to assuming that the r d—variate functions 0, f;
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for 1 < ¢ < r be linearly independent. In the main results, Theorems 2
and 3 below, Assumption A is supplemented by conditions on the pointwise
behaviour of 9, fs and 92, fy.

If for some ¢ it holds for all # that the columns of h;y are not linearly
independent, i.e there is 3,, € RP*'\0 such that h,4(z)8,, = 0 for all z,
then ﬂzagt,g(a:,y) = 0 for all z,y so that one of the p estimating equations
in (2) can be obtained from the others and it is impossible to estimate all
p parameters ¢, — formally both matrices Ayg(g) and Ef (ge09/5) (Xo, X:)
become singular and (4) does not make sense.

Note that we allow the base f7,..., f5 to depend on 6, but not on ¢.

For a given base, it is easy to determine the optimal choices for the hgfz,

i.e. the choices minimizing var; g (g, @) . We use the notation A > B between

symmetric, positive semidefinite matrices to signify that A— B is also positive
semidefinite.

Proposition 1 Assume that for all x,t and 0 the symmetric r X r—matriz

W fo(z) :=mo (fofy ) (@) — (meofos) (x) (mafy ) (2)

15 non-singular, and define

Yy = (Mo f) (59 (me0f0) — Tip (fo)) : (7)
Then, provided differentiation and integration can be interchanged in

0 [ b1 (@) o) dy = [ 00 1o (2,3 fo )

and the flow G°P* given by

g% (2,9) = (h5) " (@) (fo(v) = meof (@) ®)
18 well behaved, it holds that

vary g (g(’pt, @) < var.g (g, @)

for any well behaved flow G = (g19) of the form (6) with base fg,..., f§.



Proof. Since f is allowed to depend on 6, this extends (2.10) in Bibby and
Sgrensen [1] and Example 5.5 in Jacobsen [2], so we indicate the proof. By
the projection theorem (Kessler [3], Proposition 1, Jacobsen [2], Proposition
5.3), gf;pt is found by projecting the k’th coordinate of the score function,
8gkpt,g(x y)/pto(z,y) onto the subspace of L? (Q;4) spanned by functions of
the form (6) with the fg fixed and arbitrary hf}’; € L?(uy) - Thus hfﬁ’om
satisfies forall 1 < gy <r, 1 <k <pand all h € L? (u,) that

0 = B} aﬁf’;” Xo, X) — Zh"'”” ) (f§ (X0) — Tl (Xo))
xh (Xo) (f (Xt)_Wt,afa (Xo)) (9)

Using that pyg/pie is a martingale estimating function and that

0
Er ”;fg”(xo,xt) o (X) = / B0, peo (2,y) £ (y) dy

_— / Pro (2,) f° () dy
- / Pro (2,y) Op, f5° (y) dy,
(9) may be written
E“h(Xo)[aek (me,0f5°) (Xo) — 71,0 (Og, f3°) (Xo)

o Z hqk Opt (710 (fa fa ) (Xo) — Wt,afg(XO)Wtﬁfgo (Xo))]

forall h € L? (119) , i.e. the expression in square brackets must vanish P}'—a.s.
and the result follows. |

Proposition 1 is a result on local optimality, i.e. it exhibits the best
member from a given, restricted class of estimating functions, best from
the point of view of minimizing the asymptotic covariance of the resulting
estimator. But only in exceptional cases will this choice be globally optimal,
i.e. the (locally) optimal estimator will be efficient against the maximum-
likelihood estimator.

By contrast, the concept of small A—optimality introduced by Jacobsen
[2], Section 7, gives conditions for global optimality, not for any given A > 0,



but only for A — 0. We shall briefly recapitulate the sufficient conditions
for small A—optimality of martingale estimating functions, Theorem 7.5 in
Jacobsen [2].

With G € M a well behaved flow of estimating functions, it is first of
all essential to assume that there is a smooth extension of g;¢(z,y) (which
is defined only for ¢t > 0) to allow ¢ = 0, i.e. after a possible renormalization
of g1 by a factor (non-zero scalar or non-singular p x p—matrix) depending
on t,0 but not on z,y (so the solution of (2) is not affected) the limit

90,6(x,y) =lim Gro(2,y)

must exist with (z,y) — gog(x, y) not identically 0, of full rank p in a suitable
sense and sufficiently smooth as required by the conditions below.

With this smooth extension of g,y available, it is shown in Jacobsen [2]
that subject to important integrability conditons (see the paragraph below
(13)), the asymptotic covariance for 0, has an expansion, as A — 0,

Vara.g (g,@) = %v_l,g (g,@) + Vo, (g,@) +0(1) (10)

and three cases (i), (ii) and (iii) for the structure of the diffusion model are
then considered for the discussion of small A—optimality (to achieve the
structure in (iii) it may be necessary first to reparametrize the model):

(i) Cy = C does not depend on #. Then the main term in (10) is always
present and small A—optimality is achieved by minimizing globally

A

(over all g) v_1 9 (g, 9) . A sufficient condition for a given flow (g;4) to
be small A—optimal is that

8y g00(x, ) = Kbt (2)C~ () (11)

for some non-singular Ky € RP*P. (0yg04(x,x) evaluates Oygo(x,y)
along the diagonal y = ).

(ii) Cy depends on all parameters 6,...,6,. Then the main term in (10)
vanishes provided 0,go ¢ (z, ) = 0 and small A—optimality is achieved

A

by minimizing vy g (g, 0) . A sufficient condition for (g:4) to be small
A—optimal is that

Oygoe(z,x) =0, azygo,a(ﬂﬁ,l") = KgC’eT(x) (00@)2(.%‘))_1 (12)

9



for some non-singular K, € R?*?. (Here Cy(z) € R% *? with (Cg(x))

g ik
= 05,Cy (2)).
(iii) Cy depends on the parameters 64,...,60, but not on 0,.4,...,6, for

some p’ with 1 < p' < p. Then parts of the main term in (10) can be
made to disappear so that

( 9> Ot Oprx (p—p')

v_ ,0) = - )

BN O(p—p’)xp’ V22,-1,0 (g7 0)

Furthermore the matrix vy _1 9 (g, @) e R(P=2)*x(=7") can be minimized
and small A—optimality is achieved by in addition minimizing the up-

per left block v1,00 (g, @) of v, <g, @) . A sufficient condition for small
A—optimality is that

Op xXd

Dunaldra) = (b o(2)Cy 1(:c)) (13)
8§y91,0,9(x,a:) = Kecl,e( )(C?Q(x))_l

for some constant cy # 0 and some non- s1ngular K e ROV (Notation
b 9 € R (p—7') comprises the last p — p’ columns of bg, 91,09 the first p’
coordinates of gy 9 and c, 9 € R? %P the first p' columns of Cg)

As mentioned above, to check for small A—optimality more is required
than just checking (11), (12) or (13), viz. it must be verified that various
matrices involving expectations of quantities related to b C, 0y 90,9 and 6 490,06
must be non-singular, see Theorem 7.5 in Jacobsen [2].

Remark 1 The conditions on 0ygoe in (12) and (13) are important: if not
satisfied, the main term in (10) will not disappear and some of the com-
ponents of the estimates resulting from g, will be totally inefficient — have
efficiency close to 0 — if A is small.

We shall now show that subject to these integrability conditions, small
A—optimality of martingale estimating functions is easy to achieve. The
three cases refer to (i), (ii) and (iii) above.

Notation. Let J := {(¢',7"): 1< <j <d}. Thus J has |J| = d + (g)
elements and can be used as an index set for characterizing the elements of

10



a symmetric d X d—matrix. We write R € R**7 for the reduction matrix
with elements

Rijoj = 0wy (1<i,5<d, (i,7') € J).

Thus, if M € R MR e R**’ with (MR)
quently below. )
As counterpart to R, the expansion matrix R € R7*% is defined by

43l 5i’j6j’i if i > j-

a,i'j’ = Ma,i’j’ as is used fre-
b

Then 5
RR =17y, (14)
and for any matrix N € RS*¢ symmetric in the sense that Ny = N; j; for
all, s, 4, 5, it holds that

N (RR) = N. (15)

Define
dim(d) :==d + |J| = d(d + 3)/2,

a number that plays a critical role below.

Theorem 2 Let (f},-.., f;) be a base for a martingale estimating function,
of full affine rank r.

(i) Suppose that r > d, that for uy—a.a. x the matriz 9, fo(x) € R7*¢ is of
full rank d, and that the p d—wvariate functions forming the columns of by
are linearly independent. Then there exists hig(z) = ho(z) € R™*P not
depending on t such that gig (z,y) := b} (z) (fo(y) — mef(2)) satisfies
the small A—optimality condition (11). In particular, for r = d one

may choose '

hg (2) = by (2)C ™" () (Be fo(x)) (16)
and this hy has linearly independent columns as required in Assumption
A.

(i) Suppose that r > dim(d), that for puy—a.a. x, the matriz
( azfﬂ(x) agwfe(x) ) e Rrx(d+d2)

11



(iii)

is of full rank dim(d) and that the p d*—variate functions forming the
columns of Cg are linearly independent. Then there exists hyg = hy €
R™? not depending on t such that g (z,y) = b} (z) (fo(y) — e f(2))
satisfies the small A—optimality condition (12). In particular, for r =
dim(d) one may choose

1

W) = ((0pxa CF (@) (CF2@) R ) (Ofole) Bafol@)R )
(17)
and this hy has linearly independent columns as required in Assumption

A.

Suppose that r > dim(d), that for py—a.a. z, the matric
(0fol) O folx) ) e R (4)

is of full rank dim(d), that the p — p' d—wvariate functions forming the
columns of byy are linearly independent, and that the p' d*>—wvariate
functions forming the columns of 01,9 are linearly independent. Then
there ezists hyg = hy € R™*P not depending on t such that gig (z,y) :=

hy (z) (fo(y) — mraf(2)) satisfies the small A—optimality condition (13).

In particular, for r = dim(d) one may choose

CTy(2) (C$*(x)) ™ R

T _ Op’xd , . 9 . _
"o () = ( bl y(z)Cyt () % ) (Oufo(z) Toafo(r)R) .

(18)
with * a (p —p') x |J| matriz, depending arbitrarily on 6 and x. If * is
chosen = 0, then this hg has linearly independent columns as required
in Assumption A.

Proof. Since hy does not depend on ¢,

90,0 (%, ) = hg (x) (fo (y) — fo(x))

whence

0y904(w, %) = hy (2)0ufo(x),  0yy900(x, %) = hy (2)0;, fo(x)-

Thus, for each z, (11), (12) or (13) gives a system of linear equations for
determining the elements of hy(z). The conditions of the theorem ensures

12

1



that these equations have at least one solution, and exactly one in case (i) if
r = d and in case (ii) if 7 = dim(d). (For case (11), note that since 82“6], = agjwi,
the rank of 92, fy is at most |.J|. With hy given by (17), one now finds

82, 90,0(z,2)R = C¥ (z) (C$*(x)) ' R
and using (15) this implies the second identity in (12)).

The assertions about hg having linearly independent columns follow read-
ily from the assumptions made on the columns of by (case (i), Cy (case (ii))
and by g and Cy 4 (case (iii)). [

Theorem 2 only gives a solution for hy such that the relevant of (11), (12)
or (13) is satisfied. To check small A—optimality one further has to check
the required integrability conditions (e.g. that all h* € L? (y)).

In Theorem 2 we have exhibited a concrete choice of small A—optimal
estimating functions from a given base (fg). But it is then easy to define a
host of others that are also small A—optimal, but may behave better for a
given A, viz. flows (g;¢) of the form

9ty (2,7) Za t) b (z) (f (y) = meafi (2)) (19)

with hJ given by the relevant of (16), (17) or (18) and each al* (t) a non-
random function of ¢, continuous with aqk (0) = 1: for this flow, gog is the
same as for the original flow, so small A optimality still holds. However,
there is no obvious optimal choice for the ag® (¢): each 9¢ g given by (19) varies
in a linear subspace when the agk (t) are arbitrary, but the subspace depends
on k so the projection technique from the proof of Proposition 1 does not
apply. (To use the proposition and find optimal constants, one must consider
a much larger space of estimating functions such as

ko (@) Zzaﬂ he (2) (f (y) = T fi (2))
k'=1 q=1

with arbitrary constants alg’qk’ (t) . The optimal constants can be found explic-
itly, but the expression involves the for practical purposes unwieldy inverse
of the pr x pr—matrix with (kq, k'q')’th element

BR bt (Xo) (£5 (X0) = maff (X)) b5 ¥ (Xo) (£ (X0) = meaff (X0))).

13



Remark 2 In Theorem 2, case (iii), the expression (18) for hi (z) depends
on the choice of x. A different small A—optimal flow not involving this ar-
bitrary matriz may be obtained as follows: take r = dim(d) and apart from

the given base (fg) of dimension r, choose a second base (fg) of dimension

d. Assuming in addition to the assumptions from the theorem that awﬁ(a:) IS
non-singular, the flow (g.9) given by the p', respectively p —p' components

Giao (5,9) = hlo (@) (fo (v) = Teafs (&)
Goso (2,9) = o () (Fo(y) = mefo (@)

W@ = (O o) (C5@) 7 R ) (2:falo) Ffo@R)

(@) = @0 @) (@)
(21)
is small A—optimal according to (13).

For general flows (gr9) of the form (21), with the components of Gi e
and Got.9 varying in two different subspaces, optimal time dependent choices
hf{ta of h 19 and h ofTLHTcannot be found using e.qg. Proposition 1. However
partly optzmal candzdates may be determined using the proposition twice: first
with base (fg) in the model with 0y 11, ... ,0, assumed known, yielding th,t,e,

second with base (fg’) in the model with 01, ...,0, known, yielding 7Lt,9.

We return now to the discussion of the optimal martingale estimating
function (8) determined by the base (fy,..., f;). Since for any ¢t = A > 0,

ggpte is better than a gag where hpp = hy is determined as in Theorem

2, the flow G°P* = (gfgt) should be small A—optimal if » > d in case (i) or
r > dim(d) in cases (ii) or (iii). What however does not follow from Theorem
2 is that G°P* satisfies the conditions (11), (12) or (13). We shall now verify
that this is the case (for r = d and dim(d) respectively) and also argue that
the lower bounds d and dim(d) for 7 cannot be improved upon.

Theorem 3 For the optimal flow G°P* = (gfgt) of martingale estimating
functions with base (f;,..., fy) it holds that:

14



(i) If r = d and the matriz O, fp (x) is non-singular for py—a.a. x, then
955 (@, y) =lim 675" (x,y)and (11) holds,
) % )

yg0% (z,2) = by (z)C ().
(i) If r = dim(d) and the matriz
(Oufo(z) 0% fo(z) ) € R > (d+d%)

is of full rank dim(d) for uy—a.a. z, then gg% (z,y) :%in& tg?™ (z,7)
bl _) H

and (12) holds,
0,00 (2,2) =0, 8,03% (,2) = CF (@) (Co@)®) ™.
(iit) If r = dim(d) and the matriz

(0ufo(z) 02,fs(z) ) € R (%)

opt
is of full rank dim(d), then ggf’; (z,y) =lim ( tj&ﬁ%e ) and (13) holds,

t—0 2,t,0
0, . —
opt _ . Vp'xd 2 opt _ AT ®2 1
o) = (g (i ) Bl o) = CLa(a) (C5(0) ™
)

Ifr <din (i) or r < dim(d) in (i) or (i), (11), resp. (12) or (13) will
not be satisfied except possibly for a special choice of base (fy, ..., f3)-

Proof. The main difficulty consists in finding ggf;t from (8) and (7). First
note that for smooth functions ¢, ), since

Trg (P) = oY +tAg (¢p) + o(t),
(m00) (mo) = (@ +tAgd) (1 + tAgrp) + oft)

(with o(t)/t = o(t,x)/t — 0 for each z) and

Ag (9p00) = (Ag9) ¥ + ¢ (Agt)) + (0:0) Cy (0x10)" + 0(t) (23)
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it follows that

mi0 (99) = (m1,08) (mi00) =t (320) Co (3:9)" + o(2). (24)

Now use (24) with ¢ = f9, ¢ = f7,1 < q,¢' < r (with r arbitrary at the
moment) to obtain

oo (folfd) — (meofo) (meofo)” =t (0xfs) Co (Dufo)™ + o(t) (25)

and it is seen that the main term on the right evaluated at x is a non-singular
r X r—matrix only if 7 < d and 9, f(z) € R"™*¢ is of full rank r. '
To find ggf;t we also need to aproximate the factor dymigfy — meof from

(7). Assuming that dyo(t) = o(t) and that f, is smooth enough,
Ominfo = Op (fo +tAgfo+ o(t))
= fo+t (Aefe + (0fs) bo + 5 (82, fo) Oe) + o(t),
Tiofo = fo+tAgfs+o(t)
and thus
Ogmiofo — Tipfo =t ((@cfe) by + 3 (02, fo) C"o) +o(t). (26)
Case (i). Since Cy = 0, (26) reduces to
Oome.fo — Teofo =t (Dufo) by + o(t),

and therefore, using (25) it follows that if r < d,

go (x,y) = lim gp5" (z,)
= @) 000" @) [0u5o(@)C@) @) @)] (olw) ~ fol))
so that

. -1

By90 (z,z) = by () (Oufs)" (2) [3zf0($)0($) (0ufo)” (@")] O fo(z). (27)
For r = d this reduces to l}g(x)C_l(:r) as wanted. For r < d the d x d—matrix
appearing as a factor to the right of b} (), has rank r, hence can never equal

the non-singular d x d—matrix C~!(z). (However, it may still be possible to
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obtain 8,45y (z,z) = b (2)C~'(z): multiplying from the right by C(z), it is
seen that this holds for Gyggpet (x,x) given by (27) iff the d x d—matrix

(0:10)" (&) [0:£o()O(0) @ 0)" (1)) Bufola)C(2)

acts as the identity on the subspace L, = rowspan (bg(:@) (multiplying by
row vectors from the left). If r < d this will be possible only if dim (L,) < d
(e.g. if p < d) and a special choice of fy determined by by and C' is required).

Case (ii). Assume that r > d. Then the main term on the right of (25)
becomes singular and it is therefore necessary to expand further. But from
the basic expansion

Trow = ¢ + tAgp + L2 A5 + o(t?),

using (23) repeatedly it eventually follows that

o (fofd) — (Toofs) (meofo)” =t (0ufs) Co (Bufo)” + 32°Q + o(t?)  (28)
with @ of the form

Q = (32, fs) C52 (82, £0)" + (0ufo) S+ ST (Bufo)” (29)

for some S(z E Rdxr By Lemma 4 from the appendix therefore (with A =
(a fG) CG (azfﬁ) ) - QQ)

lim ¢ [Wta fofd) — (mafs) (Wt,GfH)T} = 0; (025Q07) 0y (30)
)=

where O(z (glg ) € R™" is orthogonal for each z, O;(z) comprising the

first d and Oy(x) the last » — d rows of O(z), and satisfies

(H@M))()@h)()(@=ﬁ%0wm~wh@ﬁwwgn
with Ay (z), ..., Ag(z) > 0 the non-zero eigenvalues for (9, fy(x)) Cy(z) (3xfs)" ().
But from (31) follows that

Ox(x) (8:.fo(2)) Co(@) (Bafo)" ()05 (2) =

or, since Cy(x) > 0, that

17



Combining (30) with (26) and using (32) it follows that

opt opt

90,0 (z,y) = P_I}(} 199 (z,9)
= OF (@10)" OF [05 (85,5) O ()" OF]
xOy (fo(y) — fo(z))

with all factors to the left of fy(y) evaluated at z. Using (32) it is clear that
@g&%ﬁ (z,z) = 0 always and hence, to obtain (12), it remains to check whether

(omitting the argument = with 82, g¢%y short for 62, g5 (x, z))
. -1
0,050 = CF (2,50)" OF [0 (82.4s) CF* (2.40)" OF |~ Ou62.fy (33)

equals C¥ (C%) .

To achieve this we now assume that » = dim(d), so that r —d = |J| and
use the assumption from the theorem that 02, fy(z) has full rank |J| for all
z. Then T := (02,fs) R also has rank |J| and O,I' € R’*’ is non-singular

and using that 02, fp = 02, f (RR) (cf. (15)), (33) therefore gives
(02.90%) R = CjR'T"O] [OQFRC(;@’?RTPTOQT - O,T
= fR (RepRT) (34)
That 02,905 = CT (ng)*l will follow from (cf. (15))
(9%.95%) R =C5 (C5*) "R,
and that the right hand side here indeed equals that of (34) is verified mul-

tiplying by RCS?RT from the right again appealing to (15).
Case (iii). Here we initially proceed as in case (ii), arriving at (cf. (28))

opt

g% (@y) = (8 @ufa)” +3CF (9%50)" +o0(1) (35)
< ((0u1s) Co (0u0)" + 51Q +0(0)) (fo () — Jo &) + 0(1))

with @ as in (29).
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Considering first the last p — p’ components of gzgt, since by assumption
C‘Q’g = 0, it follows from Lemma 4 that

oa(ey) = 50007 (105 (0:3Q05) " 0, +N)
x (fo (y) = fo (x)) + o(1),

which because of (32) in the limit reduces to

9ol o(@, 1) =lim gorg(m,y) = byo (Dufo)” N (fo(y) — fs (z))
with N of the form

N = OF (01 (2:f9) Co (0:13)" OF) 01+ 05 +570,.
But then, again using (32) and since O, (9,.fy) € R?? is non-singular

Bygoe(z, ) = byo (Dufs)" OF (01 (02f0) Co (8ufa)" 01T> - O1 (0z.fo)
= 054Gy

as wanted in the first part of (22).
As for the first p’ components of gzlzt, obtain from (35) that

tgiho(ey) = (¥, 0uf0)" + 3T, (8200)") OF (0:2Q08) " 0,
X (fo (y) = fo (z)) +o(1),

whence
9(1)%,9(33: y) = }}_I)% tg(f,?rfa(xa Y)
. T T -1
= 10T, (8%.50)" OF (025 (02,42) C** (02,42)" OF )
X0y (fo (y) — fo ()
once again using (32). But then (32) also gives
0,07 (,) = 0.
and arguing exactly as in the last part of case (ii), one finally finds that

: -1
O rne(@,2) = Cy (CF7)
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and we have completed the proof of (22). |

We have not shown that (11), respectively (12), (13) are satisfied for the
optimal martingale estimating function when r > d, resp. r > dim(d). For
case (i) with r > d one may copy the argument involving ggf;t given in case
(iii) above. For cases (ii) and (iii), if » > dim(d) a further expansion of (28)
together with a refinement of the lemma is required, since e.g. the columns
of A= (0;f9) Co (0 fg)T and B = %Q cannot span a subspace of dimension
r. We believe however that the relevant of (12) or (13) is still valid for the
optimal martingale estimating function, even if » > dim(d).

Remark 3 Ford =1, Bibby and Sgrensen [1] studied martingale estimating
functions with the one-dimensional (r = 1) base f(z) = z, and apart from
deriving the optimal estimating function G ((2.15) in [1]), also suggested the
use of the approzimately optimal G, ((2.14) in [1]). As they point out, the

weights for CN}'H are arrived at by replacing the true transition probabilities as
they appear in (7) by the Gaussian approzimations corresponding to the Fuler
scheme, i.e. the conditional distribution of X; given Xy = x is approrimated
by the normal distribution nyg (x, -) with mean x+tby(x) and variance tCy(z).
We shall now discuss how the use of this approximation may still lead to
estimating functions that are small A—optimal. We shall only consider one-
dimensional diffusions but allow p and r to be arbitrary.
In terms of nyg (x,-), the approzimation to m g¢ becomes

road(z) ~ / g (2, dy) 6 (4)

= ¢(x) +1 (bo(2)¢'(2) + 3Co(2)¢" (2))
+3t° (05(2)¢" () + bs () Cy(2)¢" (2) + 1C5 ()8 (2)) + o(t?)

resulting in the approzimations (omitting the argument x),

Tro(OV) — (T00) (Trow) = 1y (6, )

where

i (9,9) = tCog'y (36)
+%t2|:092¢”¢” +2b000(¢llwl + QS,?/}")
+C3 (8" + ¢'Y")] + o(t?),
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and

0y (m100) ~ t (bgqs' + %c'gqs") +o(b).

Given a base (f9),c <, (for convenience assumed not to depend on 0),
now consider the martingale estimating function (cf. (7) and (8))

g (z,) = (B9™)" (2) (f () — meof (@) (37)

where

5 = (Nyof) "t (0af b+ 302,f Co)

writing Ny f for the r x r—matriz with (q,q") ’th element ny g (f9, fq') . From
the approximations above it follows that

Nigf =t (3af) Co (3 f)" + 1£2Q + o(t?)

with @ of the same form as @ in (29), and this is enough for the proof
of Theorem 3 to carry over and yield the following result: the estimating
function (37) is small A—optimal (in the sense of (11), (12) or (13)) in case
(i) if r =1 and in cases (ii) or (iii) if r = dim(1) = 2. In case (i) with r = 1,
instead of using N of = nip (f, f) one may use

Nyof = tCy (0af)”
corresponding to the main term in (36). In cases (ii) and (iii) it is essential
to use (36) as it stands and that r > 2.
3 Examples

We shall ilustrate the results of the previous sections through two examples.

3.1 A generalized Cox-Ingersoll-Ross process

Consider the one-dimensional (d = 1) SDE
dX; = (X" +bX;) dt + 0X] dB; (38)

where a,b € R, v # 1 and ¢ > 0. For v = % this is the SDE for the Cox-
Ingersoll-Ross process (CIR—process, see (39) below). The generalization
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(38) is arrived at by considering all powers X of a CIR with p # 0, more
precisely if X solves (38), then the associated CIR-process is X = X227
solving

dX, = (5 +5Xt) dt + 51/ X, dB, (39)
where
b=02-27)b, F=@2-27)0% @a-1"=(2-27)(a—L0?), (40)

(which also explains why v = 1 is not allowed in (38)).
Because of the connection to the CIR—process, the model described by
(38) is much simpler to handle than the more standard CKLS-model,

dXt = (CL + bXt) dt + 0')(;y dBt,

in particular, for (38) it is easy to find martingale estimating functions of the
type considered in the preceding sections.

In (38) the parameter space has dimension p = 4. We shall want X to be
strictly positive and ergodic, which happens iff the associated CIR-process
X is strictly positive and ergodic, i.e. b < 0 and 2@ > &7, or equivalently,
either y < 1,b<0,2a>0%0ory>1,b>0,2a < o? As open parameter
set, we shall therefore use

@z{(a,b,’y,o2):02>03nd either v <1, b<0, 2a> o2
or v>1,b>0,2a<o0? }.

Note that if § = (a,b,,0%) € © and p # 0, then X? solves (38) with
parameters 0* = (a*, b*,v*,0*?) given by

1
b* =pb, o= p’o?, 2—27*:;(2—27), at =t =p(a—10?).

In particular, taking p < 0 corresponds to a switch from v < 1 to v* > 1 (or
from v > 1 to v* < 1).
Since the invariant distribution for X is a I'—distribution, the invariant
distribution for X is that of a I'—distributed random variable raised to the
—1 . .
power (2 — 27v) . The density is

2 - 29|
r (%) ((27—2)02>2“/"

52 2b

po(T) =

708 exp (—(273’;)0_2 x2_27) (41)

22



for x > 0, where (cf (40))
2a 2a 1—2v

o (2—27)02+2—27'

(For v = % the familiar invariant I'—density for the CIR-process is obtained).
Because a I'—distribution has finite moments of all orders m € N we have
E5X527_2)m < oo for all m € N, and since

BEXE = [ do iy (a)msan® o
0

(where 7; gz is short for m; ¢ f(z) for f(y) = ), also

(2v—2)m

T,9X < o0

for all ¢ > 0, m € N and (Lebesgue almost all) z > 0.

The conditional moments for a CIR-process are known and in any case
easy to find using polynomial martingales: for m € N, let &,, be the m’th
moment in the invariant distribution for X ,

= (5) e

52

and verify, for instance using induction on m and Ité’s formula, that M (™
is a mean-zero martingale (see the note below) under each PJ, where

Mt(m) — e:l;mt Z ﬂz(m) (Xt(2*27)i _ Ez) (42)
i=1

(m)_l _qyi—1 (M
=207 (7)

Equivalently, for each m, the polynomium 3. 3™ (2¢ — ¢,
(Eq Y, , the poly B

with

; | of degree m is

an eigenfunction for the generator for the CIR—process (39) corresponding
to the eigenvalue Zm, see Kessler and Sgrensen [5] for estimating functions
built from eigenfunctions, and their Example 2.1 for the CIR—process).
Note. Because all conditional moments for the ergodic CIR-process are fi-
nite, one verifies directly that the local martingale M™ satisfies E§ [M(™], <
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oo for all z and ¢, in particular M (™ is a true martingale under P§ (L?*~bound-
ed on [0,t] for all ¢).

Turning now to the problem of estimating € from discrete observations of
X, it is clear that the model (38) belongs to case (iii) with p =4, p' = 2, so
we shall apply Theorems 2 and 3 for that case with r = 1 + dim(1) = 2. In
view of the above, a simple candidate for the base (f!, f?) is

fla)=a"", fz) =a""", (43)

which trivially satisfies Assumption A. Note that f!, f2 both depend on 6,
cf. the comment immediately preceding Proposition 1.

Using Theorem 2 with * in (18) equal to 0, and listing the parameters in
the order 7,02, a, b one finds that

- 21 . 202227 log
= (") el = ()

and eventually arrives at the estimating function

—2logx 22 2logx
_ -9 $2'7—2 y2—2'y _ ,n.t,am?—?y
gio (T,y) = 2(3 — 4v) 22 _ (1-29) pir—4 Y — et )
23-4y)  —(1-2y)2*7°

(44)
which requires the use of (42) for m = 1,2 in order to find the conditional
expectations.

That g.9 given by (44) indeed satisfies the conditions (13) for small
A—optimality is most easily verified directly. Note that the asserted (The-
orem 2) linear independence between the columns in hy, i.e. the functions
comprising the rows in the 4 x 2—matrix in (44) where rows 2 and 4 are
similar, holds precisely because v # 1. Note that this similarity also implies
that the 4 X 2—matrix in (44) may be replaced the simpler

—2logx 12 2logx
1 0
2(3—4y)z? —(1—2y)a
0 $2'y—2

without affecting the solutions to the estimating equations.
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For the flow (g:4) given by (44) one still needs to check the integrability
assumptions from Jacobsen [2] Theorem 7.5, and the conditions on estimat-
ing flows made prior to that theorem. In the case at hand the conditions
in particular amount to requiring that Ej |gf,9 (XO,X,;)|K < oo for all com-
ponents £ and moderate values of K € N. The problem is the appearance
of powers 2772 and z*77* in the expression for g;9, which translates into
negative powers ),Z'O’I and )A(;O’Q of the CIR-process )Af, and of course e.g.
E'XH = BEXPTK < oo iff 2. > K. Thus some care should be taken
before applying (44), at least it must be assumed that ;—a; be suitably large

To find the optimal martingale estimating function with base f!, f2 given
by (43), one needs (42) also for m = 3,4 and conditional moments involving
logarithms, see (7) in which the term g fo appears. The latter moments

are easy to find in terms of the conditional expectation Fy (log )N(t ‘)N(O =7 )

for the CIR—process starting at an arbitrary level z, but the explicit form for
this is unpleasant to work with.

Whether one uses the small A—optimal flow (44) or the optimal flow,
since d =1 a slight improvement in efficiency may be gained by symmetriz-
ing, using e.g. 3 (g0 (¢,y) + guo (y,z)) instead of (44), cf. Jacobsen [2],
Proposition 6.1, and the discussion there about time reversal.

3.2 The finite-dimensional Gaussian diffusions

We consider now the d—dimensional diffusion

where the unknown parameters are A € R¥*!, B € R¥™*? and C := DD* ¢
R4, with the symmetric matrix C' assumed strictly positive definite. (In
this subsection the symbol B is used to denote the matrix of linear drift
parameters and the driving d—dimensional Brownian motion is denoted W
instead of B). Thus

p=1J, p=|J|+d+d.

The diffusion (45) has Gaussian transitions (for the expectation and sec-
ond order momments, see (46) and (47) below) and is ergodic iff spec(B) C
{A € C: Re()) < 0}.
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As base (of dimension dim(d)) for the martingale estimating functions we
shall use (f?) for ¢ € {1,...,d} U J, where

flo) =z (A<i<d), [T =zay ({5)e€J),

writing 2 = (21, ...,2q) for a generic point in R?. Clearly (f7) satisfies the
conditions from Assumption A and also, as a little work shows, the con-
ditions on 0, f, 02, f from Theorem 2. To proceed we need the conditional

moments ;g f?, conveniently collected in the vector m; gz = (71,92:), <i<q and
the matrix m; gzz” and known to be given by the expressions
1oL = (etB — Id) B A+ ePy (46)
t
7Tt,9.7333T = (mppx) (Wt,gx)T + / esBCesB” ds. (47)
0

(As in the previous example, notation like 7; gzz” is short for 7, f (x), where

fly) =yy")
Invoking Theorem 2 with * in (18) equal to 0, one eventually arrives at the

following small A—optimal estimating function g,y with g, ;9 = (gfz’)

. (W, )es
and go19 split into the vector-valued component g3, , = (gz,a) L<icq and the
matrix-valued component g, 5 = (g%) \<ij<d and g140 and g3,y and g3, 4
given by -

Y - T
(o) = (O oty mal = (- mer)

+yy" —mp (22”)] C7F)
Gao (@,y) = CHy —mya),
gane (@y) = C My —mpgz)a’.

iljl 7

For the calculations one uses that

. ) 005 1<y
CT,(z) € R7*¢, (CT :v) :{ ey
1,0( ) 1,0( ) i i 511]5_711 if 4 > 7,

. T

(5124,0) (z) = I€R™,
CoN\T )
(bfﬂ) (z) = I,@xecRE
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Also note that
@utta) Eotem) = (e ")

where D = diag (dy;) € R”*/ with

diljl = {

Pi'j'aj(x) = _di'j’ (6i’j$j' + 5j’j$z") .

if i/ < 4
if i = ',

N = =

and P(z) € R’”*? with

Asin the previous example, the simplest way to verify the small A—optimality
is to verify directly from these expressions that the conditions (13) are satis-
fied.

The resulting estimating equations are not affected by multiplication from
the left and/or right by C, and it is now an easy task to write down the
estimators of the parameter functions

A
A= (eAB — Id) B7'4, 2B ¢ ::/ eBCesB” ds
0
based on the observations Xy, Xa, ..., X,a: defining
Y* = % Z X(i—l)Aa y* = % Z XiAa
i=1 i=1

using (46) and (47) one sees that the estimating equations obtained from
g1, 95, g2 are equivalent to the equations

> (Xia =2 = ¢ Xna) =0, (48)
Z (XZ- —2A - €ABX(1'—1)A) X(Ti_1)A =0, (49)

-
Il
—

-

-
Il
—

(XiaXih — (2 + AP X na) (A+ e X 00)" - €) =0,
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and hence

A S S
A = X — eABX*’ (
1

% L ~ ~ \7

(Xm -X ) X(Em> (._1 (Xina — X.) (X1a — X.) )
(
(

AB <
€ =

2

—_

7

¢ = 13 (XiaX% — 2:27)

-

=1

where in the last line, ~
Zi= A+ e®P X 1)a.
(5

Note that the equation (53) may be written

A n A = A = r
¢ = % > (Xm— 2A —GABX(z'—1)A> (Xm— 2A —EABX(i—nA) (54)
i=1
as is seen using that from (48) and (49) it follows that
n A ~
Z (XiA_ A —GABX(Z'UA) ZZT = 0.
i=1

The likelihood function for observing X, Xa, ..., X,a conditionally on
XO is
< 1 1 T p—1
H a2 . &XP <_5 (Xia — &) € (Xia - fz))
w1 (2m) e
where
&=ma0 (Xana) =2+ e X pa.

Maximizing this over 2, 2 and € varying freely in R4, R4 and the
space of symmetric positive definite d x d— matrices yields the estimators

é\[, e®B and é\jfrom (51), (52) and (53). In a forthcoming paper by Mathieu
Kessler and Anders Rahbek [4] (for the model with A = 0), the authors study
this maximum-likelihood estimator and also tackle the non-trivial problem
of converting the expressions (51), (52) and (53) into estimators for A, B and
C' it may of course happen with probability > 0 that the right—hand side of
(52) is not the exponential of any square matrix, and even if it is, B may not
satsify the basic condition for ergodicity that Re () < 0 for all A € spec(B).
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As pointed out by Kessler and Rahbek, a particularly unpleasant problem is
that the B solving (52) may not even be unique, due to certain periodicities.
If B is found of course

zzg(em@_zd)‘lﬁ

(with eAB _ I, non-singular iff 0 is not an eigenvalue for E, hence non-
singular almost surely if only n is large enough). Finally C should be found
from (53), but again here, Kessler and Rahbek show that there need not be
a unique solution.

Remark 4 If the observations X;, are not equidistant as assumed above
(where t; = iA), mazimum-likelihood estimation if at all possible will cer-

tainly be very difficult. Also, there are no analogues of é\[, eAB gnd é\j and
in order to solve the estimating equations which are obtained from (48), (49)
and (50), one must rely entirely on numerics and proceed directly to find
121\, BandC. A possible method is to reparametrize B through its spectrum
and look for B only with d distinct eigenvalues (it may be arqued that with
probability one, B will have this property) that are either real or come in
complex conjugate pairs. The parametrization of B could then be in terms of
these eigenvalues and a concrete choice of corresponding complex eigenvec-
tors of unit length. At least, if the t; are non-lattice, the uniqueness problems
emphasized by Kessler and Rahbek should disappear.

A Appendix

The following result was used in the proof of Theorem 3:

Lemma 4 Let A, B € R™™ be symmetric and positive semidefinite matri-
ces such that 1 < rank(A) = m' < m and such that the columns (or rows)
of A and B jointly span all of R™. Let further O = (g;) be an orthogonal
m X m—matriz with O comprising the first m', Oy the last m — m' rows of
O such that

OAO" = diag (A1, ..., A, 0,...,0),

Aty .oy Amr > 0 denoting the non-zero eigenvalues for A. Then as t — 0,
_ 1 _
(A+tB)™ = 705 (0:B0O)) L0, + N +0(t),
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where N s of the form
OT (0,407 0, + OT'S + ST0,
for some (m —m') x m—matriz S.
Proof. Assume first that A = diag (A1,..., A, 0,...,0) (with all A, > 0)
and write B. By,
b= ( Bu Ba )

with e.g. By the lower right (m —m’) x (m — m') —submatrix of B. Then

|A+tB| = ™ (ﬁ ,\5) |Byo| + O (tm—m’“) ,
=1

Also for the subdeterminants obtained by deleting the £'th row and ¢’th

column,
O@m ™1 ife, 0 >m

A+ tBly = { O (tm ™) otherwise.

It follows from this that (A 4+ tB)™" is of the form

%(g AO/[)—i-N-i—O(t)

and it is then easy to see that, writing

D =diag (A1, ..., A\w) € R ™

one has
110 0 D! —D7'By;yB;,)
(A+tB) _2(0 B )+( B ByD 0 +0(t).
(55)
For the general case, just use that
(A+tB)™' = 0" (0AO" +tOBO") ' O
with (OAOT +tOBOT)™" of the form (55) and D = O; AOT. m
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