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ABSTRACT. Motivated by questions concerning cooling and trapping of atoms
using counterpropagating laser beams we consider continuous time Markovian
jump processes with singular jump intensities and some related stochastic pro-
cesses, modeling the atomic momentum. The asymptotic behaviour of these
processes as time goes to infinity is studied, in particular drawing on methods
from renewal theory. Results from this type of study have been instrumental
for the understanding and improvement of the efficiency of the cooling schemes.

1. INTRODUCTION

One of the exciting areas of present day Physics is the study of the interac-
tion of light and particles, in particular the cooling of atoms and molecules, and
investigations flowing from this.

The technique(s) of cooling and trapping of clouds of atoms were developed over
a period of about ten years, from the mid Eighties to the mid Nineties, resulting in
the award of the 1997 Nobel price in Physics to the three pioneer physicists in the
area, Steven Chu, William Phillips and Claude Cohen-Tannoudji.

As will be indicated below, a detailed study of the stochastic elements in the
cooling processes has been essential for the understanding of a key element of the
physics and has led to dramatic improvements of the cooling techniques, so that
at present the most efficient techniques are capable of achieving temperatures at
a staggeringly low level, at the order of nano Kelvins. The study was carried out
by Cohen-Tannoudji and some of his collaborators in a tour de force mathematical
analysis in which they reinvented and extended parts of the classical renewal theory
of Probability. See Bardou, Bouchaud, Emile, Aspect and Cohen-Tannoudji [5],
Bardou [6], Bardou and Castin [7] and in particular the extensive survey paper by
Bardou, Bouchaud, Aspect and Cohen-Tannoudji [2].

A compact review of these achievements, as viewed from Stochastics and with
some further work, has been given in Barndorff-Nielsen and Benth [3] and Barndorff-
Nielsen, Benth and Jensen [4]. A focal point in that further work was a discussion of
continuous time Markov jump processes with singularities in the jump intensities.

The present paper outlines the above-mentioned developments and adds some
results. We start in Section 2 by describing the physical background for our study.
Section 3 deals with continuous time jump models where the waiting times are
mixtures or sums of exponential distributions, generalizing the results in Barndorff-
Nielsen et al [4]. The relation between laser cooling and Bessel processes is discussed
in Section 4, and, finally, in Section 5, some other ramifications, concerning time-
dependent and supersingular jump rates, are considered.
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2. BACKGROUND

The cooling techniques mentioned in the Introduction have opened the way for
a multitude of fundamental studies in physics concerning the interaction of light
and matter and for a variety of high tech applications, for instance to atom optics,
atom lithography, atomic clocks, atomic lasers, Bose-Einstein condensation (see
Townsend, Ketterle and Stringari [18], Ketterle [14] and Burnett, Edwards and
Clark [9]), and slowing the speed of light (Hau, Harris, Dutton and Behroozi [12]};
see also Marangos [15]).

Briefly, the cooling is achieved by directing three pairs of counterpropagating
laser beams towards a chosen point in space where a cloud of the atoms 1s initially
trapped by means of an inhomogeneous magnetic field (see for instance Aspect and
Dalibard [1]). The operating effect of the lasers, which have to be suitably tuned,
can only be properly understood at a basic quantum physical level.

However, the stochastic phenomenon that explains a key part of the efficiency
of the methods can to a reasonable degree of realism be described as follows?.
The momentum (or velocity) of the atom, viewed as a vector in one, two or three
dimensions, behaves over time as a Markov jump process with a singularity at the
origin. In other words, when the atom arrives at a position z in momentum space
it remains there for an exponentially distributed time with a mean value A(z)~!,
the jump rate A(z) being a continuous function with A(0) = 0 and A(z) > 0
for z # 0. Furthermore, when the atom shifts momentum the shift vector is, at
least in the neighbourhood of the origin, stochastically independent of position®.
Experimentally important cases are of the form A(z) = const.|z|¥, with v = 2
or 4 in one dimension. In such cases atoms arriving near the origin will, due
to the singularity, stay there for a time whose distribution is heavy tailed and
belongs to the domain of attraction of a stable law with index a = d/y where d
denotes dimension. As is well known, the maximum af n positive, independent
and identically distributed random stable variables is of the same magnitude as the
sum of the variables, implying that the longer the experiment lasts the greater the
number of atoms with a very low velocity.

In Barndorff-Nielsen, Benth and Jensen [4] continuous state Markov jump pro-
cesses x; with a singularity, in the sense indicated above, are studied in general?,
the main topic being the behaviour of z; near the origin for large ¢. In particular,
results are derived concerning the limiting distributions, after suitable normalisa-
tions, of the momentum distribution near the origin and of the time spent in present
state.

3. GENERALIZATION OF THE WAITING TIME DISTRIBUTION

The models discussed in Barndorff-Nielsen et al [4] capture the main aspects
of the cooling process. However, as mentioned in Saubaméa, Leduc and Cohen-
Tannoudji [17], the description of the waiting time distribution as an exponential
distribution with mean A(z)~! is only an approximation. We will in this section

IThe front page of Nature referred to this result by the title “Cycling at the speed of light”.
The techniques have now been improved to velocities of light around 2km/h.

2For more details, see Bardou, Bouchaud, Aspect and Cohen-Tannoudji [2] or, for a brief
account, Barndorff-Nielsen and Benth [3].

3The shifts occur when the atom emits a photon, previously absorbed from one of the laser
beams.

4entailing extensions of classical renewal theory
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consider a model that allows for a more general waiting time distribution. We do
this by extending the state space B of the Markov process z; of the momentum by
a variable having only a finite number of values. In this way we can accomodate
a waiting time distribution that is either a mixture of exponential distributions
(subsection 3.1) or a sum of exponentially distributed terms (subsection 3.2). From
Kolmogorov’s forward equation we derive a renewal type equation for a transform
of the density of x;, which in turn allows us to find the asymptotic form of the
density for large .

We consider a Markov process (z;, I;) with state space B x {1,2,..., K}, where
B is a region in R%. The intensity of leaving the state (z,7) is A(z,j). We assume
that there exist positive constants ¢1, ¢y such that

er < Mz,j) <e, zeBjje{l,.,K-1} (1)
Az, K) < e, r € B,

and where we have in mind that A(0, K) = 0. Given that we jump from state
(z¢—, =) = (y,1) let p(-|y,1) be the probability density function of the new po-
sition. Furthermore, given also that the new position is z let a;(z,y,{) be the
probability that the new value of I; is j. In the present setup if we want the wait-
ing time distribution to be a sum of exponentials this can be achieved by letting
some of the jumps of (z¢, I;) involve a change of I; only. We will therefore assume
that there exists K € {0,1,...,K — 1} such that if [, < K the next jump will
change I, only. The special case K = 0 means that all jumps will change both
z¢ and I; and the waiting time distribution is a mixture of exponentials. When
I < K we use the notation a;(y,) instead of a;(y,y,1). Finally, let p(=, j;t) be
the probability density of (z:, I;) with initial density a(z,j) = p(z,J;0), and let
pt(z, j;t) be derivative of p(z, j;¢) with respect to ¢.
Kolmogorov’s forward equation is

pe(z,jit) = —A(m,j)p(m,j;t)+Z)\(:E,Z)aj(:b,l)p(m,l;t)
+ Y /A(y,l)p(xly,l)aj(r,y,l)p(y,l;t)dy (2)
I=K+1 B

Define

K
hie)= 3 [ AwOplely. Do o0 Dpta. )y 3)
l:f(+1 B
~ We will not analyze (2) in its full generality, but only consider the two cases
K=0and K = K — 1.

3.1. The case K = 0. We now assume that K = 0, that is, all jumps change
the position z;. This models the situation where the waiting time for a jump is a
mixture of exponential waiting times. We will also assume that

p(y|m,l)a](m,y,1) S kh Vl"ye Ba Vla.j1 (4)

for some konstant k;. We first derive a general renewal type equation for h; and
then specialize to a simple model, corresponding to the ‘simple model’ in Barndorff-
Nielsen et al. [4].
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When the functions h; are known the solution to (2) can be written

t
p(z,j;t) = a(a:,j)e_”‘(x’j) +/ hj(m,r)e_(t_ﬂ)‘(x’j)dr. (5)
0

From this we derive

hj(z,t) = Z/ (y, Op(zly, Do (2, y,1)
t
x I:a(y’l)e—tk(%l) _|_/ hl(y,T)e_(t_T))\(y’l)dT dy
9]

K t
. h — (z,y, w)dwd 6
v](:z:,t)—I—;/B/o iy, t —w)fij(x,y, w)dwdy (

~—

with
fij (2, y,s) = plely, Daj(z,y, DA (y, e~ @D

and

vi(z,t) = Z/Ba(y,l)flj(m,y,t)dy

We next define the n-fold convolution

(z,y,t Z/ / f; L (z,y,t —w) fip(2, 2, w)dwdz.

One can now repeat the proof of Proposition 2.1. in Barndorfi-Nielsen et al. [4]
using the bound

fl IU(ZO: Zn; wn
n

= Z / // /w2 Hfll,ll (zic1, ziwp —wio1)dzg_q - d2y

ln—1,..50
den 1°
ntn 1 n
S n—l Z / /BH ZZ|ZZ 1, i— l)al (Zlazl 1all 1)]dzn 1 dzl
ln—1,..0,0 =
nyn— 1
c3 b

(n—1)!

for w, <t. We are therefore able to express the solution to (6) as an integral of v;
times the renewal density > .o, f%*(z,y,t).

We now make some further assumptions to get back to some more simple equa-

tions. We first assume that the new state j only depends on the new position
x’

a;j(z,yl) = a;(z). (7)
Then hj;(z,t) = aj(z)h(z,t) with

W)=Y /B plaly, DA(y, Dp(y. 1) dy.
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Instead of (6) we get

h(z,t) =v(z,t) + /B/O h(y,t — w)f(z,y, w)dwdy (8)

with
K
f(z,y,s Zal (2]y, DA (y, )e™**WD (9)
=1

and

K
Z/ p(aly, DA(y e~ dy,

If we make the further assumption that the new position z is independent of the
previous position y and previous state [,

p(zly 1) = b(x) (10)
we find h(z,t) = b(z)g(t) with

= Z/BA(@/J)p(y,l;t)dy.

Instead of (8) we obtain

with

S

and

K
=Y [ atwixwne 00y,
=1 B

Under the conditions (7) the only difference to the general case in Barndorff-
Nielsen et al. [4] is that f in (9) now consists of a sum of terms instead of one term
only. The results from Barndorff-Nielsen et al. [4] therefore carry over, especially,
Proposition 2.1 of that paper is still valid. The Proposition states that the solution
to (8) is given as an integral of v with respect to a generalized renewal density
obtained from f. Similarly, under the conditions (7) and (10) the situation is
as for the ‘simple model” in Barndorff-Nielsen et al. [4] where we have only one
state and the new position is independent of the previous position. Thus from the
form of A(y,!) for y close to zero we find the asymptotic form of u(¢) for t — oc.
This in turn gives us the asymptotic form of g(¢) and finally also the asymptotic
form of p(z,j;t). As a concrete example assume that the A(y,l)’s are such that
u(t) ~ ct=0+0 with % < € < 1. Then g(t) ~ &{cT(ET(1 — &)} 1t~0-8 for
t — oo. Since hj(z,t) = «oj(x)b(z)g(t) we get from (4) and Proposition 3.2 in
Barndorff-Nielsen et al. [4] that

aslolbla) g %

p(x, j;t) = t T (E)(1 — E)qj(t/\(x’j)’g) + m

o(1),
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where ¥(z,£) = fol(l —s5)¢ e ds.

3.2. The case K = K — 1. We now consider the case where K = K — 1 and when
we jump from the state ] < K we jump to [ + 1 and when we jump from [ = K
we jump to ! = 1. This models the situation where the waiting time is a sum of
exponential waiting times.

The Kolmogorov forward equation (2) becomes

o M= e, i t) + Mz, i = )ple, - 151) i>1 .
pt(I’J’t)_{ Az, Dp(z, L;t) 4+ [5 My, K)p(zly, K)p(y, K;t)dy j=1. (12)

Defining
h(z,t) = /Bp(m|y,K))\(y, K)p(y, K;t)dy (13)
we find from (12) with j =1
p(z,1,t) = a(z, l)e_t)‘(x’l) + /Ot h(z, To)e_(t_T”))‘(x’l)dTO. (14)

We may now use this together with (12) with j = 2 to find p(z, 2,1),

p(z,2,1)
= a(z, Q)e_M(x’2)

t T1
+/ )\(CE, 1) |:Cl(237 1)G_TIA(x’1) + / h(a}7 To)e_(Tl_TU)A(xvl)dTo e_(t_Tl)A(x’2)dT1
0 0

¢
= a(z,2)e @2 4 \(z, 1)a(z, 1)/ e~ M@ )= (-)A(E2) gy
0

t T
+A(z, 1)/ / h(z, m)e” (M =M@= (=T D) gy 4y (15)
o Jo
Proceeding in this way we find with 7; = ¢
p(z,4,t)
= a(z,j)e M=)

j_l j_l Tj Tr41 j j_l
+Za(m’r) HA(m’S)/ / e_TFA(IVT)_Es=r+1(TS_TS—l)A(‘rV'S) HdTS
r=1 s=r 0 0 s=r

j_l T T1 . j_l
+ || Az, s / / h(z, mo)e” Li=1(Ts= 702 @9) TT dr, . 16
3=Hl (z,5) i ; (z,70) S]_:IO (16)

Inserting (16) with j = K in (13) we obtain a renewal equation for A(z,t). In the
special case with K = 2 this equation becomes

h(z,t) = (17)

[ plelsr 2202 [a(02) 4 2w Dty )5S e
x 1. a. a a. + 3 a\y, B e ’
I R (D B TR) ’

[ [ b miptel 23 2 et LS g
+ )T z|y, , J e ) - Tody.
5 Jo 0 TOPRE S, 2IAY Ay 1) =M, 2) Y
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In the simple model with p(z|y,2) = b(z) we have h(z,t) = b(z)g(t) and instead of
(17) we find
9(t) =
1 — e—t()\(y,l)—)\(y,Q))
Ay, 2 [a ¥, 2) + Ay, Da(y, 1 - ] e tAMu:2)g
[ Aw2) [a(n2) + A ey, ) =5 y
1 — e~ To(Ay,1)=A(y,2))

—I-/O g(t — ) [/B b(y)A(y, 2)A(y, 1)e" ™ ) My, 1) — My, 2)

This renewal equation for g can be analyzed as in Barndorff-Nielsen et al. [4]. We
can then establish the asymptotic form of g(¢) for ¢ — oo, and using this in (14)
and (15) we find the asymptotic form of p(z, j, t) for t = co. The arguments are as
in Barndorff-Nielsen et al. [4]. As an example assume that A(y,2) < A(y, 1) < ey,
My, 1) > ¢2 > 0 and that A(y,2) = |y|° for small values of y with % < d/fé < 1.
Then

dy] drg.

1 — e~ t(AMy,1)=A(y,2))
Ay, 1) = Ay, 2)

u(t) = /B b() M, 2)A(y, 1)) dy

CaT(1 + d/3)

6 )
and from Proposition 3.1 in Barndorff-Nielsen et al. [4] we get g(t) ~ cgt=(1=4/9),

From Proposition 3.2 in Barndorff-Nielsen et al. [4] and (14) we see that

$€
T W

~ 1~ (Fd8) ()

p(z, 1;t) = tgc4b(m)\ll(t/\(:n, 1),6) +

and from (15)

esh(z) té

p(z,2;t) = tgm\ﬂ(t)\(x, 2),&) + m o(1),

with ¢ = d/s.

4. RELATION TO BESSEL PROCESSES

In this Section we consider the different laser cooling schemes presented in Bar-
dou et al. [2] in the context of continuous-time stochastic processes. Many of the
different cooling schemes can be modelled, at least approximately, within the frame-
work of diffusions. As we shall see, one is naturally lead to Langevin diffusions and
Bessel processes, which capture many of the important features of laser cooling.
We restrict our consideration to one space dimension throughout the Section.

In laser cooling mechanisms based on friction there are two effects, which together
results in atomic temperatures down to the level of the recoil limit 5. Friction forces
lead to a drift of the atomic momentum towards zero, while spontaneous and ran-
dom emission of fluorescence photons introduces a ‘diffusion’ of momentum. In the
discussion of Bardou et al. [2] the authors say that the competition between friction
forces and diffusion leads to a steady state momentum distribution, where the effec-
tive temperature of the cooling process can be expressed in terms of the half-width
(or the standard deviation) of the stationary distribution. Let us now consider the

5The recoil limit is a temperature of the order of 1 microKelvin, and is the limit of the cooling
schemes known as 'Doppler’ and ’Sisyphus’. These rely on different kinds of friction mechanisms.
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standard cooling schemes in the framework of continuous-time stochastic processes.
A natural model in light of the above presentation is the Langevin diffusion:

dXt = —[lXt dt + CdBt y (18)

where X; is the atomic momentum at time ¢ and the constants a and ¢ are pos-
itive and B; is a standard Brownian motion. This model has a friction propor-
tional to the momentum and a spontaneous emission of photons with rate c. It is
well-known that X; has a normal distribution with expectation Xgexp(—at) and

variance %(1 — exp(—2at)). Hence, X; will reach a normally distributed steady
state with expectation zero and variance ¢?/2a. The ’half-width’ of the stationary
distribution 1s therefore c/\/%7 which we can relate to the effective temperature of
the cooling process described by the Langevin diffusion.

As Bardou et al. [2, Sect. 2.2.1] describe, it is possible to cool atoms without
friction. Instead of pushing the atomic momentum towards zero with a friction
force, one resorts to cooling principles where the spontaneous rate of emission of
photons® depends on the momentum and vanishes at zero. Such cooling schemes
are in fact more effective than the standard ones, since one may circumvent the
recoil limit?. In such cooling mechanisms the random walk in momentum space has
an inhomogeneous diffusion coefficient dependent on the current momentum and
vanishing at zero. If we model the emission rate at momentum z by A(z) := c?a?,
for positive constants ¢ and d (cf. Section 2), a diffusion approximation of the
subrecoil cooling scheme may be

dX, = cX?'? dB, (19)
where X; 1s the atomic momentum at time ¢. The invariant measure of X; is
Al(z) = ¢=2279 the inverse of the fluorescence rate. Observe that the invariant
measure is not a probability density when § > 1. We will investigate the asymptotic
behaviour of such diffusions and compare with results for subrecoil cooling schemes
like Raman cooling (where § = 4, see Bardou et al. [2]).

First, notice that X; given as in (19) will never cross zero. If it reaches zero, the
process will remain trapped ever after 8. Recall that this is not in agreement with
the actual laser cooling experiment, where discrete jumps in momentum across zero
may take place.

The study of (19) naturally leads us to Bessel processes. In order to establish
the connection, we consider the following class of models with § > 0

dX, = sgn(2 — 8)cX/* dB, (20)

where ¢ is a positive constant and we use the convention sgn(0) = 1. The reasons for
introducing sgn(2 — §) are purely technical and has nothing to do with the physical
model. Note that when § > 2, we can always change the Brownian motion by
B; = —B; in order to remove the negative sign from the model. Shifting to B; will
define the same stochastic process (in distribution) since W; again is a Brownian
motion. Assume from now on that X = a > 0.
Let Y; be the pathwise unique solution of the stochastic differential equation
2(1-9)

6The spontaneous rate of emission of photons is called the fluorescence rate.
"The schemes are therefore called subrecoil laser cooling.
8The probability of hitting zero will be discussed further below.
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where Y+ = max(y, 0). The process Y; is called a BES?(a)-process with a = %1_;561
in the notation of Rogers and Williams, [16]. Furthermore, R; := /Y; is known
as an a-dimensional Bessel process. We need to have a > 0, which is achieved if
either § € [0,1) or & > 2. In the latter case we know from [16] that Y; > 0 for all
t > 0 since a > 2. When ¢ € [0, 1), on the other hand, Y; may become zero in finite
time. Note that Y; is non-explosive in the sense that it does not reach infinity in

finite time with a positive probability. Define
X, = (%C2(2 _ 5)25@)1/(2_6)

and let Yy = % > 0. When § > 2, X; is well-defined (does not explode) since
Y; is positive for all times. An easy application of It6’s Formula shows that when
de0,1),

dX, = cX!/? dB,
and when d > 2,

dX, = —cX!*dB,
In the latter case, we have that X; is non-explosive and positive for all times due
to the properties of Y;, while for § € [0, 1), there is a positive probability for X; of
eventually being trapped at zero in finite time. Recall again that the minus sign in
the latter model is introduced for technical reasons (see the discussion above).

We prove pathwise uniqueness of solutions of (19) for a given Brownian motion

B;. Consider the case § > 2, the other is similar: Let X; and Xt be two solutions
of

dX, = —cX!/*dB,

which are positive and non-explosive. Using Itd’s Formula, we have that Y; = g(X:)
and V; = g(Xt) with g(z) = (4/c*(2 — §)?)2%~? are both positive solutions of
2(1—-94
with the same initial condition. By pathwise uniqueness of this equation (see e.g.
Rogers and Williams [16]), X27° = X2~% and uniqueness thus follows.
When %1_;56)1 =n € IN the solution Y; can be explicitly constructed when By is
given in a special manner. Let W (¢) be an n-dimensional Brownian motion with

[W(0)|> = b > 0. Define

dt

dB, = [W(t)|"'W(t) - dW (2)

which is seen to be a Brownian motion on IR by Lévy’s Theorem (see e.g. Rogers
and Williams [16]). Moreover, Y; = |W(t)|? is a solution to

dY; = 2/Y, dB, + ndt,

i.e., for such § we can produce explicit representations of X; as a function of the
modulus of an n-dimensional Brownian motion. In the example below we demon-
strate this for Raman cooling, where § = 4.

Example: Choose § = 4 which gives n = 3. Hence, let W(¢) be a 3-dimensional
Brownian motion and Y; = |W(¢)|2. With |[W(0)| = (ac)~! we have that

1
Xp = ;|W(75)|_1
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1s a solution to
dX; = —cX? dB;
and Xy = a.

We turn to the study of asymptotic properties of X; when ¢ goes to infinity.
Only the case § > 2 will be treated, since this is the most interesting from the

laser cooling point of view. Let, for a natural number n > 3, 2(66__21) = n or
d(n):=6 = 2((:__21)) Letting n run through the natural numbers, we see that §(n)

decreases from ¢(3) = 4 to §(c0) = 2. §(3) = 4 will correspond to Raman cooling
and §(c0) = 2 to VSCPT cooling®, since A(z) = c¢?2* and A(z) = ¢?2?, resp. For a
given n > 3, we have that

Ve = Wi(t)> 4 ...+ W2(t)

To simplify our considerations, we assume from now on that the Brownian motion
W (t) starts at the origin'®. Tt is well-known that

Yi ~ f%)%(m)

where
v

5
I(v)

L/—le—'yx

f'y,u ==

X

This implies that

X, = (%2(2 —5(n))?y;) YO0

has a probability distribution with density p(z,#) given by

plat) = —f1 o (k2= 0072 k=2 (—1)(d(n) — 2)a~ O =201
d(n) —2
7IIE)
21—n/2
~kr(n—2)T(%)

— k" t_n/2x_%6(n)+n_1eXp(—(?tk2:L‘6(n)_2)_1)

n

t~ 5y exp(—(?kztmﬁ)_l)

where k = 2¢?(2 — §(n))?. Hence, when ¢ — oo,

t%p(:c t) ~ 2173 22 (21)
k(e =2)0(5)

We conclude that the renormalized probability distribution of X; has power law
tails for big ¢, with power d(n) € (2,4],n > 3. Tt is interesting to compare this
with the asymptotic results of Bardou et al. [2]. Even though they do not consider
the same fluorescence rate as here, there are close connections in the asymptotics.
In Sect. 6.3.2 they show that for large times the momentum distribution has tails
which are proportional to t=1+1/92=9 (see eq. (6.35) in [2]). The Bessel model has
the same tail behaviour. The rate of ¢ is, on the other hand, quite different. From
the above considerations it is seen to be t=171/(0=2) in the Bessel model. However,

9 Velocity Selective Coherent Population Trapping, a subrecoil laser cooling scheme. See Bar-
dou et al. [2]

100f course, the transformation to X; is then not well defined for all ¢ > 0, since it implies
that Xg = co. However, we may form X; from Y; when ¢t > 0, and the assumption simplifies the
asymptotic considerations considerably.
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our fluorescence function is unbounded outside the trapping region, while [2] use a
flat or confined function.

We can easily calculate the moments of X; for different n: A straightforward
integration shows, for m > 1,

21_% n o n—1 2
E[xm] = — = -~ 4% m=2.—3 —(2k%r==2)"1 d
[X"] P (n — DT (2) /0 x exp(—(2k*ta==—2)"") da
9l+m(1-%)

2
m< 14— (22)
n

i, From this we see that X; has finite expectation and variance when n = 3, while
for n > 3, X; has only finite expectation. More precisely,

22-%

71 -
L e I EY
while for n = 3,
2
tE[X}] = 5

Recall that n = 3 corresponds to § = 4 (Raman cooling). For this case we see that
X, has finite expectation and variance, converging to zero at the rate t=1/2 and
t~1, respectivly, when ¢ tends to infinity. Hence, X; will eventually be ‘trapped’ at
the origin almost surely. On the other hand, when n > 3 (i.e. § € (2,4)) we have
only finite expectation. X; converges to zero in expectation at the rate ¢t~ (?/2-1)
while its higher order moments are infinite.

In this section we have seen that diffusion processes in connection with laser
cooling show many of the characteristics of Lévy statistics. Momentum distribu-
tions with power tails and non-existence of higher moments, signifying laser cooling
schemes, may be reproduced in a diffusion framework using Bessel processes.

5. SOME OTHER RAMIFICATIONS

5.1. Time dependent A. In Barndorff-Nielsen et al. [4] we considered jump in-
tensities A(z) dependent on the current position z only. We will here generalize to
Markov processes where the jump intensity depends on time as well and derive the
corresponding renewal-type equations. The idea is to model situations where the
experimental conditions are changed as the experiment is carried out.

Assume the state space B to be a measurable set of RY and let a(z) be the
initial probability distribution of the Markov process. The probability of jumping
fromy € B to z € B is denoted p(z|y). We assume that A(t,z) < A on [0,7] x B
for some constant A, where 7" may be either finite of infinite.

5.1.1. General model. The Kolmogorov backward equation is,

piz. 1) = —A(t, 2)p(a, 1) + / At y)p(ely)p(y, 1) dy
Define as before

he,1) = / A(t, 9)p(zly)p(y. 1) dy (23)
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and obtain, by using the backward equation, the following expression for p(z,?):

t
p(a},t) = a(m)e_ Jix(s,z)ds +/ h(m,s)e_ SixM(u,z)du ds
0

By inserting this relation into (23) we get a renewal type equation for h(z,t),

t
h(m,t):/A(t,y)p(m|y){a(y)e—f;m,y)ds+/ (g, s)o= J: Atws) d ds}dy
0
:/a(y)p(z|y) (t,y)e™ JEX(s,y)ds dy

// (v, s JA(t, y)e o Aww) du gy

Observe that it is not possible to write the last integral as a time convolution.
We can therefore not resort to Laplace transformation techniques to study this
renewal-type equation in further detail.

5.1.2. Simple model. To simplify matters, consider p(z|y) = b(z), i.e. the jump
distribution is independent of the current state of the process. The Kolmogorov
backward equation now becomes,

pa() = —A(t, 2)p(z, 1) + b(z) / At )p(y. 1) dy
Define
olt) = / A(t, 9)p(y, 1) dy

and obtain
t
p(m’t) = (I(CL‘)C_ fut X(s,z) ds + b(l‘)/ g(s)e_ fst Au,z) du ds
0

This gives a relation for g:

)= [ At {awe 200 o) [ e 10 ) ay
=/ a(y)A(t, y)e™ fo A dy

+ [ o] [ s e 0 ay as

oft) = [ a0 8 dy (24)

Letting

and
u(t,s) = /b(y))\(t, ye~ oA du gy (25)
we get a renewal type equation for g(t):
t
g(t) = v(¥) +/ g(s)u(t,s)ds (26)
0

In the terminology of Gripenberg, Londen and Staffans [11] equation (26) is a non-
convolution Volterra equation of the second kind. They provide a rather extensive
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treatment of existence and uniqueness results for such problems under various inte-
grability hypotheses on u and v. With the boundedness condition on A, an explicit
solution can be constructed in the following manner: Let u(!)(t,s) = u(t,s) and
define the functions u(™(t, s) for n = 2,3,4, ... inductively by

t
u(”)(t7 s) = / u("_l)(t, T)u(r,s)dr (27)

We have the following proposition:

Proposition 5.1. The solution of (26) is

o(t) = u(t) + / o(5)Q1 (ds) (28)

where Q4 (ds) = Yoo, u(®)(t,s) ds and the u(™)(t, s) are defined in (27). Moreover,
g(t) is bounded on every compact subset of [0,T]. The solution is unique in the
class of non-negative functions being bounded on every compact subset of [0,T].

Proof. We prove the result directly instead of appealing to the general theory of
Gripenberg et al. [11]. Our argument is a simplified version of the proof of Propo-
sition 2.1 in Barndorff-Nielsen et al. [4]:

We start by showing that g(¢) is well-defined: By iterating the definition of
u(™)(t, s) we get the following bound,

t oot ¢
u(”)(t,s) :/ / / u(t, Tno1)u(Tno1, Tnez2) - u(m,8)drp_1 -+ dny

Lot ¢ — [} X(8,y)de
:/// </Bb(y))\(t’y)€ oy Y dy)~~~

(/ b(y)A(ry, y)e ™ Jm AEWI 48 dy) dr_s -+ dmy
B
t t t
§An/// drp_1---dn
P U
- (n=1)!

Hence, Y07 | ul™)(t,5) < AeMt=%) for all t > 0. We can then bound the integral on
the right hand side of (28) by,

¢ ¢
/ v(s)Q:(ds) < A/ v(s)eA(t_s) ds < AeMt
0 0

This means that g(¢) in (28) is well-defined. Moreover, sup,.; g(s) < A + Ae?!
which implies that g(t) is bounded on every compact subset of [0, 7].

Tt is a straightforward calculation to show that g(¢) solves (26). We turn to
uniqueness of the solution: Assume §(t) is a non-negative solution of (28) which is
bounded on every compact subset of [0, 7]. Then,

ot) = i) = [ (9(6) = ) utt.5) ds

Iterating this expression gives
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Hence,
A" t 1
t)y—g(t) < ——— — g t—s)""d
900 = () < gy [ late) = o) (0= s
L AT
< (sup g(s) + sup g(s)) '
s<t s<t n.
Letting n — oo yields g(t) = g(t). O

Proposition 5.1 tells us that the equation (26) has a solution that formally looks
like the solution to an ordinary renewal equation. However, it is not clear how to
extend these results to also get the asymptotic form of g(t) as ¢ — oo, a result that
is needed to find the asymptotic form of the density p(z,t).

5.2. Supersingular jump rate. In this subsection we return to the setting of
Barndorff-Nielsen et al [4] where the jump intensity A depends on the current state
z only. In Barndorff-Nielsen et al [4] all the possibilities considered had A(z) = |z|*
for z small and with o > 0. Here we will consider an example outside this class.
We take the state space to be B = [—1,1] and consider A(z) = exp(—|z|~!). The
transition density is p(y|z) = b(y) with b a continuous function.

The density of a typical waiting time is

R 1 -1 -1
u(t) = / b(y))\(y)e_ﬂ(y)dy = / b(y)e_lyl exp(—te_lyl Ydy.
B —1
For t — oo we find

where

v 1 log z -2
K(v) = log w)~2dw = L/ 1 d
<) /o(ogM) Y= Qogo)? Jg ( +logv) :
~ w(logv)™? for v — 0. (30)

Comparing (29) and (30) we find, by Tauberian theory (cf. Feller [10] Theorem 3,
p. 445)
u(t) ~ 2b(0)(logt)~ %t~ fort — co. (31)
For the cases considered in Barndorff-Nielsen and Benth [4] one had wu(t) ~
ct=(+2) with a > 0. The case (31) is therefore a limiting case corresponding to
a = 0. Referring, for instance, to Loéve [13, p. 334] we find that the distribution
with density u is not in the domain of attraction of any (stable) law.

We can now proceed with the analysis as in Section 3 in Barndorff-Nielsen et al.
[4]. From (31) we see that the tail probability is

1-U@t) = / u(s)ds ~ 2b(0)(logt)™", for t — oo,
¢

and this implies (see Bingham, Goldie and Teugels [8, Cor. 8.1.7])
1—U(s) ~ 2b(0)(—logs)™%, s—0,
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As in Barndorff-Nielsen et al. [4] we then get
- —logs

logt
G~ 2350

26(0)’

and G(t) ~
where GG appears in

p(z,1) :a(;c)e—wff)+b(a;){G(t)_/OtG(T)A(Q;)e—@—TW)dT}. (33)

To analyze the asymptotic form of (33) we rewrite (32) as

G(t) = 'thO) log(1 4+ #)(1 +m(t)), m(t) — 0fort— oo.

In the asymptotic analysis we assume that & = tA(z) is bounded. From

t \ \
/ log(1 4 )A(2)e” =" =)dr
0

1
1
= 5/0 [log(t) + log(g +1— u)le“duy

log(t)(1 —e™¢) + O(€).

we find
p(z,1) = 5 log(t){e + (1)} +0 ( / log(1 + r)m(r)A(m)e-“—””“dT) ~

We split the last integral into the integral from 0 to s and from s to ¢. The first
part is of order O(% log(t)), and the second part is of order O(m(s)log(t)). We
therefore take s = v/t so that both terms are o(log(?)) and we have

p(z,t) = %log(t){e_”‘(x) +o(1)}.

As compared with the results in Section 3 of Barndorff-Nielsen et al. [4] we see
that the scaling here is with logt instead of ¢* for some a > 0. Also, the function
(&, o) has here been replaced by e~¢.
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