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Abstract

In this paper we study the asymptotic form of the magnetisation
and current of large atoms in strong constant magnetic fields. We
prove that the Magnetic Thomas-Fermi theory gives the right mag-
netisation /current for magnetic field strengths which satisfy B < Z*/3.
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1 Introduction

Starting with the pioneering work of Lieb and Simon [LS77] the ground
state properties of large atoms, the asymptotic exactness of approximating
density functional theories and the corrections thereto have received a lot
of attention. For atoms without magnetic fields Lieb and Simon proved
that Thomas-Fermi theory gives the energy correctly to highest order. This
started an enormous development which so far has resulted in the proof of
a three term asymptotic expansion of the energy (Thomas-Fermi, Scott and
Dirac-Schwinger terms) given in the monumental work [FS94].

For the case of atoms in strong, constant magnetic fields, it was proved
in [LSY94] that a modified Thomas-Fermi theory - Magnetic Thomas-Fermi
theory (MTF-theory) - gives the correct energy to highest order, when B <
Z3. The result has been generalized to non-constant magnetic fields in [ES97]
(for B < Z?%). The convergence of the energy combined with a variational
argument gives immediately that the ground state density is also given (to
highest order) by MTF-theory.

In the presence of magnetic fields another quantity - the magnetisation
- is as natural and important as the density, but till now it has not been
established, whether MTF-theory also gives the right (asymptotic) answer
for this quantity. The reason for this is that the asymptotic form of the
magnetisation can not be derived directly from that of the energy, as is the
case for the density.

In this paper, we prove that MTF-theory does indeed give the correct
asymptotic magnetisation - at least for B < C'Z*/3. The proof of this state-
ment relies on a novel commutator formula for the magnetisation (current)
operator.

In this paper we study properties of the ground state of an atom. It is a
standing hypothesis throughout the paper that this ground state exists. The
proof of the asymptotics for the current is not valid for approximate ground



states. This is similar to the situation in a non-interacting electron gas. Here
it can be proved (see [Fou0O0]) that an approximate ground state does not
necessarily have (approximately) the right current.

We will fix A = 1/2(—z®,2M,0) as a vector field which generates a
constant magnetic field of unit strength rotA = (0,0,1). Now we introduce
a parameter B = \é\ measuring the strength of the magnetic field B, and
therefore we get the slightly odd relation: B = BrotA. The Hamiltonian
for a non-relativistic atom with NV electrons and nuclear charge Z in the
magnetic field B is:

H(N,Z,B)=Y [(pj+BA($j))2+Uj'B($j) - —|x.|} + |z; — x|
J 1<j<k<N 3T Tk

j=1
where p'= —iV and & is the vector of Pauli spin matrices. The configuration
space is the fermionic Hilbert space /\é\’:lL2 (R3,C?). We apply the convention
that an index j on an operator means that it acts in the j-th electron space,
i.e.
(7 + BA(2))*1(21) ® ... @ Yw(aw)
= Yi(21) ® ... @[(Fj + BA(x)))*¢;(2;)] ® - .. @ ¥w(n).

1.1 The current/magnetisation

Let U be the ground state of H(N, Z, B) and let @ € CS°(R3, R?), then the
current j is the distribution

d = 2
SoB (N, 2, B+ iota) = [ a-Fas,
dt R3

if the derivative on the left hand side exists. It is easy to see, by the varia-
tional characterisation of the energy, that

%\tZOE(N, Z, B + trotad)

—

= (V|In(B,a)|¥),

if the derivative exists, where

In(B,d) =Y (dla;) - () + BA(x;) + (5 + BA(w;) - d(a) + 7 - b(z))

j=1



Here b = rotd is the magnetic field generated by d@. So we may define the
current for all @ € C°(R?, R?) by

/ q-7de = (¥|Jy(B, ).
R3

Since the energy does not depend on the choice of @ - only on the magnetic
field generated by a@ (gauge invariance) - we may write the derivative as

d — =, — —

— =0 F'(N, Z, B+ tb) = / b- M dzx,

dt R3
where M by definition is the magnetisation. It is easy to see (by integration
by parts) that rotM = j.

1.2 Statement of the results

For matter in magnetic fields the correct Thomas-Fermi theory is the fol-
lowing Magnetic Thomas-Fermi theory (MTF theory). See [LSY94] for a
discussion and further references.

5MTF[p; ga V] = /

R3

() (p(2)) dz + /R V(@)p(z) dz + D(p, p),
where D(f,9) = 5 [[ f(z)|lz — y|7'g(y) dzdy, 5(t) = sup,so[tw — Pp(w)],

and Pp(w) = 55 (w3/2 +23> |2vB — w|i/2> :

The MTF-energy Enrr(V, E) is the minimum of this functional on the
domain. It is proved that there is a unique minimizer. Now we can state the
result of the paper:

Theorem 1.1. Let @y = (a(V,a®,0) € CP(R3,R®), and define d(z) =
ldy(z/1), where | = Z7Y3(1 + B/Z*3)72/>. Let us assume that BZ*/3 < C
for some constant C € Ry, and that A\ = N/Z is held fized as Z — oo.
Suppose finally that ¥ is a ground state for H(N, Z, é), then

—

— d g —
(U|Jn(B,d)|V) ~ E|t:OEMTF(‘/, B + trotd),

as Z — o0.

A more precise result will be given in Thm 1.9 below.
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Remark 1.2. Of course, the natural thing is to choose d@(x/l) in such a way
that the magnetic field generated is of the same order of magnitude as B.
Thus we choose a test function @ € C§°(R?, R®) and look at Bld(x/l). Notice,
that Theorem 1.1 is not affected by scaling factors, since the current is linear
in d.

Remark 1.3. As will be seen below, it is important for the proof that W is an
eigenvector of H(N, Z, E) - an approximate ground state does not necessarily
have the right current. However, ¥ may be any ground state - uniqueness of
the ground state is not assumed.

In the theorem above we only calculate the current perpendicular to the
magnetic field. Notice, that the MTF energy only depends on the magnitude
of the magnetic field - not on the direction of it. Therefore the MTF current,
% li—o Enerre (V, B +trotd), does not depend on a(® since the third component
of @ does not contribute to the first order change in |B + trotd).

In order to include the parallel current in the result we will exploit a
symmetry of the atomic Hamiltonian:

Let P be the unitary transformation that changes sign on the third com-
ponent of all the electron coordinates i.e. P=P; ® ... ® Py, where

(Py)(zM, 2?23} = (2D, 2, —z®).

This operation leaves the Hamiltonian invariant and therefore we can impose
on eigenstates for H(N, Z, B) that they also be eigenfunctions of P. This
leads to the result on the parallel current:

Theorem 1.4. Let the assumptions be as in Thm 1.1 except that dyg =

(aV,a®, a®) (i.e. the third component does not necessarily vanish) and
that ¥ is an eigenfunction for P (i.e PU = +W). Then

L d . B
(U|Jn(B,a)|¥) ~ £|t:0EMTF(V, B + trotd),

as Z — o0.

In the rest of this introduction we will fix some notation and make a simple
preliminary analysis which will permit us to state a more precise version of
the main theorem.



1.3 The parallel current

Let us choose @ = (0,0,a®). It turns out that these particular test functions
are difficult to handle in the theory, so we will use this subsection to reduce
the calculation of the current to the calculation of the current perpendicular
to the magnetic field.

The current [ 7 - @ only depends on the magnetic field generated by @
(gauge invariance) so we can start by asking when there exists an a =
(@,a? 0) € C°(R%) (notice: compact support) such that rotd = rotd.
It turns out to be the case if

/ T 0@ (20, 20 1) 4z® =

for all 20", 2. In particular, this is the case if a® is an odd function in
£®). So we need only deal with even functions a(®:

Lemma 1.5. Let @ = (0,0,a®), where a® € C°(R®) satisfies
a® (M, 2@ —23)) = ¢ (20 22 20)), and let U satisfy PY =+, then

(U|Jy (B, )W) = 0.

Remark 1.6. Notice that in this lemma we do not need ¥ to be an eigen-
function for the Hamiltonian.

Proof. We get
(U|Jn(B,d) V) = (PU|Jx(B,d)[PY) = —(U|Jy(B,d)|¥).

1.4 Scaling

It will be convenient for us to change to the natural length scale [ of the
atom. Therefore, we perform the following unitary transformation:
Let U, be the unitary operator

(Up) (1, ..., xn) =132 ey, . 1 2y,
where | = Z7'3(1 + B)~%/5, B = (B/Z*/3). Then

U 'H(N, Z, B)U, = ZI"'Hy/(h, 1)
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and
U (B, Bld(z/1)U, = ZI" Ix(h, p, ud),

where
N 1 1
~(h, @) :Z { hp]—l-uA ./Ej))2+h/1;6"3——:| + 77! Z _—

— |z < |75 — k|
Jj= <j<k<N

jN(h7 M, CL)

N
S [ae) - (b + n(as) + iy + pA(y)) - ;) + buosh® (a)]

j=1
h =1"12Z"12 u = BI327Z1/2. Notice that h — 0 iff BZ®> — 0. In the
rest of the paper U .qeq will always denote a ground state of Hy (h, pt), which
exists by assumption.

1.5 Commutator formula

Let us take an @ = (aV,a®,0) € CF(R?), and define & = (—a®,a),0).
We can now calculate the commutator

[Hy (h, ) Z - (hy + pA(5)) + (b + nA(ay)) - @),

Jj=1

using the commutator formula from Section 2 below. Thereby we will find,
using the virial theorem, that

<qlscaled|JN(ha My ,U@‘) |\I]scaled> < scaled|JN(h U, ) |‘Ilsca,led>

where
jN(h7 K, EL) =
- Z(hﬁj + pA(x;))(Da(z;) + (Da(z;))T) (hp; + pA(z;)) — huosh® (z;)
il Y :ck‘>%<_<zi>|3 ()

1<j<k<N

N
a\x 2
+Z ( |x]|3 - —h Adlva(arj)>

Jj=1
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Let us denote the terms on the right jN,KIN( ) JNINT( ) and Jy DpENS(@)
respectively.

From the convergence of the quantum mechanical density to the MTF-
density (see [LSY94]), we easily get:

Theorem 1.7.
= - a(r) - o
<\Ijscaled|JN,DENS(ha 22 CI,) |\I]scaled> - Z/ (|$)‘3 Px.p (.’L‘) d.I,

as Z — 00. Here py g is the unique minimizer in scaled MTF-theory - see
Section 3 below.

In the rest of the paper we will calculate the other two contributions to
the current. The result is summarized in the following lemma:

Theorem 1.8. Suppose there exists C' < oo such that ph < C, then as
h — 0 we get

<‘Ilsculed|jN,KIN(h7 H, &) ‘\Ilscaled>
3

~ =57 [0~ 00 Pallvegs ) o

—Z/(awm — 05,01) Ve 7| —pap d,

and
scaled'JN INT(h )‘\Ijscaled>
-(a(x) —a
/ / prp(@ y)u(_(y?g ) )p,\,ﬁ(y) dzdy.

Here py g is the unique minimizer in scaled MTF-theory (see Section 3 below)
and verp = —|x| T+ pag x|z + (N, B), is the effective potential (also from
scaled MTF-theory).

Using the results above it is easy to prove (see Section 3) the following
theorem:

Theorem 1.9. Letd = (a™),a®,0) € C(R®,R?) and let a = (—a?,aM),0),
b3 = 9,0ya® — 9,aV. Suppose there exists C < oo such that uh < C,
then as h — 0 (or equivalently Z — oo)

< scaled|JN(h M, a )|\I’scaled>

= 25 [19@) (alonala) + maa(eluass (@) do+o(2),
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Here the term on the right hand side is exactly the current obtained in scaled
MTEF theory.

This is the desired more precise version of Thm 1.1. The rest of the paper
will be devoted to its proof: In Section 2 we state the commutator formula
used in the discussion above. Then in Section 3 we discuss MTF-theory and
calculate the current in M'TF-theory.

The term (‘Ilscaled|j NINT (P, 12, @) |Wscarea) can be seen as a new electron-electron
interaction. This makes it look complicated at first sight, but it turns out
to be fairly easy to include it in the MTF-theory and apply the ideas from
[LSY94] to calculate the corresponding current. This is the subject of Sec-
tions 4 and 5. In order to see that this term can be reduced to a new term in
the density functional theory we need to prove an inequality of Lieb-Oxford
type. This is done in Appendix 6.

Finally, Jn xrn: this operator is a one-particle operator and it is therefore
only necessary to modify the semiclassical analysis in order to calculate the
corresponding current. This is also done in Section 5. It is, however, this
term which forces us to limit ourselves to the case uh < C (or B < CZ*3),
for a further discussion of this see [Fou00].

2 A commutator formula for the current

In this section we will violate slightly the conventions on the notation, since
here we will let A be an arbitrary vector potential and thus B = rotA will
not necessarily be constant in space.

Let us assume |B(z)| # 0 for all z. Define

-

H = (—ihV + pA)* + V(x),

— -,

and write J,(@) = @ - (—ihV + pA) + (—ihV + pA) - d. Let furthermore

. B X @
a = =,
|BJ”
0 By —B,
B = —B3 0 By = {aijk - al‘kAJ}Jak
B, —-B; 0

If now @(z) - B(z) = 0 for all z, then Ba = d.

9



Remark 2.1. Notice, that if B = (1,0,0) and @ = (a1,a9,0) then & =
(—ag,al,O).

Let us denote by (;) the inner product in R?* and by (;) the inner product
in L?(R3). Let us finally write the magnetic momentum operator as p; =

(—ihV + pA). Then we get:
Lemma 2.2. If |B(z)| # 0 and @(z) - B(z) = 0 for all z, then

[H, J,(a)] = 2iha-VV — 2ihul,

(@)
—2ih(pz; (Da + (Da)*

)p ;) — ih® Adiv(@).
Proof. The proof of Lemma 2.2 is essentially just a calculation. O
Corollary 2.3. Let ¢ be an eigenfunction for H, i.e. Hp = \¢, then
w(@; Jp(@)g) = +(¢;a-VVg)
{65 (05 (D + (D) )p)6) — 5h(6: Adiv(@)6).

Proof. This follows from the virial theorem and the lemma above. O

3 Magnetisation in MTF-theory

The correct Thomas-Fermi-like theory for matter in magnetic fields is the
following functional:

el B V) = [ rao(p(@)do+ [ V(hpla) do + Do),

where D(f,9) = 5 [[ f(z)z — y|7'g(y) dzdy, T5(t) = sup,»oltw — Pp(w)],
and Py(w) = 2 ( 32 4 95 |2y B — w|i/2)

The functional should be seen as giving the (MTF-) energy Eyrr as a
function of the density p(x) = |¢(z)|?. The three terms in the functional
represent the kinetic energy, the direct potential energy and the electronic
repulsion, respectively.

In our case, we have B(z) = B = const and V(z) = —Z/|z|. The domain
of the functional is:

CB={p:pZO,/()d:c<+oo/TB )) dz < 400, D(p, p) < +oo}.
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We will restrict attention to the subset of Cg where the electron number is
fixed, i.e.

Caw =o€ Cal [ p=N}.
In [LSY94] the existence of a unique minimizer was established:

Theorem 3.1. There is a unique p = py pyv € Cp n such that

E(N,B,V)Y inf Eyrrln; B, V] = Enrrlo; B, V).

neCp,N

The minimizer satisfies the Thomas-Fermi equation:
Ta(p(@)) = [V(2) + p |27 + 0|,
for some (unique) v =v(N,B,V).

This defines Vo;p(z) = V(z) + p* |z + v.
We will also need the following results from MTF theory:
Proposition 3.2. 1. -Lrp(t) = 5 (15(t) — 2tr5(1)) -

2. Th(t) < k23, (1) < %/ilt5/3, with K = (472)%3.

3. If|B(-)| = | Bo(")| in LS, e

(R*), then py 5. — Py, 5,v weakly in L3 (R3).

Using this proposition we can prove that the MTF-energy is differentiable
in the magnetic field:

Lemma 3.3. o Let @ € C(R?) and write b = rotd, then the map t —
Eyrr(N, B +1tb,V) is differentiable at t = 0.

o Let the distribution fMTF be defined as
=2 - d — N
JMTF - G = %‘t:OE(N, B + trotd, V),
then

- . 5 [ B-rotad 3
/]MTF =g / T[TB(P) + gl)Veff] dz.

11



Proof. Denote by p; the minimizer of €y7p(-, B+1b, V). Using the minimiz-
ing property we easily get:

Enrr(pt, B+ tl_)', V) — Emrr(pr, é, V)

[ 7)) = 75 )
Eyrr(N, B +tb,V) — Eyrp(N, B, V)
Evrr(po, B+ tg? V) — Evrr(po, Ea V)

= /T|J§+t5|(Po(x)) - T|B"(p0(x))d$.

VANVAN

We will prove that ¢! [ Ti51a (Pt (7)) =75/ (pe(2)) dw — [4 |t=0T 145 (Po(@)) da
ast — 0.

Let us choose R > 0 such that suppb C B(0, R), where B(0, R) denotes
the ball of radius R around the origin. Using the proposition above and the
compact support of b we get

/ 7 e (@) — 75 (u(2) da
-/ o () = g ()

|B+tb| 5 3 5
= / / = ( T5(pe) — g%ﬁ;(ﬂt)) dBdx
B(0,R)

_ /|B+tb /B(O,R) oF (Té(p ) — gptT (p )) dzdB + o(t),

where we used the bounds on 7,7’ and the weak convergence in L3 to get
the last equality. This proves the differentiability and the formula

d = . ) 3
G, B+ trotd, V) = [ im0 - Serp (o) da.

If we apply the Thomas-Fermi equation we get:

. . 5 [ B-rota 3 _
/JMTF'CL: i/T[TB(P)—gPW(@")"‘Pﬂﬂ 1+1/|_]dx.

Now it only remains to notice, from the Thomas-Fermi equation, that p(z) =
0if V;ff(l') > 0. O

12



3.1 A useful relation

When we calculate the limit of the current in quantum mechanics we will get
a term which looks like

e

We will now use the minimizing property of the MTF-density p to obtain an
equality for this term:

Lemma 3.4. Let p be the minimizer in MTF-theory and let a € C$°(R?).
Then

[eavves [ / (82) = 8W) ) dedy = [ 508 Pa(1Vess ).

Ix —y[3

Proof. Let us define pi(z) = Ay(x)p(z + ta(z)) for small ¢, where Ay(z) =
|det(I +tDa(z))| = 1+ ttr(Da(x)) + O(t?). Notice, that for small ¢ we may
write z = ¢y(x + ta(z)), where ¢,(y) =y — ta(y) + O(¢?).

Now

dy
Enirrlp] = / m(At(@(y))p(y))m+ / V(6(y))o(y) dy

+ [ O g e

Using the minimizing property of p we get.

d
0 = %|t:O£MTF[pt]
-/ (Tia(p)ptr(D&) - TB(P)U(D&)) - [ovv-a
4 // &(.’l?) — &(y))p(y) d:ndy

Iﬂs—y|3

o5 e 0,0

— /tr(DCL)( B(p) + PVers)
- /tr(D&)PB(\Veffl—)-

Thus,
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3.2 Scaling in MTF-theory
When V (z) = "—z“z and B = B(1,0,0), we may define a scaled functional

R . —p(z
&l = [ wtoande+ [ T2 a1 io.p)
where 75(t) = (1 + 3)78/575((1 + 8)%/°t). The corresponding energy is

E(\B) = inf{&pllpe L'N L, p> 0,/p <A}
Z7TR 1+ B)HPEMTE(N, B, 2),
and the minimizing densities pM** and p, 4 are related by
Prpz(@) = Z2(1+ ) prs(Z1P (1 + B)*x).
Let us state the TF-equation:
5(ox8) = |vess|-,
or K
prp = Pyllvegsl-)-

Here Bs(w) = (1+8) "5/ Py((14+8)%°w), and vss(z) = T+ prsek+v(\, B).
Notice also that

—Pg(|vesr|-) = T8(pxr,) + Versprp-

Using the identity from Lemma 3.4 we can prove the Theorem 1.9 -
assuming the validity of Theorem 1.8

Proof. From Theorem 1.8 and Theorem 1.7 we get that the quantum me-
chanical current in the limit behaves like:

7 [ pata) o

3 A
— 52 [0n02 — 00i0) Pallvegs |- o

/ (B2 — ax2a1)|veff| pap da
+ 75 [[ mste |' @) = W) ) ) dedy.

y3
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If we use the identity above on the first and the last term we get:

5 .
= 57 [ Ouas - ) Palloys ) do

—Z/(azlaz — O05,01) Ve |- pap d,

which is exactly the result from MTF-theory. O

4 MTF-theory with a current term

In order to calculate the current we need to introduce a perturbed MTF-
functional with a current term. We want to stress that this functional is not
meant to have anything to do with the so-called current density functional
theories appearing in the physics litterature. This functional is still a func-
tional of the density alone, but it will enable us to calculate a part of the
current.

The functional is:

Eo—mrralp; B, V,d] = /

[ ne ol do+ [ Vi@pla) da+ Dip.p)

R3

where Dy(f,g) = L [[ f(z) (w_y)'(x_ﬂfﬁ(w)_a(y)))g(y) dxdy, and where the other
terms are as in standard MTF-theory.

It is easy to see that

(1= tc)D(p, p) < Dy(p, p) < (1 +tc)D(p, p),

where c only depends on ||Dal| . We will assume ¢ so small that the constants
1 —tc and 1 + tc, appearing in the inequality above, can be bounded below
resp. above by 1/2 resp. 3/2. Therefore the proofs of the main theorems in
MTF-theory apply to C-MTF-theory essentially without change so we only
state the following conclusion:

Theorem 4.1. For sufficiently small (depending only on ||Da||s) t we have:
There is a unique minimizer p, € Cpn of Ec-mrr. This p; satisfies the
Thomas-Fermi equation:

TB(pe(2)) = [Vepsal -,
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where Vg = +f z—y)(w—y+Ha(e)—a(y )))pt(y) dy~+v. The Thomas-Fermi

z—yl3
equation can also be formulated:

—Pp(|Versa(2)|-) = 78(pe(2)) + Verape(2)-

The energy Ec_prri(N, B, Z) is differentiable in t at t = 0 and satisfies

%EC mrri(N, B ,Z) = ;/Po(x) (m—y)‘x(fi(z)‘?’— &(y))Po(y) dzdy.

4.1 Scaled C-MTF-theory

Suppose now @(z) = lag(z /1) and define 75(¢) = (14 8)~/575((1 + B)%/5¢) =
(1+ 5)2/57'[3(14_[3)_4/5 (t). Define furthermore,

fﬁ,t[p]=/ dx+/‘ K z) dz + Dyi(p, p),

where Dy(f,9) = 5 [[ f(z) ) ey ey HiEo(@)=8oW) ¢ ()} dzdy. Then the energy

lz—yl®
corresponding to &4 :

Eo-srma0,0) = mt{Exlpllo € L' L% p > 0, [ p< ),

satisfies R
Ec_mrre(N,B,Z) = ZQZ_IEC’fMTF,t()\a B),

with A\ = N/Z and the minimizers p = pc_yrri(N, B, Z) and py g of f:'g,t
satisfy
p(2) = 21 pp (1),

5 A lower bound on the perturbed quantum
energy

In this section we will prove Theorem 1.8.
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Lemma 5.1. Suppose there exists C < oo such that ph < C, then as h — 0
we get

<‘Ilscaled|JN KIN(h M, @ )|qlscaled>

3
~ =57 [0~ 00 Pallvegs ) do

—Z/(awm — 02, 01)|Vess|-pap do,
and

scaled|JN INT(h ,ua )‘\Ilscaled>

/ / pap(x |' (d_(x) — ) prp(y) dzdy.

y3

Proof. Define HN(t, h, M) HN(h N) + t(JNKIN(h M, a ) + JNINT(h u,a ))
We seek a lower bound on

En(t,h, p) = Inf (V[Hn(t, h, 1) |1).

Lower bound Let ¢ € A} L*(R?,C?), and let p; = py » g be the minimizer
of scaled C-MTF theory, then

inf Spec Hy (t, h, 1, Vefft)

-|—Z*11(1/z| 3 (zj — mp) - (m; — z — t(a(z;) — a(xx))) )

Y

_2Dt(pt,)\,ﬁa pw) - VN)

where vopp, = —|ax| 1 4 [ Tl ffjtéf(w) W), (y) dy + v(X, B), and

N

HY (8, by, vepre) = > (2); - Sel@) (p2); — ph(L + 0% (27)) + veppa(a)),

j=1

where Sy(z) = 1+ tM(z), M(z) = — (Da(z) + (Da(z))"). We will use the
semiclassical lower bound on HY (¢, h, p1, vess) from  [Fou00]:

inf Spec HY (t, h, 1 Veg 1) > Esealt, hy s vegp) + o(h™> + ph™),

17



where
Escl t h ﬂavefft
Z / (20 + 1) by s — ph(1 + thy() + vesso(w)]*/? du,
67TAut

where b, ; = [rot, /1 + tM(u)A(y/1 + tM(u)z)| and A, = | det \/1 + tM(u)).

The important thing about this bound is that we may write it as

Escl(o, h', My Ueff,t) + te(t’ h” s Ueff,t)’

by a Taylor expansion to zeroth order.

Notice, that the bound above only was proved for a fixed (independent
of h) v. In the present case v.ss; depends on h. It is, however, easy (see
[LSY94, p.99]) to see that the proof of the bound holds in our case as well.

Finally, we integrate the Thomas-Fermi equation to get:

Esa(0,h, pt,Veppr) = Z (EC—MTF,t()\, B) + Dt(pt,)\,ﬂ; prap) + pmin(A, /\c)> .

Using the modified Lieb-Oxford inequality and “completing the square” in
D; we get

En(t, h,pu) > ZEC—MTF,t()\a B) + te(t, hy pw, verse) + ZO(EC—MTF(/\a B)).

Differentiation
By using Wy.4eq in the variational principle for Ey (¢, h, u) we get

(0 seateal In g rn (B 1, @) + Tn inr (B 11, @) [V gearea) > En(t, by 1) — Ex(0, b, ).

We have from above and from the result

|En(t=0,h,p) — ZEC—MTF(t =0,\0) = ZO(EC—MTF)a

that

En(t,h,p) — Ex(t=0,h,p) > ZEc_yrr(t,\,B) — ZEc_yrr(t =0,X, )
+te(t, h, 1, Vesre) + Zo(Ec_prr(A, B)).

If we divide by t on both sides, multiply by Z~!, let Z — oo and afterwards
let t — 0 we get

d d A
_‘tZOEN(ta h7 /1') = Z_|t:0EC—MTF(t7 )\a /6) + 6(05 h: Hy Ueff) + O(Z)a
dt dt

18



where

6(07 h7 H, Ueff)

L= 2vpih 1/2
— EQ 5 /(8$1a2—8z2a1)[21/uh— [Vesr| -]/ dx

v=0

3
= _§h_3 /(3z1a2 — Oy 01) Pry([vegy|-) d

07 [ (0002 = Busar) gy |- P fugsl-) d

3 A
= 57 [@uas = B0 Pa(lvy|-) do

7 / Oyt — Bgy1r) g |- (g |-) dz

Using the TF-equation we get:
<‘Ilsca,led|JN KIN(h M, @ )lqlscaled>

3
~ =57 (002 = 0.0 Pyl[vegs ) do

_Z/(a$1a2 - 8:E2a1)veffp/\aﬁ dz,

and

scaled‘JN INT(h ,U‘7 )‘\Ijscaled>

| —yl3

6 A modified Lieb-Oxford inequality

The original current operator is a sum of one-particle operators, but after
application of the commutator formula we get a term of the form:

Z(fﬂ — o) - (a(z;) — alzy))

j<k |:L‘.7 - '/I"k|3
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We want to replace (¥, (z; _w’“‘)wﬁa(zﬁs 4ee)) |45\ by the direct interaction

part [ py(z % w(y) dzdy. In this section we prove a lemma
which will allow us to do so.

Let us recall the Lieb-Oxford inequality [LOS81]:

Lemma 6.1. Let ¢ € AL, L?(R?) be normalized and let p, € L*(R*) be the
corresponding density. Then the following inequality holds with a (negative)
constant C' independent of 1:

WS ———[9) > D(py, py) + C / o

where D(f,g) = [[ %dzdy.

Here we want to modify the inequality above to accommodate the extra
term we have from the current:

Lemma 6.2. Let ¢ € AY,L*(R*) be normalized and let py € L*(R®) be
the corresponding density. Let a € CP(R?). Then the following inequality
holds for sufficiently small (depending only on a) t with constants Ci,Co
independent of

¢|Z 2y — ot Ha(zy) = @),y

j<k |x.7 - xk|3

> (1= C)Dilparp) + Ca [ o,

where Dt f g 1 fff (z y)-(z—y+t(a (m)—&(y)))g(y) dzdy.

lz—y[*

Proof. Let us pick a normalized ¢ € A} L*(R®) and let (21, ,zn) =
AP (1) - AP (@) (2 + ta(zy), - - ,$N+ta(xN)), where Ay(x) = det(I
tDa(z)). Then also 1, € AJL,L*(R*) is normalized. Let us choose ¢y(y)
y — ta(y) + O(t?) such that’

I+

oz + ta(x)) = .

Then we have

(il 3 ol = wz T ¢t(xk)||w>,

]<Ic
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so we get from the Lieb-Oxford inequality, applied to );:

1
WD =

4/3
> D(Pwtaﬂwt)‘i‘C/%/t

3 [ @ gy e A

Now we notice that 3C only depending on & such that

(@—y)-(@-y+Ualz) —ay)) p 1

lz —y? lz —y

1

= T6@ - i)

(x—w-u—y+uam—@@»y+oﬂ 1
|z —y[3 lz—y|

<

This finishes the proof.
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