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Abstract

We calculate the asymptotic form of the quantum current /magnetisation
of a non-interacting electron gas at zero temperature. The calculation
uses coherent states and a novel commutator identity for the current

operator.
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1 Introduction

In recent years a lot of mathematical research has been focused on under-
standing quantum mechanics in magnetic fields. The semiclassical results
obtained so far in this area have concentrated on the energy (i.e. the sum of
the negative eigenvalues) and the density. Nevertheless, in the presence of a
magnetic field, the current (and the magnetisation) is as natural a quantity
as the density, but it has not received the same attention in the mathe-
matical community. There are two possible reasons for this: The current
vanishes for a Schrédinger operator without magnetic field, i.e. current is
truly a property of problems with magnetic fields. Secondly, the current of
a classical electron gas at equilibrium vanishes, and therefore, as was proved
in [Fou98], in a standard semiclassical limit the leading (Weyl-like) term for
the current is zero. There exists, however, another semiclassical limit, in-
troduced by Lieb, Solovej and Yngvason in [LSY94], in which the magnetic
field strength p is allowed to vary as the semiclassical parameter A tends to
zero. The new semiclassical limit was introduced in order to study ground
state properties of large atoms in magnetic fields as strong as those which
exist on the surface of a neutron star. The purpose of this paper is to study
the current in this semiclassical limit, applications to the calculation of the
current/magnetisation of large atoms in strong magnetic fields will be given
in a later paper.

When attacking semiclassical problems in strong magnetic fields there are
two different approaches possible: One can use the very precise machinery
developed by Ivrii and others (see [Ivr98] and [Sob94]). This will give very
good remainder estimates and can be applied quite directly to the current.
The drawback of the method is that it is technically involved and requires
a certain degree of smoothness of the potentials. An alternative approach is



the variational approach used by Lieb, Solovej and Yngvason in the paper
[LSY94] to calculate the energy and the density. This method uses coherent
states to approximate the true ground state and (magnetic) Lieb-Thirring
inequalities to bound the error terms. Here we will apply this latter technique
to calculate the current. As will be explained below some new ideas are
necessary in order to do so since the current operator is a priori too big to fit
in the scheme. We get around this difficulty by applying a novel commutator
formula for the current. This method unfortunately only works for magnetic
fields which are not too strong. In a later paper [Fou99] we will apply Ivrii’s
microlocal techniques to the current and thereby improve the error estimates
and enlarge the range of allowed magnetic field strengths. Notice, however,
that it is necessary to use the commutator formula in order to calculate the
current - an approzximate ground state does not necessarily have the right
current. This is illustrated in Appendix A where we construct a trial density
matrix that gives the correct semiclassical energy but fails to give the right
current.

In this paper we study the current and magnetisation of an electron gas
in a strong constant magnetic field. Suppose the dynamics of an electron is
governed by the Pauli-operator

P =P(uA, V) = (—ihV + pA)? + V(z) + hué - B,

acting in L?(R®; C?). Here V is a real potential, & = (01, 02, 03) is the vector
of Pauli spin matrices:
01
g1 = 1 0 3

(0 —
02_ 20’

(10
7% = o -1)

and B = V x A. The operator P contains two parameters h,u € Ry,
where h is a semi-classical parameter, which we will let tend to zero, and y is
parameter measuring the strength of the magnetic field. We will let y — +o00
as h — 0 in such a way that the product puh remains bounded below, i.e.
uh >c¢> 0.

Let 1 be any state, then the current in the state v is the distribution ﬁp
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given by:
/ Fo-d= (|3 (ud)w),

where J(ud) is the operator:

-

I(ud) = pi(—ihV + pA) + (=ihV + pA)pd + hudb,

with b = rot@. We will study the total current of a non-interacting electron
gas at zero temperature i.e. we sum the current of all eigenfunctions below
zero (we set the chemical potential equal to zero). Thus the definition of the
current (as a distribution) is:

[ 7+ dds = a3 (P

The current is given as the rotation of the magnetisation: ; = rotM , thus
results for the current translate directly into results for the magnetisation.

1.1 Semiclassics for the energy

The energy of the electron gas is given by:
E(A,V) = tr[P(uA, V)1( o0 (P(ud, V).

Notice, that this is clearly a negative quantity. The semiclassical asymptotics
of the energy has been calculated by [LSY94] (constant magnetic field) and
[ES97] (non constant fields), and it was found, under very general conditions
on V, A, that E(/T, V)~ h—“zEscl(ff, V), where

—

2 ad L .
Esq(A)V) = —g/Zdn|B|[2nuh|B| + V()] da,
n=0

with dy = = and d,, = % for n > 1. Here and in what follows we use the

2T
notation

] = —r <0

- 0 >0



oFE

17 _J0E
Now, formally* j = e

so we would expect that

W[5 qdn ~ i\ Eyq(A+ 5@,V)
1 ) ~ ds s=04+scl )

2=
= ggdn/(@hag — 8:52(11)

X ([th,u + V(@)*? = 3nhu[2nhy + V(x)]1_/2> dx,

as h tends to zero. This is indeed the result of the paper:

Theorem 1.1. Suppose A= %(—332,331,0), that @ = (a1, a2,0) € C§°, and
that V,a - VV € L3% N L%?, where @ = (—ag,a1,0). Suppose furthermore
that ph — B € (0,+00) as h — 0. Then

R 2 &
}l%;/]adl’ = ?;du/(a’na@_a:vza’l)

X ([w +V(@)*? - 3v8[2v8 + V(x)]l/Q) dz.

Theorem 1.1 only deals with the current perpendicular to the magnetic
field. It turns out that the current parallel to the field is more difficult to
analyse. We have the following result:

Theorem 1.2. Let the assumptions be as in Theorem 1.1 except that d €
C§° is arbitrary (i.e. az is not necessarily vanishing) and suppose V' satisfies
the following additional symmetry constraint: V (z1, xe, —x3) = V (21, 2, 3).
Then

N -2
1121_1)1(1);/.7 -adr = %;du/(a’ma&_a@al)

x ([21/5 + V(@) - 3uB[2v8 + V(x)]l_/Q) da.

Tt is easy to prove that
" d e
tr[J(ua)l(—o,0(P)] = %h:oE(A +ta, V),

if the derivative on the right hand exists.



1.2 Difficulties

Let us recall how the density is calculated [LS77]:
The density p is defined as

/ 96 dz = 12]¢1 ooy (P (1A, V)],

for all ¢ € C§°(R). Formally, p is the variational derivative of the energy

with respect to V ie. p Jormally %. To calculate the asymptotics of the

density we use the following variational principle:

E(A, V)= inf tr[yP(ud,V)].

0<7<1

Let H(s) = P(uA,V + s¢) and let E(s) be the corresponding energy. Then,
by using 1(—o0,01(P (1A, V)) in the variational principle for E(s), we obtain:

E(s) — E(0) < s/pgzﬁdx.

If we now divide by s # 0 on both sides of the inequality, multiply by h%/u,
and let A and s tend successively to zero, then we get:

/p¢dx—>/ Esa

0
%
Unfortunately, this technique does not work for the current: If we define

odx.

H(s) = P(uA, V) + sJ (),
and let E(s) be the corresponding energy, then we get

B(s) < il ooq(P(u(A+52),V))H(5)

= E(A+5a,V) — s2u2tr[d1 (oo (P (u(A + 5d), V))].

The first term on the right hand side is known to be of order J;, but the
second term is of order /ﬂ% ! Thus, this term - which is quadratic in s and
therefore without interest for us - spoils the asymptotic picture.

The morale of this calculation is, that the operator J is too big - adding just
a bit of it, changes the energy dramatically. The way out of this problem is to

realize that (¢|J|¢) is small’ for all ¢ which are eigenfunctions of P(uA, V).
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1.3 Organisation of the paper

In Section 2 we prove a commutator formula for J. This formula expresses
J as a commutator with P plus an operator which is a factor p smaller
than J. Since the commutator does not contribute to the trace, we hereby
reduce the problem of calculating the current considerably. Unfortunately,
this commutator formula only gives information about the current orthogonal
to the magnetic field - this is the reason why the parallel current is more
difficult.

In Section 4 we prove that the current is gauge invariant i.e. that j a only
depends on the magnetic field b = rotd generated by a.

Then, in Sections 5 and 6 we use the ’variational principle’ - i.e. the
method used above to calculate the density - to calculate the orthogonal
current. Using symmetry, gauge invariance and the result on the orthogonal
current, we can prove Theorem 1.2.

Finally, in Appendix A, we give some arguments to support the necessity
of using our commutator formula: We construct a density matrix which has
asymptotically (as h — 0) the same energy and density as the ground state,
but does not have the right current.

1.4 Notation and preliminaries

The results in Section 3 and the calculations in Sections 5 and 6 are only for
a constant magnetic field and there we fix the choice of the vector potential
as A(z) = +(=x2,21,0). The commutator formula in Section 2 is valid
for general, everywhere nonvanishing magnetic fields, so in that section A
denotes an arbitrary vector potential.

We will denote the magnetic momentum operator as pz = (—ihV + pA).
Furthermore, we will denote the closed ball of radius r centered around the
point x by B(z,r).

All through the paper we will apply the standard convention that ¢ or C'
denote arbitrary constants.

Finally a few words on the Pauli operator in a constant magnetic field:
With our choice of f_f, the magnetic field is parallel to the 3rd unit vector é3
and therefore

i+ ph +V(z) 0
p—(?a
0 P4 —ph+V(z) )’



and thus
tr[I(pd@) (-0 0)(P)] = ptr[(@-pz+pz- @+ hbs)l( oo)(Ds + ph+ V(z))]
+utr[(@-pg+pg- @ — hbs)l(—oo g (0% — Bh+ V(2))].

We therefore can (and will) calculate the current as the sum of the two terms
on the right hand side.

2 Commutator identity

Let us assume |B(z)| # 0 for all z, where B = V x A. Define

-

H = (—ihV + pA)* + V(x),

- -,

and write J,(@) = @ - (—ihV + pA) + (—ihV + pA) - d. Let furthermore

. 3 x @
a = -,
|B|?
0 B; —By
IB frnd —B3 O B]_ = {achAk - axkA]}],k
By, —-B; 0

If now @(z) - B(z) = 0 for all z, then Bi = .

Remark 2.1. Notice, that if B = (1,0,0) and @ = (a1, a9,0) then a =
(—asg,a1,0).

Let us denote by (;) the inner product in R?* and by (;) the inner product
in L?(R®). Let us finally write the magnetic momentum operator as p; =

(—ihV + pA). Then we get:
Lemma 2.2. If |B(z)| # 0 and @(z) - B(z) = 0 for all z, then

[H,J,(&)] = 2iha-VV — 2ihul,(d)
—2ih(pz; (Da + (Da)")p ;) — ih*Adiv(a).

Before we give the proof of Lemma 2.2 we state an easy consequence:



Corollary 2.3. Let ¢ be an eigenfunction for H, i.e. Hp = A\, then
1(d; Jp(@)g) = (¢;a-VV)
1
—(6; (p: (D + (D) )pz)@) — 5h*(¢; Adiv(a)e).

Proof. (¢;[H, Jy(a)]¢) = 0 for all eigenfunctions ¢.
Now we prove Lemma 2.2.

Proof. The proof of Lemma 2.2 is essentially just a calculation:

[H,pzl =[50 +[V.p4l
(P33 Ber) + (Ber,py)
= thVV —ihu | (pz;Bes) + (Bea,pz) |,
(P4 Bes) + (Bes, pg)

[H:f] = pAa Zij[pAJaf]'{'[pAJ:f]pAJ

= —ih) pg,jamjf + s, f01;)
J
= —ih(pA* -Vf+Vf -pA*).
Based on these two equalities we get:

[H, Jp(a)]
= a-[Hpgl+[H,psl-a+pg-[H,a]+[H,a]-pg
= 2tha-VV
( (p1;Be1) + (Bey, py) ) ( (p4;Be1) + (Ber, pz) )
—ihp{a- | (pz;Bez) + (Bez,pz) | + | (pg;Bez) + (Bez,py)
(pz;Bes) + (Bes, ;) (pz;Bes) + (Bes, py)
pi-Var+Vai -p; pg-Var+Vai - py
—ih (pg-Vdg-i-V&g-pA*) “pi+pi- (pg-V&g-l—V&g-pg)

pg-Vég—i-V&g-pg pg-Vfts—l-V&g'pg



Now
> ai{(ps;Be;) + Bejspr)t + Y _{(priBej) + (Bejspp)}a

= ) {&j (P4 xBrg + Beipag) + (PaxBes + Bkvjpﬁ,k)ai}

J.k
= 2) {aj]Bk,ijf,k + P1 B, aj} + {aj [P Begl + Bry, pa sl }
J.k Ji.k
2(Ba,pz) + (ps, Ba)
= 2J,(d).
Finally,
pi-Var+Va, -p; pi-Var+Va, -py
pi-Vag+Vay-p; | *ps+pz-| pi-Vaz+Vay-p;
pi-Vaz+Vaz-pz pi-Vaz+Vaz-p;

= > {(ps- Va; + Vi - po)pz, + pay(ps- Vi + Vi pg) |

J

=) {(p[f,k(ak&j) + (Ok;)ps4)P5; + 21 (P s (Okts) + (3k&j)m,k)}

ik
= 2) {pg,k(ak&j)pg,j + pg,j(ak&j)pg,k}
sk
+ Z {[akajv pff,k:]p[f,j —Pi; [Okaj, pA',k]}
sk
= 2(ps; (Da+ (Da)") —thpAJ, 2]
= 2ps (Da+ (Da)) hQZa

3 Known results

In this section we will recall some results on semiclassics of the energy and
density in a constant magnetic field. These are all taken from [LSY94].

First we have a magnetic Lieb-Thirring inequality for constant magnetic
field:
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Theorem 3.1. Let |V|_ € L¥2(R®) N L52(R®) and let e;(u, V) denote the
negative eigenvalues of the operator pQA; — ph+V(x). Then

> lei(w, V)| < Liph™? / V()| —** do + Lyh™® / WV (z)| =% da,

J

where the constants L1, Ly are independent of h, u and V.

The result on the semiclassics of the energy in a constant magnetic field
is:
Theorem 3.2. Suppose |V|_ € L3¥2(R3) N L3/2(R3) and let E(A,V) and
Eq(A,V) be as given in Section 1. Then

E(A
fm [ PAY) )y
h—0 %Escl(Av V)

uniformly in the magnetic field strength p.
By the variational principle, we get as in Section 1.2:

Corollary 3.3. Let us keep the assumptions from Theorem 3.2. Suppose
¢ € L¥2(R®) N L32(R®), then
2

b0 (PUA V)] = - [ 3 dof2nah + V()] *6(a) da + o(0),

as h — 0.

4 Gauge invariance of the current

In this section we will prove that the current [ j d, as a function of a,
only depends on the magnetic field b=V xad generated by a, i.e. that if
d=a+V¢then [j-ad= 7 a

Lemma 4.1. Suppose V is relatively bounded with respect to —h%A and that

Spec(P(h, 1, V) below zero is discrete. Then V¢ € CF(R?) we have [ ] -
Vé = 0.

Proof. The proof follows from the commutator formula below:

[P, ¢] = ihI (V).

11



5 Lower bound

My My M
Let M = | My My My | € C(R?) and let by(z) = Mu@iMe@
My M 0

In this section we prove a semi-classical lower bound for the energy of the
operator
H(t) =ps- Si(x)pz — ph(l +tbs(z)) + V(z),

where Sy(x) = 1+ tM(x).
We will need the following easily proved localisation formula:

Lemma 5.1. Let g € C®°(R3%;R), and let S(z) be any symmetric, real ma-
triz, then

2Afglpi-S@pzlaf) = (flo’pz-S@)pzlf) + (flpz- S(@)pz9°|f)
—21*(f|Vg- S(x)Vy|f),
for all f € L2

We will also need to diagonalise the ’kinetic energy part’ of H(t) - for
constant matrices S(t), this is the content of the next lemma:

Lemma 5.2. Let S; = [+tM, where M s a constant matriz, andt is small.
Let the matriz N; solve the equation >t = I + tM, and define a unitary
operator Uy on L? by:

(U f)(z) = A f (™),
Ay = | det e™t|. Then
Uy - Stngt_l = (—ihV + ,uflt)Q,

where Ay(z) = e™ A(etN ).

My, My M3 ~
Remark 5.3. If M = | My Moy Mo |, then [rotA;| =1+ %t(MH +
Mz Mz, 0

Myy) + t?c+ O(t®), where c is a negative constant (depending on M). Thus,
we see from the above, that for ¢ # 0:

1
inf Spec (pg Sz — ph(1+ it(Mu + MQQ))) — —00Q,

as puh — oo. This is the reason why the lower bound below does not work in
that case.

12



Theorem 5.4. Suppose that [V]_ € L*?N L5? and that

Mll M12 M13
M(.CE) = M21 MQQ M23 € C(())o
Mz Mz, 0

Let E(t) = tr[H (t)1(—0o0(H (t))], and suppose, that ph — 3 as h — 0. Then
we have the following lower bound on E(t):

2

h
lim inf —E (t) >

h—0

32 Z/Aut [(2v + 1) by — B(L + ths(w)) + V (u)]*? du,

where by = |roty (/1 + tM (u) \/1+tM u)x)| and Ay, = | det /1 4+ tM(u)|.

Remark 5.5. Notice, that due to the 2nd order discrepancy between b, ,
and p(1+tbs(u)) (see Remark 5.3), we really need the matrix M (x) to have
compact support, since this assures the convergence of the integral in the
lower bound for v = 0.

Proof. 1t is clear, that we get a lower energy by replacing V' (z) by —[V(z)]_,
so we will assume V(z) = —[V(z)]_ in the proof.

Coherent states:
If Bis a (constant) vector, then the projection onto the vth Landau level of
(—ihV + ,ulB x )? has integral kernel [LSY94, p.95]:

—

,ub

ub
2rh T

2 2
— L —
|96L yLI } (|$L yLI %

Hz(?) (ll, yL) eXP{Z(ﬂﬁL X yL)

2h

where we have written z € R® as (z,, ), withz, L B and ) || B. Further-

more, we have written b = |B| and L, are Laguerre polynomials normalised
by L,(0) = 1. Let us now write

HV’p (:1:’ y) = Hl(/2) (CUJ_, yJ_)eip(a:”—y“),

with p € R, then
1 -
(_7;}lV + ILLEB X ,’E)QH,,’p(x, y) = GV’p(h’ b)Hyyp(:L‘7 y)’
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with €,,(h,b) = (2v + 1)hub + h?*p?, and

Hb
2h’

Let us finally introduce a localisation function g € C§°(R?), [¢* = 1 and
write g,(z) = r=3/2g(x/r), where r = h'=* o < 1. Then, we write

Q(”’ U/, p’ t) = gT(. - u)UtTUll_'[Vapauthtaug"'(. - u)’

where Uy, is the unitary operator described in Lemma 5.2, with Ny = Ny,
satisfying 2Nt = [ +tM(u), and where I1,,,, = I1,,, with B = B, being
the magnetic field generated by e A(eNuz). Below, we will in general
insert an extra index u on the quantities, where this is needed, as exemplified
here by Ny, and By,.

Useful identities:
We find:

I, ,(z,z) =

tr[pg - S(w)pzQ v, u, p, 1)]
== tr[pA’ . S(u)pA,UtjulgT(thNg,u . _U)Hv,p,u,tgr (62tNt,u . _U)Ut,u]
= tr[(—iAV + pAn) g (2 - )L, gr (20 - —u)]

11Dt 2 2N, 2
- g — . 1
o <ep,y(h,bt,u)+h JZ ) dm) (5.1)

Here we used the localisation formula in the last equality.
For a normalised function f € L? we get:

(flpg-S@)pslf) (5.2)
> /<f|gr(' —u)pg- S(@)pz9:(- — u)|f) du — hzo/(Vgr)2

= [4fl0:( = wpz- Swpzan(- ~ wlf) du
+ (ot = wpz- (S(@) ~ S@hpaoe (-~ w)lf) du - 12C [(Var)

The second term can be estimated as:

[ lant = wz- (@) = o~ wln) dal (53
< / Fr(w)(flge(- — w)pz- S@)pzlan(- — w)|f) du,
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where F,.(u) = 2sup,epur) [S(z) — S(u)|. Thus, the first two terms in (5.2)
can be estimated as:

+/Umw—umgwﬂm—sw»m%c—mvww
> 3 [ g b b1 w01 ) dp

v

For the potential we get:
IV 2l = /vwxﬂﬁc—muww (5.4)
- Z// o (F1Q,w,p,1)|f) dpd

Lower bound:

Now we are ready to prove the lower bound on the energy. We have to bound
the sum Z;V:1< filH(t)|f;) from below, with a bound independent of N. Let
us take a (small) § > 0 and write

H(t) = 6(p% — ph) + (1= 8)(p% — pwh) + t(pg - Mpz — phbs) +V ().

Let us furthermore take an € > 0 and choose R such that

/ V(2)[¥2ds <¢ and / V(@) dz < e.
|z|>R

|lz|>R

Since M (z) € C§° we will assume that M(z) = 0 for |z| > R. Choose finally,
a partition of unity 6%, 62 of positive real functions, satisfying: 6;(z) = 0 for
|z| > 2R and 65(z) = 0 for |z| < R.

15



Then

Mz

(fiH®)|f5)

<.
Il
—

Mz

<f]|01 Gl‘fj +Z<f]|02 02‘f]>

N

—h) (£i1(V0)? + (V62)?] )

j=1

[
Il
—

N
= (1=8) YUl (v (1 + -5 M ()
j=1

bi

—ph(1 +

V(a)
by g) + s+ 0l f)
N

+Y (16 (5(19,2; — ph) + (V =V *g7)

=1

—,uht(bg - b3 * gz) - h2(V91)2 - h2(V02)2> 01|fJ>

N

+ > (£il02 (0% — ph+ V(z) — h*(V6;)?

=1

— B(V6,)°) ;). (5.5)

The first term can be bounded below by

{ (1= Fr(u))epu(hy by, o )—,uh(1+ li(sbg(u))-l- V(u)}

X f]‘ol Vauapa —)01|f]> dpdu
1—

j=1

Since

al pby, 1
Z:: fi101Q (v, u, p, 1— )01|f]> > m,

and (f;16:Q(v,u, p, 155)01f;) = 0 if |u| > 3R + 7, we get a lower bound by
replacing Z;V:l<fj|01Q(V, u,p, 7+5)01|f;) by a function M(v, u, p, 755), which

16



is the characteristic function of the set

t
{(u,p)|(1 = Fr(w))epu(hy by, ) = ph(1+ —bs(u)) + - —5 < 0
and |u| < 3R+ 71},
ub, ts
times — m Thus, the lower bound becomes
=35 %
pby
X
{|u|<3R+r} QWhA L 55U
%
[(1 — Fy(u))€pu(h, by, 2 ) — ph(1 + T 5bg(u)) + 1%1%] dpdu.

We do the p integration explicitly and get:

1-0% / 1= Fo(u) 4Hby
~ J{|u|<3R+7} 2 67Th2Aﬁ’u

[(2,,+ Dhpb,, o+ %F() (—uh(l + 5 f sbs(1)) + 1/(_“()5)]3:/2 du.

The last two terms in (5.5) are error terms, and will be bounded below using
the magnetic Lieb-Thirring inequality. Since r = h!=* and ph < C, we have
for small A that

/ |(V(z) = V % g2(x)) — ph(bs(z) — by * g2 (z)) — K*(VO)? — h*(62)*|" dz < e,

for ¢ = 3/2 and ¢ = 5/2. Therefore, we get by application of the magnetic
Lieb-Thirring inequality that the first error term in (5.5) can be bounded
below by

—Ceh 3(6 /2 45732,

We can use the Lieb-Thirring inequality directly to bound the second error
term from below by
—Ceh™3,

where we used the definition of 6. O
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6 Calculation of the current

In this section we will finally find the asymptotics of the current:
By applying the commutator identity from Section 2, we get

—tr[J(pd)L(—o,0)(P)] = tr[(pz- M(2)pz + phosbs)l(—co 0 (P)]
i - VV1 (o) (P)], (6.1)

where M (z) = — (Da(z) + (Da(z))").
The asymptotics of the second term in (6.1) is easy to calculate using the
results on the density from [LSY94].

Lemma 6.1. When [V]_,a-VV € L¥2N L2, then

000 37rh2
=o(h™® + ph™?).

tr[(@- VV) 1o 2y d (85,0 — Oy a1)[2vph + V()] da
(

For the first term in (6.1) we need the result from Section 5. Let us write
the term as

tr[(pg- M(z)pz — phbs)(—co0) (P — nh + V (2))]
+trl(pg - M(@)pg + hbs) L oo (W% + h+ V(2)],  (6.2)

and analyse each term seperately.

Lemma 6.2. Suppose [V]_ € L¥? N L%? and & = (—ay, a1,0) € CL(R3).
Write M (z) = — (Da(x) + (Da(z))"). Suppose furthermore, that ph — (3 €
(0,+00) as h — 0. Then

2

h
lim ztr[( - M(2)pz — phbs)L(—co0) (P — ph+ V()] =

E —221/6 (0p,a2 — Opya1)[2vph + V (2)]"/? da.
m
v=0

Proof. The proof is easy, using the variational principle for the energy and
the lower bound from Section 5: We write

H(t) = p% — ph +V(z) + t(pz - M(2)pg — phbs),
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and E(t) = tr[H(t)1(_oo0(H(t))] = infocy<itr[yH(t)]. Then the lower
bound combined with the variational principle gives:
2

. h
lim Etr[(pg - M(z)p g — phb3)(—eog (P% — ph+ V(z))] =

|t 02/3 2A ; [(2v 4 1)Bby; — B(1 + ths(u)) + V(u)]*? du.

Now we obtain the result, if we remember that b,; = (1 + tbs(u) + O(t?)),
and that K“utt =1+ 0(#?). O

Now, since ph is bounded, it is easy to use the same methods to treat the
spin-up part. The result is similar:

Lemma 6.3. Suppose [V]_ € L¥? N L%? and & = (—ay, a1,0) € CL(R3).
Suppose furthermore, that ph — 3 € (0,+00) as h — 0. Then

. h?
hm ;tr[(p;f - M(x)pz + phbs)1(—oo,0] (p?q + ph+V(z))] =

ZM/ az1a2 8m20,1)[2(1/—|-1)’uh+v( )]1/2d ‘

If we put the three lemmas together we obtain Theorem 1.1.
Finally, we prove Theorem 1.2:

Proof. Using Theorem 1.1 we may assume @ = (0,0, a3), with ag € C§°. Let
U be the unitary operator on L?(R?, C?) defined by

Uf(l'l,.’L'Q,ng;) = f(xla-r?a —1'3),

and write as as ag = a3 epen + 43,040 Where a3 epen (03,044) is even (odd) under
the reflection x3 — —x3. Now, since V' is invariant under conjugation by U
we get:

oI (1) 1 (00,01 (P)] = tr{UI (u@) Ul (—c0,0/(P)] = tr[J (14(0, 0, a3,04))1 (00,0 (P)].

We can easily find a function @ = (a1, as,0) € C§° such that rota = rot(0, 0, a3 oda)-
We thus finish the proof by appealing to Theorem 1.1 and the gauge invari-
ance of the current. O
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A A density matrix with a strong current

We want to prove that it is necessary to use something like our commutator
argument in order to calculate the current. Therefore we will produce an
example of a density matrix v that gives the right energy to highest order -
but gives a current of too high order.
We will work with yuh = 1 ie u = h~! and will only look at one spin
component i.e.
H = (—ihV + pA)? — ph + V().

Lemma A.1. There exists a potential V(z) € C(R®) and a test function
& = (¢1,$2,0) € C°(R®) together with a density matriz i.e. an operator -y
satisfying 0 < v < 1 such that

tr[Hn] = By + 0(%),

and

h2

I\tr[J(uaﬁ)vH — 00,
as h — 0.

Thus the lemma says that a density matrix that gives the right energy
does not necessarily give the right current. This is unlike the situation for
the density, since it is easy to prove that a density matrix that gives the right
energy also gives the right density.

The trial density matrix v will be constructed as a perturbation of the
density matrix used in [LSY94]. The key to the construction is the following:
The current operator - as opposed to the energy operator (the Hamiltonian)
- mixes the Landau levels. In fact, the main part of the current operator
does not respect the Landau levels - the part that does is much smaller?.
Thus, a density matrix that gives the right energy but contains a small part
which mixes neighboring Landau levels should have too large a current. As
the proof below shows this turns out to be the case.

Proof. Let us choose V € C§°(R?), which satisfies [V (x)]_ = 10 for all z €

B(0,2). We will choose a test vector ¢ = (é1, ¢2,0), which is supported in
B(0,1).

2This can be seen from the commutator formula
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The density matrix 4" constructed in [LSY94] is

= 1
o = Z %/ M (v, u, p)II(v, u, p) dudp,
v=1

where M (v,u,p) is the characteristic function of the set (in (N; U {0}) x

R, xR;)
{(v,u,p)[2vph + B?p* +V (x) < 0},

and where II(v, u, p) is an operator with kernel

(v, u, p)(z,y) = gr(z — w)TP (z,y,)eP=8) g, (y — u).

In this last expression g, is a localisation function g,(z) = r=3/2g(x/r), 0 <
g € CP(R?), [¢> =1and r = h'~® for some 0 < o < 1. Furthermore,

I$?(z.,y.) is the (two-dimensional) integral kernel of the projection to the
v-th Landau level:

—

uB
H,(/Q)(iUL,yL) 2'uhexp{z(xL><yL) oh | L—Zlﬂ 4h}L (| L—Z/L| Qh)

where we have written z € R* as (z,,x)), with 2, L B and x” | B. Fur-
thermore, L, are Laguerre polynomials normalised by L, (0) =

Let now M be the characteristic function of B(0,1), x [-h™!, h7!],, and
write

—e/ M (u, p)TI(u, p) dudp,
where € — 0 as h — 0 and where
I(u,p)(z,y) = g:(¢ — u) P(z1,y1)e"* Wy, (y — u).
In this final expression P is the operator
P =1 + 1 all?,

witha =ps;,—ipz,,a" = p;,+ip;, being the raising and lowering operators
that define the Landau levels. ’
We finally define v = +' 4+ 4. Since the operator P satisfies (remember
ph=1)
—e(IIP + 1Y) < P < (1L + 117,
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it is easy to see that 0 < ~ for sufficiently small e. In order to get v < 1
we should multiply by a factor 1%6’ where § — 0 as h — 0. We will not do
this, since it will not affect order of magnitude estimates and only obscure
notation.

We need to calculate

tr[Hvy] = Eg¢ + tr[H7],

and .
tr[h ! Ty ()7]-

Notice, that since 7y gives the right density to highest order, we do not need
to calculate the spin current i.e. tr[uhbs7y|, since we know this to be of order
#5 once we have proved that 7 gives the right energy. Furthermore, we may
assume that +' does not satisfy the requirements of the lemma - if it does we
do not have to construct anything.

The energy:

tr[HA] = € / / N (u, p)tr[HTI(u, p)] dudp.
we use the AMS-localisation formula:
29p%9 — (0%9° + 9°v%) = [l9, %], 9)-
Let us first look at the potential energy:
tr[VII(u,p)] = trlg, (- — w)V P).

This is small (i.e o(u/h)) since HgZ)fH(()Q) is small for f € C§° (see Lemma
A.2 below). For the kinetic energy term we get:

tr(p% — ph)1(u, p)]
(P%97 (- — u) + g2 (- — u)p’ — 2uh) P + 2[[g, (- — u), p%], 9:(- — u)]P)
tr (4phg?(- — u)P + 2h*(Vg, (- — u))*P).

This term is small for the same reason as above. Thus we may choose € to
go to zero slowly with h - for definiteness let us take € = [logh|™!.
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The current:
In order to calculate the current we write

tr[Jp(#)7] = 2Rtx[$(—ihV + pA)7).
so we only need to consider

—ihV + ,uA) ol
= / M (u, p)tr[¢(—ihV + pA)(u, p)] dudp

= . / M (u, p)trld(—ihV g, (- — w)) Pgy(- — w)] dudp
e / N (u, p)x{Bgr (- — w) (—ihV + pA) Py (- — )] dudp

Since H§-2) fﬂg) is small when j # k, f € C§°, we get that the highest order
contribution comes from a part of the second term, namely:

. . (a+a*)/2
¢ / VI (u, p)trln (- — ) <a*—3>/(2z‘> P, (- — u)] dudp

wh uh
/ M (u, p)tr[g?(- — u) iph +<; —iph | TI? | dudp.
0 0

If we remember that uh = 1 and choose ¢ = 0 we can calculate the trace
as:

/ M (u,p)g?(x — u)py(x )( (:EJ_,IJ_)—i—H( )(:rL,xL)) dxdudp

- & / W, p)g2(x — ) () dardudy

B / dp /| L [ 75w = W (e) ded

N — x)dx.

7rh2 / ¢1(z)
If we remember that this term has to be multiplied by A ! it is easy to see
that we have reached our aim. O
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Lemma A.2. Let ¢ € C3(R?), then

I, Gllsz2) < Civ/Bl| VYoo,

where the norm of the operator on the left is the operator norm as a bounded
operator in L?.

Proof. We use Schur’s Lemma i.e. the following bound on the norm of an
integral kernel:

I )y < maxtsup [ 1K@, dysup [ 1K (@) do)
x y

The integral kernel K (z,y) of [II”, ¢] is

K(e,0) =1 0,0)(60) ~9(e) = 17 0,0) [ (0-2)- Vi +ly ) .
So we estimate:
[ 1K@ wldy < 196l [ 1 (e w)lla =yl dy
— [90ll/bn [ 112 ,3) /bl = o] dy

Now we use the fact that HS-Z) (z,y) = f(\/u/h(x — y)), where f has expo-
nential decay, to bound the last integral uniformly in x. It is easy to see that
the above estimate works equally well for sup,, [ |K(z,y)| dz. O
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