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may be considered while on a medium scale of magni�cation the variation in
cell nuclear size is an important feature. At high magni�cation the shape,
size and colour of each single nuclei are studied. Stereological techniques
may be used to determine the size of nuclei, cf. e.g. S�rensen (1991) and
Jensen (1998). The remaining parameters are, however, usually subjectively
estimated by the pathologists without using any quantitative methods. The
pathologists' opinions may di�er, and particularly in the cases where the
malignancy is in an intermediate stage this leads to di�erent grading. In
order to make precise diagnoses there is therefore a need for supplementary
methods, which may objectively quantify important features at each scale of
magni�cation. This paper presents a method of describing stochastic changes
of the shape of solid objects in the plane with no obvious landmarks. The
method is applied to nuclear pro�les, obtained by sectioning normal tissue
and cancer tissue from the human skin.

The basic idea is to model an observed planar curve F = fF (t) : 0 �
t � Tg, which is the boundary of a solid object, as a stochastic deformation
of a non-random closed template curve C = fc(t) : 0 � t � Tg. One of the
stochastic geometry models considered takes the form

F (t) = c(t) +X(t)!(t); 0 � t � T;

where !(t) is the inner unit normal vector to C at c(t), cf. Figure 1. Note
that X(t) is the signed distance between F (t) and c(t), and may therefore
be regarded as a residual. The challenge is to model the residual process
fX(t) : 0 � t � Tg.

We will assume that the residual process is distributed as

fTX1(t=T ) : 0 � t � Tg;
where the distribution of the 'normalized' process fX1(t) : 0 � t � 1g belongs
to a parametrized class P = fP� : � 2 �g of distributions of cyclic and
stationary stochastic processes with zero mean. Since the curves considered
are closed, the residual process should be cyclic. In the application, the
residual process is assumed to be Gaussian with zero mean and with a second-
order Markov property. Recall that a Gaussian process fX(t)g with zero
mean is stationary if and only if the covariance between X(t) and X(s)
depends on (t; s) through s � t only. Stationarity is a natural requirement
when the object has no obvious landmarks and hence no reference point.

Note that under translations, rotations and rescaling in the plane, the
normalized process fX1(t) : 0 � t � 1g remains unchanged. Therefore, this
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Figure 1: The observed curve is a realisation of a stochastic deformation of
a template.

process describes the stochastic changes in curve shape of the observed curve
F relative to the template curve C, and the changes can be quanti�ed by es-
timating the parameter of the distribution P� of the normalized process. One
of the major advantages of this continuous type model is its independence
from the need to specify the number of landmarks.

The idea of describing objects such as potatoes, cells, hands or leaves
as deformations of a template has been advocated by Ulf Grenander. His
work on pattern theory has been collected in Grenander (1993). In the
above mentioned examples the template is a closed polygon, representing the
outline of a typical object. Grenander and Manbeck (1993) use a discretized
ellipse with �xed eccentricity as template in an application concerning defect
detection in potatoes. In order to determine whether an object has the shape
of a potato, the angles of the edges of the discretized object are compared with
the angles of the edges of the template. In our model a similar comparison
naturally occurs when we consider the derivative of the residual process.

In Rue and Syversveen (1998), a procedure for identifying cells in a digital
image is developed. Their prior model is an example of a stochastic geometry
model. The template curve C is a circle with a radius r, and the residual
process

fX(t) : 0 � t � 2�r = Tg

is a cyclic and stationary Gaussian process with zero mean, variance r2�2
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and correlation function

�(h) =

8<
:
e��h=T cos(4�h=T ); 0 � h � T=2;

�(T � h); T=2 � h � T;

where � > 0.
Kent et al: (1996) consider multivariate normal models for edges and

vertices of a closed polygonal outline in the plane. The inverse covariance
matrix is a circular matrix with a �rst-order Markov property. They describe
the limiting behaviour when the vertices become closely spaced. We extend
this approach to the case where the inverse covariance matrix is a circular
matrix with a second-order Markov property. This turns out to be a better
choice for our purpose. The general second-order model, described in the
Appendix of the present paper, contains as a special case a second-order
model suggested by Grenander (1993).

Kass et al: (1988) provide through the theory of snakes a way of perform-
ing boundary detection in an image. A snake is a curve in an image which
minimizes a certain energy functional. In our set-up F is the snake while
C can be regarded as a template snake. A very �rst choice of the energy
functional could take the form

E?snake =
Z T

0
(�X(t)2 + �X 0(t)2 + Eimage(t))dt; �; � > 0: (1)

The �rst term represents an external constraint energy, which forces the snake
to have a shape similar to the template snake. The next term represents an
internal energy and makes the snake smooth. The last term connects the
snake to the image. A simple image energy functional could be

Eimage(t) = �I(F (t)); 0 � t � T;

where I(x) is the intensity of the image at the position x. Depending on the
sign of � the snake is attracted to either black or white pixels. This approach
is very similar to a Bayesian algorithm for object detection with the �rst-
order Markov model described in Section 4.1 below as the prior model.

In Section 2 the data is described, and an ellipse is �tted to each of the
objects. In Section 3 the stochastic geometry models are presented, and some
geometrical characteristics of the residual process are explored under these
models. In Section 4 we consider �rst- and second-order Markov models for
the residual process, and they are �tted to the data in Section 5. Finally in
Section 6 we discuss further properties of the models considered in Section 4
and consider topics for future work.
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2 The data

The data set consists of 27 nuclear pro�les from a malignant tumour and 27
nuclear pro�les from a benign tumour of the human skin. The silhouettes
were drawn by hand directly from the microscope screen. The data have
previously been analysed with respect to size and variability of size in Jensen
and S�rensen (1991) and S�rensen (1991).

By visual inspection the nuclear pro�les were smoothed and rescaled such
that an area of approximately 75,000 pixels was obtained for each pro�le, cf.
Figure 2. As may be seen from Figure 2, nuclear pro�les from the malignant
tumour appear to be less smooth than those from the benign tumour.

Figure 2: The nuclear pro�les after scaling and smoothing. The upper panel
is from the malignant tumour while the lower is from the benign tumour.

Prior to any analysis it is necessary to identify the boundary of each
nuclear pro�le and to generate an ordered list of pixels on the boundary and
their positions. We will now describe the algorithm we used for this job. A
boundary pixel is a pro�le pixel having as one of its 8 neighbours a pixel
from outside the pro�le. The algorithm starts at one of the boundary pixels
and searches for another in the directions shown in Figure 3. Having found a
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boundary pixel in direction i, say, the algorithm proceeds as follows. If a new
boundary pixel is found in direction i, then direction i is maintained as the
search direction. Otherwise direction (i+1 mod 16) is applied, and if it leads
to a boundary pixel, it is the new search direction. Otherwise direction (i-1
mod 16) is applied etc., cf. Figure 3. This procedure led to around 350-400
ordered boundary pixels for each pro�le.

Figure 3: The 16 search directions and an example of the algorithm.

As a �rst analysis we �tted an ellipse to each of the pro�les, using n = 50
(approximately) equidistant points (x1; : : : ; xn) 2 R2n on the boundary of the
pro�le. Let C = C(a; b; �; x0; y0) be an ellipse with semi-axes a; b, orientation
� and center (x0; y0), and denote by ci(a; b; �; x0; y0) the point on C closest to
xi, i = 1; : : : ; n, cf. Figure 4. The �tted ellipse was then determined as that
having parameter values (a; b; �; x0; y0) that minimizes

nX
i=1

jxi � ci(a; b; �; x0; y0)j2;

where j � j is Euclidean norm. The minimum can be found by standard
numerical recipes. We also experimented with values of n larger than 50 and
observed only minor changes in the estimated parameter values.

In Figure 5 we have plotted the ratio between the minor axis and the
major axis of the �tted ellipses of the pro�les. It is clear, that even though
the ratios of the benign tumour pro�les appear to have a wider range, there
is no signi�cant di�erence between the two samples. Therefore, a study of
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Figure 4: The �tted ellipse minimizes the sum of squares of the indicated
distances. Left: An initial �t. Right: The �tted ellipse.

the residual process is needed in order to describe the di�erence in shape of
the two samples.

Figure 5: The ratio between the minor axis and the major axis of the �tted
ellipses of the pro�les. The upper points are from the pro�les from the
malignant tumour while the lower points are from the pro�les from the benign
tumour.

3 Stochastic geometry models for

random curves

When modelling featureless objects using templates some of the frequently
posed questions concern the choice, matching and number of landmarks. We
propose a model where the observed curve F is matched to the template
curve C by a perpendicular projection. A continuous type description makes
it possible to study how the parameters of the �nite-dimensional distributions
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depend on the number of landmarks. There are several ways of choosing the
landmarks. In Model I below we parametrize C by arc length, which in
the application corresponds to choosing the landmarks equidistantly on C.
In Model II we take the reverse approach and parametrize F by arc length.
Thinking of F as a deformation of C, Model I is perhaps the most appropriate.
One disadvantage of Model I is, however, that curve segments from F which
are close to being perpendicular to C are undersampled. This is obviously
not the case for Model II.

3.1 Model I

The observed curve F = fF (t) 2 R
2 : 0 � t � Tg is assumed to be a

realization of a stochastic process

F (t) = c(t) +X(t)!(t); 0 � t � T: (2)

Here, C = fc(t) 2 R2 : 0 � t � Tg is a non-random closed (c(0) = c(T ))
smooth curve in the plane parametrized by arc length. Furthermore, !(t) is
the inner unit normal vector to C at c(t); 0 � t � T; and

fX(t) 2 R : 0 � t � Tg

is a real-valued cyclic and stationary stochastic process with zero mean. The
process fX(t)g models the deviations between the observed curve F and the
expected curve C. We will call fX(t)g the residual process.

Note that the construction (2) puts some restrictions on how 'wild' the
random curve F may look. Thus, each point c(t) 2 C generates exactly
one point on the random curve, positioned on the line c(t) + spanf!(t)g. In
particular, if C is a circle with center e and radius r and X(t) � r, then
F will be the boundary of a random set which is star-shaped relative to e.
In Figure 6, an example of a curve, which cannot be generated by (2), is
shown.

The model is closed under translations and rotations in R2. Under such
transformations, the curve C will be translated and rotated correspondingly,
whileX(t) is una�ected. The model is also closed under scale transformations
in R2

(x; y)! �(x; y) = (�x; �y); � > 0:
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Figure 6: An example of a curve, which cannot be generated by (2).

Thus, parametrizing the rescaled curve �C by arc length and letting c�(t) =
�c(t=�); we have

�C = fc�(t) : 0 � t � �Tg:
Furthermore, if we likewise de�ne F� and X�, but let !�(t) = !(t=�), the
equation for the scale-transformed process becomes

F�(t) = c�(t) +X�(t) � !�(t); 0 � t � T�;

where T� = �T .
The features of the model (2) which are invariant under changes in loca-

tion, orientation and scale are thus the shape of C and the distribution of the
process

X1(t) = X(Tt)=T; 0 � t � 1:

The latter process will be called the normalized residual process.
In order to analyze the model (2) we need to �nd, for selected values of

t 2 [0; T ], the point F (t) on the line c(t) + spanf!(t)g. If the 
uctuations
of F (t) around c(t) are not too large, then F (t) is expected to be the point
on c(t)+ spanf!(t)g which is nearest to c(t). In Figure 7, an example of too
large 
uctuations is shown.

The process fX(t)g and its derivatives (if they exist) contain interesting
geometric information about the di�erence between the random curve F (t)
and its expectation c(t).
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Figure 7: The 
uctuations of F (t) around c(t) are large.

Proposition 1 Suppose that X(t) is di�erentiable. Let C be orientated anti-
clockwise. Furthermore, let �F (t) and �C(t) be the angles that F 0(t) and c0(t)
make with a �xed axis, respectively. Then,

X 0(t) = tan	(t)(1� �C(t)X(t)); (3)

where 	(t) = �F (t)� �C(t) and �C(t) is the curvature of C at c(t).

Proof. Using that

F (~t) = F (t) + F 0(t)(~t� t) + oF (~t� t)

c(~t) = c(t) + c0(t)(~t� t) + oC(~t� t)

we �nd that

2X(t)X 0(t) = (X(t)2)0

= lim
~t!t

X(~t)2 �X(t)2

~t� t
= 2 < F (t)� c(t); F 0(t)� c0(t) >;

10



where < �; � > is Euclidean inner procuct. Therefore,

X 0(t) = <
F (t)� c(t)

X(t)
; F 0(t)� c0(t) >

(?)
= <

F (t)� c(t)

X(t)
; F 0(t) > (4)

= <
F (t)� c(t)

X(t)
;
F 0(t)

jF 0(t)j > jF
0(t)j;

where at (?) we have used that c0(t) ? F (t)� c(t).
Since C is parametrized by arc length, jc0(t)j = 1 and

c0(t) = (cos �C(t); sin�C(t)):

It follows that

c00(t) = �0C(t)(� sin�C(t); cos�C(t)) = �C(t)!(t):

Using that

F 0(t)

jF 0(t)j = (cos�F (t); sin�F (t))

we therefore �nd

<
F (t)� c(t)

X(t)
;
F 0(t)

jF 0(t)j >= sin(�F (t)� �C(t)):

On the other hand,

< c0(t);
F 0(t)

jF 0(t)j >= cos(�F (t)� �C(t)) (5)

and rewriting the left-hand side of (5)

< c0(t);
F 0(t)

jF 0(t)j > =
1

jF 0(t)j(< c0(t); c0(t) > + < c0(t); F 0(t)� c0(t) >)

=
1

jF 0(t)j(1� < c00(t); F (t)� c(t) >)

=
1

jF 0(t)j(1� �C(t)X(t));

(3) follows immediately. �
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Note that if the variance of X(t) is small then �F (t) � �C(t) is also
expected to be small and

X 0(t) � �F (t)� �C(t)

can be approximated by the process of angular di�erences. These di�erences
have been considered in a discrete set-up by Grenander and Manbeck (1993).
If X(t) is twice di�erentiable, then under the same assumption

X 00(t) � �0F (t)� �0C(t) = jF 0(t)j�F (t)� �C(t) � �F (t)� �C(t):

3.2 Model II

As an altervative, we may take a reverse approach and parametrize F by
arc length. The idea is then to construct F from a residual process fX(t) :
0 � t � Tg such that X(t) is the signed distance from F (t) to C and the
parameter t represents arc length on F . It is evidently also necessary in order
to start the construction to specify a point c 2 C such that F (0) has signed
distance X(0) to C.

Notice that it is not always possible to construct F in this way. As
a simple example, suppose that C is a circle of radius r. Then, to avoid
pathological cases we must assume X(t) � r. Furthermore, for small � > 0,
we also need

jX(t+ �)�X(t)j � �;

cf. Figure 8. In particular, if X(t) is di�erentiable, then jX 0(t)j � 1.
Note that as under Model I, the 'shape features' of Model II are the shape

of C and the distribution of the normalized process fX(Tt)=T : 0 � t � 1g.
Similarly to the case where C is parametrized by arc length, the process

X 0(t) can be approximated by the process of angular di�erences.

Proposition 2 Suppose that X(t) is di�erentiable. Let C be orientated anti-
clockwise. Furthermore, let �F (t) and �C(t) be the angles that F 0(t) and c0(t)
make with a �xed axis, respectively. Then,

X 0(t) = sin	(t);

where 	(t) = �F (t)� �C(t).
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Figure 8: Illustration of the condition on X(t).

Proof. Since F is parametrized by arc length, jF 0(t)j = 1 and

F 0(t) = (cos �F (t); sin�F (t)):

Using that

c0(t)

jc0(t)j = (cos�C(t); sin�C(t)) ? !(t)

we see that

!(t) = (� sin�C(t); cos�C(t)):

The proposition now follows from (4). �

4 Statistical inference

We will assume that the normalized residual process fX1(t) : 0 � t � 1g
has a distribution belonging to a parametrized class of cyclic and stationary
Gaussian processes with zero mean. In what follows we will omit the index
1 which should not cause any confusion.

There are as many choices of classes of Gaussian processes as there are
parametrized classes of covariance functions. We will here concentrate on
classes, having the property that the �nite-dimensional (multivariate normal)
distributions have a simple parametric form.
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4.1 First-order Markov model

One such class which has been suggested, among others, by Grenander (1993,
p. 476) and Kent et al: (1996) has the property that the �nite-dimensional
distributions have a �rst-order Markov property, approximately.

This class is characterized by the fact that X(t) has zero mean, variance
� 2 and correlation function

�(h) = �(X(t);X(t+ h)) =
e(h�1=2)� + e�(h�1=2)�

e�=2 + e��=2
; 0 � h � 1; � > 0:

(6)

Note that the correlation �(h) is always positive and it is a decreasing function
on the interval [0; 1=2]. Note also that �(h) = �(1 � h) which is a general
property of cyclic and stationary processes on [0; 1]. The minimal correlation
is

�(1=2) =
2

e�=2 + e��=2

and can range from 0 to 1, cf. Figure 9.

Figure 9: Correlation functions for the �rst-order Markov model for di�erent
values of �.

In the proposition below, it is shown that the �nite-dimensional distribu-
tions of fX(t)g have a �rst-order Markov property, approximately. One of
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the reasons why this result is important is that then the �nite-dimensional
distributions have a simple form, approximately, and from the corresponding
likelihood functions it is easy to estimate the parameters of the model.

Recall that a multivariate normally distributed random vector

(X0; : : : ;Xn�1) � Nn(0;�) (7)

is said to be Markov with respect to a graph with vertices f0; 1; : : : ; n� 1g
if for i; j 2 f0; 1; : : : ; n� 1g

i 6� j ) Xi ? Xj jfXk : k 6= i; jg: (8)

Here, i 6� j indicates that i and j are not neighbours in the graph and the
right-hand side of (8) indicates that Xi and Xj are conditionally independent
given the remaining coordinates, cf. Lauritzen (1996). Furthermore, it can
be shown that the conditional independence in (8) is valid if and only if
(��1)ij = 0, cf. Lauritzen (1996, p. 129). The random vector (7) is said to
have a �rst-order Markov property if it is Markov with respect to the cyclic
graph, which is given by

i � j , i = j � 1; j + 1 mod n: (9)

We are now ready to formulate the proposition. For a n � n circular
matrix fbijgn�1i;j=0 we use the notation circl (a0; a1) if

bij =

8>><
>>:

a0 i = j

a1 i = j � 1; j + 1 mod n

0 otherwise:

Proposition 3 Let fX(t)g be a cyclic and stationary Gaussian process with
zero mean, variance � 2 and correlation function (6). Furthermore, let fX(n)(t)g
be the cyclic Gaussian process de�ned by

X(n) = (X(n)(t0); : : : ;X
(n)(tn�1)) � Nn(0;�n);

ti = i=n; i = 0; : : : ; n � 1; with linear interpolation between ti and ti+1, and
with X(n)(0) = X(n)(1). Here, �n is the regular n� n matrix with inverse

��1n = circl (�=n+ 2�n;��n); �; � > 0: (10)

15



Then, X(n) is �rst-order Markov and fX(n)(t)g converges weakly to fX(t)g.
The 1-1 correspondence between (� 2; �) and (�; �) is

�2 = �=� � 2 =
e�=2 + e��=2

2��(e�=2� e��=2)
:

A proof of Proposition 3 may be found in Grenander (1993, p. 476-480). It
follows immediately from the form of ��1n that X(n) is �rst-order Markov.

It can be shown, using Lauritzen (1996, (5.11)), that

�(X(n)(ti);X
(n)(tj)jX(n) n fX(n)(ti);X

(n)(tj)g)

=

8>>><
>>>:

1 i = j
1

(�=n)2+2
i = j � 1; j + 1 mod n

0 otherwise:

The parameters � 2 and � contain, under the model given in Proposition 3,
the information about the deviation of the random curve shape from C, cf.
Section 3. The parameter � 2 is a measure of the overall di�erence while �
regulates the smoothness of the random curve. The smaller the value of �,
the smoother the curve, cf. Figure 10.

Estimation of the parameters (� 2; �) or equivalently (�; �) can be done
by an approximate likelihood analysis. Let

Xn = (X(t0); : : : ;X(tn�1)):

Then, because of Proposition 3, we can approximate the distribution of Xn

with that of X(n) and use the simpler approximate likelihood

Ln(�; �) = (2�)�n=2det(��1n )1=2 exp(�1

2
X�

n�
�1
n Xn);

where ��1n is given by (10). Denoting the eigenvalues of ��1n by �i; i =
0; : : : ; n� 1; we get the log likelihood

ln(�; �) = �n
2
log(2�) +

1

2

n�1X
i=0

log(�i)� 1

2
X�

n�
�1
n Xn:

The actual form of the eigenvalues is given in the Appendix. The maximum
of ln(�; �) can be found by standard numerical methods. Usually, it will be
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Figure 10: Simulations from the �rst-order Markov model for di�erent values
of � and � 2. We have simulated from Model I, cf. Section 3.1, with C taken
to be an ellipse.

a good idea to estimate � and � for a collection of values of n and as a model
check investigate whether the estimation is stable. Given that the model is
suitable it appears to be a good idea to base the estimation on an n as large
as possible.

Note that

X�

n�
�1
n Xn = �

1

n

n�1X
i=0

X(ti)
2 + �

1

n

n�1X
i=0

(
X(ti)�X(ti�1)

1=n
)2

= �Yn + �Zn;

say. The su�cient statistics (Yn; Zn) have a nice geometrical interpretation.
Thus, Yn is a discrete measure of the distance between the observed and the
expected curve while Zn compares local orientation,

Zn =
1

n

n�1X
i=0

f(	i)
2;

where 	i = �Fi
��ci , and �Fi

and �ci are the angles that the line segments
F (ti)� F (ti�1) and c(ti)� c(ti�1) make with a �xed axis, respectively. Fur-
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thermore, f=tan or sin, depending on whether X(t) has been constructed
using Model I or II of Section 3. Note also the connection betweenX�

n�
�1
n Xn

and the sum of the external and internal energy from the theory of snakes,
cf. (1).

4.2 Second-order Markov model

In Grenander (1993, p. 484) a model class with an approximate second-order
Markov property is suggested. This class is characterized by the fact that
fX(t)g has mean zero, variance � 2 and correlation function

�(h) =
( 2 3 +  1 4) 1(h) 3(h) + ( 2 3 �  1 4) 2(h) 4(h)

 1 2 +  3 4
; (11)

 > 0; 0 � h � 1;

where we use the notation

 1(h) = cos( (h� 1=2))  2(h) = sin( (h� 1=2))

 3(h) = cosh( (h� 1=2))  4(h) = sinh( (h� 1=2))

 i =  i(1); i = 1; : : : ; 4:

The explicit form of the correlation function is not given in Grenander (1993),
but can be derived from the spectral density of X(t), as demonstrated in the
Appendix. Note that the correlation function only depends on  .

In Grenander (1993, p. 484), it is mentioned that the �nite-dimensional
distributions of X(t) have a second-order Markov property, approximately.
Recall that a multivariate normally distributed random vector

(X0; : : : ;Xn�1) � Nn(0;�)

has a second-order Markov property if it is Markov with respect to the second-
order cyclic graph, which is given by

i � j , i = j � 2; j � 1; j + 1; j + 2 mod n:

The result by Grenander is formulated in the proposition below. For a n�n
circular matrix fbijgn�1i;j=0 we use the notation circl (a0; a1; a2) if

bij =

8>>>>><
>>>>>:

a0 i = j

a1 i = j � 1; j + 1 mod n

a2 i = j � 2; j + 2 mod n

0 otherwise:
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Figure 11: Correlation functions for the second-order Markov model for dif-
ferent values of  .

Proposition 4 Let fX(t)g be a cyclic and stationary Gaussian process with
zero mean, variance � 2 and correlation function (11). Furthermore, let
X(n)(t) be constructed as in Proposition 3, but with

��1n = circl (�=n + 6
n3;�4
n3; 
n3); �; 
 > 0: (12)

Then, X(n) = (X(n)(t0); : : : ;X(n)(tn�1) is second-order Markov and fX(n)(t)g
converges weakly to fX(t)g. Here, the 1-1 correspondence between (� 2;  ) and
(�; 
) is

4 4 = �=
 � 2 =
 

2�

 1 2 +  3 4

( 2 3)2 + ( 1 4)2
:

The correlation structure of X(n), from which the second-order Markov
property follows, is given by

�(X(n)(ti);X
(n)(tj)jX(n) n fX(n)(ti);X

(n)(tj)g)

=

8>>>>>><
>>>>>>:

1 i = j
1

( =n)4+3=2 i = j � 1; j + 1 mod n

� 1=4
( =n)4+3=2 i = j � 2; j + 2 mod n

0 otherwise:
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As in the �rst order case the parameter � 2 is a measure of the overall di�er-
ence, while  regulates the smoothness of curve, cf. Figure 12.

Figure 12: Simulations from the second-order Markov model for di�erent
values of  and � 2. We have simulated from Model I, cf. Section 3.1, with C
equal to an ellipse.

Similarly to the �rst-order case we can estimate the parameters by an
approximate likelihood analysis. In this case

X�

n�
�1
n Xn = �

1

n

n�1X
i=0

X(ti)
2 + 


1

n

n�1X
i=0

(
X(ti)� 2X(ti�1) +X(ti�2)

(1=n)2
)2

= �Yn + 
Vn:

Vn can be interpreted geometrically as a discrete measure of the change in
local orientation

Vn =
1

n

n�1X
i=0

(
f(	i) � f(	i�1)

(1=n)2
)2;

where f and 	i are de�ned as in the �rst-order case.
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5 The application

For each nuclear pro�le we calculated the boundary length T and considered
the n = 50 points

(F (Tt0); : : : ; F (Ttn�1)); ti = i=n; i = 0; : : : ; n� 1;

collected (approximately) equidistantly on the boundary of the nuclear pro-
�le. For C we chose the ellipse from Section 2. This is the set-up in Model
II, cf. Section 3.2. The reason for preferring Model II to Model I was that
Model II was expected to be a more sensitive tool for distinguishing between
the pro�les from the malignant and the benign tumour.

Now consider the corresponding n observations from the normalized resid-
ual process

Xn = (X(Tt0); : : : ;X(Ttn�1))=T; ti = i=n; i = 0; : : : ; n � 1:

In Section 4, we have presented two models for the normalized residual pro-
cess. Our initial model was a general second-order Markov model

M0 : Xn � Nn(0;�n);

where

��1n = circl (�=n + 2�n+ 6
n3;��n� 4
n3; 
n3); � > 0; �; 
 � 0;

see also the Appendix. For all the pro�les, we estimated the covariance
matrix, using the ellipses �tted in Section 2. For some of the pro�les, the
ellipse and the covariance were also estimated simultaneously. The ellipses
�tted in this way did only di�er slightly from those determined in Section 2.

To see whether the �rst- or second-order Markov model from Section 4
could be used we investigated the two hypotheses

H1 : 
 = 0 H2 : � = 0;

with corresponding models M1 and M2. Let Li be the maximized likelihood
under the model Mi. We then tested whether Mi; i = 1; 2; was a reasonable
simpli�cation of M0 by performing the usual likelihood ratio test

�2 log(Li=L0) � �2(1):
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The test probabilities for H1 lay in the range 0%-1%, and for H2 in the range
95%-100%. Hence the second-order Markov model with � = 0 described in
Section 4.2 was the most appropriate. Since the nuclear pro�les look like the
ones simulated in Figure 12 this was of course not surprising.

Figure 13 shows the estimators of (�; 
) under the model M2. Note that
it is possible to distinguish between the two samples.

Figure 13: The estimators of (�; 
) under the model M2. The white nuclei
are from the malignant tumour while the black nuclei are from the benign
tumour.

To verify that the estimators do not depend on the number n of land-
marks, we �tted the model for landmark numbers between 30 and 90. From
Figure 14 it is clear, that the estimation is stable.
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Figure 14: The estimators of log � 2 and log for di�erent numbers of land-
marks.

6 Discussion

The smoothness of the sample paths of the residual process is an important
topic when constructing realisticmodels. It follows from (16) in the Appendix
below that the processes considered in Sections 4.1 and 4.2 have a spectral
density of the form

(�+ �(2�s)2)�1 s = 0; 1; : : : (13)

(�+ 
(2�s)4)�1 s = 0; 1; : : : ; (14)

respectively. Since (13) decreases as 1=s2 and (14) decreases as 1=s4 the
sample paths of the �rst type of process are continuous, while the sample
paths of the second type are continuously di�erentiable, cf. Cramer and
Leadbetter (1967, p. 181). For each nuclear pro�le it seems natural to
assume that the observed curve F is di�erentiable, and since the expected
curve C is in�nitely often di�erentiable the model from Section 4.2 appear
to be the most appropriate in our application, also from the point of view of
smoothness.

The model presented in 2 dimensions has a natural extension to 3 dimen-
sions. An observed surface F = fF (t) : t 2 
 � R2g is again assumed to be
a stochastic deformation of an expected surface C = fc(t) : t 2 
 � R2g, so
that

F (t) = c(t) +X(t)!(t); t 2 
 � R2:
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As in 2 dimensions !(t) represents an outer unit normal vector to C at c(t).
Suppose we observe

Xn = (X(t0); : : : ;X(tn�1)); ti 2 
; i = 0; : : : ; n� 1:

A natural model would then be to let Xn have a multivariate distribution
with zero mean and a covariance matrix with entries

cov(X(ti);X(tj)) = � 2�(dC(ti; tj)):

Here, dC(ti; tj) is the distance on the surface between c(ti) and c(tj). The
di�cult part is to �nd an appropriate correlation function. In this paper we
have considered two possibilities as described in Section 4.1 and Section 4.2.

Another and much more simple approach would be to remain in 2 di-
mensions by placing a random plane through the center of the nucleus. An
analysis similar to the one described in the present paper could then be
carried out.

Consider again the normalized residual process fX1(t) : 0 � t � 1g.
Instead of having zero mean a mean value of the residual process given by
either

�1(t) = �1 cos(6�t+ !1); 0 � t � 1;

or

�2(t) = �2 cos(8�t+ !2); 0 � t � 1;

or a sum of �1(t) and �2(t) would allow for a systematic variation from the
shape of an ellipse. Still modelling the correlation structure by the second-
order Markov property it might be even more easy to distinguish between
the two samples.
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Appendix

In this appendix we will derive the explicit form (11) of the correlation func-
tion for the second-order model. We will use an approach such that we at
the same time derive �(h) for the �rst-order model, cf. (6).

Thus, consider the matrix

��1n = circl (�=n + 2�n+ 6
n3;��n� 4
n3; 
n3); � > 0; �; 
 � 0:

For v = (v0; : : : ; vn�1) 2 Rn we have that

v��1n v� = �=n
n�1X
i=0

v2i + �n
n�1X
i=0

(vi � vi�1)
2 + 
n3

n�1X
i=0

(vi � 2vi�1 + vi�2)
2;

where v�1 = vn�1 and v�2 = vn�2. Therefore, ��1n is positive de�nite. Note
that 
 = 0 is the case treated in Proposition 3 and � = 0 is the case treated
in Proposition 4.

Since ��1n is circular we have that �n is also circular. The eigenvalues of
��1n are given by, cf. Anderson (1958, p. 280, 282),

�s = (�=n + 2�n+ 6
n3)� (�n+ 4
n3)2 cos(2�s=n) + 
n32 cos(4�s=n);

with corresponding orthonormal (complex) eigenvectors us; s = 0; : : : ; n� 1;
where

(us)l = e2�lsi=n=
p
n; l = 0; : : : ; n� 1:

Note that u0 = (1; : : : ; 1)=
p
n. Let

� = diag(�0; : : : ; �n�1) and U =

0
BB@
u0
...

un�1

1
CCA :

Then, we have for l = 0; 1; : : : ; n� 1 that

(�n)l;0 = (U��1U
�
)l;0 =

n�1X
s=0

1p
n
(U��1)l;s

=
n�1X
s=0

e2�lsi=n

n�s
=

n�1X
s=0

cos(2�ls=n)

n�s
: (15)
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Now, we will study a sequence X(n)(t) of cyclic Gaussian processes, con-
structed as in Propositions 3 and 4. Thus, let

(Xn0; : : : ;Xn(n�1)) � Nn(0;�n)

and de�ne a continuous process fX(n)(t) : 0 � t � 1g by

X(n)(j=n) = Xnj j = 0; : : : ; n� 1;

with linear interpolation in between, and with X(n)(0) = X(n)(1). Using
(15), we �nd the following expression for the covariance between X(n)(0) and
X(n)([nh]=n); 0 � h < 1;

Cov(X(n)(0);X(n)([nh]=n)) = Cov(Xn0;Xn([nh])) =
n�1X
s=0

cos(2�[nh]s=n)

n�s
:

Assuming that at least one of the parameters � and 
 is positive, we obtain,
using dominated convergence,

lim
n!1

Cov(X(n)(0);X(n)([nh]=n)) =
1

�
+ 2

1X
s=1

cos(2�hs)

�+ �(2�s)2 + 
(2�s)4
: (16)

By construction X(n)(t); 0 � t < 1; is given by

X(n)(t) = Xn([nt]) + n(t� [nt]=n)(Xn([nt]+1) �Xn([nt])):

Hence we have

jX(n)(h)�Xn([nh])j = n(h� [nh]=n)jXn([nh]+1) �Xn([nh])j
� jXn([nh]+1) �Xn([nh])j

and

E((Xn([nh]+1) �Xn([nh]))
2) = E((Xn1 �Xn0)

2)

= 2(VarXn0 �Cov(Xn1;Xn0))

= 2(
n�1X
s=0

1

n�s
�

n�1X
s=0

cos(2�s=n)

n�s
)

! 0 for n!1: (17)
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From (16) and (17) it is clear that the limiting covariance function is given
by the Fourier series

�(h) =
1

�
+ 2

1X
s=1

cos(2�hs)

�+ �(2�s)2 + 
(2�s)4
; 0 � h � 1:

In order to �nd an explicit expression of �(h) note that in the sense of
generalized functions and the theory of distributions

��(h)� ��00(h) + 
�0000(h) = 1 + 2
1X
s=1

cos(2�hs)

=
1X

s=�1

cos(2�hs) =
1X

s=�1

�s;

where �s denotes the �-function at s. Therefore, �(h) is the solution of a
homogeneous linear di�erential equation with constant coe�cients, cf. Hirsch
and Smale (1974, p. 138). In general, �(h) is thus a linear combination
of exponential and trigonometric functions depending on the roots of the
characteristic polynomial

�� �y2 + 
y4 = 0:

We will for simplicity only consider the two cases previously mentioned, � >
0; 
 = 0 and � = 0; 
 > 0.

Before treating these two cases, it is convenient to change the interval
from [0; 1] to [�1=2; 1=2]. Thus, let

��(h) = �(h+ 1=2); �1=2 � h � 1=2:

The function ��(h) is the solution to the same homogeneous linear di�erential
equation,

���(h)� ��00�(h) + 
�0000� (h) = 0: (18)

First consider the case � > 0; 
 = 0. With �2 = �=� the solution of (18)
is given by, cf. Hirsch and Smale (1974, p. 139),

��(h) = c1e
�h + c2e

��h; �1=2 � h � 1=2:

From �(h) = �(1� h); 0 � h � 1; it follows that

��(h) = ��(�h); �1=2 � h � 1=2;
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and hence we have c1 = c2 = c. Using that the �rst Fourier coe�cient is
given by 1=� we can �nd c from the equation

1=� = 2
Z 1=2

0
��(h)dh; (19)

and we obtain the form (6) of �(h), stated in the main text, and the corre-
spondence between (� 2; �) and (�; 
) given in Proposition 3.

Now consider the case � = 0; 
 > 0. Again, using ��(h) = ��(�h) and
letting 4 4 = �=
, the solution of (18) is given by, cf. Hirsch and Smale
(1974, p. 139)

��(h) = c1(e
 h + e� h) cos( h) + c2(e

 h � e� h) sin( h); �1=2 � h � 1=2:

The constants c1 and c2 can be found from (19) and �0
�
(1=2) = 0, and we

obtain the explicit form (11) of �(h) and the correspondence between (� 2;  )
and (�; 
) given in Proposition 4.
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